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To all underpaid workers,
all undercredited researchers,
and everybody who is selflessly working

to make this universe a better place to live in.



In the beginning, there was nothing easy . ..
and Arkan said: “let there be polarization” ...
and there was polarization . ..

and every channel was made easier . ..



Abstract

Information theory is the field in which we study the fundamental limitations of
communication. Shannon proved in 1948 that there exists a maximum rate, called
capacity, at which we can reliably communicate information through a given chan-
nel. However, Shannon did not provide an explicit construction of a practical
capacity-achieving coding scheme. Polar coding, invented by Arikan, is the first low-
complexity coding technique that achieves the capacity of binary-input memoryless
symmetric channels. The construction of these codes is based on a phenomenon
called polarization. The study of polar codes and their generalization to arbitrary
channels is the subject of polarization theory, a subfield of information and coding
theories.

This thesis consists of two parts. In the first part, we provide solutions to several
open problems in polarization theory. The first open problem that we consider is to
determine the binary operations that always lead to polarization when they are used
in Arikan-style constructions. In order to solve this problem, we develop an ergodic
theory for binary operations. This theory is used to provide a necessary and sufficient
condition that characterizes the polarizing binary operations, both in the single-user
and the multiple-access settings. We prove that the exponent of a polarizing binary
operation cannot exceed % Furthermore, we show that the exponent of an arbitrary
quasigroup operation is exactly % This implies that quasigroup operations are
among the best polarizing binary operations.

One drawback of polarization in the multiple-access setting is that it sometimes
induces a loss in the symmetric capacity region of a given multiple-access channel
(MAC). An open problem in MAC polarization theory is to determine all the MACs
that do not lose any part of their capacity region by polarization. Using Fourier
analysis, we solve this problem by providing a single-letter necessary and sufficient
condition that characterizes all these MACs in the general setting where we have an
arbitrary number of users, and each user uses an arbitrary Abelian group operation
on his input alphabet.

We also study the polarization of classical-quantum (cq) channels. The input
alphabet is endowed with an arbitrary Abelian group operation, and an Arikan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC).

In the second part of this thesis, we investigate several problems that are related

iii



iv Abstract

to three orderings of communication channels: degradedness, input-degradedness,
and the Shannon ordering. We provide several characterizations for the input-
degradedness and the Shannon ordering.

Two channels are said to be equivalent if they are degraded from each other.
Input-equivalence and Shannon-equivalence between channels are similarly defined.
We construct and study several topologies on the quotients of the spaces of dis-
crete memoryless channels (DMC) by the equivalence, the input-equivalence and
the Shannon-equivalence relations. Finally, we prove the continuity of several chan-
nel parameters and operations under various DMC topologies.

Keywords: Polar codes, ergodic theory, quasigroup, multiple-access channels,
Fourier transform, classical-quantum channels, channel ordering, input degraded-
ness, Shannon ordering, topology.



Résumé

La Théorie de I'Information est le domaine qui définit les restreintes théoriques
sur la communication. En effet, en 1948, Shannon démontre I'existence d’un débit
maximal de transmission fiable d’information: la capacité. Cependant, Shannon
ne présente pas de construction explicite d’un systeme de codage pratique permet-
tant d’atteindre celle-ci. Le code polaire, inventé par Arikan, est le premier de ces
codes atteignant la capacité des canaux symmétriques sans-mémoire a entré binaire.
L’étude des codes polaires ainsi que leur généralization a des canaux arbitraires con-
stitue ce qu’on nomme la théorie de la polarisation, un sous-domaine des théories
des codes et de I'information.

Cette these se compose de deux axes. En un premier temps, nous présentons des
solutions pour de plusieurs problemes ouverts en théorie de la polarisation. Le pre-
mier de ces problemes consiste a déterminer les lois de composition internes menant a
une polarisation lorsqu’elles font parties de constructions similaires a celle d’Arikan.
Afin de résoudre ce probleme, nous développons une théorie ergodique pour les lois
de composition internes. Cette théorie nous donne une condition nécessaire et suff-
isante qui caractérise les lois de composition internes polarisantes dans les deux
sytemes d’acces: simple et multiple.

Toutefois, la polarisation d’un canal a acces multiple (CAM) induit une perte
dans la région de capacité symmétrique. Un probleme ouvert en théorie de la po-
larisation des CAMs consiste a déterminer les CAMs pour lesquels la polarisation
n’aboutit a la perte d’aucune partie de leurs régions de capacité symmétrique. En
utilisant I'analyse de Fourier, nous résolvons ce probleme en introduisant une con-
dition nécessaire et suffisante qui caractérise tous ces CAMs dans le cas général;
ol nous supposons un nombre quelconque d’utilisateurs et chaque utilisateur utilise
une loi arbitraire d’un groupe abélien sur ’alphabet d’entrée.

Toujours dans le premier axe, nous étudions aussi la polarisation de canaux
classiques quantiques. Dans ce cas, 'alphabet d’entrée est doté d’une loi arbitraire
d’un groupe abélien et cette derniere est utilisée pour appliquer une transformation
similaire a celle d’Arikan. Nous démontrons que pour un grand nombre d’étapes
de polarisation, les canaux classiques quantiques synthétiques se polarisent en des
canaux déterministes qui ne sont que des homomorphismes projetant ’entrée du
canal sur un groupe quotient de ’alphabet d’entrée. Nous utilisons ce résultat pour
construire des codes polaires pour des canaux classiques quantiques et des canaux
classiques quantiques a acceés multiples quelconques.

En un deuxieme temps, nous investiguons plusieurs problemes reliés a trois classi-
fications des canaux de communication: dégradation, dégradation d’entrée et la clas-
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sification de Shannon. Nous proposons plusieurs caractérisations pour la dégradation
d’entrée et la classification de Shannon.

De plus, deux canaux sont équivalents s’ils sont dégradés I'un de I'autre. De fagon
similaire, nous définissons 1’équivalence d’entrée et 1’équivalence de Shannon. Nous
construisons et nous étudions plusieures topologies sur les quotients des espaces des
canaux discrets sans mémoire par les relations d’équivalence, d’équivalence d’entrée
et d’équivalence de Shannon. Finalement, nous démontrons la continuité de plusieurs
parametres et opérations des canaux sous divers topologies des quotients des espaces
des canaux discrets sans mémoire.

Mot-clés: Codes polaires, théorie érgodique, quasigroupe, canaux a acces mul-
tiples, transformation de Fourier, canaux classiques quantiques, classification de
canaux, dégradation d’entrée, classification de Shannon, topologie.
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Introduction

The digital revolution that the world has witnessed over the past few decades is
the result of over a century of technological! and theoretical? developments. Claude
Shannon is credited for laying out the foundations of digitization (at least in the
areas of communication and storage) in his seminal paper “A Mathematical Theory
of Communication” [1]. In his pioneering paper, Shannon formalized the problem of
(digital) communication and provided clear answers to a number of questions about
what is possible and what is not possible to achieve in communication.

The publication of Shannon’s paper established a new field in applied mathe-
matics, known as information theory. This field is the study of the fundamental
limitations of communication. The channel coding theorem [1] shows that for every
communication channel W, there exists a positive number C(W) > 0 that charac-
terizes the highest rate of information® that can be reliably communicated through
this channel. More precisely, for every R < C(W) and every € > 0, there exists a
channel coding scheme of a rate of at least R and whose probability of error is at
most €. Whereas, for every R > C(W) there exists eg w > 0 such that every coding
scheme of rate of at least R has a probability of error of at least epyw. C(W) is
called the capacity of the channel W.

The channel coding theorem means that the probability of error can be made
arbitrarily small if and only if we communicate at a rate that is below the capacity
of the channel. In order to show the existence of good codes for rates below capacity,
Shannon used a non-constructive proof. Information and coding theorists needed
sixty years to find an explicit construction of low-complexity capacity-achieving
codes. This was possible due to the discovery of channel polarization by Arikan [2]

!Technological advances that lead to the digital revolution include: the telegraph and Babbage’s
analytical engine (19th century), transistors (1947), microprocessors (late 1960s), digital mobile
phones (1990s) and the internet.

2Theoretical advances that contributed to the digital revolution include: the sampling theorem,
Turing’s foundation of computer science (1936), and Shannon’s foundation of communication and
information theory (1948).

3The rate of information that is communicated through a channel is the average number of bits
that is transmitted per channel use. The rigorous definition can be found in Section 1.1.
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in 2008.

In this thesis, we provide answers to several questions in two areas of information
theory: polarization and channel ordering®. In Section 1.1, we provide a brief de-
scription of the communication problem. The main purpose of Section 1.1 is to make
this thesis accessible to readers who are not familiar with information theory. Read-
ers already familiar with information theory may skip ahead to Section 1.2 where
we discuss channel polarization and the construction of polar codes. We explain the
channel orderings that we studied in this thesis in Section 1.3. We summarize the
contributions of this thesis in Section 1.4.

1.1 The Communication Problem

Imagine that there is a source of information® that produces a sequence of symbols
Ui,...,U,,...that take values in a set U/ that we call the source alphabet. Shannon
modelled the source as a sequence of random variables® (U,,),>1 taking values in U.
The probability distribution of the sequence (U, ),>1 is assumed to be known.

A party has access to the source and wants to communicate the symbols (Uy,)n>1
with another party. The former party is called a transmitter and the latter is called
a receiver’. In order to achieve this communication, the transmitter and the receiver
use a channel, which is a physical medium that they share. The channel can be a
piece of paper, a magnetic tape, an electrical wire, an optical fiber, radio waves,
or any other physical medium. We can think of the channel as a black box that
takes symbols from the transmitter and produces symbols that are observed by the
receiver. The symbols produced at the receiver’s side depend on the symbols that
were transmitted in a stochastic way. The set X of symbols that the transmitter
can send is called the input alphabet of the channel, and the set ) of symbols that
the receiver can observe is called the output alphabet of the channel.

For example, consider the case of an electrical wire. By using some electronic
device, the transmitter can control the voltage at one end of the wire; and the re-
ceiver can measure (using another electronic device) the voltage at the other end
of the wire. Assume that the transmitter’s device can only produce voltages that
are between —V and V, and assume that the receiver’s device can only read volt-
ages that are between —2V and 2V. In this case, the input alphabet is the interval
[V, V] and the output alphabet is the interval [—2V,2V]. In practice, the output
cannot be perfectly predicted from the input due to the interference with the am-
bient electromagnetic noise and due to the imperfections of the electronic devices.
Therefore, for all practical purposes, we can assume that the output depends on the
input in a stochastic way.

4A channel ordering is a partial order on the set of communication channels.

5The source can be an image, a video, a sound wave, the text of a book, the speech of a senator,
the temperature measurements in a room, etc ...

SEven if the symbols (U, )n>1 are generated according to a deterministic procedure, we do not
usually have all the details of the generating procedure. Therefore, for all practical purposes, we
can assume that (Un)n>1 is a sequence of random variables following a probability distribution that
we can measure by collecting data and studying their statistics.

"The transmitter and the receiver can be the same party but at two different instants of time,
e.g., storage can be seen as a communication between a person and his older self.
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One simple model of such a channel is “the additive noise” model: If X € [-V, V]
is the input that is determined by the transmitter and if Y € [—2V, 2V] is the output
that is observed by the receiver, we can model the relation between X and Y as
follows:

Y=X+7,

where Z is a random variable that might depend on X. Z represents the random
noise that is added by the channel to the input.

In general, the channel is described by specifying the input alphabet X', the
output alphabet ), and the probabilistic relation between the input and the output,
ie., for every x € X, we have to specify a probability distribution Py, on the
output alphabet ). Note that for every y € ), Py |,(y) represents the conditional
probability of observing y at the output, given that z was the input. In the rest of
this thesis, we consider only channels with finite input and output alphabets.

Formally, we can define a channel W as a 3-tuple (X,), py ), where X and Y
are two finite sets that represent the input and output alphabets respectively, and
pw : X x Y — [0,1] is a mapping that satisfies pr(x,y) =1 for all z € X.

yey

For every (x,y) € X x ), we denote py (z,y) as W(y|x) and we interpret it as the
conditional probability of receiving y at the output of the channel given that x was
the input. We write W : X — ) to denote that W is a channel with input alphabet
X and output alphabet ). Note that we use the long arrow (—) in the notation
W : X — Y and not the short arrow (—) that we only use to describe mappings.
For example, W : X — ) denotes a channel, and V : X — ) denotes a mapping
from X to V.

Example 1.1. The binary symmetric channel with crossover probability € is the
channel W : X — Y satisfying X = Y = {0,1}, W(0]|0) = W(1|]1) = 1 — € and
W(1]0) = W(0|1) = €. In other words, there is a probability of € that the input bit
will be flipped by the channel, and there is a probability of 1 — e that the input bit
will remain intact. This channel is denoted as BSC(e).

1—¢

€

€

1—¢

Figure 1.1 — Binary symmetric channel BSC(e).

The binary erasure channel with erasure probability € is the channel W : X — Y
satisfying X = {0,1}, ¥ = {0,1,7}, W(0|0) = W(1|1) = 1 — € and W(?|0) =
W (?|1) = e. If we observe 0 (respectively 1) at the output, then we are certain that
the transmitted symbol was 0 (respectively 1). Whereas, if we observe the symbol 7
at the output, then there is an equal probability that the transmitted symbol was 0 or
1 (we say that the transmitted bit was erased). This channel is denoted as BEC(e).
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Figure 1.2 — Binary erasure channel BEC(e).

As the source alphabet U might be different from the input alphabet X’ of the
channel W, the transmitter has to transform the sequence (U,),>1 to a sequence
of symbols chosen from & in order to be able to transmit over the channel W. On
the other end, the receiver observes a sequence of symbols in ), and using these
observations, the receiver has to estimate the sequence (U, )n>1.

Now we are ready to mathematically formulate the communication problem: A
communication scheme for transmitting the source symbols (U, ),>1 through the
channel W is a 4-tuple (K, N, f,g), where K and N are two positive integers, f :
UK — &N is the transmitter’s encoder, and g : YV — UX is the receiver’s decoder.
The communication scheme is implemented as follows:

e The transmitter observes K source symbols Uy,...,Uk.
e The transmitter computes (X1,...,Xn) = f(Ui,...,Uk).

e The transmitter sends the symbols Xi,..., Xx to the receiver by using the
8

channel N times®.
e The receiver observes the output of the channel W and receives N output
symbols Y7,...,Y,,.

e The receiver computes (U, ...,Ux) = g(Y1,...,Yn).

This procedure can be repeated as many times as needed in order to transmit the
subsequent source symbols.

The performance of the communication scheme can be assessed according to
various performance parameters:

e The speed of transmission:

K
S—N.

S is the average number of source symbols that are transmitted per channel
use. A higher speed corresponds to a more efficient use of the channel.

8We assume that the channel W is memoryless, in the sense that different uses of the channel
are statistically independent. More precisely, for every z1,...,xny € X and every y1,...,yn € Y,

we have
N

PY1 ,,,,, Yn[X1,.-s XN(y17ayN‘thTN):HW(y’le’L)
=1
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e The probability of error:

~

P, =P{(Uy,...,Ug) # (U1,...,Uk)}].

A smaller probability of error corresponds to a more reliable communication
scheme.

e The blocklength N of the communication scheme. A smaller blocklength cor-
responds to a smaller delay in the transmission.

e (. and C; which are the computational complexity of the encoder and the de-
coder, respectively. Obviously, lower computational complexities are preferred.

The study of the trade-off between all these performance parameters is one of the
main goals of information theory. In [1], Shannon was interested in specifying the
largest possible speed of transmission in a reliable communication scheme, regardless
of the blocklength or the computational complexity of the encoder or the decoder.

A speed S > 0 is said to be achievable if for every 6,¢ > 0, there exists a
communication scheme of speed of at least S — § and of probability of error of at
most €. The main question that Shannon answered in [1] was, what is the largest
possible achievable speed of transmission?

Shannon solved this problem in two particular cases and then used his two solu-
tions to provide an answer to the general question. The two scenarios that Shannon
considered are as follows:

e The noiseless channel case: The distribution of the source is arbitrary but the
channel is noiseless, i.e., X =) and W (y|z) = 1y,_, for every z,y € &

e The noisy channel with a uniformly distributed source: An arbitrary discrete
memoryless channel (DMC) W is considered, but the source symbols are in-
dependent and uniformly distributed in U.

1.1.1 The Noiseless Coding Theorem

We consider a source that is memoryless® in the sense that it produces independent
and identically distributed random variables (U,),>1. We also assume that the
channel is binary and noiseless, i.e., the channel can transmit bits without any error.
In such a communication scheme, the encoder f transforms the source symbols into
a sequence of bits, and the decoder g “reconstructs” the source symbols from the
same sequence of bits. A higher speed of transmission S = % corresponds to using
fewer bits to represent the same number of source symbols.

This procedure is also known as source coding, because we are trying to represent
the source symbols as efficiently as possible without any concern about the channel.
We define the source code rate R as the average number of bits per source symbol,
ie.,

r=N_1
K S
We say that R > 0 is an achievable source code rate if the speed % is achievable.
The main question that we are trying to answer can now be reformulated as follows:

What is the lowest possible achievable source code rate?

“Note that Shannon also studied sources that are not memoryless [1].
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Theorem 1.1. (The noiseless coding theorem!® [1]) Let (Uy,)n>1 be a sequence
of independent and identically distributed random variables that take values in the
source alphabet U. The lowest achievable source code rate is equal to

H(U) == Py(u)logy Py(u),
uel

where U is a random variable that has the same probability distribution as any of
the random variables Uy, ..., Uy, ... We adopt the convention that 0log, 0 = 0.

The quantity H(U) is known as the entropy'! of the random variable U. The
noiseless coding theorem (also known as the source coding theorem) provides an
operational interpretation of the entropy of a random variable: It is equal to the
lowest average number of bits that we need to describe one instance of the random
variable reliably. Intuitively, this can be interpreted by saying that H(U) represents
the amount of information contained in U.

The entropy of U can also be interpreted as being the amount of uncertainty or
the amount of randomness that is contained in U. This interpretation is reinforced
by observing that the entropy is equal to zero when U is deterministic (i.e., no
uncertainty nor randomness) and is maximal when U is uniformly distributed (i.e.,
maximum uncertainty and randomness). This “uncertainty interpretation” might
seem to be inconsistent with the previous “information interpretation”: How can
information and uncertainty represent the same thing?

This apparent inconsistency disappears when we realize that the uncertainty
about a random variable before observing it is the same as the amount of information
that we gain after observing it. If there is no uncertainty about the random variable
before observation, then we do not learn any new information by observing it!?.

1.1.2 Basic Information Theoretic Quantities

Let (X,Y) be a pair of random variables that might not be independent. Assume
that X takes values in X and Y takes values in ). The joint entropy of X and Y
is defined as
H(X)Y)=—- Z Z Px y(x,y)logy Pxy(x,y).
zeX YeY
This is exactly equal to the entropy of the pair (X,Y’) when it is seen as one random
variable that takes values in X x ). H(X,Y) represents the amount of information
that is gained after observing both X and Y. The joint entropy of more than two
random variables can be defined similarly.
For every y € Y, define

H(X]Y =y) = — Z Pxy (z|y) logy Pxy (z[y).
zeX

"The noiseless coding theorem that Shannon proved in [1] considered variable-length source
coding. Variable-length source codes have the advantage that they can achieve the entropy without
making any errors.

"Notice that the entropy is a function of the probability distribution of the random variable.

2Formalists might find these arguments informal, unnecessary, confusing and/or meaningless.
We reassure the reader that such arguments are never used to prove theorems in information
theory (which is as formal and rigorous as any other field of mathematics). These interpretations
and arguments are used only to provide intuition.
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This is equal to the amount of information that we gain by observing X, assuming
that we already know that Y = y. The conditional entropy of X given Y is defined
as

HX|Y)=> Pr(HXY =y)=->_ Y Pxy(x,y)log, Pxy(z]y).
yey TeX yey

This is equal to the (average) amount of information that we gain after observing X,

assuming that we already know the value of Y. H(X|Y) is also equal to the amount

of uncertainty about X which remains after observing Y (and before observing X).
The mutual information between X and Y is defined as

I(X;Y) = H(X) — HX|Y).

If H(X) is the amount of uncertainty about X before observing it, and H(X|Y) is
the amount of uncertainty about X which remains after observing Y, then I(X;Y) is
the amount of uncertainty about X which is removed by observing Y. Equivalently,
I(X;Y) represents the amount of information about X which we can infer from Y.

Now let X,Y and Z be three random variables taking values in X',) and Z,
respectively. The conditional mutual information between X and Y given Z is
defined as

I[(X;Y|2) = H(X|Z) — H(X|Y, Z).

This is equal to the amount of information about X, which we can infer from Y,
assuming that we already know Z.

The following properties are well-known [3]:

e If U is a random variable taking values in I/ then:

(a) 0 < H(U) < log, [U|.
(b) H(U) =0 if and only if U is deterministic.
(¢c) H({U) = log, [U| if and only if U is uniform in U.

Chain rule for entropy: H(X,Y)=H(Y)+ H(X|Y)=H(X)+ H(Y|X).

Conditioning reduces entropy: H(X|Y) < H(X).

H(X|Y) =0 if and only if X can be written as a function of Y.
o I(X;Y)=I1(YV;X)=H(X)+H(Y)-H(X,Y)>0.

e I(X;Y)=0if and only if X and Y are independent.

o I(X;Y|Z2)=1(Y;X|Z)>0.

e Chain rule for mutual information: I(X;YZ2) = I(X;2) + I(X;Y|Z).}3

13I1(X;Y Z) is the mutual information between X and (Y, Z). A clearer notation that is used for
this quantity is 1(X;Y, Z). As products of random variables almost never appear in information
theory, the notation I(X;Y Z) is much more common because it is simpler.
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1.1.3 The Noisy-Channel Coding Theorem

The channel coding problem is about reliably communicating a random message
through a noisy channel W. The message is assumed to be uniformly distributed in
a set M that is called the message set.

A channel coding scheme for a channel W : X — Y is a 4-tuple (M, N, f, g).
M is the message set, N is the blocklength, f : M — X" is the (channel) encoder
and g : YV — M is the (channel) decoder. The scheme is implemented as follows:

e A random message M is uniformly chosen from M.

e The transmitter computes (X1,...,Xy) = f(M).

e The transmitter sends Xi,..., Xy to the receiver by using the channel N
times.
e The receiver observes N output symbols Y7,..., Yy.

The receiver computes an estimate of the transmitted message as

M:g(Yl,...,YN>.

The probability of error of the coding scheme C = (M, N, f, g) when it is used for
the channel W is given by

P.(C,W) = P[M # M].

Remark 1.1. If we have a memoryless source that produces symbols uniformly dis-
tributed inU, then a (K, N, f,g) communication scheme can be seen as a (UX, N, f, g)
channel coding scheme.

The rate of the channel coding scheme (M, N, f,g) is defined as R = 10g27]\|[./\/l|'
This is equal to the number of bits that are transmitted per channel use. A higher
rate corresponds to a higher speed of transmission.

A rate R > 0 is said to be achievable for a channel W if for every 9, e > 0, there
exists a channel coding scheme of rate of at least R — ¢ and whose probability of
error is at most €. The highest achievable rate is called the capacity of the channel
W, and we denote it as C(W).

Theorem 1.2. (The noisy-channel coding theorem [1]) Let W : X — Y be a
discrete memoryless channel. The capacity of W is given by the following formula:

C(W)= sup I(X;Y),
PxeAy
where Ay is the set of probability distributions on X, X is a random variable in X
which is distributed as Px, and Y is the output of the channel W when X is the
input, i.e., for every (z,y) € X x Y, we have Pxy(z,y) = Px(x)W (y|z).

The above characterization of the channel capacity is consistent with the intuitive
interpretation of mutual information: If 7(X;Y) is the amount of information about

X which we can infer from Y, then sup I(X;Y) is the highest number of bits
PxeAy
that can be transmitted through the channel W.
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It is easy to see that for every channel W with input alphabet X', we have
0 < C(W) <logy|X|. If C(W) = 0, then the output of the channel W is always
independent of the input. Whereas, if C(W) = log, |X|, then we can show that the
input of W can be written as a function of the output'*. In other words, if the
capacity is maximal, then the channel is perfect; in the sense that we can determine
the input from the output without errors.

1.1.4 Solution to the Communication Problem

The noiseless coding theorem and the noisy-channel coding theorem provide a solu-
tion to the communication problem that was formulated at the beginning of Section
1.1:

e Using the noiseless coding theorem, we can find a good source code whose rate
is arbitrarily close to H(U) bits per source symbol.

e Using the noisy channel coding theorem, we can find a good channel coding
scheme whose rate is arbitrarily close to C(W) bits per channel use.

By composing the source code with the channel code, we obtain a reliable com-
.. Lo S c(W)

munication scheme whose speed of transmission is arbitrarily close to AU source

symbols per channel use. Conversely, Shannon showed that it is not possible to

achieve a better speed of transmission.

This is known as the source-channel separation theorem: Any achievable speed
of transmission can be realized by composing a source code with a channel code.
The purpose of the source code is to represent the source symbols with as fewer
bits as possible (i.e., combat the redundancy of the source), and the purpose of the
channel code is to combat the noise of the channel.

1.2 Channel Polarization

Polar coding, invented by Arikan [2], is the first low-complexity coding technique
that achieves the symmetric capacity (defined below) of binary-input memoryless
channels. Polar codes rely on a phenomenon that is called polarization: The process
of converting a set of identical copies of a given binary-input channel into a set of
“almost extremal channels”, i.e., either “almost perfect channels”, or “almost useless
channels”.

Definition 1.1. Let W : X — Y be a discrete memoryless channel of input alpha-
bet X and output alphabet Y. The symmetric capacity of W, denoted as I(W), is the
quantity 1(X;Y) where X is a uniform random variable in X and Y is the output
of W when X is the input. Clearly, I(W) < C(W) for every discrete memoryless
channel W .

et Px be the capacity-achieving input distribution. We have
log, [X| = C(W) = I(X;Y) < H(X) < log, |X].

This shows that H(X) = log, |X| (which means that X is uniform) and H(X|Y) = H(X) —
I(X;Y) = 0, which implies that X can be written as a function of Y.
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If a channel W satisfies some symmetry conditions, then the capacity of W can
be shown to be equal to I(W). An example of channels that satisfy C'(W) = I(WW)
is the well-known family of binary-input memoryless symmetric channels:

Definition 1.2. Let Fy := {0,1} be the binary field and let W : Fy — Y be
a binary-input channel. We say that W is a binary-input memoryless symmet-
ric (BMS) channel if there exists a bijection © : Y — Y satisfying 7' = 7 and
W(yl0) = W(n(y)|1) for every y € Y. BSC(e) and BEC(€) are examples of BMS

channels.

As C(W) = I(W) for every BMS channel, we can see that polar codes achieve
the capacity of all BMS channels.

1.2.1 Polarization of Binary-Input Channels

We start by an informal introduction to the polarization of binary-input channels.
Formal and rigorous statements will be provided at the end of this subsection.
We can distinguish, among all binary-input channels, two that are extremal:

e Useless channels where the output is always independent of the input. Such
channels satisfy C(W) = I(W) = 0.

e Perfect channels where the input can be determined from the output with
probability 1. Such channels satisfy C(W) = I(W) = 1.

It is very easy to achieve the capacity of extremal channels: In the case of a use-
less channel, we can transmit a (frozen) bit that is already known to the receiver.
Whereas, in the case of a perfect channel, we can transmit an information bit'® and
the receiver can decode it without error.

Now let W : F — Y be an arbitrary binary-input channel. If there is a
way to transform a collection of independent and identical copies of the channel W
into a collection of extremal channels while preserving the total symmetric capacity,
then by transmitting frozen bits through the useless channels and information bits
through the perfect channels, we can use this procedure to achieve the symmetric
capacity. Arikan proposed a method to do this by applying a basic transformation
recursively.

Arikan’s basic transformation is illustrated in Figure 1.3. U; and U are two
independent and uniformly distributed bits. Let X1 = Uy @ Us and Xo = Us, where
@ denotes the XOR operation (i.e., addition modulo 2). It is easy to see that X,
and X are independent and uniform in Fo. We transmit X; and Xy through two
independent copies of the channel W. Let Y; and Y5 be the outputs corresponding
to X7 and X respectively.

Consider applying a successive cancellation decoder to estimate (Up,Us) from
(Y1,Y3): We first compute an estimate Uy of Ui, based on the output (Y7,Y3).
After that, we compute an estimate Uy of Us, based on (Y7, Yo, Ul) This procedure
motivates us to study the following two synthetic channels:

5 An information bit is a random variable that is uniformly distributed in Fo and not initially
known to the receiver.
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U1 —‘c

)
S

L >V,

Us W =Y

Figure 1.3 — Arikan’s basic transformation.

e The channel W~ whose input is U; and whose output is (Y1, Ys). Uz is con-
sidered as noise.

e The channel W™ whose input is U and whose output is (Y7, Ya, Uy).

We have:
IW™)+I(WH) = I(U; Y1Y2) + 1(Uz; Y1 YaUh) @ I(Uy; Y1Ya) + 1(Uz; Y1Y2|Ur)
= [(U1Uy; V1Ys) = I(X 1 Xo; Y1Y2) = I(X1; Y1) + 1(X2; Y2)
—20(W),

where (a) follows from the fact that I(U;;Uz) = 0. This shows that the total
symmetric capacity is preserved by Arikan’s basic transformation. Furthermore, we
have

I(WJr) == I(UQ; Y1Y2U1) Z I(UQ; }/2) - I(XQ; YQ) == I(W)

This shows that 0 < I(W~) < I(W) < I(W™) < 1. In other words, W™ is closer to
the useless channel and W™ is closer to the perfect channel. Therefore, Arikan’s basic
transformation makes us closer to the desirable extremal channels. By applying this
transformation recursively, we expect that we will get closer and closer to extremal
channels. Figure 1.4 shows how we can implement two polarization steps:

Uy O—O— W — Y1
Us D W Y
Us O W Y3
U, | e 1

Figure 1.4 — Two polarization steps.

