
Hybrid OpenMP/MPI Parallelization of the Charge Deposition Step in the Global
Gyrokinetic Particle-In-Cell Code ORB5

Emmanuel Lanti1
emmanuel.lanti@epfl.ch

A. Scheinberg1, A. Jocksch2, N. Ohana1, S. Brunner1, C. Gheller2, L. Villard1
1Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherche en Physique des Plasmas, CH-1015, Lausanne, Switzerland

2CSCS, Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano, Switzerland

PASC17 Conference
Lugano, June 27, 2017



Motivation

I In fusion research, gyrokinetic codes are extensively used to study turbulent
transport in tokamaks

I They require an enormous amount of numerical ressources
I Top-tier HPC platforms employ many and/or multicore processors
I As computers evolve, there is a constant need to adapt our code to benefit

from them

I Orb5, a gyrokinetic Particle-In-Cell code, has been around for the last 18
years (first paper in 1999)

I We don’t have enough ressources to go from scratch =⇒ code refactoring

I In this work, different standard optimization techniques are used to maximize
the time gain achievable with such a high level refactoring

Emmanuel Lanti PASC17 – June 27, 2017 1/15



Outline of the presentation

1 The global gyrokinetic ORB5 code

2 A journey towards a better performance
Increase data locality
A first try at OpenMP parallelization
Avoid indirect addressing
Avoid race conditions using colors

3 Conclusions and outlook

Emmanuel Lanti PASC17 – June 27, 2017 2/15



The global gyrokinetic code Orb5

I Orb5 is a global gyrokinetic Particle-In-Cell (PIC) code originally developed
at the Swiss Plasma Center [Tran1999, Jolliet2007, Bottino2011]

I It is used to describe:
I electromagnetic (EM) turbulence of a tokamak
I in an ideal MHD equilibrium
I by solving the gyrokinetic equations [Brizard2007].

I It is based on the Lagrangian δf PIC scheme for representing the plasma
phase space coupled with a field solver using a B-spline FE representation for
solving Maxwell’s equations

I The particle equations of motion are solved with a fourth order Runge-Kutta
scheme

I Numerical noise is reduced using a Krook-like operator [McMillan2008] or a
coarse graining procedure [Chen2007, Brunner1999], quadtree smoothing

I It handles multi-scale, multi-species, collisional, and EM plasmas

Emmanuel Lanti PASC17 – June 27, 2017 3/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid

I Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid

I Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid

I Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid

I Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid

I Add gyroaverage and build Larmor array operation to
the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I Charge deposition is used to compute the
charge/current

I Field solve compute the EM fields self-consistently with
the charge/current

I Push solves for the equations of motion of the particles
I Get field interpolates the EM fields to the particle’s

position
I Charge deposition and get field involve interpolations

from particle to field grid
I Add gyroaverage and build Larmor array operation to

the PIC loop

Emmanuel Lanti PASC17 – June 27, 2017 4/15



PIC vs gyrokinetic PIC

I The guiding center (GC) attributes are stored in an array
I For each GC, the number of Larmor point (LP) and their attributes are computed and stored
I As we will see, this trick allows to easily sort the LP
I However, it requires more memory !

Emmanuel Lanti PASC17 – June 27, 2017 5/15



Original ORB5 parallelization scheme

I Domain decomposition using MPI

I Showed good scalability up to several thousands of cores
I MPI communications are more and more expensive as the number of tasks increases
I A solution is to add a parallelism dimension using OpenMP to benefit from shared memory
I See next talk from A. Jocksch for a 3D domain decompostition

Emmanuel Lanti PASC17 – June 27, 2017 6/15



What are we doing in this work

I We are trying to “optimize” Orb5, a production code, and port it to multi and manycore
platforms

I We cannot start from scratch =⇒ incremental approach
I No in-depth optimization

I In gyrokinetic PIC codes, the charge assignment is a critical part because:
I it is one of the most time consuming routines

I its parallelization is not trivial due to the indirect assignment (mapping of particle position to field
grid)

I We will focus on the problems inherent to the charge deposition step (indirect assignment, cache
reuse and vectorization) and use standard techniques to solve them

I Other parts like the push have also been treated but are presented in separate works (see A.
Scheinberg’s poster PHY-03, Numerical Method Optimization in Particle-In-Cell Gyrokinetic
Plasma Code ORB5 this evening)

Emmanuel Lanti PASC17 – June 27, 2017 7/15



Increase data locality

I Data locality (both spatial and temporal) is a key element for a good cache reuse
I In Orb5 many operation require a mapping between particle data and field data
I Generally, nothing ensures that consecutive particles in the memory are next to each other in real

space

I However, this can be done with a particle sorting
I Counting sort implemented in Orb5 [Jocksch2016]

Emmanuel Lanti PASC17 – June 27, 2017 8/15



Increase data locality

I Data locality (both spatial and temporal) is a key element for a good cache reuse
I In Orb5 many operation require a mapping between particle data and field data
I Generally, nothing ensures that consecutive particles in the memory are next to each other in real

space

I However, this can be done with a particle sorting
I Counting sort implemented in Orb5 [Jocksch2016]

