Hybrid OpenMP /MPI Parallelization of the Charge Deposition Step in the Global

Gyrokinetic Particle-In-Cell Code ORB5

Emmanuel Lantit
emmanuel.lanti@epfl.ch

A. Scheinberg!, A. Jocksch?, N. Ohanal, S. Brunner!, C. Gheller?, L. Villard!

LEcole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherche en Physique des Plasmas, CH-1015, Lausanne, Switzerland
2CSCS, Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano, Switzerland

PASC17 Conference
Lugano, June 27, 2017

) SWISS PLASMA ‘|0 cscs
CENTER N ‘ Centro Svizzero di Calcolo Scientifico
ECOLE POLYTECHNIQUE Swiss National Supercomputing Centre
FEDERALE DE LAUSANNE

Motivation

T

> In fusion research, gyrokinetic codes are extensively used to study turbulent
transport in tokamaks

» They require an enormous amount of numerical ressources
» Top-tier HPC platforms employ many and/or multicore processors

» As computers evolve, there is a constant need to adapt our code to benefit
from them

» ORBD5, a gyrokinetic Particle-In-Cell code, has been around for the last 18
years (first paper in 1999)

> We don't have enough ressources to go from scratch = code refactoring

> In this work, different standard optimization techniques are used to maximize
the time gain achievable with such a high level refactoring

Emmanuel Lanti [EANSI6 VAN SRy loi g

Outline of the presentation

@ The global gyrokinetic ORB5 code

® A journey towards a better performance
Increase data locality
A first try at OpenMP parallelization
Avoid indirect addressing
Avoid race conditions using colors

© Conclusions and outlook

Emmanuel Lanti

PASC17 — June 27, 2017

The global gyrokinetic code ORBH

» ORB5 is a global gyrokinetic Particle-In-Cell (PIC) code originally developed
at the Swiss Plasma Center [Tran1999, Jolliet2007, Bottino2011]
> It is used to describe:
> electromagnetic (EM) turbulence of a tokamak
> in an ideal MHD equilibrium
> by solving the gyrokinetic equations [Brizard2007].
> It is based on the Lagrangian §f PIC scheme for representing the plasma
phase space coupled with a field solver using a B-spline FE representation for
solving Maxwell’s equations
> The particle equations of motion are solved with a fourth order Runge-Kutta
scheme
> Numerical noise is reduced using a Krook-like operator [McMillan2008] or a
coarse graining procedure [Chen2007, Brunner1999], quadtree smoothing

> It handles multi-scale, multi-species, collisional, and EM plasmas

Emmanuel Lanti [EANSI6 VAN SRy loi g 3/15

PIC vs gyrokinetic PIC

Push | { Charge deposition ‘

Get field Field solve

> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

Emmanuel Lanti [EANI6 VAN SRy {0l g

PIC vs gyrokinetic PIC

Push | { Charge deposition ‘

AN

Get field Field solve

> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

Emmanuel Lanti [EANI6 VAN SRy loi g

VVUVT

PIC vs gyrokinetic PIC

Push | { Charge deposition ‘

AAANAN

Get field Field solve

> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

Emmanuel Lanti [EANI6 VAN SRy loi g

VUVUVY

PIC vs gyrokinetic PIC

Push | { Charge deposition ‘

Get field Field solve

> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

Emmanuel Lanti [EANI6 VAN SRy loi g

PIC vs gyrokinetic PIC

Push | { Charge deposition ‘

Get field Field solve

> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

Emmanuel Lanti [EANI6 VAN SRy loi g

PIC vs gyrokinetic PIC

| Push [>—Build LarmorH Charge deposition ‘

Gyroaverage Get field Field solve
> Charge deposition is used to compute the
charge/current

> Field solve compute the EM fields self-consistently with
the charge/current

» Push solves for the equations of motion of the particles

> Get field interpolates the EM fields to the particle's
position

> Charge deposition and get field involve interpolations
from particle to field grid

» Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti [EANI6 VAN SRy loi g

PIC vs gyrokinetic PIC

v

The guiding center (GC) attributes are stored in an array
» For each GC, the number of Larmor point (LP) and their attributes are computed and stored

v

As we will see, this trick allows to easily sort the LP

> However, it requires more memory !