We apply the following successive cancellation decoder:

1. We compute an estimate Uy of U1, based on the observation (Y7,Y2,Ys, Y)).
This corresponds to decoding the synthetic channel whose input is U; and
whose output is (Y1, Y2, Y3, Yy). It is easy to see that this is equivalent to the
channel W=~ := (W™)~.
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2. We compute an estimate (73 of Us, based on (Y7,Y2,Ys,Yy, Ul) This corre-
sponds to decoding the synthetic channel whose input is Us and whose output

is (Y1,Ys,Y3, Yy, Uyp). It is easy to see that this is equivalent to the channel
Wt = (W)t.

3. We compute an estimate Uz of Uy, based on (Y7, Y3, Y3, Yy, Ul, Ug) This corre-
sponds to decoding a synthetic channel that is equivalent to W+~ := (W)™,

4. Finally, we compute an estimate Uy of Uy, based on (Y1,Y2,Y3,Y), Uy, Us, Ug)
This corresponds to decoding a synthetic channel that is equivalent to W+ :=
(WH)*.

It is easy to see that after n polarization steps, we obtain 2" synthetic channels
{Ws: s € {—,+}"}. Arnkan showed that as n becomes large, almost all the
synthetic channels become either very close to a useless channel or very close to
a perfect channel. In other words, for the vast majority of s € {—,+}", we have
either I(W?#) ~ 0 or I(W?*) ~ 1. Let I be the set of indices s € {—, +}" satisfying
I(W*) =~ 1.

Polar codes are constructed as follows:

e For each s € I, send an information bit over the channel W¥. Hence, we send
a total of |Ig| bits.

e For each s ¢ Ig, send a frozen bit over the channel W*5. A frozen bit is
a random symbol that is assumed to be known to the receiver. Hence, no
information is being sent over W* for s ¢ I¢.

On one hand, as information bits are only sent through channels that are almost
perfect, the polar coding scheme is reliable (i.e., it has a low probability of error).
On the other hand, as we are sending a total of |I5| bits over 2" uses of the channel
W, we can see that the rate of the polar coding scheme is equal to 'g—g' bits per
channel use.

As Arikan’s basic transformation preserves the total symmetric capacity, we have

'I(W) = Y I(W?).

56{_7+}n

Therefore,

(W) = 2% > 1w Y 2% > IW) ~ itel

an
se{—,+}" s€lg

where (a) follows from the fact that for almost all the indices s € {—,+}", we either
have s € Ig or I(W?#) =~ 0. We deduce that the rate of the aforementioned polar
coding scheme is close to the symmetric capacity of the channel.

Arikan showed that all the above approximations become arbitrarily good as n
becomes large. This implies that we can construct polar codes with a probability of
error that is arbitrarily small and a rate that is arbitrarily close to the symmetric
capacity I(W). Furthermore, this can be achieved using an encoder and a decoder
of complexity O(N log N), where N = 2" is the blocklength of the code (see [2] for
details). We conclude that polar codes can achieve the symmetric capacity of any
binary-input channel using low-complexity encoder and decoder.
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Formal Description of Channel Polarization

Definition 1.3. Let W : Fy — Y be a binary-input memoryless channel. We define
the two channels W~ :Fo =Y x Y and WT :Fy — Y x Y x Fy as follows:

1
W= (y1,y2lun) = 5 > Wiyrlur & u)W (yafus),

ug €Fo

1
W (y1, y2, ur|ug) = §W(y1|u1 ® u2) W (y2|uz).
Moreover, for all s = (s1,...,8,) € {—,+}", we define
We = (We)%2..)%n.

Theorem 1.3. [2] Let W : Fo — Y be a binary-input memoryless channel. For
every § > 0, we have

3 1 n S
Jim s e {— 4" 6 <I(W) <1-d}|=0.

Any construction that is similar to the one given in Definition 1.3 and Figure 1.3
is called an Arikan-style comstruction. If such construction exhibits a polarization
phenomenon, then the code obtained by this construction is called a polar code
(the concepts of “polarization phenomena” and “Arikan-style constructions” will be
formally and rigorously defined in Chapter 3).

1.2.2 Polarization for Arbitrary Discrete Memoryless Channels

Any attempt to generalize Arikan’s technique to channels having a non-binary input
alphabet X has to replace the XOR operation by a binary operation * on the input
alphabet X'. The first operation that was investigated is the addition modulo g,
where ¢ = |X| and X is endowed with the algebraic structure Z,. Sasoglu et al. [4]
show that if ¢ is prime, then the addition modulo ¢ leads to the same polarization
phenomenon as in the binary input case.

Park and Barg [5] show that if ¢ = 2" with » > 0, then the addition modulo
q leads to a polarization phenomenon which is different from the polarization in
the binary input case, but it can still be used to construct capacity-achieving polar
codes. They show that we have a multilevel polarization: Although we do not
always have polarization to “almost perfect” or “almost useless” channels, we always
have polarization to channels that are easy to use for communication. Sahebi and
Pradhan [6] show that multilevel polarization also happens if an arbitrary Abelian
group operation on the alphabet X is used. This enables the construction of polar
codes for arbitrary discrete memoryless channels (DMC) since any alphabet can be
endowed with an Abelian group structure.

Polar codes for arbitrary DMCs were also constructed by Sasoglu [7] using a
special quasigroup operation that ensures two-level polarization.

1.2.3 Polarization for Multiple-Access Channels

So far we have only considered discrete memoryless channels. These channels have
exactly one transmitter and one receiver. There exists another kind of channels
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that allow more than one user to transmit information to a single receiver. Such
channels are called multiple-access channels'® (MAC). The polarization phenomenon
can be generalized to MACs: If W is an m-user MAC, we can apply an Arikan-style
construction on W by using a binary operation on the input alphabet of each user.

Sasoglu et al. constructed MAC-polar codes for a two-user MAC with an input
alphabet of prime size [8]. Abbe and Telatar used matroid theory to construct
MAC-polar codes for an m-user MAC with binary inputs [9].

1.3 Channel Ordering

The ordering of communication channels was first introduced by Shannon [10]. A
channel W’ is said to contain another channel W if W can be simulated from W’ by
randomization at the input and the output using a shared randomness between the
transmitter and the receiver. More precisely, W' : X’ — )’ contains W : X — Y
if there exist an integer n and three sequences (oq)1<i<n, (17)1<i<n and (R;)i<i<n
such that:

e (y is a positive number for every 1 <[ <n, and

n
Z Q) = 1.
=1

In other words, (oq)1<i<pn forms a probability distribution on {1,...,n}.

For every 1 <1 <n, T; is a channel of input alphabet X and output alphabet
X',

For every 1 <[ < n, R, is a channel of input alphabet ) and output alphabet
V.

For every (z,y) € X x ), we have

Wiyle) =Y o Y D T |e)W' (|2 ) Rulyly).-
1

= z'eX y'ey!

Assume that a transmitter and a receiver share a random variable L taking values
in {1,...,n}, and assume that L is distributed as (a;)i<j<y. If the transmitter and
the receiver have access to the channel W’ they can use the random variable L in
order to simulate the channel W as follows: In order to transmit a symbol X € X
through the simulated channel W, the transmitter first observes the random variable
L and then applies the random mapping!” 77, on X. Let X’ € X’ be the (random)
output of 77,. The transmitter sends X’ through the channel W’. Let Y’ € )’ be
the output of the channel W’. The receiver observes the random variable L and
applies the random mapping Ry, on Y’. Let Y be the output of Ry. It is easy to
see that the channel from X to Y is equivalent to W.

16See Chapter 4 for the formal definition of multiple-access channels.
17A discrete memoryless channel can be seen as a random mapping from the input alphabet to
the output alphabet.
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Shannon showed in [10] that if W’ contains W, then the existence of a coding
scheme of blocklength N, rate R and probability of error € for the channel W
implies the existence of a coding scheme of blocklength N, rate R and probability
of error of at most € for the channel W’. This shows that C(W) < C(W’) and
P.(N,R,W') < P.(N,R,W) for every integer N and every positive real number
R > 0, where P.(N,R,W) is the smallest probability of error among all coding
schemes of blocklength N and of rate of at least R, assuming that the schemes are
used for the channel .

Another ordering that has been well studied is the degradedness between chan-
nels. A channel W is said to be degraded from another channel W’ if W can be
obtained from W' by composing it with another channel. In other words, W is de-
graded with respect to W’ if W can be simulated from W’ by a randomization at the
output. In Part II of this thesis, we will refer to degradedness as output-degradedness
in order to distinguish it from the notion of input-degradedness that we introduce
in Chapter 10. It is easy to see that output-degradedness is a special case of Shan-
non’s ordering. We can trace the roots of the notion of output-degradedness to the
seminal work of Blackwell, in the 1950s, about comparing statistical experiments
[11]. Note that in the Shannon ordering, the input and output alphabets need not
be the same, whereas in the output-degradedness definition, we have to assume
that W and W’ share the same input alphabet X’ but they can have different out-
put alphabets. A characterization of output-degradedness is given by the famous
Blackwell-Sherman-Stein (BSS) theorem [11, 12, 13].

1.4 Outline and Contributions of this Thesis

This thesis consists of two parts. In the first part (Chapters 2-9), we provide
solutions to several problems related to channel polarization. We summarize the
main results of Part I in Section 1.4.1. Part Iis concluded in Chapter 9. In the second
part (Chapters 10-13), we investigate several problems related to channel orderings.
We present the main results of Part II in Section 1.4.2. Part II is concluded in
Chapter 13.

1.4.1 Part I: Channel polarization
An Ergodic Theory for Binary Operations

In Section 1.2.2, we saw that Abelian group operations are polarizing in the sense
that they always lead to a (multilevel) polarization phenomenon when they are
used in Arikan-style constructions. An open problem in polarization theory is to
characterize all the polarizing binary operations (in the general multilevel sense).
Chapters 2 and 3 solve this problem by providing a necessary and sufficient condition
for a binary operation to be polarizing. In Chapter 2, we develop an ergodic theory
for binary operations. This theory will be used in Chapter 3 to characterize the
polarizing operations.

In Chapter 2, we define uniformity preserving, irreducible, ergodic and strongly
ergodic operations and we study their properties. We introduce the concepts of a
stable partition and the residue of a stable partition. We show that an ergodic
operation is strongly ergodic if and only if all its stable partitions are their own
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residues. We also study the products of binary operations and the structure of their
stable partitions. We show that the product of a sequence of binary operations is
strongly ergodic if and only if all the operations in the sequence are strongly ergodic.

Polarizing Binary Operations

Let * be a binary operation on a finite set X'. We say that = is polarizing if for every
discrete memoryless channel W with input alphabet X', the recursive application of
the Arikan-style construction that is based on * transforms a collection of indepen-
dent and identical copies of W into a collection of “easy channels”. In Chapter
3, we provide rigorous definitions for the concepts of easy channels and polarizing
binary operations. We show that a binary operation is polarizing if and only if it is
uniformity preserving and its right-inverse is strongly ergodic.

We define the exponent F, of a polarizing binary operation x. We show that if
x is a polarizing operation on a finite set X', then for every channel W with input
alphabet X, every 8 < E, and every 0 > 0, there exists ng = no(W, 3,0, ) > 0 such
that for every n > ng, there exists a polar code of blocklength N = 2™ and of rate
of at least I(W) — § such that the probability of error of the successive cancellation
decoder is at most 2=V”. In other words, the probability of error of polar codes that
are constructed using * decays faster than 2=V for any € > 0.

MAC Polarization Theory

Let Xy, ..., X, be m finite sets and let %1, ..., *,, be m binary operations defined on
X1, ..., Xy, respectively. We say that the sequence (%1, ..., %) is MAC-polarizing if
every MAC of input alphabets X7, ..., X}, can be polarized by applying an Arikan-
style transformation that is based on the binary operations %1, ..., *,,. In Chapter
4, we show that a sequence of binary operations is MAC-polarizing if and only if
every binary operation in the sequence is uniformity preserving and its right inverse
is strongly ergodic.

We define the exponent Ei, . ., of a MAC-polarizing sequence (xi,...,%p).
We show that if *i,...,*,, are binary operations on A7, ..., X, respectively, and if
(1, -« .y %) 18 MAC-polarizing, then for every MAC W of input alphabets X7, ...,
X, every B < Ey, . ., and every § > 0, there exists

no :nO(W76757*17"'7*m) >0

m

such that for every n > ng, there exists a MAC-polar code of blocklength N =
2" and of sum-rate of at least I(W) — § such that the probability of error of the
successive cancellation decoder is at most 2=V”. In other words, the probability of
error of MAC-polar codes that are constructed using 1, ..., *,, decays faster than
9= Nrtmm = gy any € > 0.

We also show that if we use special binary operations (namely, the addition
modulo the size of the input alphabets), the MAC-polar code construction becomes

simpler.

Error Exponents

In Chapter 5, we study the exponents of polarizing binary operations and the
exponents of MAC-polarizing sequences of binary operations. We show that the
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exponent of a polarizing binary operation cannot exceed % We provide a sufficient
condition for a polarizing operation to have a zero exponent. We prove that the
exponent of a quasigroup operation is exactly % This implies that quasigroup
operations are among the best polarizing binary operations.

We show that the exponent of a MAC-polarizing sequence of binary operations
is upper bounded by the exponent of the product of all the binary operations that
are present in the sequence, which in turn is upper bounded by the exponent of
every binary operation in the sequence. Furthermore, we prove that the exponent
of a sequence of quasigroup operations is exactly %

Fourier Analysis of MAC Polarization

One drawback of MAC-polar codes (i.e., codes that are based on MAC polariza-
tion) is that they might not achieve the entire symmetric-capacity region'®. The
reason behind this problem is that MAC polarization sometimes induces a loss in
the symmetric-capacity region.

Chapter 6 provides a single-letter necessary and sufficient condition that char-
acterizes the set of MACs that do not lose any part of their symmetric-capacity
region by polarization. The characterization that we provide relies on Fourier anal-
ysis, and works in the general setting where we have an arbitrary number of users
and each user uses an arbitrary Abelian group operation on his input alphabet. We
show that the reason why a given MAC W loses parts of its symmetric-capacity re-
gion by polarization is because its transition probabilities are not “aligned”, which
makes W “incompatible” with polarization. The “alignment” condition is expressed
in terms of the Fourier transforms of the transition probabilities of W.

Erasure Schemes Using Generalized Polar Codes

One possible way to enhance the performance of polar codes is through decoding
with erasure; it is sometimes desirable to allow the receiver not to decide which
message was transmitted, especially when there is a feedback from the receiver to
the transmitter: If a confusing string of symbols was received (in the sense that
there is a high probability of a decoding error to occur, no matter which message
the receiver chooses as the decoded message), the receiver can ask the transmitter
to resend the message, in the hope that the received string will not be confusing in
the next transmission.
There are two types of error when we allow decoding with erasure:

e If the receiver decides on the transmitted message and makes an error, we say
that an undetected error occurs.

e If the receiver does not decide, we say that an erasure occurs.

In Chapter 7, we study the tradeoff between the probability of undetected error
and the erasure probability for generalized polar (GP) codes'®. We derive a closed-
form formula for the zero-undetected-error capacity I§'Y (W) of GP codes for a given

18The definition of the symmetric-capacity region can be found in Chapter 4.
9 Generalized polar codes are a family of codes that contains, among others, the standard polar
codes of Arikan and Reed-Muller codes.
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binary-input memoryless symmetric channel W under the low-complexity successive
cancellation decoder with erasure. We show that for every ¢ > 0 and every R <
ISP (W), there exists a generalized polar code of blocklength N and of rate of at
least R where the undetected-error probability is zero and the erasure probability is

1 —€
less than 27V? °. Conversely, we show that for any € > 0 and any GP code of rate

I§Y (W) < R < I(W) and blocklength N, the undetected error probability cannot

e
be made less than 2~V2 " unless the erasure probability is close to 1.

Polar Codes for Arbitrary Classical-Quantum Channels

The polarization phenomenon can be generalized to the setting where the input of
the channel is classical and the output is a quantum state. In Chapter 8, we prove
polarization theorems for arbitrary classical-quantum channels (cq-channel). The
input alphabet is endowed with an arbitrary Abelian group operation and an Arikan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism cq-channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC). The encoder can
be implemented in O(N log N) operations, where N is the blocklength of the code.
We propose a quantum successive cancellation decoder for the constructed codes.
Furthermore, we show that the probability of error of this decoder decays faster
than 2~V for any < %

1.4.2 Part Il: Channel ordering
Characterizations of Various Channel Orderings

In Chapter 10, we introduce the input-degradedness as a novel channel ordering. A
channel W is said to be input-degraded from another channel W’ if W can be simu-
lated from W’ by randomization at the input. We provide a necessary and sufficient
condition for a channel to be input-degraded from another one. We show that any
decoder that is good for W' is also good for W. We provide two characterizations for
input-degradedness, one of which is similar to the Blackwell-Sherman-Stein (BSS)
theorem.

We also study the Shannon ordering of communication channels in Chapter 10.
We show that W’ contains W (in the Shannon ordering sense) if and only if W is the
skew-composition of W’ with a convex-product channel. We use this fact to derive
a characterization of the Shannon ordering that is similar to the BSS theorem. The
characterization that we provide is given in terms of blind randomized in the middle
(BRM) games?°.

Topological Structures on DMC Spaces

A topology on a given set is a mathematical structure that enables us to formally talk
about the neighborhood of a given point of the set. This makes it possible to define
continuous mappings and converging sequences. Topological spaces generalize metric

20The definition of BRM games is given in Chapter 10.
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spaces which are mathematical structures that specify distances between the points
of the space. Links between information theory and topology were investigated in
[14].

Two channels are said to be output-equivalent if they are output-degraded from
each other. Input-equivalence and Shannon-equivalence between channels are simi-
larly defined. In Chapter 11, we construct and study several topologies on the
quotients of the spaces of discrete memoryless channels (DMC) by the output-
equivalence, the input-equivalence and the Shannon-equivalence relations. In Chap-
ter 12, we show that many channel parameters and operations are continuous under
the constructed topologies.

The space of output-equivalent channels with input alphabet X and output al-
phabet ) can be naturally endowed with the quotient of the Euclidean topology
by the output-equivalence relation. We show that this topology is compact, path-
connected and metrizable. A topology on the space of output-equivalent channels
with fixed input alphabet X and arbitrary but finite output alphabet is said to be
natural if and only if it induces the quotient topology on the subspaces of output-
equivalent channels sharing the same output alphabet. We show that every natural
topology is o-compact, separable and path-connected. Whereas, if |X| > 2, we prove
that a Hausdorff natural topology is not Baire and it is not locally compact any-
where. This implies that no natural topology can be completely metrized if |X| > 2.
We show that the finest natural topology, which we call the strong topology, is com-
pactly generated, sequential and Ty. However, if |X| > 2, we prove that the strong
topology is not first-countable anywhere, hence it is not metrizable. We show that
in the strong topology, a subspace is compact if and only if it is rank-bounded and
strongly-closed. We provide a necessary and sufficient condition for a sequence of
channels to converge in the strong topology.

We introduce a metric distance on the space of output-equivalent channels which
compares the noise levels between channels. We show that the induced metric topol-
ogy, which we call the noisiness topology, is natural. We also study topologies that
are inherited from the space of meta-probability measures by identifying channels
with their Blackwell measures. We show that the weak-x topology is exactly the
same as the noisiness topology and hence it is natural. We prove that if |X| > 2, the
total-variation topology is not natural nor Baire, hence it is not completely metriz-
able. Furthermore, we show that it is not locally compact anywhere. Finally, we
prove that the Borel o-algebra is the same for all Hausdorff natural topologies on
the space of output-equivalent channels.

We then study the topologies that can be constructed on the spaces of input-
equivalent channels. The space of input-equivalent channels with input alphabet X
and output alphabet ) can be naturally endowed with the quotient of the Euclidean
topology by the input-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of input-equivalent chan-
nels with a fixed output alphabet ) and arbitrary but finite input alphabet is said
to be natural if and only if it induces the quotient topology on the subspaces of
input-equivalent channels sharing the same input alphabet. We show that every
natural topology is o-compact, separable and path-connected. Whereas, if |Y| > 3,
we prove that a Hausdorff natural topology is not Baire and it is not locally com-
pact anywhere. We show that the finest natural topology, which we call the strong
topology, is compactly generated, sequential and Ty. However, if || > 3, we prove
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that the strong topology is not first-countable anywhere, hence it is not metrizable.
We introduce the similarity metric on the space of input-equivalent channels, and
we prove that its induced topology is natural.

Some of the above results can also be shown for the spaces of Shannon-equivalent
channels. The space of Shannon-equivalent channels with input alphabet X and out-
put alphabet ) can be naturally endowed with the quotient of the Euclidean topol-
ogy by the Shannon-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of Shannon-equivalent
channels with arbitrary but finite input and output alphabets is said to be natural if
and only if it induces the quotient topology on the subspaces of Shannon-equivalent
channels sharing the same input and output alphabets. We show that every natural
topology is o-compact, separable and path-connected. We show that the finest nat-
ural topology, which we call the strong topology, is compactly generated, sequential
and Ty. We introduce the BRM metric on the space of Shannon-equivalent channels,
and we prove that its induced topology is natural. The definition of the BRM metric
relies on the characterization of the Shannon ordering in terms of BRM games.

Continuity of Channel Parameters and Operations

In Chapter 12, we study the continuity of many channel parameters and opera-
tions under various topologies on the space of output-equivalent channels, the space
of input-equivalent channels, and the space of Shannon-equivalent channels. The
continuity of channel parameters and operations might be helpful in the following
two problems:

e If a parameter (such as the optimal probability of error of a given code) is
difficult to compute for a channel W, one can approximate it by computing
the same parameter for a sequence of channels (W,,),>0 that converges to W
in some topology where the parameter is continuous.

e The study of robustness of a communication system against the imperfect
specification of the channel.

We show that mutual information, channel capacity, Bhattacharyya parameter,
the probability of error of a fixed code, and the optimal probability of error for
a given code rate and blocklength, are continuous under various topologies on the
space of output-equivalent channels. We also show that channel operations such
as sums, products, interpolations, and Arikan-style transformations are continuous
under these topologies.

As for the space of input-equivalent channels, we show that the channel capacity,
the probability of error of a given decoder, and the optimal probability of error for
a given code rate and blocklength, are continuous under the strong topology. We
also prove that channel sums and products are continuous under both the strong
and similarity topologies.

Finally, we study the continuity of channel parameters and operations on the
space of Shannon-equivalent channels. We show that the channel capacity and the
optimal probability of error for a given code rate and blocklength are continuous
under the strong topology. We also prove that channel sums and products are
continuous under the strong topology.
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An Ergodic Theory of Binary
Operations

In this chapter!, we develop an ergodic theory for binary operations. This theory
will be used in Chapter 3 to provide a necessary and sufficient condition for a binary
operation to be polarizing.

In Section 2.1 we introduce the notion of uniformity-preserving operations. A
uniformity-preserving operation * on X is a binary operation for which the mapping
fe 1 X2 — X? defined as fi(z,y) = (x * y,y) is bijective. It is called uniformity-
preserving since for any pair of random variables (X1, X3) in X2, (X1 * Xo, Xo) is
uniform in X2 if and only if (X1, X2) is uniform in X2. As we will see in Chapter
3, if % is not uniformity-preserving, then the Arikan style construction that is based
on * does not conserve the symmetric capacity. Hence being uniformity-preserving
is a necessary condition to be polarizing. On the other hand, being a quasigroup
operation is a sufficient condition [17]. Therefore, a necessary and sufficient condition
must be a property that is stronger than uniformity-preserving and weaker than
quasigroup. A reasonable strategy to search for a necessary and sufficient condition
is to relax the quasigroup property while keeping the uniformity-preserving property.

The difference between a quasigroup operation and a uniformity-preserving op-
eration is that in the case of a quasigroup operation, any element is reachable from
any other element by one multiplication on the right. This property does not always
hold for a uniformity-preserving operation.

One possible relaxation of the quasigroup property is to consider uniformity-
preserving operations where all the elements are reachable from each other by mul-
tiple multiplications on the right. Irreducible and ergodic operations — which are
defined and studied in Section 2.2 — satisfy this property. The concepts of irre-
ducible and ergodic operations are very similar to the concepts of irreducible and
ergodic Markov chains. The reason why we consider such binary operations is be-
cause of their good connectability properties: If the elements of X are well connected
under %, this will create strong correlations between the inputs of the synthetic chan-
nels, which should ultimately lead to a polarization phenomenon.

Although ergodic operations seem to have good connectability properties, this

'The material of this chapter is based on [15, 16].
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is not enough to ensure polarization as we will see in Chapter 3. It turns out that
we need a stronger notion of ergodicity. In order to define this stronger notion of
ergodicity, we first need to define stable partitions. Section 2.3 introduces balanced,
periodic and stable partitions and investigates their properties. Stable partitions
are a generalization of the concept of quotient groups. In Section 2.4, we introduce
and study the notion of the residue of a stable partition and in Section 2.5 we define
and investigate strongly ergodic operations. We show that an ergodic operation
is strongly ergodic if and only if each stable partition is its own residue. Strong
ergodicity is a novel concept and has no analog in the ergodic theory of Markov
chains. We will show in Chapter 3 that a binary operation is polarizing if and only
if it is uniformity-preserving and its right-inverse is strongly ergodic.

Generated stable partitions are introduced and studied in Section 2.6. This
concept is needed to show that the strong ergodicity of the right-inverse operation
is a sufficient condition for polarization.

The products of binary operations are defined in Section 2.7 and the structure
of their stable partitions is studied. We show that the product of a sequence of
binary operations is strongly ergodic if and only if every operation in the sequence
is strongly ergodic. As we will see in Chapter 4, the products of binary operations
and their stable partitions are important for the study of MAC polarization theory.

2.1 Uniformity-Preserving Operations

All the sets that are considered in this chapter are finite.

Definition 2.1. A uniformity-preserving operation * on X is a binary operation
such that the mapping f. : X* — X2 defined by f.(z,y) = (x*y,y) is bijective. It is
called uniformity-preserving since for any pair of random variables (X1, X2) in X2,
(X1 % Xo, Xo) is uniform in X? if and only if (X1, X2) is uniform in X2.

Remark 2.1. It is easy to see that * is uniformity-preserving if and only if it satisfies
the following condition:

e The multiplication-on-the-right mappings 7, : X — X defined by mp(x) = z b
are bijective for all b € X. We denote 7rb_1(a) as a/*b. The binary operation
/* is called the right-inverse of .

It is easy to see that if * is uniformity-preserving then /* is uniformity-preserving
as well.

Definition 2.2. A uniformity-preserving operation is said to be a quasigroup oper-
ation if it also satisfies the following:

e The multiplication-on-the-left mappings ny : X — X defined by ny(x) = b*x x
are bijective for all b € X. We denote 77b_1(a) as b\«a. The binary operation
\« 1s called the left-inverse of *.

It is easy to see that if * is a quasigroup operation then /* and \. are quasigroup
operations as well.

Note that for a general quasigroup operation *, we may find a,b € X such that
7rb_1(a) =a/*b# b\va = nb_l(a). This is why we use different notations for left and
right inverses.
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Notation 2.1. Let A and B be two subsets of X. We define the set:
AxB:={axb: a€ A bec B}.
For a,b € X, we denote {a} * B and A x {b} by ax B and A x b respectively.

It is easy to see that if x is uniformity-preserving and B is non-empty, then
|Ax B| > |A|. On the other hand, the relation |Ax B| > | B| does not hold in general
unless * is a quasigroup operation and A is non-empty.

2.2 Irreducible and Ergodic Operations

In this section and throughout the chapter, * is always a uniformity-preserving
operation.

Definition 2.3. Let x be a uniformity-preserving operation on a set X. We say that
a € X is x-connectable to b € X in [-steps if there exist | elements xg,...,x;_1 € X

satisfying (... ((axxg) *x1)...*xx;-1) = b. We denote this relation by a g,

We say that a is *-connectable to b if there exists | > 0 such that a Hhop, We
denote this relation by a — b.

Definition 2.4. A uniformity-preserving operation * is said to be irreducible if all
the elements of X are x-connectable to each other. If x is irreducible, we define the

period of an element a € X as per(x,a) :=ged{l >0: a N a}, and we define the
period of x as:

per(x) := ged {per(*,a) : a € X'} chd{l ~0: Jac X,a*—’l>a}.

Definition 2.5. If there exists | > 0 such that all the elements of X are x-connectable
to each other in | steps, we say that the operation x is ergodic. In this case, we call
the minimum integer I > 0 which satisfies this property the connectability of the
operation *, and we denote it by con(x), i.e.,

con(*):min{l>0: Va,b e X, a*—’l>b}.

Remark 2.2. In order to justify our choice of terminology in the previous definition,
consider a sequence (X, )n>0 of independent and uniformly distributed random vari-
ables in X. Define (X )n>0 recursively as follows: Xo = X( and X, = X1 * X,
forn > 0. It is easy to see that (X,)n>0 is a stationary Markov chain. We have the
following:

o x is irreducible if and only if (Xy)n>0 ts irreducible.
o x is ergodic if and only if (Xy)n>0 15 ergodic.

The following proposition shows the important properties of irreducible and er-
godic operations. These properties will be used in Chapter 3 to show that every
polarizing operation is ergodic.