Emmanuel Lanti PASC17 – June 27, 2017 8/15



Improvement due to the particle sorting

I Test case: typical hybrid electron (TEM) run scaled down to a one node problem:
I 128 × 1024 × 4 grid
I 8M particles (4M ions, 4M electrons)
I 2nd order B-splines

I All the timings are done on Piz Daint (XC40): 2 Intel Broadwell processors with 18 cores each
I Use Score-P profiling suite to get timings and more

(1x)

(0.93x)

(0.93x)

(0.9x)

(0.9x)

(0.92x)

(0.91x)

(0.9x)

(0.89x)

I Particle sorting increases data locality and
thus performance

I L1 cache misses are halved with full sorting
I Best gain with full sorting (128s × 1024θ)
∼ 10%

I Sorting has a cost (not shown here) !

Emmanuel Lanti PASC17 – June 27, 2017 9/15



A first try at OpenMP parallelization

(1x)

(0.95x)

(0.74x)

(0.71x)

(0.78x)

(0.9x)

(2.5x)

I Add OpenMP directives with private field
grids and data reduction

I All the timings will be done with full sorting
I Reference case is pure MPI without sorting
I We have now 3D parallelism (MPI clones,

MPI domains, and OpenMP threads)
I Vary number of clones and threads s.t.

#clones × #threads = #cores

I Optimal configuration: 8 clones / 4 threads
I Pure OpenMP has two problems:

I Arrays unnecessarily allocated/deallocated
I Load balance during reduction

Emmanuel Lanti PASC17 – June 27, 2017 10/15



Avoid indirect addressing

I Since PIC codes use numerical particles, it is intuitive to treat them one after the other
I The problem is that we need to map their position to the field grid:

do part = 1, npart
! Find grid -cell index
i = x_index (part)
j = y_index (part)
k = z_index (part)
array(i,j,k) = ...

end do

I This indirect addressing prevents auto vectorization from the compiler
I With a full sorting we can change the loop in order to avoid indirect addressing:

do cell = 1, ncell
! Grid -cell index is known
[i, j, k] = grid_index (cell)
do part = 1, npart_in_cell

array(i,j,k) = ...
end do

end do
Emmanuel Lanti PASC17 – June 27, 2017 11/15



Loop over grid cells

(1x)

(0.97x)

(0.67x)

(0.54x)

(0.48x)

(0.51x)

(0.97x)

I Reference case is pure MPI without sorting
I Optimal configuration: 4 clones / 8 threads
I Further timing decrease of 30%
I Overall performance gain due to direct

addressing and vectorization

Emmanuel Lanti PASC17 – June 27, 2017 12/15



Avoid race conditions using colors

I Race conditions can be avoided using various techniques: OpenMP atomic, reduction, private
data, etc

I They were tested but not very efficient as compared to the color scheme [Kong2010]

I Each color represents disjoint regions that can be treated in parallel one after the other
I Increases complexity (3 “discretizations”: grid, sorting, color scheme)

Emmanuel Lanti PASC17 – June 27, 2017 13/15



Avoid race conditions using colors

I Race conditions can be avoided using various techniques: OpenMP atomic, reduction, private
data, etc

I They were tested but not very efficient as compared to the color scheme [Kong2010]

I Each color represents disjoint regions that can be treated in parallel one after the other
I Increases complexity (3 “discretizations”: grid, sorting, color scheme)

Emmanuel Lanti PASC17 – June 27, 2017 13/15



Color scheme in action

8s 64

1s 64

1s 32

1s 512

1s 64

1s 16

(1x)

(0.84x)

(0.6x)

(0.54x)

(0.52x)

(0.48x)

(0.42x)
I Only a 2D tilling has been implemented in

Orb5
I For each configuration, all the domain tillings

are tested and only the best is shown
I Reference case is pure MPI without sorting
I Now, best configuration is pure OpenMP (32

threads) with a 8× 64 tilling
I Note that the color scheme was originally

implemented to avoid race conditions but it
also improves the load balancing

Emmanuel Lanti PASC17 – June 27, 2017 14/15



Conclusions and outlook

I Starting from its “historical” state, the Orb5 code has been cleaned and its performance has
been improved with standard techniques

I Particle sorting increases data locality and improves the charge deposition step timing by ∼ 11%
I Adding an OpenMP layer allows to further decrease the timings by ∼ 20%
I Indirect addressings have been avoided by re-thinking the loops allowing to gain 30% more as

compared to the “naive” OpenMP
I Finally, race conditions are avoided with a proper tilling of the field array. The best performance is

a 58% timing reduction as compared to the reference case

I Some timings are still not understood. A proper profiling has to be done
I A buffered version of the color scheme is being implemented in Orb5

Emmanuel Lanti PASC17 – June 27, 2017 15/15


	The global gyrokinetic ORB5 code
	A journey towards a better performance
	Increase data locality
	A first try at OpenMP parallelization
	Avoid indirect addressing
	Avoid race conditions using colors

	Conclusions and outlook