(=)

Larmor \A11|A12\A13|A14|A21|A22 A31|A32|A33|A41|A42|A43|A44\

Emmanuel Lanti [EANSI6 VAN SRy loi g

Original ORBb5 parallelization scheme

» Domain decomposition using MPI

MPI processes = nsd X nclones

[# ouo

€T 0 1 2 3 4 5 6 7
0 3
% g E
S : |
L. — O =
Z 9 L&
& c
[e]
g o |®
® nsd
5
iy send/recv
—

subdomain #1 o subdomain #n

v

Showed good scalability up to several thousands of cores

v

MPI communications are more and more expensive as the number of tasks increases
> A solution is to add a parallelism dimension using OpenMP to benefit from shared memory

» See next talk from A. Jocksch for a 3D domain decompostition

Emmanuel Lanti [IEANIGI VAN 03

What are we doing in this work

> We are trying to “optimize” ORBS5, a production code, and port it to multi and manycore
platforms

» We cannot start from scratch = incremental approach
> No in-depth optimization

> In gyrokinetic PIC codes, the charge assignment is a critical part because:
> it is one of the most time consuming routines

—_— — 1
B 0.01 Time loop

@ 21.55 solve_fem

18.12 push

7.34 compute_fields_at_larmaor_points
2.24 rho_splitting

96 add_sources

69 compute_all_larmor_positions

- E-E-
EEOOD

1
1
4
4

> its parallelization is not trivial due to the indirect assignment (mapping of particle position to field
grid)

» We will focus on the problems inherent to the charge deposition step (indirect assignment, cache
reuse and vectorization) and use standard techniques to solve them

> Other parts like the push have also been treated but are presented in separate works (see A.
Scheinberg's poster PHY-03, Numerical Method Optimization in Particle-In-Cell Gyrokinetic
Plasma Code ORB5 this evening)

Emmanuel Lanti [EANSI6 VAN SRy loi g

Increase data locality

» Data locality (both spatial and temporal) is a key element for a good cache reuse
> In ORB5 many operation require a mapping between particle data and field data
> Generally, nothing ensures that consecutive particles in the memory are next to each other in real

space

Particle data structure Field data structure
(1D array) (2D array)

Emmanuel Lanti [EANI6 VAN SRy loi g

Increase data locality

» Data locality (both spatial and temporal) is a key element for a good cache reuse

> In ORB5 many operation require a mapping between particle data and field data

> Generally, nothing ensures that consecutive particles in the memory are next to each other in real
space

Particle data structure Field data structure Particle data structure Field data structure
(1D array) (2D array) (1D array) (2D array)

> However, this can be done with a particle sorting

» Counting sort implemented in ORB5 [Jocksch2016]

Emmanuel Lanti [EANI6 VAN SRy loi g

Improvement due to the particle sorting

> Test case: typical hybrid electron (TEM) run scaled down to a one node problem:
> 128 x 1024 x 4 grid
> 8M particles (4M ions, 4M electrons)
> 274 order B-splines
> All the timings are done on Piz Daint (XC40): 2 Intel Broadwell processors with 18 cores each

> Use Score-P profiling suite to get timings and more

128z x 1024y
64z x 512y
32z x 256y
162 x 128y
8z x 64y

4 x 32y

2z x 16y

1z x 8y

No sorting

Sorting effect on the charge deposition

(0.89x)
(0.9x)
(0.91x)
(0.92x)
(0.9x)
(0.9x)

(0.93x)

(0.93x)

s / timestep

20

Emmanuel Lanti

v

Particle sorting increases data locality and
thus performance

v

L1 cache misses are halved with full sorting

Best gain with full sorting (128s x 10240)
~ 10%

Sorting has a cost (not shown here) !

v

v

PASC17 — June 27, 2017

A first try at OpenMP parallelization

OpenMP parallelization » Add OpenMP directives with private field
grids and data reduction