Proposition 2.1. We have the following:
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1. FEvery quasigroup operation is ergodic, and every ergodic operation is irre-
ducible.

2. If % is uniformity-preserving but not irreducible, there exists two disjoint non-
empty subsets A1 and As of X such that Ay UAy = X, A1 x X = Ay and
AQ * X = Ag.

3. If x is irreducible, we have per(x,a) = per(x) for all a € X.

4. If x is irreducible, there exists a partition € of X containing n = per(x) subsets
Hy, ..., Hy—1 such that H; x X = H;1 1 mod n for all 0 < i < n. Moreover, we
have |Hy| = ... = |Hp—1].

5. If x is irreducible, there exists an integer d > 0 such that for every 0 < i <mn =
per(x), every element of H; is x-connectable to every element of Hi+qmod n 0
d steps. We call the least integer d > 0 satisfying this property the connectabil-
ity of the irreducible operation x and we denote it con(x) (This definition is
consistent with the definition of the connectability of ergodic operations. Le.,
the connectability of an ergodic operation when it is seen as an irreducible oper-
ation is the same as its connectability when it is seen as an ergodic operation).

6. If x is irreducible, then for every s > con(x) and every 0 < i < n = per(x),
any element of H; is x-connectable to any element of H;ysmodn in S steps.

7. If % is irreducible, per(x) = 1 if and only if x is ergodic.

8. If x is ergodic, all the elements of X are x-connectable to each other in s steps
for any s > con(x).

9. If % is ergodic, then con(x) = 1 if and only if x is a quasigroup operation.
10. If * is irreducible (resp. ergodic), then /* is irreducible (resp. ergodic) as well.

Proof. See Appendix 2.8.1. O

2.3 Balanced, Periodic and Stable Partitions
Notation 2.2. Let H be a set of subsets of a set X, we define the following:

o [[Hlir = min [H].
o [#llv = max |HJ.

Definition 2.6. A partition H of a set X is said to be a balanced partition if all
the elements of H have the same size. We denote the common size of its elements
by |H||. The number of elements in H is denoted by |H|. Clearly, |X| = |H| - ||H||
and ||H|| = ||H||n = [|[H]||v for such a partition.

Definition 2.7. Let H be a partition of a set X. We define the projection onto H
as the mapping Projy, : X — H, where Projy(x) is the unique element H € H such
that x € H.
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Notation 2.3. Let A and B be two sets of subsets of X. We define AxB as follows:
AxB={AxB: Ac A, B € B}.

Definition 2.8. Let H be a set of subsets of X, and let * be a uniformity-preserving
operation on X. We define the set H* = H+H = {Ax B : A B € H}, and we
define the sequence (H"™*),>o recursively as follows:

o HO* =H.
o H™ = (H ) = HO= D s H (=D for alln > 0.

Definition 2.9. A partition H of X is said to be a periodic partition of (X, *) if
there exists n > 0 such that H™ = H. In this case, the minimum integer n > 0
which satisfies H™ = H is called the period of H, and it is denoted by per(H).

A partition H of X is said to be a stable partition of (X, ) if H is both balanced
and periodic.

Throughout the chapter, we write that # is a periodic (resp. stable) partition
of X if the binary operation * is clear from the context.

Example 2.1. Let Q = Zyp X Ly, define (x1,y1)*(x2,y2) = (x1+y1+22+y2, y1+Y2)
which is a quasigroup operation. For each j € Z, and each 0 < i < n, define
Hij={(+ikk): kel Let H; ={H;;: j € ZLn} for 0 <i < n. Itis easy
to see that H = Hip1 for 0 <i <n—1 and H),_; = Ho. Therefore, H :==Hy is a
periodic partition of (Q,*) and per(H) = n. Moreover, H is balanced with |H|| = n,
hence H is a stable partition.

Proposition 2.2. Let H be a periodic partition of (X,*). For every n > 0, we
have:

1. H™ is a periodic partition and has the same period as H, i.e., per(H™) =

per(H).
2. |H™| = |H|.
Proof. see Appendix 2.8.2. O

Lemma 2.1. [H*[ly > [[H[lv and [[H*[[x = [[H][-

Proof. Let A € H be such that A = ||H||y, then A% A € H*. Thus, ||[H*||, >
A Al > A] = [H]v.

Now let B and C be two elements of H such that |B x C| = ||H*||». We have
|B x C| > |B| > ||H]||x. This implies that [|[H*||x > ||H]A- O

Proposition 2.3. Let H be a stable partition of (X,x). For every n > 0, H™ is a
stable partition satisfying per(H™) = per(H) and |H™| = ||H]||.

Proof. Proposition 2.2 shows that H™" is a periodic partition of period per(H™) =
per(H). It remains to show that H™* is balanced and that ||H"™*| = ||H|. Let p > 0
be the smallest multiple of per(?) which is greater than n, i.e.,

p =min{k -per(H): k>0, k-per(H) > n}.

We have HP* = H since per(H) divides p. By Lemma 2.1 we have:
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o [H] = IHlr < NH* A

IN

e S H A < S P = A = (-
o [HI=1H]v <[H v <... <[H™[lv <... <[[H"]lv = [[H]lv = [[#]]

Therefore, [|[H™*||x = |H™|lv = ||H]|, which means that for every A € H"* we
have |A| = ||H]|. We conclude that H™" is balanced and |H™| = ||H]. O

Lemma 2.2. If x is ergodic then every periodic partition is stable.

Proof. Let H be a periodic partition of X'. We only need to show that H is balanced.

Let n = per(H) and m = min{kn : k£ > 0 and kn > con(x)}. Clearly, H"™* = H.
Moreover, statement 8 of Proposition 2.1 shows that all the elements of A are *-
connectable to each other in m steps. Let H € H be chosen such that |H| is maximal

and let H' be any element of H. Let h € H and &/ € H'. We have h =25 h/ so there
exist m elements xg, ..., 2,1 € X satisfying (... ((h*z) * x1) ... % Typ_1) = 1.
Since M covers X, then each of H*, H?*, ..., and H™ D* covers X as well.
And so there exist Xy € H, X1 € H*, ..., and X,,_1 € K" D* guch that z¢ € Xy,
x1 € X1, ..., and Zy—1 € Xyp—1. Now since (... ((h*xzo) * x1)... % Tpp1) = I
and since h € H, we have h' € H" := (... ((H * Xo) * X1)...* X;n—1). From the
definition of H”, we have H" € H™ = H. Moreover, h' € H' N H", so H = H"
since H is a partition. We conclude that H' = (... ((H * Xo)* X1)...* X;,—1) which
implies that |H'| > |H|. On the other hand, we have |H| > |H’| since H was chosen
so that |H| is maximal. We conclude that |H'| = |H]| for all H' € H, hence H is
balanced. 0

Remark 2.3. The ergodicity condition in the previous lemma cannot be replaced by
irreducibility. Consider the following irreducible (but not ergodic) operation:

[«[lofz][2]3]
0] 2] 3] 2] 2
1 3[2]3]3
AIAE
s 1[1]1]0

Although the partition H = {{0,1},{2},{3}} is not balanced, we have H** = H.

The following proposition shows that the concept of periodic partitions general-
izes the concept of quotient groups:

Proposition 2.4. Let (G, *) be a finite group, and let H be a periodic partition of
(G, x). There exists a normal subgroup H of G such that H is the quotient group of
G by H (denoted by G/H ).

Proof. Since every group operation is ergodic, Lemma 2.2 implies that H is stable,
i.e., it is also balanced.

Let H be the element of H containing the neutral element e of G. For every
H' € H, we have |H'| = |H* H'| = |H' « H| = |H|| since H+« H' € H*, H' x H € H*
and |H*|| = ||H||. On the other hand, we have H = ex H C H « H and H' =
H' xe C H x H. We conclude that H x H' = H' x H = H'. Therefore,

e Hx H=H, hence z xy € H for every x,y € H.
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e Forevery z € H, we have |H x| = |H|. On the other hand, Hxx C HxH = H.
Therefore, H * x = H which implies that e € H x x and so there exists 2’ € H
such that 2’ x x = e. We conclude that the inverse of every element of H is
also in H.

e Forevery x € G let H, € ‘H besuchthat x € H,. Wehave xxH C H,xH = H,

and |z x H| @ |H| = |Hg|, where (a) follows from the fact that = is a group
operation. Therefore, x «x H = H,. Similarly, we can show that H x x = H,.
Hence z * H = H x x = H, for every x € G.

We conclude that H is a normal subgroup of GG, and H is the quotient group of G
by H. O

Definition 2.10. A periodic partition Hi is said to be a sub-periodic partition of
another periodic partition Ho if for every Hi € Hy, there exists Ho € Ho such that
Hy C Hy. We denote this relation by Hi = Ha, and we say that Hq is finer than
Ho.

If Hy and Ho are two stable partitions satisfying Hq1 = Ho, we say that H1 is a
sub-stable partition of Ha (in such case, we clearly have ||H1|| divides ||Hz]| ).

Remark 2.4. Let (G,*) be a group and let Hi be a sub-periodic partition of a
periodic partition Ho. If Hyy, and Hyy, are the normal subgroups associated with Hq
and Ho respectively, then Hyy, is a normal subgroup of Hyy,.

Definition 2.11. For any two partitions Hy and Ha of a set X, we define:
Hi ANHy = {Hl NHy: H € Hi, Hy € Ho, H N Hy #Q}

Proposition 2.5. If Hy and Ho are periodic partitions then Hqi N\ Ho is a periodic
partition of period of at most lem{per(H1),per(Hz2)}. Moreover, we have (Hi A
Ho)™ = HY* NHE* for every n > 0.

Proof. See Appendix 2.8.2. O

Corollary 2.1. Let * be an ergodic operation. If H1 and Ho are two stable partitions
then H1 A Ha is a stable partition of period of at most lem{per(H1), per(H2)}.

Proof. The corollary follows from Proposition 2.5 and Lemma 2.2. 0

Remark 2.5. Let (G, x) be a group. If Hi and Ho are two periodic partitions of
(G, %), then Hyyynny = Hygy, O Hy, .

Remark 2.6. The ergodicity condition in Corollary 2.1 cannot be replaced by irre-
ducibility. Consider the following irreducible (but not ergodic) operation:

| [2]3] 4]

[617]

S RSN RSN SRS N RN AN RSN

1 5
5 4
4 5
7 6
6 7
0 1
1 0
2 3
3 2

S SIS RS E N ESIESS
Co| 0| ~| S|ae| v | <
S S ENESI RIS SRS
~| | Wl | | | |
S| ~| o] o| | | T v~

[ | il e ~| || *
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Define:
Hi = {{Ov 1},{2,3},{4,5}, {6, 7}})
Ho = {{07 2}7 {13 3}> {4a 5}7 {67 7}}
While both Hi and Ho are stable partitions of periods 1 and 2 respectively, the

partition Hy A Ha = {{0}, {1}, {2}, {3},{4,5},{6,7}} is periodic but it is not stable
as it is not balanced.

2.4 The Residue of a Stable Partition

Let H be a stable partition. Let H € H and = € H. For any sequence (Xp,)n>0
satisfying X,, € H™ for all n > 0, define the sequences (Ay)n>0 and (Hp)p>0
recursively as follows:

e Ay ={x}and Hy=H.
® An:An—l*Xn—l :(<(x*X0)*X1)*Xn_1)
e Hy=H, 1x X1 =(..(H*xX0)*X1)...x Xp—1).

Since x € H, we can show by induction on n that A, C H, € H™ and so |A,| <
|Hy| = ||H™|| = ||H|| for all n > 0. Therefore, |H,| is constant. On the other hand,
|An| > |Ap—1] since A, = A,—1 * X,,—1. Hence, |A,| is increasing and it is upper
bounded by [|H]|.

Does | A, | reach || H|| or does |A,| remain strictly less than ||#|| for all n > 07 In
other words, do we have A,, = H,, for some n > 0 or does A,, remain a strict subset
of Hy, for all n > 0? The answer depends of course on the sequence (X,,),>0, S0 one
can ask: Is it possible to choose at least one sequence (X,,)n>0 for which |A,| = || H||
and A,, = H,, for some n > 07

What are the stable partitions H for which it is always possible to reach a set in
H™ for some n > 0 starting from an arbitrary singleton in X and then recursively
multiplying on the right by sets chosen from H* (0 <i < n)?

It is easy to see that for the trivial stable partition H = {X'}, the above condition
is equivalent to ergodicity. Therefore, satisfying the above condition for every stable
partition is a stronger notion of ergodicity. Strong ergodicity turns out to be impor-
tant for polarization theory as we will see in Chapter 3. In this section, we introduce
the notions and concepts that are necessary to understand strong ergodicity.

Notation 2.4. Let X = (X;)o<i<k be a sequence of subsets X; of X. We denote the
length k of the sequence X by |X|.

For every A C X, we denote (... ((AxXo)xX1)...)xX_1) by AxX. If A ={a},
we write a x X to denote {a} * X.

The n'* power of the sequence ¥ = (Xi)o<i<k is the sequence X™ = (X])o<i<kn,
where X! = X; mod k for 0 < i < kn. Le., X™ is obtained by concatenating n copies
of X.

Definition 2.12. Let H be a stable partition of (X,*) where  is uniformity-
preserving. A sequence X = (X;)o<i<k is said to be H-sequence if Xg € H, X1 € H*,
ooy Xp—1 € HED* If we also have that per(H) divides |X| = k, we say that the
sequence is H-repeatable.
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An H-repeatable sequence X is said to be H-augmenting if A C A x X for all
ACX.

Remark 2.7. If X is H-repeatable, then X! is an H-sequence for every | > 0. This
is not necessarily true if X is an H-sequence which is not repeatable.

If a sequence is H-augmenting then it is also H-repeatable by definition. There-
fore, whenever we need to show that a sequence is H-augmenting, we have to show
first that it is H-repeatable.

If X is H-augmenting then X! is H-augmenting for every 1 > 0.

Theorem 2.1. Let H be a stable partition of (X, *) where * is ergodic. There exists
a unique sub-stable partition Ky of H such that:

e For every K € Ky and every H-sequence X, we have K x X € JCpy X1
o For every K € Ky and every x € K, there exists an H-augmenting sequence
X such that x x X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z * X' C K.

Ky is called the first residue of the stable partition H. We also have Ky = Kqqi
for all 1 > 0.

Proof. See Appendix 2.8.3. O

Remark 2.8. Theorem 2.1 implies that an ergodic operation is strongly ergodic if
and only if Ky = H for every stable partition H of X. This will be explained and
proven in detail in Section 2.5.

Remark 2.9. [t is possible to prove a more general theorem for the periodic parti-
tions of an arbitrary uniformity-preserving operation:

Let H be a periodic partition of (X,*) where *x is an arbitrary uniformity-
preserving operation. There exists a unique sub-periodic partition Ky of H such
that:

o For every K € Ky and every H-sequence X, we have K x X € JCqy X1
o For every K € Ky and every x € K, there exists an H-augmenting sequence
X such that x x X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z * X' C K.

KCyy is called the first residue of the periodic partition H. We also have Ky"* = Koy
for all1 > 0.

We will not prove this general theorem here since Theorem 2.1 is sufficient for
our purposes. The proof of the general theorem is more complicated but follows
similar steps as the proof of Theorem 2.1.

Note that if the operation x is not ergodic, Ky may not be a stable partition
even if H is a stable partition. Consider the following irreducible (but not ergodic)
operation:
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(= of1][2][3]4][5][6]7]
01 4191415141444
1514151415555
26171676666
sl 716l 767|777
il 22222323
51313333232
6llololololol1]0]1
711111010

Let H = {{0,2},{1,3},{4,5},{6,7}}, which is a stable partition of period 2. The
reader can check that Ky = {{0}, {1}, {2}, {3},{4,5},{6,7}} which is periodic but
not stable as it is not balanced.

Definition 2.13. Let H be a stable partition of (X, *) where x is ergodic. For every
n >0, we define the n'" residue R,,(H) of H recursively as follows:

o RO(H) =H.
o Ri(H) = Kx.
® Rot1(H) = Ri(Ru(H)) = Kr, () for everyn > 1.

The residual degree degp(H) of H is the smallest integer n > 0 that satisfies
Rn+1(H) = Ru(H). The residue of H is defined as R(H) := Raeg, 2)(H). Clearly
RA(R(H)) = Ky = R(H) and R(R(H)) = R(H).

Remark 2.10. In the application to polarization theory, we will only need the first
residue. We just note here that for everyn > 0, there exists an ergodic operation and
a stable partition H of residual degree n. In other words, there are stable partitions
of arbitrary residual degrees.

2.5 Strongly Ergodic Operations

Definition 2.14. A uniformity-preserving operation * is said to be strongly ergodic
if for every stable partition H and for every x € X, there exists an integer n =
n(xz,H) such that for every H € H™, there exists an H-sequence X, g of length n
such that x * X, g = H.

Theorem 2.2. We have the following:
1. If % is strongly ergodic then it is ergodic.

2. If x is strongly ergodic, there exists an integer d > 0 such that for every s > d,
every stable partition H, every x € X and every H € H%*, there exists an
H-sequence Xy of length s satisfying v+ X, g = H. If d is minimal with this
property, we call it the strong connectability of %, and we denote it by scon(x).

3. If x is ergodic, then x is strongly ergodic if and only if Ky = H for every
stable partition H (i.e., every stable partition H is its own residue, and so the
residual degree is zero).
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4. If % is a quasigroup operation then it is strongly ergodic.

Proof. 1) Suppose that * is strongly ergodic and consider the trivial stable partition
{X}. For every z € X, there exists ny > 0 such that z * (X')" = X. This shows
that for every y € X, x oy y which shows that x is irreducible. Let n = per(x)
and let Hy,..., H,_1 be the equally sized subsets of X given by the fourth point of
Proposition 2.1.

Let x € Hy. We have X =z (X)" C Hy* (X)™ = H,,_ mod n, Wwhere the last
equality follows from the fourth point of Proposition 2.1. Therefore, H;,, modn = X
which implies that n = 1 since {Hy, ..., H,—1} is a partition. Therefore, per(x) = 1
and so * is ergodic by the seventh point of Proposition 2.1.

2) Let % be strongly ergodic, and define d = mg{xn(x,%), where n(xz,H) is
xX

as in Definition 2.14. Now fix x € X and fix a stable partition H. Let s > d
and fix H € H¥. If s = n(z,H), there is nothing to prove. Now suppose that
s >n = n(x, H), then there exists H' € H™ and an H"™*-sequence X of length s —n
such that H' « X = H. Moreover, there exists an H-sequence X, g+ of length n such
that =« X, g» = H'. We conclude that z * (X, g, X) = H.

3) Let H be a stable partition of (X, %) where * is strongly ergodic, and let
x € X, K € Ky and H € H be chosen so that x € K C H. Let s = scon(x) - per(H).
We have H** = H since per(H) divides s. Now since s > scon(x) and H € H = H**,
there exists an H-sequence X, y of length s such that x x X, y = H. We have
reH=xxX, g C KxX; g,s0x € KX, g which implies that KN (K*X, i) # ¢
(since we also have z € K'). On the other hand, Theorem 2.1 implies that K «X, i €
Ky** = Ky. Therefore, K * X, g = K since Ky is a partition. We conclude that
H =xxX; gy C K+xX; g = K which implies that H = K since we also have K C H.
Therefore, ||yl = ||| and so Ky = H.

Now suppose that x is an ergodic operation which satisfies Ky = H for every
stable partition H. Let z € X and let H be a stable partition. Let k£ = con(x) -
per(H) > con(x), and for each H € H fix xg € H and let Xy be an H-augmenting
sequence such that zg « Xy = H (such Xp exists due to Theorem 2.1). Define
n(x,H) =k+ Z |X | and define X’ to be the H-augmenting sequence obtained by

HeH
concatenating all the X 7 sequences (the order of the concatenation is not important).

It is easy to see that xy * X’ = H for all H € H: We have zg x X’ € H from
Theorem 2.1. On the other hand, H C zg * X’ follows from the fact that X’ is the
concatenation of a collection of H-augmenting sequences containing Xy and that
xg* Xy = H. We also have |X'| = Z |Xr7|. Now since k > con(x), it follows from

HeH
Proposition 2.1 that for every H € H there exists a sequence xq, . .., x_1 satisfying
(...((xxmg)*x1)...%x—1) = . Let Xy = (Xo,...,X,_1) be an H-sequence of

length k such that z; € X; for all 0 <14 < k. Clearly, xy € = x X/;. It is easy to see
that the sequence X%, = (X;, X’) is of length n(z, H) and satisfies H C x*X’;. Now
let H, € H be chosen so that z € H,. Since H, € H = K4, Theorem 2.1 implies
that we have H, * X7, € Kyjn(e2« = Ky = H (note that HM®H)* = H since per(H)
divides n(z,H)). We conclude that H C z « X}, C H, * X, € H, which implies
that H = x « X/}, = H, = X/, since we have H € H and H is a partition. Therefore,
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for every H € H = H™®H)* there exists an H-sequence X, of length n(z,H) such
that x « X, = H. Thus, = is a strongly ergodic operation.

4) Let H be a stable partition of a quasigroup operation *. For every K € Ky
and every = € K, there exists an H-augmenting sequence X = (X;)o<i<k such that

(a)
K = x % X, which implies that |K| = |z x X| = |(:U * (Xi)0§i<k_1) * Xk—l‘ >

| Xk—1| = ||H||, where (a) is true because x is a quasigroup operation. We conclude
that [[ICx|| = ||H|| which implies that Ky = H. O

Remark 2.11. While every strongly ergodic operation x is ergodic, the converse is
not true. Consider the following operation:

[+ flolz]2]3]
0 2]2]0]0
133 1]1
2 1]1]3]3
AREE

The first residue of the stable partition H = {{0,1},{2,3}} is

IC’H = {{O}v {1}7 {2}7{3}} 7é H.

Also, a strongly ergodic operation need not be a quasigroup operation, here is an
example:

W=D || D
| D =] of| ~
|~ D ol e
| =D || Lo

2.6 Generated Stable Partitions

Definition 2.15. Let A and B be two sets of subsets of X. We say that A is finer
than B (or B is coarser than A) if for every A € A there exists B € B such that
A C B. We write A X B to denote the relation “A is finer than B”.

Let A be a set of subsets of X'. Is it possible to find a periodic partition of (X, %)
which is coarser than A and finer than every other periodic partition that is coarser
than A7 Similarly, is it possible to find a stable partition of (X, *) which is coarser
than A and finer than every other stable partition that is coarser than A7 The
following answer these two questions.

Proposition 2.6. Let x be a uniformity-preserving operation on X, and let A be a
set of subsets of X. There exists a unique periodic partition (A) which satisfies the
following:

o A< (A).

e [or every periodic partition H of X, if A X H then (A) < H.
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In other words, (A) is the finest periodic partition that is coarser than A. (A) is
called the periodic partition generated by A.

Proof. Define
(A) = A H. (2.1)

H is a periodic partition

A=H

Proposition 2.5 implies that (A) is a periodic partition. Moreover, it follows from
(2.1) and from the definition of the wedge operator (Definition 2.11) that for every
periodic partition #H satisfying A < H, we have (4) < H.

Now let A € A. We have:

o If A=g, then A C B for every B € (A).

e If A # ¢, then for every periodic partition H satisfying A < H, choose By € H
such that A C By. Define

B = N By,.

H is a periodic partition
A=SH

Clearly, A C B which implies that B # ¢ and so B € (A) (see Definition 2.11).
We conclude that for every A € A, there exists B € (A) such that A C B. Therefore,
A=< (A).

Now let H’ be a periodic partition satisfying the conditions of the proposition.
Le.,

e A<H.
e For every periodic partition H of X, if A < H then H' < H.

Since A < (A), we have H' < (A). Similarly, since A < H' we have (4) < H'
Therefore, H' = (A) and so (A) is unique. O

Remark 2.12. It is possible to show that (A)™ = (A™) for every n > 0, bul we
will not prove this here since we do not need this property for our purposes.

Corollary 2.2. Let * be an ergodic operation on X, and let A be a set of subsets of
X. There exists a unique stable partition (A) which satisfies the following:

o« A=< (A).
e For every stable partition H of X, if A <X H then (A) X H.

In other words, (A) is the finest stable partition that is coarser than A. (A) is called
the stable partition generated by A.

Proof. The corollary follows from Proposition 2.6 and from the fact that if % is an
ergodic operation on X then every periodic partition is stable (see Lemma 2.2). [
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Remark 2.13. The ergodicity condition in Corollary 2.2 cannot be replaced by irre-
ducibility. Consider the irreducible (but not ergodic) operation x of Remark 2.6, and
let A= {{0,1},{2,3}}. Notice that there is no stable partition that is both coarser
than A and finer than every stable partition that is coarser than A. Therefore, if *
s not ergodic, the concept of “generated stable partitions” is not always well defined.

Let A be a set of subsets of X which covers X and does not contain the empty set
as an element. We have A < (A) which implies that A™ < (A)"™* for every n > 0.
Can we find n > 0 for which A™ = (A)"*? The rest of this section is dedicated to
show that the answer to this question is affirmative if * is strongly ergodic. This
property of strongly ergodic operations turns out to be important for polarization
theory as we will see in Chapter 3.

Definition 2.16. Let A be a set of subsets of X. We say that A is an X-cover if
0¢ Aand X = U A.

AcA
We say that an X-cover A is periodic if A™ = A for some n > 0. The least

integer n > 0 satisfying A™ = A is called the period of A, and it is denoted by
per(A).

We say that an X -cover A is balanced if for every Ai, As € A we have |A;| =
|As|. An X-cover A is said to be stable if it is both periodic and balanced.

Proposition 2.7. If x is a strongly ergodic operation on a set X, then every stable
X -cover is a stable partition.

Proof. See Appendix 2.8.4. O

Remark 2.14. The strong ergodicity condition in Proposition 2.7 cannot be replaced
by ergodicity. Consider the following ergodic (but not strongly ergodic) operation:

(xJof1]2][3]4]5)]
o 3|3|3|10]0]0
7 7111111
216156152122
3| 1111|555
401 21212[3]3]|83
sTololo0l 41414

The set {{0,1},{0,2},{1,2},{3,4},{3,5},{4,5}} is a stable X-cover of period 1,

but it is not a partition.

Definition 2.17. Let A be a set of subsets of X. The core of A is defined as
core(A) = {A € A: |A] = |All} = {A cA: |Al= Bé‘ﬁ‘B’}'

Lemma 2.3. Let x be a uniformity-preserving operation on X and let A be a periodic
X-cover. We have | A™ ||y = ||A|lv for everyn > 1.

Proof. Let p = min{k - per(A) : k-per(A) > n}. Lemma 2.1 implies that
[Allv < A%V <. < [AY v < < [lAP = (LAl
Therefore, [|A™ ||y = [|A|v. O
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Proposition 2.8. Let x be an ergodic operation on X. If A is a periodic X-cover,
then core(A) is a stable X-cover and per(core(A)) divides per(A). Moreover, we
have core(A)™ = core(A™) for every n > 1.

Proof. See Appendix 2.8.5. O

Proposition 2.9. Let x be a strongly ergodic operation on X. If A is a periodic
X -cover, then (A) = core(A).

Proof. Proposition 2.8 implies that core(.4) is a stable X-cover and per(core(.A))
divides per(.A). On the other hand, Proposition 2.7 implies that core(A) is a stable
partition.

Fix a € A € Aand let B € core(A) be such that a € B. Theorem 2.1 implies the
existence of a core(.A4)-augmenting sequence X such that a* X = B. Since a € A, we
have B = a* X C AxX. On the other hand, we have A * X € A™, where n = |X]|.

This means that |A x X| < [|A™||y @ | Allv = |B|, where (a) follows from Lemma
2.3.

Now since B C Ax X and |A *x X| < |B|, we must have A X = B. On the other
hand, since X is core(.A)-augmenting, we have A C Ax X = B.

We have just shown that for every A € A, there exists B € core(A) such that
A C B. Therefore, A < core(.A), which implies that (A) < core(A). On the other
hand, since core(A) C A, we have core(A) < A, which implies that core(A) < (A).
We conclude that (A) = core(A). O

Remark 2.15. The strong ergodicity condition in Proposition 2.9 cannot be replaced
by ergodicity. Consider the ergodic operation x* of Remark 2.14, and consider the
the X -cover

A={{0,1},{0,2},{1,2},{3,4},{3,5},{4,5}}.
core(A) = A is not a partition, hence core(A) # (A).

Theorem 2.3. Let % be a strongly ergodic operation on a set X. For every X -cover
A, there exists an integer n < 22 such that (A) = core(A™) and per((A)) divides
n, i.e., (A) = (A)™ = core(A™) C A™.

Proof. 21%! is the number of subsets of X, and 22*! ig the number of sets of subsets
of X. Thus, the sets A™ for 0 < i < 22* cannot be pairwise different. Therefore,
there exist at least two integers 0 < ny < ng < 922* quch that A™* = A"2*. Define
p=mno —nq and let 0 < ng < p be such that ng = —ny mod p. Define n = nq + ns.
We have n < nj; +p=mng < 22 On the other hand, since n = 0 mod p, it follows
that p divides n.

We have

(An*)p* _ A(n1+n3+p)* _ A(TL2+TL3)* _ (Ang*)ng* _ (A?’Ll*)ng* _ An*7

which shows that 4™ is a periodic X-cover and per(A™) divides p. But p divides
n, so per(A™) divides n.

Proposition 2.8 shows that core(A™) is a stable X-cover and per(core(.A™"))
divides per(A™*). This implies that per(core(A™*)) divides n. On the other hand,
Proposition 2.7 implies that core(A™) is a stable partition.
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Now let A € A and let a be an arbitrary element of X. Define the mapping
m: X — X as m(z) = x x a. Since 7 is a permutation, there exists k£ > 0 such that
7F(z) = x for every x € X. Now for every 0 < i < kn, let X; € A™ be such that
a € X; and let X = (X;)o<i<kn. We have:

o AxX e Aknr,
e A C AxXsince n""(x) = x for every x € X.
o AFrx = (A (=D — An* gince per(A™) divides n.

We conclude that A € A*x X € A™. Therefore, A < A™. On the other hand,
Proposition 2.9 implies that A™* < core(A™). Therefore, A < core(A™).

Now since core(A™) is a stable partition (hence it is also periodic), we must
have (A) < core(A™) by Proposition 2.6. On the other hand, we have:

e Since A < (A) then A"P* < (A)"P* where p = per({.A)).

o A" = (A™)p—nx @ A™ where (a) follows from the fact that per(A™)
divides n.

o (A)"P* = (A) since p = per((A)).
Therefore, A™ < (A). But core(A™) C A™, which implies that core(A™) < A™,
hence core(A™) < (A). We conclude that core(A™) = (A) as we have already
shown that (A) < core(A™). O

Remark 2.16. The strong ergodicity condition in Theorem 2.3 cannot be replaced
by ergodicity. Consider the ergodic operation * of Remark 2.1/, and consider the
the X -cover

A= {{0,1},{0,2},{1,2},{3,4},{3,5},{4,5} },

which is not a partition. We have the following:
e [t is easy to see that core(A™) = A™ = A for every n > 0.
e Since A is not a partition, core(A™) = A is not a partition for any n > 0.

Therefore, core(A™) # (A)™ for every n > 0.

2.7 Product of Binary Operations

Definition 2.18. Let Ay,..., &, be m sets, and let *i,..., %, be m binary op-
erations on Xi,..., Xy, respectively. We define the product of *1,..., %y, denoted
* = %1 Q... QR %y, as the binary operation x on X1 X -+ X X, defined by:

(x1, @9, .y m) * (2,5, .. 2)) = (21 %1 2, 0 %0 Ty oo Ty % ).

Proposition 2.10. Let xq,...,%,, be m binary operations on Xi,...,X,, respec-
tively. Let X = X1 X --- X X and x = %1 @ ... ® *p,. We have:

1. x is uniformity-preserving if and only if *1, ..., %, are uniformity-preserving.
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2. If % is irreducible then x1, ..., %, are irreducible. The converse is not neces-
sarily true.

3. x is ergodic if and only if %1, ..., %, are ergodic. Moreover,
con(x) = max{con(xy),...,con(kmy)}.
Proof. 1) Suppose that #1,...,*,, are uniformity-preserving. Fix

b= (b1,....bm) €X

and define the mapping 7, : X — X as m(z) = b for all z € X. Now let
y = (Y1,...,ym) € X. For every 1 < i < m, *; is uniformity-preserving and so
there exists x; € X; such that z; *; b; = y;. Define x = (z1,...,2,). We have
mp(z) = x+xb = y. Therefore, m, is surjective which implies that it is bijective. Since
this is true for every b € X', % is uniformity-preserving.

Conversely, suppose that * is uniformity-preserving and let 1 <i < m. Fix b; €
AX; and define the mapping m, : X; — X as m, (z;) = x; %; b; for all z; € X;. Now let
y; € X; and choose arbitrarily y; € X for each j # i. Define y = (y1,...,ym) € X.
Since * is uniformity-preserving, there exists z = (x1,...,2;,) € X such that y = xxb
which implies that y; = x; *; b;. Therefore, 7, is surjective which implies that it is
bijective. Since this is true for every b; € X, *; is uniformity-preserving.

2) Suppose that = is irreducible and fix 1 < i < m. Let a;,b; € &; and choose
arbitrarily a;,b; € X; for each j # i. Define a = (a1,...,a,,) € & and b =
(b1,...,by) € X. Since x is irreducible, a is *-connectable to b and so there exists
[ >0 and zg,...,2y—1 € X such that b = (...((a*z9) *x1)...*x2;_1). For each
0<k<lletzy = (T1 k..., Tmp) and so x;, € X;. It is easy to see that we have
bi = (... ((ai *; 2i,0) *i Ti1) ... % i j—1). Therefore, a; is *;-connectable to b; for all
a;,b; € X;, hence #; is irreducible.

In order to see that the converse is not necessarily true, let X3 = Xy = {0,1}
and define x %1 y = xx9y = x @ 1 for every z,y € {0,1}. It is easy to see that %,
and x9 are irreducible and per(x1) = per(x2) = 2. Let x = %1 ® *9. It is easy to see
that (0,0) is not *-connectable to (0,1). Therefore, * is not irreducible.

3) Suppose that *1,...,*,, are ergodic and let
d = max{con(xy),...,con(x,)}.

Let a = (a1,...,am) € X and b = (by,...,by) € X. For each 1 < i < m, since
d > con(*;) there exist x;,...,%; 41 € & such that b; = (... ((@i*;Ti0) *iTi1) .. %
Zid—1). For each 0 < k < d define z, = (z1k,...,Zm i) € X. It is easy to see
that b = (...((a * z9) * x1)... * £4_1). Therefore, all the elements of X are *-
connectable to each other in d steps. We conclude that x is ergodic and con(x) <
d = max{con(xy),...,con(x,,)}.

Conversely, suppose that * is ergodic and let 1 < i < m. Let a;,b; € X; and
choose arbitrarily a;,b; € X; for each j # i. Define a = (a1,...,a,) € X and b =
(b1,...,by) € X. Since * is ergodic, a is *-connectable to b in con(x) steps. It follows
that a; is #;-connectable to b; in con(x) steps (we use the same argument that we
used for the irreducible case). Since this is true for every a;, b; € X;, we conclude that
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*; 1s ergodic and con(x;) < con(*). We conclude that max{con(xy),...,con(*y)} <
con(*) which implies that

con(x) = max{con(x1),...,con(*,,)}
since we have con(x) < max{con(x1),...,con(,,)} from the previous paragraph. [J

Definition 2.19. Let Hi,...,Hnm be m stable partitions of (Xi,%1),...,(Xm,*m)
respectively. The product of Hi, ..., Hm, denoted H = H1 ® ... ® Hy, is defined as

”H:{Alx...xAm: A1€H1,...,Am€Hm}.

It is easy to see that H is a stable partition of (X1 X -+ X X, %1 @ ... Q%p,) of period
per(H) = lem{per(Hi),...,per(Hm)}.

Theorem 2.4. Let %1 and *9 be two ergodic operations on X1 and Xo respectively.
Let X = X1 x Xy and * = %1 ® %o (thus, = is ergodic). Let H be a stable partition
of X. There exist two unique stable partitions L1 := L1(H) and Uy := Uy (H) of Xy
and two unique stable partitions Lo := Lo(H) and Us := Ua(H) of Xo such that:

o L1 XU, Lo XUy and ”%i” = HZZ{EH =n for some integer n > 0.

o L1®Ly 2 H U @Us.
o [or every H € H, there exist n disjoint sets Hy1,...,Hy, € L1 and n disjoint
sets Hy1,...,Hay € Lo such that:
— Hl,IU---UHl,n € U;.
— HgJU...UHQm € Us.
— H = (H171 X H271) U...u (Hl,n X H27n).

Therefore, | H|[ = n-[[L1]l - L2l = [[La]] - [Itho]l = [[tda]] - [ £2]l-

The integer n is called the correlation of H and is denoted by cory, .,(H).
We also have Li(H)™ = Li(H™), La(H)™** = Lo(H™), Uh(H)™ = U (H™)
and Uz (H)*2 = Uz (H™) for every i > 0.

Proof. See Appendix 2.8.6. Ol

Remark 2.17. If H = H1 @ Ha, then L1(H) =Ur(H) = Hi, Lo(H) = U (H) = Ho
and cory, 4, (H) = 1.

Example 2.2. Figure 2.1 shows an element H of a stable partition H of correlation
N = COTy, «,(H) = 3. H is represented by the regions that are enclosed in thick lines.

Example 2.3. Let X1 = Xy = {0,1} and define x; and *2 as x x1 y = T *9
y = x @y for every x,y € {0,1}. Let X = X1 x Xy, * = %1 @ %9 and H =
{{(0,0), (1,1)},{(0,1),(1,0)}}. It is easy to see that H is a stable partition of
(X,*). We have:

o Li(H)=Lo(H) = {{0},{1}}
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Hy1UH| 2UHy 3 €U (H)

Hs 2 € L2(H) { Hip x Hyp

Hj 3 € Lo(H) { H173 X H273 Ha1UHj2UHs>3 € Ux(H)

Hz 1 € L2(H) { Hl,l X H271

Hi1€Li(H) Hip2€ Li(H) Hiz€ Li(H)

Figure 2.1 - H = (H171 X HQJ) U (HLQ X H2y2) @] (H173 X Hg,g) eH.

o Ui(H) =Us(H) = {{0,1}}.
® N = COTy, 4, (H) = 2.
For H={(0,1),(1,0)} € H, we have:
e Hi1={0}, Hio={1} and H 1 UH; 2 ={0,1} € U1 (H).
o Hyy ={1}, Hyo ={0} and Ha1 UHz5 ={0,1} € Us(H).
o (Hi1 x Hy1)U(Hi2 x Hyp)={(0,1),(1,0)} = H.
Theorem 2.4 shows that the stable partitions of the product of two ergodic

operations have a very particular structure. This structure will be useful to prove
the following theorem:

Theorem 2.5. Let %1,...,%, be m > 2 binary operations on Xi,..., X, respec-
tively. Let X = Xy X -+ X X and * = %1 Q@ ... ® *,,. Then x is strongly ergodic if
and only if 1, ..., %, are strongly ergodic.

Proof. See Appendix 2.8.6. O
Notation 2.5. Let *1,...,%, be m > 2 ergodic operations on Xi,..., Xy, respec-
tively. Define X = X1 X -+ X Xy and * = %1 @ ... ® *p,. Let A and B be two
non-empty subsets of I, := {1,...,m} which form a non-trivial partition (i.e.,

AUB =1In, ANB =0, A# ¢ and B # ¢). Letii <...<ij4 and j1 <...<jg
be such that A = {i1,...,ij4} and B = {j1,....jip|}. Define Xy = Xj; x -+ x X}, ,
XB:le X"'XXj\BV *A:*h@"‘@*im\ and*B:*ﬁ@--'@*j‘B" Deﬁne the
mapping fap: X — Xy X Xp as

fA,B(xly ‘e ’xm) = (($i1v s 7$i\A|)7 (1']'1’ s 7xj|B\))'

Clearly, fap s a bijection. We call fa p the canonical bijection between X and
XA X Xp. Throughout this chapter, we identify (X,*) with (X4 X Xp, %4 ® *p)
through the canonical bijection fa p.

Let H be a stable partition of (X,*). Since x4 and xg are ergodic, there are two
unique stable partitions La(H) 2 Ua(H) of (Xa,*a) and two unique stable partitions
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Lp(H) = Up(H) of (Xp,*B) and ng = cory, «z(H) = cory, ., (H) = np > 0
satisfying the conditions of Theorem 2.4. We adopt the convention thatUs, (H) = H.

If A = {i} contains only one element i, we denote Ly (H) and Uy (H) as Li(H)
and U;(H) respectively.

Notation 2.6. For each A C B C I,, = {1,...,m} we define the mapping Pp_ 4 :
Xp — X4 as Ppoa(zj,,... ,:cle‘) = (ziy,. .. ’xiw)f where A = {i1,...,ia} C
{1} = B, i1 < ... <dpq and j1 < ... < jig|- If A contains only one
element i, we denote Pp_,(;y by Pp_y;.

Now for each A C B C I, = {1,...,m}, each xp\ 4 € Xp\ 4 and each Xp C Xp,
we define the set PB—)A\zB\A(XB) = {ra € Xa: (za,zp\a) € Xp} C Xa. IfA
contains only one element i, we denote PB_,{Z-}|$B\{Z,}(XB) by PB_N-‘J;B\Z_ (XB).

It is easy to see that if AC B C C C {l,...,m} then we have Pg_,4 0 Po_,p =
Po_yy. Similarly, if A C B C C C {1,...,m}, then for each Xc C Xc, each
zo\p € Xo\p and each xp\ 4 € Xp\ 4, we have

PB—)A‘J?B\A (PC—)B‘:EC\B(XC)) = PC—)A‘(IC\B,.Z’B\A)(XC)‘

Here we have (zcn\p, Tp\a) € Xo\a since we are identifying Xe\ 4 with Xonp X Xp\ 4
through the canonical bijection.

Remark 2.18. Let H be a stable partition of (X, %) = (X1 X+ X X, x1 Q... Q% ),
where x is ergodic. If A C I, = {1,...,m}, we have from Definition 2.25:

UA(H) = {P[mﬁA(H) : He H}
Furthermore, if A C I, = {1,...,m}, we have from Definition 2.26:

La(H) ={Pr, A1z, ) HEMH, xr,\a € X \a5 Prsape, 4 (H) # 0}
(a)
= {Pr,Ala;, o H) 2 HEH, x1,04 € Prsp,\a(H)}

(a) follows from the fact that Pr, 5 Az, (H) # ¢ if and only if

rraA € Pr,opaa(H).

Proposition 2.11. Let *q,...,%, be m > 2 ergodic operations on Xi,...,X,, re-
spectively. Define X = X X -+ X Xy and * = 1 @ ... @ *,. Let H be a stable
partition of (X,x) and AC B C I, = {1,...,m}. Then Ua(Up(H)) = Us(H) and
La(Lp(H)) = La(H).

Proof. From Remark 2.18 we have:

UA(UB(H)) ={Pp_a(Hp): Hp e Up(H)}
= {PBHA(PIm%B(H)) : He 7‘[}
(P a(H): HeM) =Ua(H).
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On the other hand, we have:

La(Lp(H))

(a
o {Ppsalp . (HB) : Hp € LB(H), xp\a € Xp\as Ppajey ,(HB) # 0}

()
= {PB—>A|a:B\A (me—>B|x,m\B(H)) :
HeH, zr,\p € X\, PL,~Bl2;, ) # 0,

Tp\a € Xp\a;, Ppoajag, 4 (meaBmm\B(H)) # 0}

—

c

= {PBeA\xB\A (le—>B\:va\B(H)) : HeH, xp,\B € Xp,\B:

N2

Tp\a € Xp\a, Ppoajog 4 (meaBmm\B(H)) # 0}

—
=

- {me—)A‘(Wm\Bva\A)(H) P HeH, xp,\B € AL,\B, T\ € AB\a,
PIm_)AKﬂCIm\B»IB\A)(H) 7é Q}

© {Pr, Az, 1 (H): HEMW, zr,0a € X1,\a5 Prae, . (H) # o0}
=LA(H).

(a) and (b) follow from Remark 2.18. (c) follows from the fact that

PB—)A‘;EB\A (PIm—>B\:va\B (H)) # (Zs

entails Pr Bl 5 (H) # ¢. (d) follows from the fact that

PB—>A|(EB\A (le—>B|l']m\B (H)) = PIm%A‘(IIm\B,(EB\A)(H)

(e) follows from the fact that I,, \ A = (I, \ B)U(B\ A) and so &7, \ 4 is identified
to le\BXXB\A' O

Definition 2.20. Let *1,...,%,, be m > 2 ergodic operations on Xi, ..., Xy, respec-
tively. Let X = X1 X --- X X, and * = %1 ® ... Q@ xp,. Let H be a stable partition of
(X,%). The canonical factorization of H is the sequence (H;)1<i<m defined as:

o My =Unm(H).
e For each 1 <i<m, H; :Z/IZ-(EIZ.(H)), where I; = {1,...,i}.

Lemma 2.4. Let *1,..., %, be m > 2 ergodic operations on Xy, ..., X, respectively.
Let X = X) X -+ X Xy and * = %1 @ ... Q %y, Let H be a stable partition of (X, *).
If (Hi)1<i<m is the canonical factorization of H, then (H;)1<i<m—1 s the canonical
factorization of L1, ,(H), where Iy,—1 ={1,...,m —1}.

Proof. For each 1 <1i <m,define I; = {1,...,i}. Let {H,}1<i<m—1 be the canonical
factorization of Ly, ,(H). We have:

o H! um—l(ﬁfm—1(/H)) = Hm-1.

m—1—
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e For each 1 <i < m — 1, we have

My = Us (L1, (L1, (M) D Uy (L1, (H)) = Hs,

where (a) follows from Proposition 2.11.
U

Definition 2.21. Let H be a partition of a set X. A section of H is a subset C C X
such that:

e |C|=H.

o For each H € H, there exists a unique x € C such that x € H. In other words,
the mapping Projy, restricted to C, is a bijection between C and H.

Lemma 2.5. Let %1 and xo be two ergodic operations on X1 and Xo respectively.
Let X = X1 X Xy and x = %1 @ %o (thus, * is ergodic). Let H be a stable partition of
X. If Cy and Cy are sections of L1(H) and Us(H) respectively, then C = Cp x Cy
is a section of H.

Proof. Let fcy : C — H be the mapping Projy, restricted to C, ie., foy(z) =
Projy(x) for every z € C.

Let H € H and I, = {1,2}. We have Py, ,o(H) € Uz(H) by Remark 2.18. Now
since Cy is a section of Us(H ), there exists a unique xzg € Cy such that xo € Pr,_o(H).

Since w9 € Pr,2(H), we have Pr,_,q,,(H) € L1(H) by Remark 2.18. But 4
is a section of L£1(H), so there exists a unique x1 € Cy such that x1 € Pr,_15, (H),
which means that (z1,z2) € H. Therefore, there exists (z1,z2) € C; x Cy = C such
that fou(x1,22) = Projy (21, 22) = H. We conclude that fcy is surjective.

On the other hand, we have |C| = |Cy x Ca| = |C1]|C2| = |L1(H)|-[Ua(H)| = |H|,
where the last equality follows from Theorem 2.4. Therefore, fc 3 is bijective since
fon : C — H is surjective and |C| = |H|. Hence, C' = C} x Cy is a section of H. [

Proposition 2.12. Let *1,...,%, be m > 2 ergodic operations on Xi,..., X, re-
spectively. Let X = X1 X -+ X Xy and * = %1 @ ... R *,,. Let H be a stable partition
of (X,%) and (Hi)1<i<m be the canonical factorization of H. We have:

o [H|=1[Ha|x - x[Hpml|.

o If C; is a section of H; for every 1 < i < m, then C = Cy X --- x Cp, is a
section of H.

Proof. For each 1 <i < m, we define I, = {1,...,i}. We will prove the proposition
by induction on m. If m = 2, we have:

o Hi=U (L (H)) =Ui(L1(H)) = L1(H) and Ho = Us(H).
e By Theorem 2.4, we have [H| = |L1(H)| - [Uz(H)| = |H1| - [H2]-

e If Cy and Cy are sections of Hy = L1(H) and Ho = Uz (H) respectively, then
Lemma 2.5 shows that C' = C} x (s is a section of H
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Therefore the proposition is true for m = 2.
Now let m > 2 and suppose that the proposition is true for m — 1. By Lemma
2.4, (Hi)1<i<m—1 is the canonical factorization of Ly, ,(H). We have:

o [H|=|Lyp, ,(H)| [Un(H)| = |L1,, . (H)||Hm| by Theorem 2.4. On the other
hand, we have |Ly,, ,(H)| = [H1| %X |Hm—1] from the induction hypothesis.
Therefore, |H| = [H1| % -+ X [Hp].

e For every 1 <i < m, let C; be a section of H;. From the induction hypothesis
we get that C1 x---xCy,—1 is asection of L1, (H). Now since Cy x - - - x Cp,_1
and Cy, are sections of L£;, () and U, (H) respectively, Lemma 2.5 implies
that C = Cy x --- x (), is a section of H.

Therefore, the proposition is also true for m. We conclude that the proposition is
true for every m > 2. O

2.8 Appendix

2.8.1 Proof of Proposition 2.1

1) Trivial: For a quasigroup operation, all the elements of X' are x-connectable to
each other in one step.

2) Suppose that * is uniformity-preserving but not irreducible. There exist two
elements a; and az of X such that a; is not #-connectable to as. Let A; = {x €
X:oa x} and Ag = X'\ A;. Clearly, a1 xa; € Ay and ag € Ay. Therefore, Ay
and Ao are two disjoint non-empty sets such that A; U Ay = X. Moreover, we have
Ay x X C A; from the definition of A;. Now since |A; * X| > |A1|, we must have
A1 * X = Al.

For every x € X, define 7, : X — X as my(a) = axz for all @ € X. Since x* is
uniformity-preserving, 7, is bijective for all z € X'. Therefore, |7,(A;1)| = |Ai]. On
the other hand, 7,(A1) = A1 *x C A1 * X = Aj. This means that m,(A;) = Aj,
which implies that 7, (Ag) = 7, (X \ A1) = X \ (A1) = X\ A = Ay since 7, is
bijective. Therefore, Ao x x = Ay for every x € X, hence Ay x X = As.

3) Suppose that * is irreducible, and let a,b € X. Since * is irreducible, there

. 1 1 J1+l .
exist l1,ls > 0 such that a N pand b 25 a, so a *UH2  which means that per(x,a)

.. . o N/ J1 I
divides [1 +l2. Now for any integer [ > 0 satisfying b LN b, we have that a A

This shows that per(x,a) divides I; + lo + [, which implies that per(*,a) divides I
since we have just shown that per(x,a) divides [; 4+ l3. But this is true for every
[ > 0 that satisfies b % b. We conclude that per(*,a) divides per(x,b). Similarly,
we can show that per(x,b) divides per(x,a). Therefore, per(x,a) is the same for all
a € X. Now since per(x) = ged{per(*,a) : a € X'}, we have per(x) = per(x,a) for
all a € X.

4) Suppose that * is irreducible and let n = per(x). Fix a € X and for every

0<1<n, deﬁneHi:{xeX: dl > 0, a*—’l>mandlEimodn}. We have the
following:
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7la,x . . . o1
o If x € X, then a ¢ o for some integer lg,; > 0 because of irreducibility.

n—1
This shows that for every x € X', we have x € Hj, , modn C U H;. Therefore,
i=0
n—1 n—1 '
X c |JHi cX, hence | JH =X
i=0 i=0

’l(LII) . .
e Let x € H; and y € H;. We have a 248 4 for some laz > 0 satisfying

. *alz,a *7la,z+lz,a
la,w =1 mod n. Moreover, x —> a for some [, , > 0,andsoa ~— " a. The
definition of per(x) implies that n divides lg 4 + I3 4 and so I o = —i mod n.

’la, . . .
Now since y € H;, we have a oy y for some I, > 0 satisfying I, , = j mod n.

7l.’l‘ . .
We conclude that  —-2¥ y, where I =l o +lqy = j — ¢ mod n.

e Suppose there exist ¢ # j such that H; N H; # ¢ and let x € H; N H;. From

*7ll‘ x . .
the previous paragraph we have x —% z, where [, , = j —¢ # 0 mod n. The
definition of per(x) implies that n divides [, , which is a contradiction since
lzx # 0 mod n. We conclude that H; N H; = ¢ for all ¢ # j.

e For every 0 < ¢ < n and every y € H; x X, there exist x € H; and z € X
such that y = x % z, which implies that y € H;11 mod n- Therefore H; x X' C
Hi-i—l mod n» and so |Hi+1 modn’ > |H1 *X‘ > |Hz’ ThUS, |HO| > |Hn71| >
... > |Hi| > |Ho|, which implies that |Hy| = |H1| = ... = |Hp—1].

Therefore, {Hy, ..., H,_1} is a partition of X' satisfying |Ho| = |H1| = ... = |Hp—1].
Now let 0 < i < n. We have shown that H; * X C H;y1 modn. On the other
hand, we have |H; x X| > |H;| = |H;+1 mod n|- Therefore, H; * X = H; 11 mod n-

5) For every x € X and every j > 0 define
Kx,j:{yEX: J:ﬂﬂy}

Since K, j11 = K, ; * X and since the number of subsets of & is finite, there exists
d, > 0 such that the sequence (K ;)j>q, is periodic. Let per, be the period of
(K1,j)j>d,- Now since K, j11 = K, j * X, we have | K, j41| > | K, ;|. Therefore, the
sequence (| K j|)j>a, is both periodic and non-decreasing, which implies that it is
constant.

.. N/
Fix 5 > d,, and let [ > 0 be such that x =% 2. For every 2/ € K, ; we

*,] . . . *,14j . *,1
have x —% 2’ which implies that % 2/ (since z —= z) and so @’ € K, j.

Therefore, K, ; C K, j4;, which implies that K, ; = K, j; (since we know that
|Ky ;| = |Kyj+1|). Now since this is true for every j > d,, we conclude that per,

divides every [ > 0 satisfying « *—l> x. Therefore, per, divides ged{l > 0: =z *—l>
x} = per(*,x) = n. Hence,

K. ;= Ky jiin forall j > d, and all & > 0. (2.2)

For every © € X, let i, be the unique index 0 < i, < n satisfying =z € H;,.
Clearly, Ky ;j C Hi,+j modn- Now let 2’ € K, ; and 2" € H;, 1 mod n, where j > d,.
Since both 2’ and 2" are in H;, 4 j mod n, we know from the discussion of the fourth
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*,lz/ 2!

point that we have 2/ —= 2" for some I, ,» = 0 mod n. Since n divides I .,

*,ZI/ 2!

we have Ky, , = Kgj from (2.2). Now since ' € K, ; and 2/ —3 2", we
have z” € Ky jti, ,» = Ko j. But this is true for every 2’ € H;,+j mod n. Therefore,
H;, +jmodn C Kgj, which implies that K, ; = H; {jmodn as we already have
Kx,' - Hiz—i-j mod n-

Define d = ma/%(dl,. Let 0 <i <mnandx € H;. We have i, =i (since x € H;) and
S

d > d,. Therefore, from the above discussion we have H; 14 modn = Hi,+dmodn =

*,d
K, 4. Hence, for every y € H;{qmod n, We have y € K, 4 and so vz — 3.

6) We will prove the claim by induction on s > con(x). If s = con(x), the claim
follows from 5). Now let s > con(x) and suppose that the claim is true for s — 1. Let
0<i<n,ze€ H;and y € Hi1smodn- Since H;1smodn = Hits_1modn * X, there

. o1 . .
exists ¥’ € Hiis 1 mod n sSuch that ¢/ LN y. Now since 3y € H;1 s 1 mod n, it follows
. . . k) -1 ’
from the induction hypothesis that x s y'. Therefore, x LN 1.

7) Let * be an irreducible operation of period per(x) = 1. Let &, be the partition
defined in 4). Since per(x) = 1, the partition £, contains only one element H which
must be X'. Now 5) implies that there exists d > 0 such that any element of X = H|
is *-connectable to any element of Hyygmod1 = Ho = X in d steps. Therefore, * is
ergodic.

Conversely, if x is ergodic, let d = con(x) and n = per(x). Define & =
{Ho,...,Hp—1} as in 4) and let a € Hy. Since a 2 for all z € X, then
X C Hgmod n which implies that X = Hyoqn. Now since |Hp| = ... = |Hp—1| =
|Himod n| = |X|, then Hy = ... = H,_1 = X and &, = {X}. Therefore, per(x) =
n =& =1.

8) If * is ergodic, then per(x) = 1 by 7). Therefore, £, contains only one element
Hp which must be X. Now 6) implies that for every s > con(x), any element of
X = Hy is #-connectable to any element of Hyysmoq1 = Ho = & in s steps.

9) and 10) are trivial.

2.8.2 Proofs for Section 2.3

Proof of Proposition 2.2 (1). For every k > 0 and every sequence Hy € H, Hy € H*,
e, Hp 4 € 'H(kfl)*, define

Heto, oty y = (.. (H*Ho)* Hy)...« Hy_1): He M} (2.3)
We have:
U X={J(..((HxHo)xHy)...x Hy1)
Xe€Hmuy,....,H,_4 HeH
= ( <<< U H) *Ho) *H1)...*Hk_1)
HeH
Therefore, Hp,,... i, , covers X for any sequence Hy € H, Hy € H*, ..., Hp_; €

HE=D* Moreover, it is easy to see from (2.3) that Hp,,. . , C #** which implies
that H** covers X.
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Fix n > 0 and suppose that H"™* is not a partition. Since we have shown that
H"™* covers X, there must exist X, X] € H™ such that X; N X| # ¢ and X; # X].
We may assume without loss of generality that |X;| < |X{|. If X]\ X1 = ¢ then
X{ C X which implies that X{ = X; (because | X1| < |X{|) which is a contradiction.
Therefore, we must have X| \ X1 # 0.

Since X7 € H™, there exists H € H and a sequence Hy € H, Hy € H*, ...,
H,_ 1 € H™ V% such that X; = (... ((H * Hy) * Hy) ... * H,_1) which implies that
X1 € Hu,,...H,_,- Now since we have shown that Hp, . g, , covers X and since
X1\ X1 # o, there must exist Xo € Hp,,.. g, , such that Xo N (X7 \ X1) # 0.
Clearly, X1 # X since X1 N (X]\ X1) =0 and Xo N (X7 \ X1) # 0.

Let p > 0 be the smallest multiple of per(#) which is greater than n, i.e.,

p =min{k -per(H): k>0, k-per(H) > n}.

We have HP* = H since per(H) divides p. Fix H, € H™ H,. € HOHD*
H, € HP=D* and define:

e B=(...((Xo*x Hyp)*xHpp1)...x Hy,_1) € HP* =H.
o C=(...((X]*Hy) % Hyp1) ... x Hy1) € H* =H.