Lo 32t > All the timings will be done with full sorting

2c x 16t > Reference case is pure MPI without sorting

dex 8t » We have now 3D parallelism (MPI clones,

MPI domains, and OpenMP threads)

» Vary number of clones and threads s.t.
F#clones x #threads = #cores

8c x 4t
16¢ x 2t

32¢ x 1t
» Optimal configuration: 8 clones / 4 threads
» Pure OpenMP has two problems:

0 10 20 30 40 50 > Arrays unnecessarily allocated/deallocated
s / timestep > Load balance during reduction

Reference Case

Emmanuel Lanti [EASI6 VAN SRy loi g 10/15

Avoid indirect addressing

» Since PIC codes use numerical particles, it is intuitive to treat them one after the other
» The problem is that we need to map their position to the field grid:

do part = 1, npart
! Find grid-cell index
i = x_index (part)
j = y_index (part)
k = z_index(part)
array(i,j,k) =

end do

(V21 5N (O] [N o

» This indirect addressing prevents auto vectorization from the compiler
» With a full sorting we can change the loop in order to avoid indirect addressing:

do cell = 1, ncell
! Grid-cell index is known
[i, j, k] = grid_index(cell)
do part = 1, npart_in_cell
array(i,j,k) =
end do
end do

Y

Emmanuel Lanti [EANSI6 VAN SRy loi g 11/15

Loop over grid cells

OpenMP parallelization (loop over grid cells)

le x 32t

2¢ x 16t
> Reference case is pure MPI without sorting

e x 8t 0.48x . , .

0480 » Optimal configuration: 4 clones / 8 threads
Sexdt] » Further timing decrease of 30%
16e 2t T » Overall performance gain due to direct

32 x 1t | addressing and vectorization

Reference Case

0 5 10 15 20
s / timestep

Emmanuel Lanti [IEASIGI VAN 03

Avoid race conditions using colors

» Race conditions can be avoided using various techniques: OpenMP atomic, reduction, private
data, etc

> They were tested but not very efficient as compared to the color scheme [Kong2010]

T

Emmanuel Lanti PASC17 — June 27, 2017 13/15

Avoid race conditions using colors

» Race conditions can be avoided using various techniques: OpenMP atomic, reduction, private
data, etc

> They were tested but not very efficient as compared to the color scheme [Kong2010]

T

Y

» Each color represents disjoint regions that can be treated in parallel one after the other

> Increases complexity (3 “discretizations”: grid, sorting, color scheme)

Emmanuel Lanti PASC17 — June 27, 2017 13/15

Color scheme in action

Setrho with color scheme

le x 32t PN (0.42x)
2¢ x 16t RIS (0.48x)
LR 1sx320
Rl 1s <5120
16c x 2t P
32¢ x 1t REPElY]

Reference Case

s / timestep

Emmanuel Lanti

Only a 2D tilling has been implemented in
ORB5

For each configuration, all the domain tillings
are tested and only the best is shown

Reference case is pure MPI without sorting

Now, best configuration is pure OpenMP (32
threads) with a 8 x 64 tilling

Note that the color scheme was originally
implemented to avoid race conditions but it
also improves the load balancing

PASC17 — June 27, 2017

14/15

Conclusions and outlook

» Starting from its “historical” state, the ORB5 code has been cleaned and its performance has
been improved with standard techniques

» Particle sorting increases data locality and improves the charge deposition step timing by ~ 11%
» Adding an OpenMP layer allows to further decrease the timings by ~ 20%

> Indirect addressings have been avoided by re-thinking the loops allowing to gain 30% more as
compared to the “naive” OpenMP

» Finally, race conditions are avoided with a proper tilling of the field array. The best performance is
a 58% timing reduction as compared to the reference case

» Some timings are still not understood. A proper profiling has to be done

v

A buffered version of the color scheme is being implemented in ORB5

Emmanuel Lanti PASC17 — June 27, 2017 15/15

	The global gyrokinetic ORB5 code
	A journey towards a better performance
	Increase data locality
	A first try at OpenMP parallelization
	Avoid indirect addressing
	Avoid race conditions using colors

	Conclusions and outlook