We have X1 N X| # ¢ and Xo N X| # ¢, which imply that AN C # ¢ and
BN C # ¢. Now since A, B,C are members of H which is a partition (i.e., the
elements of H are non-empty, disjoint and cover X), we must have A = B = C. We
conclude that

(..(Xi*xHp)*Hpp1)...xHp1) = (..(XoxHy) * Hygq) ... x Hp1). (2.4)
We have:

e Huy,..H, , C HP* from the definition of Hp,,  m, , (see (2.3)). We have
shown that Hp, .. g, , covers X and we know that HP* = H is a partition.
Therefore, we must have Hp, . m, , = H* =H.

-----

e The mapping Hpy,,..n,_, — HH,,.. 1, , defined by X — (... ((X * Hy,) *
H,11)...% H,_1) is surjective but not injective because of (2.4). This implies
that ‘%H0,~~-,Hp—1| < |/HH07-~7Hn—1|'

e The mapping H — Hp,,.. H, , defined by H — (... (H*xHo)*Hy)...xHp_1)
is surjective. Therefore, |Hpu, . m, .| < |H|

We conclude that |H| = [Hm,,... 1, .| < |HH,...H,_ 1| < |H| which is a contradiction.
Therefore, 1™ must be a partition. On the other hand, we have, (F™*)Per(H)*
(HPer(H)F )y — 3{* which implies that ™" is a periodic partition of period per(#™*
< per(H). But since H = HP* = (H™)P~* we must also have per(H)
per(HP*) < per(H™*). Therefore, per(H"™") = per(H) for every n > 0.

~—

ol

Lemma 2.6. Let H be a periodic partition of (X, x). For every Ha € H, we have

H*:H*{HQ}:{Hl*HQZ HleH}.
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Proof. For every Hy € H, we have:

X:X*HZ:( U H1>*H2: U (Hy + Ha).
HieH HieH

Therefore, the set {Hy x Hy : Hy € H} covers X and it is a subset of H* which is
a partition of X by Proposition 2.2 (1). Therefore, we must have H* = {H; * Hy :
H, € H} O

Proof of Proposition 2.2 (2). For every [ > 0, Proposition 2.2 (1) shows that H* is a
periodic partition. If we fix Hy € H'*, then we have H(+1* = {H1*Hy: H; € Hl*}
by Lemma 2.6. Therefore,

(HUTD = [{Hy =« Hy : Hy € H")

< ’{le Hy € H>}| = 1. (2.5)
Now fix n > 0 and let p > 0 be the smallest multiple of per(#) which is greater
than n, i.e., p=min{k - per(H): k>0, k-per(H) > n}. From (2.5) we have
M| = M7 < [ HPD << M << AL

Therefore, |[H™| = |H| for every n > 0. O

Proof of Proposition 2.5. Since H1 and Ha are two partitions of X', it is easy to see
that 71 A Ha is also a partition of X. Now let Hy, H] € H; and Ho, H) € Ha. If
Hy N Hy # ¢ and H| N H) # ¢, we have:

(H1 N HQ) * (Hi N Hé) C (H1 * Hi) N (HQ * Hé) S HT VAN H; (26)

Fix H| € H; and H) € Ha such that Hi N H) # ¢. Lemma 2.6 implies that
t={Hy*H|: Hy € H1} and H = {Ho* H) : Hy € Hs}. Since H} and H} are

partitions of X', we have:

Xl= ) JANAf= ) [(HixH])N(Hyx Hy)l,
AreHT, AseHS HyeHq1,HocHo

which implies that

X1> D [(Hux Hy) N (Ha x Hy) (2.7)

HieH1,HaeH:
HiNHa#9

> > |(Hun Hy) s (H{ N Hy)l, (28)
Hi€EH1,HoEH:
HiNH>#¢
where (2.8) follows from (2.6). Now since Hj N H) # ¢, we have

|(H1ﬁH2)*(H{ﬂH§)| > ‘HlﬁHQ‘. (29)
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Therefore,
> \(Hy, N Hy) % (H, N Hb)| > > |Hy N Hy|. (2.10)
HieEH1,HoEH: HieEH1,HoEHo:
HiNHa#0 HiNHa#g

Now since H; and Hs are two partitions of X', we have

> |Hy N Hy| = |X]. (2.11)
Hi€H1,HaEHo:
HiNHa#¢

We conclude that all the inequalities in (2.7), (2.8), (2.9) and (2.10) are in fact equal-
ities because if one of them were a strict inequality, we would have a contradiction
with (2.11). Therefore, for all Hy € H; and Hy € Hy satisfying Hy N Hy # ¢, we
have |(Hy N Hg) * (H] N HY))| = |(Hy = Hy) N (H2 % H})|. Equation (2.6) now implies
that (Hy N Hy) = (Hy N HY) = (Hy = H{) N (Ha *x H)). We conclude that for every
Hi,H| € Hy and Hs, H), € Hy satistying H; N Hy # ¢ and H{ N H) # ¢, we have
(HiNHo)*(H{NH)) = (Hi+H{)N(HoxHY) € HiAH5. Hence (HiAH2)* C HIAHS.
We have the following:

o (Hi AHa)* covers X since Hq A Ha covers X.
e Hi AHj is a partition of X.
o (HiAHa)* CH] NHS.

Therefore, we must have (Hi A Ha)* = Hi N H5.

It follows by induction that (Hi; A Ha)™ = HP* A HE* for all n > 0. In
particular, for [ = lem(per(H;),per(Hs)), we have (Hi A Ha)* = HY A HY =
H1 A Ho, which implies that Hq A Hs is a periodic partition of period of at most
lem(per(H1), per(Ha)). O

2.8.3 Proof of Theorem 2.1
In order to prove Theorem 2.1, we need several lemmas:

Lemma 2.7. For every stable partition H, and for every H-repeatable sequence X,
there exists an integer | > 0 such that X' is H-augmenting.

Proof. Let X = (X;)o<i<k and let x; € X; for 0 < i < k. Consider the mapping
m: X = X defined by 7w(z) = (... ((x*x0)*21)...)*xx_1). Since 7 is a permutation,
there exists an integer [ > 0 such that 7'(z) = z for all x € X. For every A C X,
we have A = 7!(A) € A * X!. Therefore, X! is H-augmenting. O

Definition 2.22. Let A C X. We say that an H-augmenting sequence X connects
A if for every a € A we have A C a x X.

Lemma 2.8. If there exists an H-augmenting sequence that connects a set A C X,
then there exists H € H such that A C H.

Proof. Let X be such an H-augmenting sequence. Let a € A and H' € H be such
that a € H'. Define H = H' x ¥ € HIXI*. Since X is H-augmenting, |¥| divides
per(H) and so HIX* = 3{. Therefore, H € H. On the other hand, X connects A, so
we have ACaxX C H' xX =H. O]
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Lemma 2.9. Let x € X and let X be an H-augmenting sequence. For everyy € x*xX,
there exists an H-augmenting sequence X' which connects {x,y}.

Proof. Lety € xxX = (... ((x%X0)*xX1)...)*Xk_1). Thereexist z; € X; (0 <i < k)
such that y = (... ((z * »g) * x1)...) * xx—1). Define the mapping 7 : X — X as
m(a) = (... ((axxo)*x1) ...)*xx)_1) for every a € X. Clearly, 7 is a permutation. The
fact that y = m(x) implies that  and y belong to the same cycle of the permutation
7. Therefore, there exists s > 0 such that x = 7°(y). Let X’ = X°. It is easy to see
that X’ is H-augmenting. Moreover, we have:

e v € yx X' because x = 75(y), and y € y *x X’ because X’ is H-augmenting.
Therefore, {z,y} C y* X'.

e y € xx X by assumption and x € x x X since X is H-augmenting. Therefore,
{x,y} C z * X. On the other hand, z * X C (x * X) x X*7! since X*! is
H-augmenting. Hence {z,y} C (z* X) * X571 = 2 % X.

We conclude that X’ connects {z,y}. O

Lemma 2.10. [f there exists an H-augmenting sequence that connects a set A C X,
and if there exists an H-augmenting sequence that connects another set B C X such
that AN B # ¢, then there exists an H-augmenting sequence that connects AU B.

Proof. Let X be an H-augmenting sequence that connects A, and let X’ be an H-
augmenting sequence that connects B. Let X" = (%, X', X) be the H-repeatable se-
quence that is obtained by concatenating X, X’ and X. Clearly, X" is H-augmenting.
Fix z € AN B and let y € AU B. We have the following;:

o Ifyec A, then A C y*X. In particular, z € y * X. Now since x € B and since
X’ connects B, we have B C x x X'. Therefore, B C (y x X) * X'.

o If y € B, then y € y * X since X is H-augmenting. Now since y € B and since
X' connects B, we have B C y x X'. Therefore, B C (y « X) x X'.

We conclude that for every y € AU B, we have B C (y * X) * X’. This implies that:
e BC ((yxX)*X')*X =y=X" since X is H-augmenting.

e Since B C (y*X) * X', we have z € (y* X) x X'. Now since z € A and since X
connects A, we have A C x x X. Therefore, A C ((y*xX)* X" )« X =y X".

We conclude that AUB C y* X" for every y € AUB. Hence X" connects AUB. [

Definition 2.23. For every stable partition H of (X, %), define the connectivity
relation Ry of H on X as follows: aRyb if and only if there exists an H-augmenting
sequence that connects {a,b}.

Lemma 2.11. For every stable partition H, Ry is an equivalence relation.

Proof. Clearly, Ry is symmetric. Lemma 2.10 shows that Ry is transitive. In order
to show that Ry is reflexive, let € X, and let X be an arbitrary H-repeatable
sequence. Lemma 2.7 implies that there exists I > 0 such that ¥! is H-augmenting.
We have = € zx X! and so X! connects {z}. Therefore, x Ryx for every z € X', hence
Ry, is reflexive. We conclude that Ry, is an equivalence relation. ]
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Notation 2.7. For every stable partition H, we denote the set of equivalence classes
of its connectivity relation Ry by Ky.

Lemma 2.12. Let ‘H be a stable partition and let K € K. We have:
e For every x € K and every H-augmenting sequence X', x x X' C K.
e There exists an H-augmenting sequence X satisfying x X = K for all x € K.

Proof. For every K € Ky, every x € K, every H-augmenting sequence X', and
every y € x x X', we have xRy y because of Lemma 2.9, so y € K. This shows that
zxX' C K.

Now fix K € Ky and let K = {ai,...,a,} where r = |K|. For each 1 <i <,
define K; := {a1,...,a;}. Since a; Ry a1 there exists an H-augmenting sequence that
connects K1. Now let 1 < ¢ <7 and suppose that there exists an H-augmenting se-
quence that connects K;_1. Since a;_1 Ry a;, there exists an H-augmenting sequence
that connects {a;_1,a;}. Now since K;_1N{a;—1,a;} = {a;—1} # 9, Lemma 2.10 im-
plies that there exists an H-augmenting sequence that connects K; 1 U{a;—1,a;} =
K, and so the claim is true for 7. By induction we conclude that the claim is true
for every 1 <4 < r. In particular, there exists an H-augmenting sequence X that
connects K, = K.

Let x € K. Since X connects K, we have K C x*X, which implies that x+X = K
as we already have x x X C K. O

Lemma 2.13. If % is an ergodic operation on X, then for every stable partition H,
we have the following:

o [Cypuv is a balanced partition and ||IKCyu-|| = ||ICx || for all 1 > 0.

o Foreveryl >0, K1 € Ky, Ko € Kyi+, and every a € Ky, there exists an H-
sequence X4 g, such that | X, k,| =l modn and Ko = axXq k, = K1 *Xq K, -

Proof. Let Ki € Ky, Il > 0 and Ky € Kyu«. Let n = per(H), ki = con(x)n + [
and ko = con(x)n + (—l mod n). Choose a € K; and b € Ky. Since x is ergodic
and since k1 > con(x) and kg > con(x), it follows from Proposition 2.1 that there
exist xo,...,Tk—1 € X such that b= (... ((a*zg) *x1)...* Tg,—1) and there exist
Y0, - Yko—1 € X such that a = (... ((b*yo) * y1) ... * Yk,—1). Let X1 = (Xi)o<ick,
and X2 = (Y;)o<i<k, be such that z; € X; € H* for 0 < i < ky and y; € Y; € HUFD*
for 0 <i < ky. Clearly, b € a* X; and a € b* X9. The concatenation X = (X1, X2)
is an H-repeatable sequence since n divides k1 + ko. Lemma 2.7 implies that there
exists an integer s > 0 such that X* is H-augmenting. Lemma 2.12, applied to Ky,
implies the existence of an H*-augmenting sequence X’ such that b x X' = Ko.
Consider the sequence X" = (X1,X’, X2, X571). It is easy to see that X" is H-
augmenting and so K1 C K; * X”. On the other hand, since X" is H-augmenting,
Lemma 2.12 shows that for every x € K; we have x * X” C K1, which means that
K +X" C Ky. Therefore, K1 = K1 *X". Moreover, since b € ax X1 and b* X' = K>,
we have
Ko C(axX1)*X C (Ky*X)*X, (2.12)

which implies that |[Ky| < [(K7 * X1) * X/| < |[(((K1 * X1) * X') % X2) * X571 =
|K1 « X'| = |Ky|. By exchanging the roles of K; and Kj, we get |Ki| < |Kj|.
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Therefore, |Ko| = |K1| for every K; € Ky and every Ky € Ky.. We conclude that
both Ky, and s« are balanced partitions and ||[ICy || = [[KCqy-||.

Now define X, x, = (X1,%’). Since X, k, is an initial segment of X", we have
| K1 % Xq K, < |K1%X"|. But we have shown that K7 X" = K and | K| = | K>/, so
we must have |K7 * X k,| < |K2|. Moreover, we have Ky C a* Xq k, C K1 * X4 K,
from (2.12). We conclude that Ky = a * X, k, = K1 * X4 K, - O

Lemma 2.14. Let H be a stable partition of (X,*) where * is ergodic. For every
K € Ky and every H-sequence X, we have |K x X| = | K| = ||[Cy||.

Proof. Let K' = K + X and | = |X], and let X’ = (X])o<j<(—1 mod n) D€ an arbitrary
H*-sequence of length (—I mod n). Clearly, (X,X’) is H-repeatable. Lemma 2.7
implies that there exists an integer s > 0 such that (X, ¥')® is H-augmenting. We
have K C K*(X,X')*. On the other hand, Lemma 2.12 implies that Kx(X,X’)* C K.
Therefore, K = K x (X,X)s = K’ » (X, (X,X')*!) which implies that |K'| < |K]|.
We also have |K| < |K'| since K’ = K x X. Thus, |K'| = |K| = ||Ky]|- O

Lemma 2.15. Let H be a stable partition of (X, x) where x is ergodic. Let K € Ky
and 1 > 0. If X = (X;)o<i<i is an H-sequence, then K x X € Ky..

Proof. Let K' = K * X. Fix z € K" and let K" € IC;;. be chosen so that z € K”.
Lemma 2.12 implies the existence of an H!*-augmenting sequence X” such that
zx X" = K". We have K" ¢ K' * X" since x € K’', and K’ C K’ * X" since X" is
H>-augmenting. Therefore, K’ U K” C K’ X”. On the other hand, we have the
following:

o |[K'| =|K xX| =|K|=||Ky| from Lemma 2.14.

e (X,X") is an H-sequence, so Lemma 2.14 implies that |K * (X,X")| = |K| =
ICx]|. Now since K’ * X" = K x (X, X"), we deduce that |K' x X"| = || yx]|.

e Lemma 2.13 implies that ||yl = ||ICop- ||, so |K"| = || Ko || = || Cel-

Therefore, |K"| = |K'| = |K'«X"| = ||Ky|| and K’ UK” C K’ « X", hence K' = K"
and K’ € Kyp-. O

Lemma 2.16. Let H be a stable partition of (X,*) where x is ergodic. Ky is a
sub-stable partition of H and Ky = K™ for all 1 > 0.

Proof. We will prove that Ky = K4, by induction on I > 0. The statement
is trivial for [ = 0. Now let [ > 0 and suppose that K, q-1). = K U=D% Let
K e /Cq.tl* = (/CH(FI)*)* = (ICH(zA)*)*. There exist K1, Ky € Kya-1) = ’Cy(lfl)*
such that K = K1+ K. Let Hy € HU=D* he chosen such that Ky C Hy (Lemma 2.8
guarantees the existence of Hy). From Lemma 2.15, we have K; x Hy € Ky and

so | K7 x Ha| = || ICyp- @ 1ICsa-1)+|| = |K1]|, where (a) follows from Lemma 2.13.
We have Kq * Ko C K7 * Hy and |K1| < |K1 * K2| < ’Kl * HQ’ = |K1| Therefore,
K = K1 x Ky = K xHy which implies that K € Ky/.. This shows that Kyl C Kygie,
which implies that Ky = K1+ since K™ covers X and K+ is a partition of X.

We conclude that Kyt = Kqg- for all 1 > 0. In particular, Ky = Cyns = Kyy,
where n = per(#H) so Ky is periodic. Moreover, Lemma 2.13 shows that Ky is
balanced. Therefore, K is a stable partition. Lemma 2.8 now implies that Ky is a
sub-stable partition of H. O
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Proposition 2.13. Let H be a stable partition of (X, *) where x is ergodic, and let
IC be a partition of X which satisfies the following two conditions:

o For every K € K and every x € K, there exists an H-augmenting sequence X
such that x x X = K.

o For every K € K, every x € K, and every H-augmenting sequence X', we have
rx X CK.

Then K = Ky.

Proof. Fix x € X and let K1, € Ky and K3, € K be chosen such that z € K1, and
z € Ko ,. Lemma 2.12 implies the existence of an H-augmenting sequence X1 such
that +X; = K ,, and the first condition of the proposition implies the existence of
an H-augmenting sequence X such that x* X2 = K ;. The second condition of the
proposition implies that x * X1 C K2 ., and Lemma 2.12 implies that x x Xo C K ;.
Therefore, K1, C Ko, and K3, C K1, which implies that K, = K5 .. Since this
is true for all x € X', we conclude that K = Ky. Ol

Now we are ready to prove Theorem 2.1:

Proof of Theorem 2.1. Lemma 2.16 shows that Ky is a sub-stable partition of H
satisfying Ky = Ky« for all I > 0. Moreover, we have:

e For every K € K3 and every H-sequence X, we have K * X € Kyjxj« = JCpy Xl
by Lemma 2.15.

e For every K € Ky and every z € K, Lemma 2.12 shows that there exists an
H-augmenting sequence X such that =« X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z « X’ C K by Lemma 2.12.

This shows the existence part of Theorem 2.1. The uniqueness follows from Propo-
sition 2.13. O

2.8.4 Proof of Proposition 2.7

Definition 2.24. Let A be an X-cover. Define the relation P4 on X as follows:
x Py if and only if there exists a finite sequence (A;)1<i<n Such thatx € Ay, y € Ay,
A e Aforalll <i<mn, and A; NAj1 # ¢ for all 1 < i <n. Clearly, Py is an
equivalence relation on X. The set of equivalence classes of P4 (denoted by P(A))
is called the partition of X generated by A.

Lemma 2.17. Let A be an X-cover. For every B € P(A), there exists a finite

sequence (A;j)1<i<n Such that B = U A, Ay € Aforalll <i<mn, and AjNA;11 # 0
i=1
for all1 <i<n.
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Proof. Let B € P(A) and let x € B. We say that a sequence (A;)1<i<p is (x, A)-
connected if x € A1, A; € Aforalll <i<mn,and A;NA;11 Foforalll <i<n. If

(Ai)1<i<n is such a sequence, we clearly have x Py for every y € U A;. Therefore,
i=1

LnJAiCB.

1
Let A; € A be such that x € A;. The sequence (Ap) of length 1 is (z,.A)-
connected. Therefore, there exists at least one (x,.A)-connected sequence. Now

n
consider an (z,.A)-connected sequence (A;)i<i<n such that U A; is maximal. If
i=1

n n
A; # B, there exists y € B such that A;. Let o’ € A,,. Since o',y € B,
Yy Y Yy
i=1 =1
#' P4y and so there exists a sequence (A})1<;<m such that 2/ € A}, ye A/, Al e A
for all 1 <4 < m, and A; N A}, # ¢ for all 1 <4 < m. Consider the sequence
" 3 " __ . - " __ / N
1Snr+m T = — — = = .
(A)1<i<ntm defined by A = A; for 1 <i<nand A) = A, forn+1<i<n+m
Since o' € A, N A} = A N A, (AY)i<i<ngm i (x, A)-connected. We have

n n-+m n+m n
U A © U Al since y € U Al and y ¢ U A;. This contradicts the maximality

i=1 i=1 i=1 =1

n n
of U A;. Therefore, we must have U A; = B. ]
i=1 i=1

Lemma 2.18. Let % be a uniformity-preserving operation on a set X, and let A be
an X -cover. For everyn > 0 and every A € A™, there exists B € P(A)™ such that
A CB.

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.

Now let n > 0 and suppose that the lemma is true for n — 1. Let A € A™*, there
exists A1, Ay € AM=D* quch that A = Ay * Ay. The induction hypothesis implies
the existence of two sets By, By € P(A)"~D* such that A; C By and Ay C By. We
have A = A; * Ay C By * By and By x By € P(.A)n* ]

Lemma 2.19. Let x be a uniformity-preserving operation on a set X, and let A be
an X-cover. For everyn >0, we have P(P(A)™*) = P(A™).

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.

Now let n > 0 and suppose that P(P(A)"~D*) = P(AM=D*) which means
that for every =,y € X', we have 2P 4(n-1).y if and only if xPp(A)(n_l)*y.

Let z,y € X be such that xPp(4yn-y. There exists a sequence (Dj)1<j<m such
that: « € Dy, y € Dy, Dj € P(A)™ for 1 < j < m, and D; N Dj1 # ¢ for
1 < j < m. Define z; = x and 41 = y, and for each 2 < j < m, choose
zj € Dj_1 N Dj. For every 1 < j < m, we have z;,zj41 € D; and D; € P(A)"™".
We are going to show that x; Pgn«xj11 for every 1 < j < m which will imply that
TP gn+y.

Fix j € {1,...,m}. Since D; € P(A)", there exist D}, D} € P(A)"~D* such

that D; = D’ D;-’. Moreover, since xj,zj41 € D; there exist a;-,b;-H € D;-
and a7, b7, € DY such that x; = a * a] and x;11 = b, *b], ;. We have

@} Pp(gyn-1+bj 1 and af Ppay(n-1+b7 ;. Therefore, from the induction hypothesis
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we have a}PA(n_U*b}H and a‘/]!PA(n—l)*b‘;!+1. There exist two sequences (Aé)lgigm;.
and (A;,)lgigm;.’ such that:

o af €AV €A, A€ An=D% for 1 < i < mf, and A} N A}, # ¢ for

1§i<m;.

o a € AT, V], € A’T;;,, A" e AU for 1 < i < m/, and A7 N Al | # o for

70
1§i<m;-’.

Now consider the sequence (Az‘)lgz'gm;.er;’ defined as A; = A} * Af for 1 <i <m/,
and A; = A;n;_ * A;’_m; for m’ +1 <4 < m; + mj. The sequence (Ai)lgigm;.er;/
satisfies the following: z; = a} * af € Ay, xj1 = Uy * V], € Amg+m;’ and
A, e A% for 1 < < m; + m;’. Moreover, it is easy to see that A; N A;11 # o for
1 <i < mf+mj. Therefore, x;Pan-x;11. Now since this is true for all 1 < j < m, we
have x1 Pgn+Zpm1 and so xPygn«y. We conclude that for every x,y € X, xPp( gy
implies P gn+y.

Now let z,y € X’ be such that xPyn-y. There exists a sequence (E;);<;<) such
that: © € F1, y € Ep, E; € A for 1 <i <k, and E;NE;y1 #¢ for 1 <i < k.
Now for every 1 < i < k, we can apply Lemma 2.18 to get a set F; € P(A)™* such
that E; C F;. Clearly, we have x € Fy, y € Fj, F; € P(A)™ for 1 < i < k, and
FiNFip #o¢for 1 <i<k. Thus, 2Pp(4)n-y.

We conclude that for every x,y € X, x Pp(4)n+y if and only if 2 Pgn+y. Therefore,

P(P(A)™) = P(A™). O

Lemma 2.20. Let % be an ergodic operation on a set X. If A is a periodic X -cover,
then P(A) is a stable partition.

Proof. Let n = per(A) - con(x). Since per(A) divides n, we have A™ = A. Let
A € P(A) be chosen so that |A| is maximal, and let B € P(A). We clearly have
|B| < |A]. We also have B € P(A™) since A™ = A. From Lemma 2.19 we have
P(P(A)™) = P(A™), and so B € P(P(A)™) = P(A™) = P(A).

Fix 2z € Aand y € B. Since n > con(x), there exists a sequence xg, ..., Tp—1 € X
such that y = (... ((z * o) * 1) ... * xp—1). Now choose Xy,...,X,_1 such that
z; € X; € P(A)™ for 0 < i < n. Define C := (... ((A%X)*X1)...xX,_1). Clearly,
y € C € P(A)™. Now since y € B € P(P(A)™) and y € C € P(A)™, we must
have C' = (... ((A* Xp)* X1)...* X,_1) C B and so |A| < |C| < |B|, which implies
that |A| = |B| = |C| since we already have |B| < |A|. Therefore, C' = B and so
B € P(A)™ for every B € P(A), from which we conclude that P(A) C P(A)"™*. On
the other hand, since |A| = |B| for every B € P(A), P(A) is a balanced partition.

Now for every C' € P(A)™*, there exists a set D € P(A) and a sequence
X0y, Xp—1 such that X; € P(A)™ and C = (... ((D * Xo) * X1)... * Xp_1).
We have |D| < |C|. On the other hand, Lemma 2.18 (applied to the X-cover
P(A)™) implies the existence of a set B € P(P(A)"™) such that C C B. There-
fore, |[D| < |C| < |B|. Now since P(P(A)™) = P(A™) (by Lemma 2.19) and
A™ = A, we have B € P(P(A)™) = P(A™) = P(A). Therefore, |D| = |B|
since D, B € P(A) and since P(A) was shown to be a balanced partition. Thus,
|B| = |C| = |D| which implies that C'= B € P(A) since C C B. We conclude that
C € P(A) for every C € P(A)™. Therefore, P(A)"* C P(A). This means that
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P(A)™ = P(A) since we already have P(A) C P(A)™. We conclude that P(A) is
a stable partition. O

Lemma 2.21. Let x be a uniformity-preserving operation on a set X. If A is a
stable X -cover, then for every i > 0, every A € A and every B € A™, we have
Al = |B.

Proof. Fix i > 0, and let p = min{k - per(A) : k- per(A) > i}. Clearly, AP* = A.
Let A € A and B € A*. We have

(a) ®) ik % © pk (d)
Al = [IA[A < AT][A < [B] < AT [lv < A ]lv = [Allv = [A],

where (a) and (d) follow from the fact that A is a balanced X-cover. (b) and (c)
follow from Lemma 2.1. This shows that |A| = |B]. O

Lemma 2.22. Let % be a uniformity-preserving operation on a set X, and let A be
a stable X -cover. For every A,B,C € A, if BNC # ¢ then Ax B=AxC.

Proof. We have A x B € A*, and from Lemma 2.21 we get |A x B| = |A|. On the

other hand, since * is uniformity-preserving, we have |A x x| = |A| for every z € X.
Now since A * B = U A x b, and since |A xb| = |A| = |A * B| for every b € B, we
beB

must have A x B = Ax b for every b € B. Similarly, A« C = A x ¢ for every c € C.
We conclude that Ax B = A % C since BNC # ¢ (for any x € BN C, we have
AxB=Axxz=Ax(C). O

Lemma 2.23. Let x be a uniformity-preserving operation on a set X, and let A be
a stable X -cover. For every A € A and every B € P(A), we have Ax B € A*.

Proof. According to Lemma 2.17 there exists a finite sequence (A;)1<;<; such that
l

B:UAi, A;e Aforall 1 <i<l[,and A;NA;11 # o forall 1 <i<][. Lemma

i=1
2.22 shows that Ax A} = Ax Ay = ... = Ax A;. Therefore, AxB = AxA; € A*. O

Lemma 2.24. Let x be an ergodic operation on a set X, and let A be a stable
X-cover. For every A € A and every P(A)-sequence X, we have A x ¥ € ARXI*,

Proof. We will prove the lemma by induction on k = |X| > 0. Lemma 2.23 implies
that the statement is true for £ = 1. Now let £ > 1 and suppose that the lemma is
true for |X| = k— 1. Now let X = (X;)o<i<k be a P(A)-sequence of length k. Define
X = (Xi)0§i<k—1~ We have:

o A= Axx e A*D* from the induction hypothesis.

e Lemma 2.20 shows that P(A) is a stable partition, and so P(A)*~D* is also a
stable partition. In particular, P(A)#~1D* is a partition and so P(A)*+-D* =
P(P(A)*=1*). On the other hand, Lemma 2.19 shows that P (P(A)*~D*) =
P(AK=D*). Therefore, P(A)F-D* = P(A*-1*). We conclude that X;_; €
P(AF=D*) since we have X;_; € P(A)F-D*,
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e Since (ARD5)m = (Am)E-Dr = AG=D* (where n = per(A)), A®D* i
a periodic X-cover. On the other hand, Lemma 2.21 implies that A®F—D* ig
balanced. Therefore, A*—D* ig a stable X-cover.

Now since A’ € AFD* and X;_; € P(A*D*), and since A*~D* is a stable
X-cover, we can apply Lemma 2.23 to obtain A’ x X;_; € (AF—D*)* = A We
conclude that AxX = A’ X;,_; € A" which completes the induction argument. [

Now we are ready to prove Proposition 2.7:

Proof of Proposition 2.7. Let x be a strongly ergodic operation on X and let A be
a stable X-cover. Lemma 2.20 shows that P(A) is a stable partition. Let n =
per(A).scon(x). We have the following:

o P(A)"™ =P(P(A)™) since P(A) is a stable partition.
o P(P(A)™) =P(A™) by Lemma 2.19.
o A™ = A since per(A) divides n.

Therefore, P(A)™ = P(A™) = P(A).

Fix A € A. From Lemma 2.18 there exists B € P(A) such that A C B. Fix
a € A. Since a € B € P(A) = P(A)™ and since n > scon(x), we can apply
Theorem 2.2 to get a P(.A)-sequence of length n such that a*X = BxX = B. Since
B=axXCAxXC B*xX=D0B, we have A*x X = B. Now from Lemma 2.24, we
have B = A x X € A™ = A. This means that |A| = |B| because A, B € A and A is
stable. Therefore, A = B since we have A C B and |A| = |B|.

We conclude that A € P(A) for every A € A. Now since P(A) is a partition, we
have AN A" = ¢ for every A, A’ € A satisfying A # A’. On the other hand, A is an
X-cover. This shows that A itself is a partition, hence A = P(A). Therefore, A is
a stable partition. O

2.8.5 Proof of Proposition 2.8

Lemma 2.25. Let x be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)™ C core(A™) for every n > 1.

Proof. Let A € core(A)™. There exist Ay, Af, € core(A), A} € core(A)*,..., Al _, €
core(A)™~D* such that A = (... ((Ag* A)) * A})...x A_|). We have

nx (a) nx
[A™ v > [A] = [(... (Ao * Ag) * A7) ... x Ay _1)| > [Ao| = [ Allv = [[A™ v,

where (a) follows from Lemma 2.3. Therefore, |A| = || A™*||y and so A € core(A™).
We conclude that core(A)™ C core(A™). O

Lemma 2.26. Let x* be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have | core(A)™| > | core(A)| for every n > 1.
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Proof. Fix by € By € core(A),by € By € core(A)*,...,by_1 € B,_1 € core(A)—1*,
Let m : X — X be defined as 7(z) = (... ((x *by) * by)...*b,—1). Clearly, 7 is a
bijection because * is uniformity-preserving.

For every A € core(A), we have (... ((A* By) * By)...* By_1) € core(A)™.
Lemma 2.25 now implies that (...((A* By) * By)...* By,_1) € core(A™) and so

(.. (A% Bo) % By)... * By _1)| = [lA™||v £ ||4] = 4],

where (a) follows from Lemma 2.3. Now since m(A) = (... ((A*bg)*b1)...xby_1) C
(...((A%*Bp)* B1)...xBp_1) and |[(... ((Ax Bg) * B1)...x Bp_1)| = |A| = |7n(A)],
we have (...((A* By) * By)...* B,_1) = m(A). Therefore, 7(A) € core(A)™* for
every A € core(A). We conclude that

| core(A)™| > [{m(A) : A € core(A)}| @ {A: A € core(A)}| = | core(A)],
where (a) follows from the fact that 7 is a bijection. O

Lemma 2.27. Let x* be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)"™ = core(A™) for every n > 1.

Proof. Let p = min{k - per(A) : k-per(A) > n}. Lemmas 2.25 and 2.26 imply that
| core(A*)| > | core(A)*| > | core(A)|. Therefore, we have

| core(A)| = | core(AP*)] > | core(AP~V9)| > ... > |core(A™)| > ... > |core(A)],
hence |core(A™)| = | core(A)|. Lemma 2.26 now implies that
| core(A)"™*| > | core(A)| = | core(A™)],

and from Lemma 2.25 we have core(A)™ C core(A™). We conclude that we have
core(A)™ = core(A™). O

Lemma 2.28. Let x be an ergodic operation on X. If A is a periodic X -cover, then
core(A) is an X -cover.

Proof. Let n = per(A) - con(x). Fix A € core(A) and a € A. Now let z € X'. Since
n > con(x), the eighth point of Proposition 2.1 implies that a 5% %. Therefore,
there exist g, ..., x,—1 such that (... ((a*xxg) *xx1)...*xxH_1) = 2.

Now since A is an X-cover, A™ is an X-cover for every i > 0. Therefore, for
every 0 < i < n, there exists A; € A" such that z; € A;. Let

B:=(..((AxAy)*xA1)...xA,_1) € A™.

We have A™ = A since per(.A) divides n, hence B € A. We also have

(a) (b)
[Allv = [Bl = |(... (Ax Ag) x A1) ... x An_1)| = |A] = [|Allv,

where (a) follows from the fact that B € A, and (b) follows from the fact that x
is uniformity-preserving. Therefore, |B| = ||A||y, which implies that B € core(A).
Now since

r=(..((axxo)*x1)...%xxpn_1) € (...((Ax Ag) *x A1)...x Ap_1) = B € core(A),
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we have
T € U C.
Céecore(A)
But this is true for every x € X. We conclude that core(.A) is an X-cover. O

Now we are ready to prove Proposition 2.8:

Proof of Proposition 2.8. Let x be an ergodic operation on X’ and let A be a periodic
X-cover. Lemma 2.28 implies that core(.A) is an X'-cover.

Let p = per(A). Lemma 2.27 implies that core(A)™ = core(A™) for every
n > 1. In particular, we have core(A)P* = core(AP*) = core(.A), which implies
that core(A) is periodic and per(core(.A)) divides p. Now since core(A) is clearly
balanced, we conclude that core(.A) is a stable X'-cover. 0

2.8.6 Proofs for Section 2.7
Proof of Theorem 2.4

In order to prove Theorem 2.4, we need a few definitions and lemmas:

Definition 2.25. Define the two projection mappings P : X — X} and Py : X — X»
as Py(x1,22) = x1 and Pa(x1,x9) = o for all (x1,22) € X. Define the following:

o Ui(H) = {P\(H): HeH).
o Us(H) = {Po(H): H e H).

Lemma 2.29. For every xa,xh, € X, there exists an H-repeatable sequence X such
that:

e For every x1 € X1, we have (x1,25) € (x1,x2) * X.
e For every X C X, we have P;(X) C Pi(X % X).

We say that the sequence X can take the second coordinate from xo to %, while
keeping the first coordinate unchanged.

Proof. Let k = per(H)con(x) > con(xz). Choose arbitrarily a sequence of k el-
ements z1,...,21 -1 in X; and define the mapping 7 : &} — &} as w(z1) =
(... (&1 %1 21,0) %1 21,1) ... %1 T1k—1). Since 7 is a permutation of X7, there exists
an integer s > 0 such that 7°(z1) = x; for all x; € A}. Let | = ks and define the
sequence x1; for k <1i <1l as x1; = T1;mod k- Clearly,

(. ((xr*1210) %1 21,1) .. %121 y—1) = 7°(21) = 21 for all 21 € A7 (2.13)

Now since | > k > con(x3) and since %o is ergodic, there exists a sequence
(x2,i)o<i<i in Xy such that
.%'/2 = ( e ((IQ *2 x2,0) *2 x2,1) . ) xQ,l*l)- (214)

Define the H-repeatable sequence X = (X;)o<<; such that (z1;,22;) € X; € H
for all 0 <+ < [. For every z1 € X7, we have:

a (b)
(z1,x5) @ (x1,22) * (($1,z‘,932,i)0§i<l> € (z1,22) * X,
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where (a) follows from (2.13) and (2.14), and (b) follows from the fact that (z1, z2,)
€ X; forall 0 <i<lI.

Now let X C X. We have:
Pi(X) = (. ((Pi(X) %1 21,0) %1 @11) -+ %1 T1-1)

b (c)
© Pi(X % (21,4, 22,)0<i<t) C P1(X xX),

—
N

where (a) follows from (2.13), (b) follows from the definition of * and P;, and (c)
follows from the fact that (z1;,22,;) € X; for all 0 <i < [. O

Lemma 2.30. Let X be an H-repeatable sequence which takes the second coordinate
from zo to x!y while keeping the first coordinate unchanged as in Lemma 2.29. If
there exist HyH' € H and x1 € Xy such that (z1,z2) € H and (x1,2%) € H', then
H =HxX.

Proof. From Lemma 2.29 we have (z1,245) € (x1,22) * X C H * X. Therefore,
H'N(H % X) # ¢. On the other hand, we have H' € H and H * ¥ € H*XI* = H.
Therefore, H = H x X since H is a partition. O

Lemma 2.31. Uy (H) (resp. U2(H)) is a partition of Xy (resp. Xa).

Proof. Clearly, U;(#H) covers X;. Now suppose that there exist A, B € U;(H) such
that AN B # ¢ and let x1 € AN B. Let Hy, Hg € H be such that Py(H4) = A
and Pi(Hp) = B. There exist 22 4 € X3 and x5 p € X5 such that (z1,224) € Ha
and (z1,x2,5) € Hp. Using Lemma 2.29, choose an H-repeatable sequence X which
can take the second coordinate from x 4 to w2 p while keeping the first coordinate
unchanged.

Lemma 2.30 shows that Hgp = H4 * X and Lemma 2.29 implies that P;(H4) C
Pi(Hy % X). We conclude that A = Pi(Hs) C Pi(HaxX) = Pi(Hp) = B. By
exchanging the roles of A and B, we can also get B C A. Therefore, A = B. We
conclude that U;(H) is a partition of X;. A similar argument shows that Uy (H) is
a partition of X5. ]

Lemma 2.32. Uy (H) (resp. Us(H)) is a stable partition of Xy (resp. Xs) of period
of at most per(H). Moreover, for every i > 0, we have Uy (H)™ = U (H™) and
Ua(H)™2 = U (H™).

Proof. We will only prove the lemma for U (H) since the proof for Us(H) is similar.
We will start by showing by induction on i > 0 that U (H)™1 = U; (H™). The claim
is trivial for ¢ = 0. Now let ¢ > 0 and suppose that the claim is true for ¢ — 1. We
have:

Us (H)* = (ul(H)(i—l)*l)*l (@) (ul(%(i—l)*))*l
= {H{« HY : H}, H €Uy (HD")}
= {Py(H') %, P/(H"): H' /H" € H~D*}
O p(H «H"): B H" ¢ 1V}
={Pi(H): HcH"} =U(H™),



62 An Ergodic Theory of Binary Operations

where (a) follows from the induction hypothesis and (b) follows from the identity
P (H'") %y PI(H") = Pi(H' « H") which is very easy to check. We conclude that
we have Uy (H)*t = Uy (H™) for all i > 0. In particular, for p = per(H), we have
UL (H)P*r = Uy (HP*) = UL (H).

Lemma 2.31 shows that U;(#) is a partition, and we have just shown that
Ui (H)P*t = Ui (H). Therefore, Ui (H) is periodic of period of at most p. Lemma 2.2
now implies that U (#H) is a stable partition of A}. O

Definition 2.26. Let X C X, 21 € X1 and z2 € Xs. Define the sets Py, (X) C &1
and P2|x1 (X) C Xy as:

o Pip,(X)={x1 € X1 : (z1,22) € X} = P (X N (X1 x {z2})).

o Py (X) = {2 € Xy : (21,22) € X} = Po(X N ({21} x &)).
Define the following:

o Li(H)={Pis,(H): HEH, xo € Xy, Py, (H) # 0}

o Lo(H)={Py,,(H): HEH, x1 € Xy, Py, (H) # 0}
Lemma 2.33. £1(H) (resp. L2(H)) is a partition of X1 (resp. Xy).

Proof. Clearly, L£1(H) covers X;. Suppose that there exist A, B € £1(H) such that
ANB # ¢ andlet z1 € ANB. Let Hy, Hp € H and 2 4,22 p € &> be such that
A= Py, ,(Ha) and B = Py, ,(Hp). Using Lemma 2.29, choose an H-repeatable
sequence X which can take the second coordinate from 2 4 to x9 p while keeping
the first coordinate unchanged.

Since 1 € A = Py, , (Hy) and 1 € B = Piley 5 (Hp), we have (z1,224) € Ha
and (1,22 ) € Hp. It follows from Lemma 2.30 that Hg = H * X.

Now for every 27 € A = Py, ,(Ha), we have (2,72 4) € Ha and so by Lemma
2.29 we have (2,z28) € (},22,4) *X C Hy* X = Hp. We conclude that z} €
Pijg, 5 (Hp) = B for every z) € A. Therefore, A C B. By exchanging the roles of A
and B we can also get B C A which implies that A = B. We conclude that £1(H)
is a partition of Aj. A similar argument shows that Lo(#H) is a partition of Ay. [

Lemma 2.34. L£i(H) (resp. L2(H)) is a balanced partition of Xy (resp. Xa).

Proof. Let A,B € L1(H). There exist Hy, Hp € H and x2 4,22 p € X such that
A= P1|z2,A(HA) and B = Py, , (Hp). Fix 214 € A and 1 p € B and define k =
per(#) - max{con(x1), con(xz)}. Clearly, (x1,4,224) € Ha and (21 p,228) € Hp.

Since k > con(x1) and k > con(x*q), and since x; and *o are ergodic, there exist
a sequence (x1,)o<i<k in X1 and a sequence (22;)o<i<k in X2 such that:

(.. (1,4 %1 T10) %1 21,1) - .- *¥1 L1 k—1) = Z1,B,

(2.15)
(. .. (([132714 *9 .I'Q’O) *9 .73271) ..o X9 .%'2’]@,1) = 33273.

Now define the H-repeatable sequence X = (X;)o<i<k such that (z1,,22;) € X; €
H™ for all 0 < i < k. We have:

(a) b
(x1,B,22,B) = (T1,4,22,4) * (($1,i,$2,i)ogi<k> € Hp* X,
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where (a) follows from (2.15) and (b) follows from the fact that (1 4,22,4) € Ha
and (x1,4,x2;) € X; for every 0 <i < k. We conclude that Hg N (H4 * X) # ¢. On
the other hand, we have Hg € H and Hy * X € H** = H. Therefore, Hg = H * X
since H is a partition.

Define the mapping m1 : X1 — Xy asmi(z1) = (... (z1x121,0)¥121,1) - - F121 f—1)
for every x1 € Xy and the mapping my : Xy — Xp as ma(x2) = (... ((x2 *2 x20) *2
X1) ... % Lo k1) for every xg € Xo.

Now let 21 € A = Py, ,(Ha), we have:

a b (o)
(m(21), 22,8) < (11 (21), 72(w2,)) € (21,20,) 5 (215,82, )0sic) € HaxX = Hp,

—

where (a) follows from (2.15), (b) follows from the definition of 7; and 72 and (c)
follows from the fact that (1,22 4) € Ha and (x4, 22;) € X; for every 0 < i < k.
We conclude that mi(z1) € Py, ,(Hp) = B for every x1 € A. Therefore,

m1(A) C B, which implies that |A| & |1 (A)] < |B|, where (a) follows from the

fact that m; is a permutation. By exchanging the roles of A and B we can also
get |B| < |A| which implies that |A| = |B|. We conclude that £;(H) is a balanced
partition of X; as Lemma 2.33 already showed that £;(?) is a partition. A similar
argument shows that L£o(H) is a balanced partition of Xj. 0

Lemma 2.35. For every i > 0 and every A € L1(H)™, there exists B € Lq(H™)
such that A C B.

Proof. We will prove the lemma by induction on ¢ > 0. The lemma is trivial for
1=0.

Now let i > 0 and suppose that the lemma is true for i — 1. Let A € L£1(H)™!,
there exist A’, A” € L£1(H)#~D*1 such that A = A’ %; A”. From the induction
hypothesis, there exist B, B” € £1(H~1*) such that A’ ¢ B’ and A” C B". This
means that there exist H', H” € HU~1* and 2,24 € X such that B’ = Py (H')
and B" = Pyj,y(H"). We have:

(@)

A= A'si A" C B %y B" = Pypyy (H') %1 Py (H") C Pijyyumey (H' + H"),
where (a) follows from the fact that for every zy € Py, (H') and 2 € Py, (H"), we
have (2!, 25) € H and (27, 24) € H", and so (2] %127, 2hxoxly) = (2!, 24) = (27, 25) €
H' x H”, which implies that x| %1 2} € Pl\xg*zxg(H/ * H').

If we define B = Py .,y (H x H") € L1(H™), we get A C B. We conclude that
the lemma is true for all 7 > 0. O]

Lemma 2.36. L1(H) (resp. L2(H)) is a stable partition of Xy (resp. Xa) of period
of at most per(H). Moreover, for every i > 0, we have L1(H)™ = L1(H™) and
EQ(H)Z*Q — £2(Hz*)

Proof. We will only prove the lemma for £;(H) since the proof for Lo(#) is similar.
Let p = per(#). According to Lemma 2.35, for every A € L£1(H)P*!, there exists
B € L1(HP*) = L1(H) such that A C B. On the other hand, we have:

T ()
Al > [[IL1(H)P* A = 1L0(H)a = 1£1(H)| = |B],
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where (a) follows from Lemma 2.1 and (b) follows from the fact that £;(H) is a
balanced partition (Lemma 2.34). We conclude that A = B € £;(H) since |A| > |B|
and A C B. Now since this is true for every A € L£1(H)P*1, we have L1 (H)P*! C
L1(H) which implies that £i(H)?** = L£1(#H) since £1(H) is a partition of &} and
L1(H)P*1 is an Xj-cover. We conclude that £1(#H) is a stable partition of period of
at most p = per(H). Now since this is true for every stable partition and since H%*
is a stable partition for every i > 0, we conclude that £;(H™) is a stable partition
for every i > 0. This implies that £1(H™)/* is a stable partition for every i > 0
and every j > 0.

For every i > 0, Lemma 2.35 (applied to #(~D*) implies that £;(H~D*)*
is a sub-stable partition of £i(H™) and so ||£;(HED9)|| = ||£(HED) || <
|£1(H™)||. Therefore,

LGOI < [L(H) < - < L (H)I = [I£(H)]-

We conclude that || £y (H™)|| = ||£1(HE™m0dP)*)|| = ||£1(H)| for every i > 0. More-
over, since L£1(#) is stable, we have ||[£1(H)"!| = [|£1(#H)]||, which implies that
I£1(H)™ || = | £1(H™)] for every i > 0.

Now for every i > 0, £1(H)*! is a sub-stable partition of £1(H%*) (by Lemma
2.35) and we have just shown that || £1(H)™|| = ||£1(H™)|]. We conclude that
L1(H)™r = L1(H™) for every i > 0. O

Now we are ready to prove Theorem 2.4:

Proof of Theorem 2.4. Lemma 2.36 shows that £1(#H) and Lo(H) are stable par-
titions of X; and X» respectively, and Lemma 2.32 shows that U;(H) and Us(H)
are stable partitions of X7 and X, respectively. Moreover, Lemma 2.36 shows that
L1(H)™ = L1(H™) and Lo(H)™2 = Lo(H™) for every i > 0, and Lemma 2.32 shows
that Uy (H)™t = U (H™) and Us(H)™2 = Uy (H™) for every i > 0.

It is easy to see that £1(H) = Ui(H) and Lo(H) < Us(H). Now we turn to show
that £1(H) @ Lo(H) = H S Ur(H) @ Ua(H). Let A x B € L1(H) ® Lo(H) (i.e.,
A€ L1y(H) and B € L2(H)), and fix 1 € A and 25 € B. Let H € H be such that
(71,72) € H. We have w1 € Py, (H) as (v1,72) € H. Therefore, Py|,,(H) N A # ¢
which implies that A = Py, (H) since both A and Py, (H) are in £1(H) which was
shown to be a stable partition.

Now fix (r4,7p) € AXB. Since x4 € A = Pj|,,(H), we have (x4, 72) € H which
means that xo € Py, (H). Therefore, BN Py, , (H) # ¢ which implies that B =
Py, (H) since both B and Py, , (H) are in L3(H) which was shown to be a stable
partition. Now since xp € B = P, (H), we conclude that (v4,rp) € H. But this
is true for all (z4,2p) € A X B, hence A x B C H. Therefore, £1(H) ® Lo(H) < H.

In order to prove that H < Ui (H) @ Ua(H), let H € H, A’ = Pi(H) € Uy(H)
and B’ = Py(H) € Uz (H). Clearly, H C A" x B’, hence H < Ui (H) @ Uz2(H).

Now let H € H. Since £1(H) ® L2(H) =X H, there exist an integer ny > 0
and ng sets Hy,...,Hy,, € L1(H)® L2(H) such that Hy,..., H,, are disjoint and
H=HU...UH,,. Since Hy,...,Hy, € L1(H) @ L2(H), there exist ny sets
Hii,....,Hipn, € L1(H) and ny sets Haq,...,Hap, € Lo(H) such that H; =
Hl,l X Hg}l, ey and HnH = Hlv"H X H27nH. Clearly, Hl,i = Pl(Hz) and Hg}i =
Py(H;) for every 1 <1i < ny. We have:
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° HI,IU--~UH1,7LH = Pl(H1>U...UP1(HnH) = Pl(Hlu...UHnH) = Pl(H) S
U (H).

° H271 U...UHQ,TLH = PQ(Hl)U...UPQ(HnH) = PQ(H1U...UH7LH) = PQ(H) S
Us(H).

e Suppose that Hy; = Hy ; for some i # j and let x1 € Hy; = Hy ;, then Ho; U
Hyj C Py, (H) € Lo(H) which cannot happen unless Hy; = Ha j = Py, (H).
This is a contradiction since (H;; x Hg;) and (H; j x Hy ;) are disjoint. We
conclude that Hy1,..., Hyy, are disjoint. Similarly, Ha1,..., Ha,, are also
disjoint.

Now since Hy 1, ..., Hy p, are disjoint, we have ||Uy(H)|| = |Pi(H)| = |Hia|+-- -+

U (H . Uz (H
|Hiny| = nul|L1(H)||. Therefore, ng = HAEH%H Similarly, ng = ”ﬁzEH;H We

conclude that ng is the same for all H € H. Let us denote this common integer as
n. It is now easy to see that || =n - |[|[Ci(H)| - [|[L2(H)]] = [|[L1(H)]| - [|[U2(H)|| =
L (FO| - (| £2(H)]-

Now in order to prove the uniqueness of £1(H), L2(H), Ui(H) and Uz(H), sup-
pose that Hi, Ha, H}, Hb, and n’ > 0 satisfy the conditions of the theorem (i.e.
Hi, Ha, H), Hb and n’ play the roles of L1(H), L2(H), U1 (H), U2(H) and n respec-
tively). Let H € H, then there exist n’ disjoint sets H,,...,Hj,, € Hi and n/
disjoint sets Hy ..., Hé,n’ € Hs such that: ’

e Hi,U...UH| M.
o HyU...UHy,  €H.
o H=(Hj;xH);)U...U(Hy,, xHy,).

Since H = (H{ yx Hj1)U...U(H] ,,xHy ), we have Py (H) = Hj ,U...UH] , € H}.
But this is true for every H € H. Therefore, Uy(H) C H; which implies that
H = Ui (H) since H) and Uy (H) are partitions. Similarly, H) = Us(H).

Now let x5 € A3 be such that Pyj,,(H) # ¢. Clearly, z2 € Hy; for some 1 <i <
n' and so Py, (H) = Hj; € Hy since H = (H{; x Hj,)U...U(H],, x Hy ) and
since Hé,l, e ,Hin, are disjoint. Therefore, for every x5 € Xy satistying Py),,(H) #
@, we have Py,,(H) € Hi. We conclude that £1(H) C Hi which implies that

H1 = L1(H) since Hy and L£1(H) are partitions. Similarly, Ho = L2(#). Moreover,
r I ()1

[l s T ™
We conclude that the stable partitions £1(H), Lo(H), Ui (H), Uz (H) are unique.

O]

Proof of Theorem 2.5

For Theorem 2.5, we will first prove it for m = 2 using two lemmas. The general
result can then be proven by induction on m > 2.

Lemma 2.37. If x = x; ® %9 s a strongly ergodic operation on X = X1 X Xa, then
x1 and %o are strongly ergodic.
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Proof. Let H; be a stable partition of X7, then H = H; ® {X2} is a stable partition
of X1 x Xy. Fix x9 € Xy and let z; € AXj. Since * is strongly ergodic, then by
Definition 2.14 there exists n = n(x1,x2, H) > 0 such that for every H € H™*, there
exists an H-sequence X = (X;)o<i<n satisfying (z1,x2) * X = H. Let H; € H]™.
Clearly, Hy x Xy € H™ @ {Xo} = (H1 @ {Xo})™ = H™.

Since H; x Xy € H™, there exists an H-sequence X = (X;)o<i<n such that
(z1,22) % X = Hy x Xy. For every 0 <i <n, X; € (H1 ® {Xp})* = Hi" @ {Ap} and
so there exists X1, € H.*' such that X; = X;,; x X». By projecting the equation
(z1,22) * X = Hy x Xy on the first coordinate, we get x1 *; X1 = Hj, where X is
the Hi-sequence (X7 ;)o<i<n. By fixing zo € X, n will depend only on z; and H;
as required in the definition of strong ergodicity. This proves that x; is strongly
ergodic. A similar argument shows that o is also strongly ergodic. O

Lemma 2.38. If %1 and 9 are two strongly ergodic operations on Xy and Xy re-
spectively, then x = *x1 ® %9 1s a strongly ergodic operation on X = X1 X Xs.

Proof. Fix a stable partition H of X'. Since %1 and %9 are strongly ergodic, they are
ergodic and so Theorem 2.4 can be applied. Let £1(H), L2(H), Ui (H) and Us(H)
be defined as in Theorem 2.4, and let P, and P» be the projection onto the first and
second coordinate respectively as in Definition 2.25.

Let (z1,x9) € H € H. We will construct an H-augmenting sequence X satisfying
H C (x1,22)*X in two steps: We first construct an H-augmenting sequence Xy such
that Py(H) C Py((z1,22) * Xp), i-e., Xy stretches {(z1,22)} in the direction of the
first coordinate to cover P;(H). In the second step, we construct an H-augmenting
sequence Xy, such that H C ((wl,xg) * .’{U) « X, i.e., X stretches (z1,z2) * Xy in
the direction of the second coordinate to cover H.

Step 1: Let Hy = Pi(H) € Ui(H). Since *; is strongly ergodic, there exists a
Uy (H)-augmenting sequence X; such that xq %1 X1 = H;. Let X = (X{,i)0§i<k' =
(21)Pr(M) | For every 0 < i < k' = |X}|, we have X1 ; € Uh(H)™ = U (H™), and so
from Definition 2.25 there exists X € H* such that P(X!) = X1 ;- Define the H-
sequence X7, = (X])o<i<kr- The sequence X7, is H-repeatable since per(H) divides
|X1;| = k' = |X1]| - per(H). By Lemma 2.7, there exists [ > 0 such that Xy := (X],)!
is H-augmenting. We have:

a)
H, (C Hy # (xl)per('H)l—l _ (1,1 ¥ %1) %1 (%1)per(H)l—1

= a1 %1 (X2 = 2y 5y (X)) = w151 ((X] ) oicnr)’
= Pi((er2)) =1 (D) gerare) = Pr((@n,22) « (XDozicrr))
=P ((.’171,1132) * (.’ﬁj)l) = Pl((xl,a;g) * %U),

(2.16)

where (a) follows from the fact that X; is i) (H)-augmenting.

Step 2: Define Xy = (z1,22) * Xyy. Since Xy is H-augmenting, we must have
Xy C K, where K € Ky is such that (z1,22) € K (see Theorem 2.1). Now since
K4 is a sub-stable partition of H (by Theorem 2.1) and since (z1,2z2) € K N H, we
must have K C H. Therefore, Xy C H. On the other hand, from (2.16) we have
Hy C Pi(Xy). We conclude that for every a € Hy, we have a € P;(Xy) and so
there exists b, € Xy such that (a,b,) € Xy C H.
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According to Theorem 2.4, there exist n disjoint sets Hy 1,..., Hyn € £1(H) and
n disjoint sets HQJ, ceey Hgm S [,2(7'[) such that H = (H171 XHQJ_)U. . .U(HLnXHQ,n).
For every a € Hy = Hy1 U...U Hy,, there exists a unique 1 < ¢, < n such that
a € Hy;,. We have:

H = U (Hi; x Hyy) = U U ({a} x Ha;)

1<i<n 1<i<na€Hy ;
(2.17)
= U U Wa) xmy) = | (a} x Hay,).
].SZ’SH(ZGHLZ' IZGHl

Fix a € H;. Since (a,b,) € H = U ({a'} x Ha; ,), we must have b, € Ha;, €
a’'€eH

Lo(H). Now since *g is strongly ergodiec7 ‘Ehere exists an Lo(H )-augmenting sequence
X2,4 such that b, *g X2 4 = Ha;,. Let %/27@ = (Xé,a,i)0§i<kfl = (%g,a)per(m. For every
0 <i < kg, we have Xg ., € Lo(H)*2 = Lo(H™), and so from Definition 2.26 there
exist @ ,; € X1 and X ; € H™ such that X}, = PQ\I’l,a,i(Xt/z,i)' Define the #H-
sequence X, = (X ;)o<i<k,- The sequence X7, is H-repeatable since per(#) divides
|X5| = ki = |Xoal - per(H).

Define the mapping 74 : X1 — Xy as ma(2) = (w12 40)*121 41) - 12 4 4y 1)
for every z € X). Since 7, is a permutation, there exists p, > 0 such that 74*(z) = x
for every x € Xy. (X))P* is H-repeatable since X/, is H-repeatable. Now by Lemma
2.7 there exists I, > 0 such that X, := (X])Pele is H-augmenting. We have:

{a} x Haj, (é) {a} x (Ha,, *2 (.’{2@)Per(7{)pala71)
= {a} x ((ba #2 Xo,q) 2 (Xg,q)PFIPelal)
O f7pela (a)} 5 (by o (X,q)PrPIPela)
= {ﬂg“l“(a)} X (ba %9 ( /27a)pala)

c pala
© (a,bq) * <({$/1az} x Xé,a,i)ogKka)

(d)
C (a,ba) * ((X])osicr, )"

= (a,by) * (X])Pele = (a,b,) * X,.

(a) follows from the fact that Xo, is Lo(H)-augmenting, hence (X ,)Per(*)Pala—1
is Lo(H)-augmenting (by Remark 2.7), and so Ha;, C Hay, %o (Xg,4)Pe(FIPala=l,
(b) follows from the fact that 74*(z) = x for every x € X;, which implies that
wgal“(a) = a. (c) follows from the definition of 7, and from the fact that X}, , =
(X5 4.i)0<i<k,- (d) follows from the fact that Py, (X, ;) = X3, ;, which implies
that {7} ,,} x X3,, C X, for every 0 <i < kq. h

Now let X1, = (X4)aem, be the H-augmenting sequence obtained by concatenat-
ing the H-augmenting sequences X, for all a € H; (the order of the concatenation
is not important). Since {a} x Ha;, C (a,b,) * X, for every a € H;, we must have

{a} x Hy;, C (a,by) * X, for every a € Hj. (2.18)

Define X = (Xy,Xr). We have (x1,29) x X = ((xl,:v2) * %U) * X, = Xy xXp.
For every a € Hj, we have already shown that (a,b,) € Xy and so it follows from
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(2.18) that:
{a} x Ha;, C (a,by) * X C Xy X = (z1,22) * X.

Since this is true for every a € Hy, we have:

B ¢ i, (o,
acH,

where (a) follows from (2.17).

Now since X is H-augmenting, Theorem 2.1 implies that (x1,z2) *X C K, where
K € Ky is such that (z1,x2) € K. Therefore, |H| = |H| < |(z1,22) x X| < |K| =
ICx||. Now since Ky is a sub-stable partition of H, we conclude that Ky = H. But
this is true for every stable partition ‘H of X', hence * is strongly ergodic. O

Now we are ready to prove Theorem 2.5:

Proof of Theorem 2.5. Lemmas 2.37 and 2.38 show that Theorem 2.5 is true for
m = 2. Now let m > 2 and suppose that the theorem is true for m — 1.

Let *1,..., %, be m binary operations such that x| ®...® %, is strongly ergodic.
It is easy to see that 1 ® ... ® #*,, can be identified to (%1 ® ... ® #py,_1) @ %, (see
Notation 2.5). Therefore, (%1 @ ... ® *;,—1) & *,, is strongly ergodic. Lemma 2.37
implies that *; ® ... ® *,,_1 and %, are strongly ergodic. It then follows from the

induction hypothesis that *i,...,*,,_1 are strongly ergodic. Therefore, *1,..., %,
are strongly ergodic.
Conversely, let *1,..., %, be m strongly ergodic operations. From the induction

hypothesis, we get that 1 ®...®%,,_1 is strongly ergodic. Lemma 2.38 implies that

(%1 ® ... @ *m_1) @ %y, is strongly ergodic. But since (%} ® ... ® *;,—1) ® *p, can be

identified to *; ® ... ® #,,, we conclude that x; ® ... ® *,, is strongly ergodic.
Therefore, Theorem 2.5 is true for all m > 2. O



Polarizing Binary Operations

In this chapter!, we provide a necessary and sufficient condition for a binary oper-
ation to be polarizing (in the general multilevel sense). In Section 3.1, we formally
define the concept of polarizing binary operations. In Section 3.2, we prove that a
binary operation is polarizing if and only if it is uniformity-preserving and its right-
inverse is strongly ergodic. In Section 3.3, we explain how we can use a polarizing
operation to construct polar codes.

3.1 Formal Definition of Polarizing Binary Operations

Unless we state otherwise, every set that is considered in this chapter is finite.

3.1.1 Easy Channels

Notation 3.1. A channel W with input alphabet X and output alphabet ) is denoted
by W : X — Y. The transition probabilities of W are denoted by W (y|z), where
x € X andy € Y. Note that we use the long arrow (— ) in the notation W : X —
Y and not the short arrow (— ) that we only use to describe mappings. For example,
W : X — Y denotes a channel, and V : X — Y denotes a mapping from X to Y.

The probability of error of the maximum-likelihood (ML) decoder® of W for uni-
formly distributed input is denoted as P.(W'). The symmetric capacity of W, denoted
I(W), is the mutual information I(X;Y), where X and Y are jointly distributed as
Pxy(z,y) = ﬁW(ykz:) (i.e., X is uniform in X and it is used as input to the
channel W while Y is the output).

Definition 3.1. A channel W : X — Y is said to be §-easy if there exist an integer
L < |X| and a random code B of block length 1 and rate logy L (i.e., B€ S :={C C
X : |C| = L}), which satisfy the following:

o [I(W)—1logyL| <.

!The material of this chapter is based on [15, 18].
2The ML decoder is the decoder that minimizes the probability of error.

69
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1 1
e For every x € X, we have Z ZPB(C')]IQCGC = ——. In other words, if C € S

x|
ceS
is chosen according to the distribution of B and X is chosen uniformly in C,
then the marginal distribution of X as a random variable in X is uniform.

o If for each C € S we fix a bijection fc : {1,...,L} — C, then I(Wg) >
logy L — 6, where Wi : {1,...,L} — Y x S is the channel defined by:

Wis(y, Cla) = W(y|fc(a)).Ps(C).

Note that the value of I(Wpg) does not depend on the choice of the bijections
(fo)ces:

If we also have P.(Wg) < €, we say that W is (9, €)-easy.

If W is d-easy for a small §, then we can reliably transmit information near the
symmetric capacity of W using a code of blocklength 1 (hence the easiness; there
is no need to use codes of large blocklengths): We choose a random code according
to B, we reveal this code to the receiver, and then we transmit information using
this code. The rate of this code is equal to log, L which is close to the symmetric
capacity I(WW). On the other hand, the fact that I(Wp) > log, L — means that Wg
is almost perfect, which ensures that our simple coding scheme has a low probability
of error.

Note that we added (2) to our definition in order to induce a uniform distribution
on the input. This is important for the polarization process (see the definition of
W~ and W in Definition 3.2: The distribution of U; and Us are assumed to be
uniform in X).

3.1.2 Polarization Process

In this section, we consider an ordinary (single user) channel W and a binary oper-
ation * on its input alphabet.

Definition 3.2. Let X be an arbitrary set and x be a binary operation on X. Let
W X — Y be a channel. We define the two channels W~ : X — Y x Y and
WH: X —YxYxX as follows:

1
| D Wy lu * ug) W (yalus),

W™ (y1,y2lur) = ]
ug X

1
WH(y1,y2, ur|ug) = WW(?JHM * uz) W (y2|uz).

For every s = (s1,...,8n) € {—,+}", we define W* recursively as:

WS = (W), ),

Definition 3.3. Let (By)n>1 be i.i.d. uniform random variables in {—,+}. For
each channel W with input alphabet X, we define the channel-valued process (W, )n>0
recursively as follows:

Wy =W,
W, = WPh vn > 1.
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Definition 3.4. A binary operation * is said to be polarizing if we have the following
two properties:

e Conservation property: For every channel W with input alphabet X, we have
IW=)+ (W) =2I(W).

e Polarization property: For every channel W with input alphabet X and every
0 > 0, W, almost surely becomes J-easy, i.e.,

lim P[Wn is 5-6&5@/] =1.

n—oo

Notation 3.2. Throughout this chapter, we write (Uy, Us) ELN (X1, X2) , (Y1,Y2)
to denote the following:

o Uy and Us are two independent random variables uniformly distributed in X .
[ ] X1:U1>I<U2 andXQZUQ.

e The conditional distribution (Y1,Y2)|(X1, X2) is given by:

PYl,Y2|X1,X2 (Y1, y2lT1, m2) = W (y1|o1) W (y2]z2).

Le., Y1 and Yy are the outputs of two independent copies of the channel W
with inputs X1 and Xo respectively.

e (U,Uy) — (X1,X2) — (W1,Y3) is a Markov chain.

Note that since X1 = Uy x Uy and Xy = Us, the chain (X1, X2) — (U1, Us2) — (Y1,Y2)
1s also a Markov chain.

Remark 3.1. Let (Uy,Us) ELN (X1, X9) v, (Y1,Y32). From the definition of W~
and W, it is easy to see that we have I[(W~) = I(Uy;Y1,Ys) and I(WT) =
I(Us; Y1,Ys,Ur). Therefore,

IW™)+ I(WH) = I(Uy; Y1,Y2) + I(Us; Y1, Y2, Uy)

= I(U1,Us; Y1,Y5) 9 I(X1, X9;Y1,Y5),

where (a) follows from the fact that both (Uy, Uz) — (X1, X2)— (Y1, Y2) and (X1, X2)—
(Uy,Uz) — (Y1,Y2) are Markov chains. We have the following:

o If x is not uniformity-preserving, then (X1, X2) is not uniform in X2. If W
is a perfect channel, i.e., I(W) = logy |X|, we have

(a)
IW)+I(W) =I(X1, X2;Y1,Ys) < H(X1, Xo) < 2logy |X| = 2I(W),
(3.1)
where (a) follows from the fact that (X1, X2) is not uniform in X2. (3.1) means
that x does not satisfy the conservation property of Definition 3.4. Therefore,
every polarizing operation must be uniformity-preserving.
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o If % is uniformity-preserving, then (X1, X2) is uniform in X2, i.e., X1 and X»
are independent and uniform in X. Thus,

IW™)+I(WT) = I(X1, X2; Y1, Ya) = [(X1; Y1) + I (Xa; Ya) = 21(W).
Therefore, uniformity-preserving operations satisfy the conservation property.

We conclude that a binary operation * satisfies the conservation property if and only
if it is uniformity-preserving.

Definition 3.5. Let x be a polarizing operation on a set X. We say that >0 is a
x-achievable exponent if for every § > 0 and every channel W with input alphabet
X, Wy, almost surely becomes (9, 2*2ﬁﬂ’)—ea3y, i.e.,

lim P[W,, is (8,272 )-easy| = 1.

n—o0

We define the exponent of * as:
E, :=sup{B > 0: p is a*-achievable exponent}.

Note that E, depends only on * and it does not depend on any particular channel
W. The definition of a x-achievable exponent ensures that it is achievable for every
channel W with input alphabet X.

Example 3.1. If ¥ =Fy = {0,1} and * is the addition modulo 2, then E, = 3 (see
[19]).

3.2 A Characterization of Polarizing Binary Operations

3.2.1 Necessary Condition

In this subsection, we show that if * is polarizing, then * is uniformity-preserving
and /* (the right-inverse of *) is strongly ergodic. In order to prove this, we need
the following two lemmas:

Lemma 3.1. Let % be an ergodic operation on a set X. Let H be a stable partition
of X such that Ky # H, where Ky is the first residue of H with respect to x. Define
A=HUKy. We have:

1. For every Ay, As € A, we have:

o (A1 € Ky and As € Kyy) if and only if (A1 x Az € K™ and Ag € Kyy).
A1 € Ky and Ay € H) if and only if (A1 x Ay € Ky™ and A € H).
A1 € H and Ay € ]C'H) if and only if (Al x* Ay € H* and Ay € ]CH)

Ay € H and Az € H) if and only if (A1 x Ay € H* and Ay € H).

(
(
(
(

2. For every uy,us € X and every Ay, As € A, we have

(up € Ay x Az and ug € Ag) if and only if (u1/ uz € Ay and ug € Ay).
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Proof. 1) We have A = H U Ky. Therefore, for every A;, Ao € A, one of the
following four conditions holds true:

(i A1 € Ky and Ay € Ky

)

(ii) A€ IC'H and Ay € H.

(iii) A; € H and Ay € Ky.
)

(iv) Ay € H and Ay € H.

Now since Ky # H and Ky < H, we have ||[Ky|| < |[H]||. Therefore, for every
K € Ky and every H € H, we have |K| = ||[Ky|| < ||H|| = |H|. This implies
that K # H for every K € Ky and every H € H, hence Ky NH = ¢. Similarly,
Ky NH* = ¢. We conclude that for every Ay, As € A, the following four conditions
are mutually exclusive:

(a A1 x Ay € Ky™ and Ay € Ky.
(

b Al*AQElCH* and Ay € H.

)
)
(C) A1 x Ay € H" and Ay € ICH

)

(d) Ay %A € H* and Ay € H.
We have:

o If A} € Ky and Ag € Ky, then A; x Ay € Ky *. Therefore, (i) implies (a).

o If A} € Ky and Ag € H, then Ay x Ay € Ky* (see Theorem 2.1). Therefore,
(ii) implies (b).

o If Ay € H and Ay € Ky, let H € H be such that Ay C H. (Note that there
is no contradiction here between Ay C H € H, Ay € Ky and H N Ky = 0.)
We have Ay x Ay C Ay x H and |Ay * Ao| > |A1| = ||H|| = ||H*|| = | A1 = H|.
Therefore, A x Ay = A1 x H € H*. Hence (iii) implies (c).

o If Ay € H and Ay € H, then A x Ay € H*. Therefore, (iv) implies (d).

Now let A1, Ay € A and suppose that (a) holds true (i.e., A1xAs € Ky and Ay €
K3). Since A; € A then either Ay € Ky or A1 € H. But Ay € Ky, so either (i)
or (iii) holds true. On the other hand, we have shown that (iii) implies (¢), and (c)
contradicts (a), so (iii) cannot be true. Therefore, (i) must be true. We conclude
that (a) implies (i). Similarly, we can show that (b) implies (ii), (c¢) implies (iii),
and (d) implies (iv).

2) Fix Ay, Ay € A. We have:
o If Ay € Ky and Ay € Ky, then |A1 *A2| = ||IC’H*|| = HICHH = |A1|

e If A} € Ky and As € H, then from 1) we have A; x Ay € Ky*. Therefore,
[ A1 * Ag| = [y = [[Knl| = [Aal.

e If Ay € H and Ay € Ky then from 1) we have Ay x* Ay € H*. Therefore,
[ Ay * Ag| = [[H*|| = |[H]] = [A1].
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o If A; € H and A, € ‘H, then ‘Al*AQ‘ = HH*H = HHH = ‘Al‘

We conclude that in all cases, we have |A; x Aa| = |A1].
For every ui,us € X, we have:

o If uy/*us € Ay and ug € Ag, then up = (uy/*ug) x ug € Ay x As.

e Ifu; € Ay x Ay and us € As, we have Ay xug C A1 x As. On the other hand, we
have |A; * As| = |A1| = |A1 * ua| (where the last equality holds true because
* is uniformity-preserving). We conclude that A; * Ay = A; % ug. Therefore,
(Ay % Ag)/*us = Ay which implies that uy/*uy € Aj.

O]

Definition 3.6. A channel W : X — Y is said to be equivalent to another channel
W': X — Z if both channels are degraded from each other.

Lemma 3.2. Let % be a uniformity-preserving operation on a set X, and let W :
X — Y. If (W) =I1I(W) then W is equivalent to W.

Proof. Since I(W™*)+I(W ™) = 2I(W) and since I(W~) = (W), we have [(WT) =
I(W). Let (Uy, Us) 5 (X1, Xa) %5 (3, V) (See Notation 3.2). We have:

IW) =I(W") =I(Uy; Y1, Y2, Uy)

= I(UQ; Yz) -+ I(UQ; Y1, U1|Y2) = I(W) + I(UQ; Yy, U1|}/2)

This shows that I(Us; Yy, Up|Y2) = 0. This means that Y3 is a sufficient statistic
for the channel Uy — (Y1, Y2, U;) (which is equivalent to W*). We conclude that
W is equivalent to the channel Uy — Y5, which is equivalent to W. O

Proposition 3.1. Let x be a binary operation on a set X. If x is polarizing then x
is uniformity-preserving and /* is strongly ergodic.

Proof. If % is polarizing then * must be uniformity-preserving (see Remark 3.1).
We first prove that = is irreducible. Suppose to the contrary that * is not
irreducible. Proposition 2.1 shows that there exist two disjoint non-empty subsets
Ay and As of X such that A U Ay = X, A x X = Ay and Ay x X' = Ay. This
means that for every ui,us € X and every y € {1,2}, we have u; € A, if and only
if up xug € Ay.
For each € > 0 define the channel W, : X — {1,2, ¢} as follows:

1—¢ ifye{l,2}andz € A,
We(ylz) =<0 ifye{1,2}andz ¢ A,,
€ ify =e.

(W) =(1— E)hg(%), so there exists € > 0 such that I(W) is not the logarithm

of any integer. For such €, there exists § > 0 such that W, is not J-easy.
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Let (Uq, Ug) (Xl,XQ) (Yl, Y5) (See Notation 3.2). Consider the channel
Uy — (Y1,Y32) which is equivalent to W . We have:

Py, vy v, (Y1, y2lun) = |X] > We(yi|ua * ug) We (y2|uz)

U X
(a) 1
Wer (y1ur) Wer (y2|u2)
’Xge:x (3.2)
b)
= ) Wealyiun) Py, (y2|ug) P, (u2)
ug€X

= W (y1|u1) Py, (y2),

where (a) follows from the fact that if y; = e then We (y1|ug *us) = We (y1|ur) = €
and if y; € {1,2} then u; € A,, if and only if u; * up € Ay, which implies that
We(y1|ug * ug) = We(yr|ur). (b) follows from the fact that the channel Uy — Y5
is equivalent to W, and the fact that Us is uniform in X.

(3.2) implies that Y7 is a sufficient statistic for the channel U; — (Y1, Y2) (which
is equivalent to W, ). Moreover, since Py, y,u, (1, ¥2|u1) = We (y1]u1) Py, (y2), we
conclude that the channel W is equivalent to We. This implies that I(W.) =
I(W). Now Lemma 3.2 implies that W is equivalent to W,,. Therefore, for every
[ > 0 and every s € {—,+}, W5 is equlvalent to Wy which is not d-easy. This
contradicts the fact that * is polarizing. We conclude that * must be irreducible.

Suppose that * is not ergodic. Proposition 2.1 shows that there exists a partition
{Hop,...,Hp—1} of X such that H; * X = H; 11 modn for all 0 < i < n and |Hy| =

= |H,—1|. This means that for every u;,us € X and every y € {0,...,n — 1},
we have uy *x up € Hy if and only if u; € Hy_1 mod n -

For each 0 < ¢ < n and each 0 < € < 1, define the channel W;, : X —
{0,...,n—1,e} as follows:

1—€ ifye{0,....,n—1}and x € Hyyimod n,
Wie(ylx) =40 ifye{0,...,n—1} and ¢ Hy\; mod n,
€ ify =e.
I(Wie) = (1 —€)logyn so there exists € > 0 such that I(W; ) is not the logarithm

of any integer. For such €', there exists 0 > 0 such that W; . is not d-easy for any
0<17<n.

Let (Ul,Ug) (Xl,Xg) (Yl,Yg) Consider the channel U; — (Y7,Y5)
which is equivalent to W . We have:

Py, vy, (1, y2|ur) = ]X| > Wi (yilur * u2) Wi o (yalu2)

U EX
Y
= Wi—1 mod n,e (ylful) i€’ (yQ‘U‘Q)
e P (3.3)
b)
= Z Wi—1 mod n.e (y1|U1)PY2\U2 (y2|u2) Pu, (u2)
UgeEX

- i—1 mod n,e’ (yl |U1)Py2 (y2)7



76 Polarizing Binary Operations

where (a) follows from the fact that if y; = e then

vVi,e’ (yl‘ul * UQ) = Wi_1 mod n,e’(y1|u1) =¢

and if y € {0,...,n—1} then uy xup € Hy, 4 mod n if and only if u1 € Hy, 1i 1 mod n
(which implies that W; o (y1|u1 * u2) = Wi_i mod n,e (y1|u1)). (b) follows from the
fact that the channel Uy — Y3 is equivalent to W; .~ and the fact that Us is uniform
in X.

(3.3) implies that Y] is a sufficient statistic for the channel U; — (Y1, Y2) (which
is equivalent to W, _,). Moreover, since

Py, vy, (Y1, y2lu1) = Wit mod e (1 |u1) Py, (32),

we conclude that the channel Wi;, is equivalent to W;_1 mod n,e- This implies that
I(W; ) = I(Wict mod n,e’) = (1 =€) logyn = I(W; ). Now Lemma 3.2 implies that
Wil
equivalent to Wi_|s- mod n,er (Where [s|™ is the number of appearances of the — sign
in the sequence s) which is not J-easy. This contradicts the fact that * is polarizing.

We conclude that * must be ergodic.

is equivalent to W; . Therefore, for every I > 0 and every s € {—, +}, W7 is

Since * is ergodic, /* is ergodic as well. Suppose that /* is not strongly ergodic.
Theorem 2.2 implies the existence of a stable partition H of (X, /*) such that ICy #
H (where K3 here denotes the first residue of H with respect to the right-inverse
operation /*). For each i > 0 and each € > 0 define the channel W;, : X —
ICHi/* UM as follows:

l1—¢ ifreyandye Ky,
Wie(ylx) = Qe ifreyandy e HY,
0 ifxéy.

We emphasize that y here is a subset of X and it is not an element of it. We have
I(Wie) = (1= €)logy [Ky/"| + elogy [H'"| = (1 — €) logy | K| + €logy [H].

Now since Ky # H and Ky < H, we have |H| # |Ky|. Therefore, there exists € > 0
such that I(W; ) is not the logarithm of any integer. For such ¢ > 0, there exists
d > 0 such that I(W; ) is not é-easy for any i > 0.

W, o
Let (Uy,Us) EiN (X1, X2) —% (Y1,Y3). Consider the channel Uy — (Y7, Ys),
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which is equivalent to W _,. We have:

PY1,Y2\U1 (Y1, y2|u1)

|X! Z Wi e (y1|ur * ug) Wi o (y2|us)
U EX

1
- S e (11 i+ )]

X |:]lu2ey2 . ((1 — 6/)]].y2€KHi/* + 6/]].y267_[i/*>:|

| | Z Luyvuseys, uaeys * ((1 - 6/)1y1elcni/* + 6l]ly1e7-ti/*>
us€X

|X’ Z e /v, uace ((1 B El)ﬂylelcﬂi/* * el]lyleHi/*>
U EX

8 <(1 B el)nyQGICHi/* - 6/19267{”*)

N2 .
|X’ Z 1U1€y1/*y2 u2€yY2 <(1 B 6) ]lyleKHi/*:yZGKHZ/
usEX

N / /
+(1—e)e ]lyIEIC’H,i/*a Y2 €H® +e(l—e )]lyleHi/*7 Y2 €3,/

12
+e€ ]].ylef}_[i/*7 yQEHi/*)
(b)

N2
|X| Z Lureyi/ye, useys <(1 —€) ]lyl/*yzelCH(Hl)/*, yoen /"
us€X
/ / ! /
+ (1= €)e ]lyl/*y2€’c7-t(i+l)/*7 yoei/* TE (1—e )]1y1/*y2€?'l“+1)/*7 y2€K3/"

12
te ]lyl/*y2€7‘l(i+1)/*, yze?li/*>

/ /
\X] Z [ ui€yr/ Y2’ <(1 = €Ly, eppercy it HE ]lyl/*yzeﬂ("“)/*)]
U EX

X [1U2€y2 : <(1 - el)ﬂyzelCHi/* + 61]1?J2€"Hi/*>}

|X| Z Wz—l—le (yl/ y2|U1) i,e (y2|U,2)
ug€X

DS Wipn,o (v /*elur) Pry o, (yalus) P, (uz)
UEX
= Wit (y1/ y2|ur) Py, (y2),

(3.4)
where (a) follows from applying the second point of Lemma 3.1 on the ergodic
operation /* and the stable partition Hi (b) follows from applying the first point
of Lemma 3.1 on the ergodic operation /* and the stable partition #*/". (c) follows
from the fact that W; o is equivalent to the channel Uy — Y5 and from the fact
that Us is uniform in X.

(3.4) implies that Y7/*Y> is a sufficient statistic for the channel U; — (Y1,Y3)
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(which is equivalent to W, ). Moreover, since

Py, voju, (1, y2lu1) = Wiyt (y1/ y2|u1) Py, (y2),

we conclude that the channel W, is equivalent to W; . This implies that
IW. ) = I(Wis10) = (1 — €)logy |Ky| + €' logy |H| = I(W; ). Now Lemma

i€’
3.2 implies that Wit, is equivalent to W; . Therefore, for every [ > 0 and every
s € {—,+}, W#, is equivalent to Wiijs|-,e (Where [s|™ is the number of appear-

i,€
ances of the — sign in the sequence s) which is not d-easy. This again contradicts

the fact that * is polarizing. We conclude that /* must be strongly ergodic. O

3.2.2 Sufficient Condition

In this subsection, we prove a converse for Proposition 3.1. We will show that for
any uniformity-preserving operation x, the strong ergodicity of /* implies that * is
polarizing. We will prove this in three steps.

Step 1: Polarized Channels are Projection Channels onto Stable Partitions

Notation 3.3. For every sequence x = (x;)o<i<n of N elements of X, and for
every 0 < j < k < N, we define the subsequence xé? as the sequence (})o<i<k—j,
where x, = x5 for every 0 <i <k — j.

Notation 3.4. For every k > 0 and every sequence X = (x;)g<;<or of |X| = 2k
elements of X, we define g.(x) € X recursively on k as follows:

o Ifk=0 (i.e., x =(x0)), 9+«(X) = 0.

o Ifk>0, g.(x)= g*(x|0x‘/2_1) * g*(xiii/_;) = g*(xgkfl_l) * g*(xngll).
For example, we have:

R pp———

° g*(x%) = (xo*x1) * (x2 *x x3).

o g.(x) = ((zo * 1) * (g * 33)) * (4 * 25) * (w6 * x7)).

Definition 3.7. Let A be a subset of X. We define the probability distribution I 4
on X asls(x) = ﬁ if v € A and I4(x) = 0 otherwise.

Definition 3.8. Let Y be an arbitrary set, H be a balanced partition of X and
(X,Y) be a random pair in X x Y. For every v > 0, we define:

Vio(X,Y) = {y € ¥: 3H, € U, |Pxpy=y I, | <7},

and
Prq(X,Y) = Py (Vny(X,Y)).
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Note that if Py ,(X,Y) ~ 1 for a small v then Y is “almost equivalent” to
the projection of X onto H. This will be proved rigorously in step 2. The next
proposition will be used later to show that a relation Py (X,Y) =~ 1 is satisfied
between the input and output of a polarized channel, where # is a stable partition.
This is why we say that polarized channels are projection channels onto stable
partitions.

Proposition 3.2. Let x be a strongly ergodic operation on a set X. Define k =
221 4 scon(x) and let ) be an arbitrary set. For every ~y > 0, there exists €(y) > 0
depending only on X such that if (X;,Yi)o<icor is a sequence of 2% random pairs
satisfying: -

1. (Xi,Yi)o<i<or are independent and identically distributed in X x Y,
2. X; is uniform in X for all 0 <i < 2F,
k__ k__
3. H(g.(Xg DYy ™) < H(Xo|Yo) +e(7),
then there exists a stable partition H of (X,*) such that Py (Xo,Yo) > 1 — 1.

Proof. See Appendix 3.4.1. O

Step 2: Structure of Projection Channels

Lemma 3.3. Let X be an arbitrary set and let x be an ergodic operation on X. For
every § > 0, there exists v := ~(0) > 0 such that for any stable partition H of (X, *),
if (X,Y) is a pair of random variables in X x Y satisfying

1. X is uniform in X,

2. Pu~(X3Y)>1—7,

then ‘I(ProjH/(X); Y) —logy W < & for every stable partition H' of (X, ).

Proof. Let ‘H' be a stable partition of X'. Note that the entropy function is con-
tinuous and the space of probability distributions on H’ is compact. Therefore,
the entropy function is uniformly continuous, which means that for every 6 > 0
there exists 7;,(6) > 0 such that if p; and po are two probabéility distributions

on H' satisfying |[p1 — palloc < 74y/(6) then |H(p1) — H(p2)| < §. Let 6 > 0 and

define ~3/(0) = min{2log2(|67-t/|+1)7 ”7_1[,”7;{,((5)}. Now define v(6) = min{~yx/(9) :
H' is a stable partition} which depends only on (X,x*) and §. Clearly, ||[H'||v(d) <
¥4, (0) for every stable partition ' of X.

Let #H be a stable partition of & and suppose that Py ,s5)(X;Y) > 1 — ~(d),
where X is uniform in X'. Fix y € Yy 5)(X;Y). By the definition of Yy 5 (X;Y),
there exists H, € H such that |Pxy (z|y) — Iy, (z)| < v(6) for every z € X.

Let H' be a stable partition of X. Corollary 2.1 shows that H A H' is also a
stable partition of X. From the definition of H A H’, for every H' € H' we have
either HyNH' = ¢ or HyNH' € H AH'. Therefore, we have either |H, N H'| =0 or
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|HyNH'| = [|[HAH||. Let Hy, = {H' € H': H,NH' # ¢}, s0 |H,NH'| = [[HAH|
for all H" € H;,. Now since H, = U (HyNH'), we have ||H|| = |H,| = Z |HyN

H'eH’' H'eH!
o'l = ’H;| ||H AH||. Therefore,

[H] / ,
= |H, | < |H|. 3.9

We will now show that for every y € My +(s), we have HPpij, X)y=y —In, HOO
V34 (0), where I3, is the probability distribution on H' defined as Iy, (H') = |’H’ p if
H' € H, and Iy (H') = 0 otherwise. This will be useful to show that

1)
<—f 1y e
ER H/n or ally € Vi)

H(Projy (X)|Y = y) —logy 7= ——

Let y € Yy ) and H' € H'. We have PprOJH,(X)D/ (H'ly) = Z Pxy (zy).
reH’
But since |Pxy (z|y) — ﬁ| < 7(0) for every z € H,;, and since Px |y (z|y) < () if
' H'NH
z € X\ Hy, we conclude that ’PProjH/(X)|Y(H/’y) | U; |y" < |H'|v(8) = [H'||v(0) <
¥4y (0). We conclude:

o If H < 7-[’ we have |H' N Hy| = ||H A H'|| which means that ‘HI mﬁ”' =
|| (@)
“}ﬁgﬁ : ml/\,where( a) follows from (3.5). Thus\PProij)\Y(H/'y)_\T;I' =
Y (6).

o If H' € H'\ H,, Ilﬂlgﬁy‘ =0 and so PprojH,(X)‘y(H'\y) < Y4y (0).
Therefore, || Pproj,,, (x)y=y — I oo < Y3y (6) This means that |H(Proj, (X)[Y =

y) — H(Iy)
(3.5). Therefore,

< g But H(Iy,) = log, ]7—[’| logQ ”7_‘[‘1{7“[,“, where (a) follows from

1]l 5

Yy € Vry(s), |H(Projy (X)Y = y) —logy = [H A

(3.6)

On the other hand, for every y € yH (G PprOJH,( X)|y=y 18 a probability distri-
bution on H’ which implies that 0 < H(PI‘OJH/( )Y = y) < logy|H'|. Moreover,

we have 0 < log, IIJAQ’H < log, |H'| from (3.5). Therefore,

< log, |H/]. 3.7

VY € Vi ys)r |[HProjay (X)Y =y) —logy i —
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We conclude that:

. H
H(Progyy (X)IY) ~ logs 1
. H

< 3 [ Prog O = 9) ~ tors |- Pr(w
yey

(a) )

< Z §'Py(y)+ Z (logy [H']) - Py (y)
YEVH 4(5) YEVY (5
o )

N
=5 - Py Vo) + (o [H') Py (Vi 5)) < 5 + (loga [H])7(9)
5

< -+ (logy [H]) - Yoz, (1] + 1) <9,

N S DN

where (a) follows from (3.6) and (3.7). (b) follows from the second condition of the
lemma.

Now since Proj,,(X) is uniform in H', we have H(Proj,, (X)) = log, |H'|. We
conclude that if Py ,5)(X,Y) > 1—v(d) then for every stable partition H' of (X, %),
we have

[H] - I HAH

1]l
which implies that ’I(Projw(X); Y) — log, W < & since |H| - |[H| = |H/| -

[#]] = [T, O

‘I(Projy_[, (X);Y) — log, <4,

Step 3: Projection Channels are Easy

Definition 3.9. Let H be a balanced partition of X and let W : X — Y. We
define the channel W[H] : H — Y by:

WRIGIH) = o Y W) = g 3 Wole)
TEX: rxeH
Projy (z)=H

Remark 3.2. If X is a random variable uniformly distributed in X and Y is the
output of the channel W when X is the input, then it is easy to see that [(W[H]) =
I(Projp(X);Y).

Theorem 3.1. Let X be an arbitrary set and let x be a uniformity-preserving op-
eration on X such that /* is strongly ergodic. Let W : X — Y be an arbitrary
channel. Then for every § > 0, we have:

. 1
lim —
n—o0 2N

{s € {—,+}": IHs a stable partition of (X, /%),

‘I(WS[H/]) — log, W < 0 for all stable partitions H' of (X, /*)}‘ =1.
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Proof. Let (W), be as in Definition 3.3. Since x is uniformity-preserving, it satisfies
the conservation property of Definition 3.4 (see Remark 3.1). Therefore, we have:

E[1(Wae1) W] = SI(W,) + SI(W,H) = 1(W,).

This implies that the process (I(W,)), is a martingale, and so it converges almost
surely. Therefore, the process (I(W,1x) — I (Wn))n converges almost surely to zero,
where k = 22" + scon(/*). In particular, (I(Wy4x) — I(Wn))n converges in proba-
bility to zero, hence for every > 0 we have

lim P[|7(W,ix) = I(Wa)| > e(+(9))| =0,

n—o0

where €(.) is given by Proposition 3.2 and 7(.) is given by Lemma 3.3. We have:

B11(0Wi) — T0W)| 2 €(2(8))| = s Ml

where A, ) = {<s,s’> € {— " x =+ [IWE) — (W] = 6(7(5))}-
Define:
B = {s e {— 4} [TWSFDYy — 1(w)| > 6(7(5))},

where [k]~ € {—,+}* is the sequence consisting of k minus signs. Clearly, B, 1 X
{[k]7} € Apy and so |By | < [Ap k|- Now since

li L
n1—>n;o ontk

[Auel = im B[I(We) = I(W,)| > e(+(8))] = 0.

. 1 o1 &
we must have nh_>n010 W|Bn,k| = 0. Therefore, nh_>n010 27L|Bnk\ =2"x 0 =0 and so

R e
A3 g Pl =1
Now suppose that s € By ;, i.e., [I(WEED)Y — T(W#)| < e(v(8)). Let Uy,...,

Usk 1 be 2F independent random variables uniformly distributed in X'. For every
0 < j <k, define the sequence Uj, ..., U;or_y recursively as follows:

o Uy, =U, for every 0 <i < 2k,

e For every 0 < j < k and every 0 < i < 2F, define Ujy1,; as follows:

U= dUii ¥ Ujigrsr i 0 < dmod 2k < kil
T U if 2631 < j mod 2V < 2k~

Since # is uniformity-preserving, it is easy to see that for every 0 < i < k, the 2F
random variables Ujo, ..., U ox_; are independent and uniform in X. In particular,
if we define X; = Uy ; for 0 <i < 2% then Xo,..., Xor_; are 2% independent random
variables uniformly distributed in X'. Suppose that X, ..., Xox_; are sent through
2% independent copies of the channel W* and let Yp,..., Yo ; be the output of
each copy of the channel respectively. Clearly, (Xj,Y;)g<;<or are independent and
uniformly distributed in X x Y. Moreover, I(W?*) = I(X;;Y;) for every 0 < i < 2.
In particular, I(W?*) = I(Xo; Yp) = H(Xo) — H(Xo|Yo) = logy |X| — H(Xo|Yp). We
will show by backward induction on 0 < j < k that for every 0 < ¢ < 27 we have:
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o k=i _
o WE=i7) ig equivalent to the channel Ujgor—i — yq(gg 2hi-1

_ (¢+1)-2F-7 -1
* Ujgar—i =9y (qulzk—j )

The claim is trivial for 7 = k. Now let 0 < j < k and suppose that the claim is true
for j+ 1. Let 0 < ¢ < 27. From the induction hypothesis we have:

Y(2q+1)-2k*jflf1

o Wk=i=17) is equivalent to the channel Uji1,g26-5 — il

o (2q+1)-2F—3—1_1
® Yitlgok-i = 9/ (Xq.zk—j )

Y(q+1)-2k*jf1

o Wk=1=17) is equivalent to the channel Ujti,(2g41)2k—3-1 — (2q-+1).2k—i—1"

_ (g+1)-2k=7 -1
¢ Yjtl(2q+1)-2k—i-t = 9/~ (X(2qq+1)~2k*i*1)'

Now since
Uj+17q_2k—j = Uj7q,2k—j * Uj’(2q+1)_2k7j—l
and
Uj+1,(2q+1)-2k*j*1 = Uj,(2q+1)~2k*j*17

it follows that W F=117) = (W (slk==17)) = is equivalent to the channel Ujgok-i —

Y(q+1)-2k*j—1

i (see Remark 3.1). Moreover, we have

Ujgar-i = Ujrrgon-i/"Ujqrry2vs-1 = Ujragoe-a/Ujpa ag ) 281
B (2q+1)-2F =711\ (g+1)-2F=7 -1y (g+1)-2k=7 -1
=9/ (Xq-2qkfj )/ gr~ (X(2q+1)~2k*j*1) =9/ (Xq‘zkfj )

This terminates the induction argument and so the claim is true for all 0 < j < k.
In particular, for j =0 and ¢ = 0, we have Uy = Up o = g/~ (ng_l) and WF7) ig
equivalent to the channel Uy — Y()Qkfl. Thus,

W HD) = 1(U Y7 ") = H(Uo) ~ H(T]Yy ™) = logy |1X] = H(U|Y7" ).
Hence

LW D) — (W) = log, |X| — H(Uo|Yy ™) — logy |X] + H(Xo|Y0)
a _ k__
< H(XolYo) - H (g (X3 DY),
where (a) follows from the fact that Uy = g, (ng_l). We conclude that
|H (9/- (X2 DY) = H(Xo|Yo)| = [I(WEFD) - 1(W?)] < e(7(5)).

Proposition 3.2, applied to /*, implies the existence of a stable partition Hs of (X, /*)
such that Py, (5)(Xo, Yo) > 1 —(6). Now Lemma 3.3, applied to /*, implies that

for every stable partition H' of (X, /*), we have ‘I(WS [H']) — log, W
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. .
£z < 0. But this is true for every s € By ;.

Therefore, By, C Dn, where Dy, is defined as:

[1(Projie (Xo): Yo) — log, el et

D, = {3 € {—,+}": IH, a stable partition of (X, /"),

s Hsl|-||HsAH'

< 4 for all stable partitions H’ of (X, /*)}

. o1 .1
Now since nh_}rgo 27|ng| =1 and B, ; C Dy, we must have nh_)rglo 2—n|Dn| =1 O

Corollary 3.1. Let X be an arbitrary set and let x be a uniformity-preserving
operation on X such that /* is strongly ergodic, and let W : X — ) be an arbitrary
channel. Then for every 6 > 0, we have:

li !
A

{s € {—,+}": IHs a stable partition of (X, /),

[T(W*) — logy [Ho| < 8, | I(W[H,]) — logy M| < 5}‘ 1

Proof. We apply Theorem 3.1 and we consider the two particular cases where H' =
{{z}: 2 € X} and H' = H,. O

Remark 3.3. Corollary 3.1 can be interpreted as follows: In a polarized chan-
nel W#, we have I(W?) ~ I(W?[H,]) =~ log, |Hs| for some stable partition Hs of
(X,/*). Let Xg and Ys be the input and output of the channel W* respectively.
I(W*[H,]) =~ logy |Hs| means that Ys “almost” determines Projy (Xs). On the
other hand, I(W?*) ~ [(W*[Hs]) means that there is “almost” no other information
about Xs which can be determined from Ys. Therefore, W¥ is “almost” equivalent
to the channel Xy — Projy, (Xs).

Lemma 3.4. Let W : X — Y be an arbitrary channel. If there exists a balanced
partition H of X such that |I(W) —logy ||| < & and |I(W[H])—log, |H|| < 8, then
W is d-easy. Moreover, if we also have P.(W[H]) < €, then W is (0, €)-easy.

Proof. Let L = |H| and let Hy,...,Hy, be the L members of #. Let S = {C C
X |C| = L} and Sy = {{xl,...,mL} : ox € Hy,...,x21 € HL} c 8. For
each 1 <4 < L, let X; be a random variable uniformly distributed in H;. Define
B ={Xi,..., X}, which is a random set taking values in S;. Note that we can see
B as a random variable in S since Sy C S. For every z € &X', let H; be the unique
element of H such that © € H;. We have:

1 1 @ 1 11 11 1
l Ps(C)lyec = —PlzeBl = —PX,=z|=—- = .=
1 2 Po(Oecc = Ple € B) = 5Pl =2) = 5o (70 = G gl ~ T

(3.8)

where (a) follows from the fact that = € B if and only if X; = x. Now for each C €
Sy, define the bijection fe: {1,...,L} — C as follows: For each 1 <i < L, fo(i) is
the unique element in C'N H; (so Projy(fc(i)) = H;). Let U be a random variable
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chosen uniformly in {1,...,L} and independently from B, and let X = fz(U) (so
Projy(X) = Hy). From (3.8) we get that X is uniform in X'.

Let Y be the output of the channel W when X is the input. From Definition
3.1, we have I(Wp) = I(U;Y, B). On the other hand, I(W[H]) = I(Projy(X);Y) =

a b
I(Hy;Y). Therefore, I(Wp) = I(U;Y,B) > I(U;Y) @ I(Hy;Y) = I(W[H]) (>)

logy L — 6, where (a) follows from the fact that the mapping v — H,, is a bijection
from {1,...,L} to X and (b) follows from the fact that [I(W[H]) — log, [H|| < 6.
We conclude that W is d-easy since I(Wg) > logy L — § and [I(W) — logy L| < 0.

Now suppose that we also have P.(W[H]) < e. For every C € Sy, define the
mapping gc : {1,...,L} = H as gc(i) = Projy(fc(i)) for every 1 < ¢ < L. It
is easy to see that gco is a bijection for every C' € Sy. Furthermore, we have
Proj(X) = gs(U):

Consider the following decoder for the channel Wij:

e Compute an estimate H of Projy (X) using the ML decoder of the channel
e Compute U = ggl(I:I).
The probability of error of this decoder is:
P[U # U] = P[H # g5(U)] = PH # Projy,(X)] = P.(W[H]) <e.

Now since the ML decoder of Wy minimizes the probability of error, we conclude
that P.(Wg) < €. Therefore, W is a (9, €)-easy channel. O

Proposition 3.3. If x is a uniformity-preserving operation on a set X and /* is
strongly ergodic, then * is polarizing.

Proof. We have the following;:

e We know from Remark 3.1 that since * is uniformity-preserving, it satisfies
the conservation property of Definition 3.4.

e The polarization property of Definition 3.4 follows immediately from Corollary
3.1 and Lemma 3.4.

Therefore, * is polarizing. 0

Theorem 3.2. If x is a binary operation on a set X, then * is polarizing if and
only if * is uniformity-preserving and /* is strongly ergodic.

Proof. The theorem follows from Propositions 3.1 and 3.3. U

3.3 Polar Code Construction

Let * be a polarizing binary operation of exponent® F, > 0 on a finite set X. Fix a
channel W with input alphabet X and output alphabet )). Choose 0 < § < 1 and

3As we will see in Chapter 5, not every polarizing binary operation has a strictly positive
exponent. In this section, we assume that * is a polarizing binary operation that satisfies F. > 0.
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0 < B < p < E,, and let ng > 0 be such that for every n > ng, we have

_ 0
2log, |X|

/n n 1
212-2"" < 972" and o [Enl > 1=

where

E,={se{— +}":Wis (g,Q_QB/n)—easy}.

Such an integer exists because * is polarizing and 5’ < E, (see Definition 3.5).

For every s € E,, W* is (%, 2_2B/")—easy, hence there exist an integer L® < |X| and
a random code B* of block length 1 and rate logy L° (ie., B* € §° := {C C X :
|C| = L?}), which satisfy the following:

o |I(W?®)—1logy L?| < g.
e For every x € X', we have

1

L (3.9)

1
> 7: 8 (C)lsec =
cess

o If for each C' € §* we fix a bijection f& : {1,...,L°} — C, then I(W?*pgs) >

log, L® — % and P.(W?gs) < 2_25%, where Wogs : {1,...,L°} — Y° x S% is
the channel defined as:

Wepss(y, Cla) = W(y|fe(a)) - Pps(C).

Note that )* denotes the output alphabet of W#. In the rest of this sec-
tion, we assume that the bijections (f¢)ser,,cess are fixed and known to the
transmitter and the receiver.

A polar code is constructed as follows:

e If s ¢ E,, let U® be a frozen symbol in X, i.e., we suppose that the receiver
knows U?.

o If s € Ey, let C* be a frozen code of blocklength 1 and rate logy L® (i.e., the
code C* is chosen from &% and it is known to the receiver). Let U® be a random
variable that is uniformly distributed in {1,..., L} and let U® = f&.(U?).

e After computing U*® for every s € {—, +}", we apply n polarization steps on the
sequence (U?)geq— 1n to obtain another sequence of 2" symbols (Us)se(— 4},
which will be transmitted through 2" independent copies of the channel W
(see Section 3.3.1).

Since we have a freedom in the choice of the frozen symbols (U®).¢p, and the
frozen codes (C*)scp, , we can assume that these symbols and codes are randomly
generated as follows:

o If s ¢ E,, we assume that U® is chosen uniformly from X
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e If s € E,, we assume that C* is a random code taking values in & according to
the distribution of B*. Equation (3.9) implies that U® = f&.(U?) is uniformly
distributed in X.

Furthermore, we assume that the random variables (U*) ¢, , (U®)sek, and (C®)sep,
are independent.

3.3.1 Encoding

We associate the set S, := {—,+}" with the strict total order < that we define as
(S1,---,8n) < (8),...,s)) if and only if s; = —, s, = + for some i € {1,...,n} and
sp = s, for all i < h < n.

For every u = (u®)ses, € X", every 0 < n/ < n and every (s',5") € Spr X Sp_p,

define €% (u) € X recursively on 0 < n/ < n as follows:
o E(u)=uifn’ =0and s € S,.

o &y y(u) = E(fll’_)(u) * 85(,8//’+)(u) ifn’ >0,s €S,y_1and s" €S, .

S

o EF;:’JF)(U) = Sg;su’Jr)(u) ifn'>0,8 €S,y _1and s" €85, _,.
For every s € Sy, we write £;(u) as £°(u) and £ (u) as Es(u).

Let {Ws}ses, be a set of 2" independent copies of the channel W. W should
not be confused with W#*: Wj is a copy of the channel W whereas W? is a synthetic
channel obtained from W as before.

Let (U%)ses, = (f&:(U®))ses, be the sequence of 2" independent random vari-
ables that were defined above. For every 0 < n’ < n, s’ € S, and s” € S,,_,, define
Us' = &5 (U®)ses, ). We have:

e U;=Usifn’ =0and s e {— +}".

° U(S'; )= US(,SN’JF) * US(,SH’f) ifn >0, s ¢ {—,—l—}”,_l and s” € {—,—4—}”_",.

S, —

o U(S;:HF) = US(,SN’JF) ifn' >0,sc{— +}""Land s € {—, +}"".
For every s € Sy, let U; = U?. Since * is polarizing, it is uniformity-preserving.
This implies that (Us)ses, are independent and uniformly distributed in X'.

It is easy to see that the complexity of the encoding algorithm is O(N log N),
where N = 2" is the blocklength of the polar code.

For every s € S, we send U through the channel Ws. Let Y; be the output
of the channel W, and let Y = {Y;}scg,. We can prove by backward induction on
n’ that for every s” € S,_,/, the channel USS,” — ({YS}S has s/ as a prefix: {UST,}KSH)
is equivalent to the channel W for every 0 < n/ < n, s’ € S,y and " € Sp_p.
In particular, the channel U® — (Y, {UT}T<S) is equivalent to the channel W* for
every s € S,,. This implies that the channel U® — (Y, {U"}r<ss CS) is equivalent
to W#pgs for every s € E,.

Figure 3.1 is an illustration of a polar code construction for n = 2 (i.e., the
blocklength is N = 22 = 4).
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U —=®—=0— W |—-VY

U+ —® - WY,
U+ T- W =Y.
U+t . W =Y.,

Figure 3.1 — Two polarization steps.

3.3.2 Decoding

If s ¢ E,, there is nothing to decode because the receiver knows U®. Suppose now
that s € E,. If we know {U"},~, then we can estimate U* from (Y, {U’"}KS,CS)
using the maximum likelihood decoder of W<®gs. After that, we can obtain an
estimate of U® by applying fZ. on the estimate of Us.

This motivates us to consider the following successive cancellation decoder:

e Us=Usif s ¢ E,.
o Us = J&s(DA(Y, {U}r<s,C%)) if s € E,, where D* is the ML decoder of W*ps.

The symbols (U®)4cg, are successively decoded according to the total order < of
Sy. By using essentially the same method that Arikan used for binary-input channels
[2], the successive cancellation decoder can be implemented with a complexity of
O(NlogN).

3.3.3 Performance of Polar Codes
We have
{UF=U* VseS,} & {U°=U* VseE,}
& DV T hee, C°) = U, Vs € B}
& {fe(D (VAU <0, C%) = U, Vs € B, |
& {fo DV U} C) = £ (0%), Vs € Bu |
= {DS(Y, (U }yes, C%) = U*, Vs € En}

Therefore, the probability of error of the above successive cancellation decoder is
upper bounded by

ST P(D (YU }<s, CF) £ U°) = > P.(Wop:) < B2

SEEn SEETL

/n n
< gng=27" L 92"
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where (a) follows from the fact that Wgs is (3, 2*2ﬁ/n)—easy.

This upper bound was calculated on average over the random choice of the frozen
symbols (U?) ¢, and codes (C®)se,. Therefore, there exists at least one choice of
the frozen symbols and codes for which the upper bound of the probability of error
still holds.

We should note here that unlike the case of binary-input symmetric memoryless
channels where the frozen symbols can be chosen arbitrarily [2], the choice of the
frozen symbols (U®)¢p, and codes (C*)sep, in our construction of polar codes
cannot be arbitrary. The code designer should make sure that his choice of the
frozen symbols and codes does indeed yield the desirable probability of error.

The last thing to discuss is the rate of polar codes. The rate at which we are

1
communicating is R = o Z logy L°. On the other hand, we have |I(W*) —
SGEn
log, LS’ < g for all s € E},. We conclude that:

() 1 S 1 S 1 S
I(W)i2—n > I(W):Q—NZI(W)JrQ—nZI(W)
se{—,+}" s€bn seES

1 o 1
<50 2 (logy L+ 5) + 55| Eilog, |2

o 0 o 0

<R+ —|Ey|z 4+ ——=1 XI<R+-+—-=R+9,

where (a) follows from the conservation property of polarizing binary operations.
To this end we have shown the following proposition, which is the main result of

this section:

Proposition 3.4. If x is a polarizing operation of exponent E, > 0 on the set X,
then for every channel W with input alphabet X, every 8 < FE. and every § > 0,
there exists ng = no(W, 3,6,%) > 0 such that for every n > ng, there exists a polar
code of blocklength N = 2™ and of rate at least I(W') —§ such that the probability of

. . . _NB
error of the successive cancellation decoder is at most 2~N".

3.4 Appendix

3.4.1 Proof of Proposition 3.2

Let (Xi,Y;)g<i<2r be a sequence of 2 random pairs that satisfy conditions 1) and
2) of Proposition 3.2.

Notation 3.5. For every sequence X = (¥;);<;<or 0f 2% — 1 elements of X, define
the mapping mx : X = X as mx(xg) = g*((xo_,x)) for all xy € X, where (z¢,%) is
the sequence of 2F elements obtained by concatenating xo and x. Note that mx is a
bijection since x is uniformity-preserving. Define:

“In practice, the code designer can generate the frozen symbols (U®)¢p, and codes (C*)scE,
randomly, and then runs a numerical simulation to assess the performance of the coding scheme.
The code designer repeats this experiment until he finds a suitable choice for the frozen symbols
(U?)s¢E, and codes (C*)ser, . With high probability, the code designer is expected to find good
frozen symbols and codes after a few trials.
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e py(7) := Px,y,(xly) for every x € X and every y € V. Note that py(z) =
Px, 1y, (x|y) for every 0 < i < 2k since (X;,Y;) and (Xo,Yo) are identically
distributed.

o Pyox(T) = Dy, (77;1(;10)) for every x € X, every yo € YV and every sequence
X = (%) 1<icon € X2 -L

1

k_ 2k_ k_
o For every x = (i)1<jcor € X% 71, and every yj = (Yi)1<icor € Y271,

define
2k—1 .
py%k—l(x) = 21;[1 pyi(xi) = PX12’€—1|Y12’€—1(X|3/% _1)'
Fix v > 0 and let 4/ = min 7 !
210 17 (21X + 2)| x| -

Notation 3.6. Define:

C= {ygkfl € y2k :Vx € sz_l,VX’ € X2k_1,

k_q /2’“—1)

(py%kfl(x) > 7,2 and py%’t1 (X,) > = pro,x — Pyo,x’ oo < 7/}-

Lemma 3.5. There exists €(y) > 0 such that ifH(g*(ng_l)‘YOQk_l) < H(Xo|Yo)+
e(7), then

P . (C)>1—~2,
YO

1

Proof. For every x € X and every ygk_ € ka, we have:

2k 1
k_
Pg*(Xghl)\Y(fk’l(:r‘y8 = Z H Py; (i)
i=0

x()v---v'zék’,le‘)(:

k
gu(zy =z

2k_1
- Z Z H pyi($i) pyo(xo)
i=1

k .
xEX2 _1, ToEX:

X=(1‘i)1< ok g+ ((z0,x))=2

xex2k-1 roeX
wx (xo)=x
= Z p 2k71(X)py0 (77;1(33))
xex2k-1
= Z pyzk—l(x)pyo x(x)
xexzk-1 '
2k—1 ok
Therefore, for every y; € Y° we have:
2k —1
Pg*(ng_l)‘YOQk_l(m\yO ) = Z pyfk_l(x)pyojx(a:). (3.10)
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Due to the concavity of the entropy function, it follows from (3.10) that for every
sequence ygkfl € V2" we have:

H(g* X2k 1 ‘}/’02’9 1 _y%k 1) 2 Z py2k_l<X)H(py07x)

xex2k-1

YN b (OH(pg) = Hipy)  (31D)
xex2k-1

= H(Xo|Yo = vo),

where (a) follows from the fact that the distribution p,, x is a permuted version of
the distribution p,,, which implies that p,, x and p,, have the same entropy. Now

if ygkfl € C°, there exist x € X2°~1 and x' € A2"~! such that py2k,1(x) > 4281
1
D ok (X)) > 7’2k_1 and ||pyo,x —Pyox'||oo = 7. Therefore, due to the strict concavity
Y1
of the entropy function, it follows from (3.10) that there exists € (7) > 0 such that:

k k k
Hg (XS =08 2 (X pp 0H ) +¢0)
xex2k-1 (312)
= H(Xo[Yo = yo) + € (7).

Moreover, since the space of probability distributions on X" is compact, €'(7") > 0
can be chosen so that it depends only on 4/ and |X|. We have:

H(g.(X3 Oy )
>0 H{gXg O =08 )P )

ygk_lec
_ k k_ k
+ Z g* X2 1)’Y2 - yg 1)PY2’C 1(?/(2) 1)
ygk tece
@ ok 1
> > H(Xol[Yo = yo)Ppor 1 (y5 )
F-1ee ’
k
> (H(Xo[Yo = 50) + ¢ (1)) P (42
2k 1 0
vy €Ce
k_
(X HX0Yo = w0) P s (6] ) + € ()P (C)

k_ k
ya eyt -1

— H(XolYo) + ¢(7)) P21 (€,

where (a) follows from (3.11) and (3.12). Let €(7) = ¢/(v/)v2".
Clearly, if H(g*(ng_l)‘YOQk_l) < H(Xo|Y0) + €(7), then we must have

k
Py (€9) <7
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In the next few definitions and lemmas, (X;, Y;)o<; <o+ is a sequence of 2" random
pairs that satisfy conditions 1), 2) and 3) of Proposition 3.2 where €(7) is as in
Lemma 3.5. In particular, we have H (g.(X; X2t ‘YQk ) < H(X0|Yp) + €(7) and so
by Lemma 3.5 we have Pyoyc,l (C)>1—+ k, where

~' = min { T , ! } .
2%+ 17 (21¥1 4 2)| x|
Notation 3.7. Define the following:
e For each yo € Y, let Cy, = {y2 —1gy2-1, ygk_l € C}.
e Co:={wey: PYIQk,l(CyO) >1-— 7/2’“—1}‘
o Foreachyey, let Ay ={x e X: py(x) >~}
e Foreach D C X, letYp={yeY: A, = D}.
e A={DyC X: Py,(Vp,) =7}

We will show later that A is actually the stable partition H of (X,x*) that is
claimed in Proposition 3.2.

Lemma 3.6. We have:
° PYO(CO) >1-— ’}//.
e For every Dy € A there exists yo € Co such that Ay, = Dy.

Proof. We have

k
1 —’)/2 < PY2k 1 E PYO yo 2k 1 g PYO yO 2’c 1(C )
’ yo€Co yo€C§

(a)
< PYO(CO) + PYO(CS)(]‘ - ’7,2/%_1) =1- ’7,2k_1PY0(COC)7

where (a) follows from the fact that P, vk 1 (Cyo) <1 — ~2" =1 for every yo € C5. We

conclude that Py, (C§) < 7/, hence Py, (CO) >1—7.

Now let Dy € A. We have Py,(Yp,) > 7 by definition. But we have just shown
that PYO (C(]) > 1—’}/’, hence 1 > PYO (yDOUCQ) = Pyo (yDO)+Py0 (CO)_PYO (yDOHCQ) >
v +1—+"— Py,(Yp, NCo), thus Py, (Yp, NCy) > 0. This implies that Yp, NCy # 0.
Therefore, there exists yg € Cp such that A, = Dy. O]

Lemma 3.7. A is an X -cover.

Proof. For every yo € Y, let a,, = arg maxpyo( x). Clearly, Py,(ay,) > \Xl > .

Therefore, a,, € Ay, and so Ay, # ¢ for every yg € ). This means that )V, = o,
hence Py, (YV;) = 0 < +'. We conclude that ¢ ¢ A.
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Suppose that A is not an X-cover. This means that U Do # X. Therefore,

Doe A
there exists xg € X such that xy ¢ U Dy and so zg ¢ Dy for every Dy € A. We
Doe A
have:
1 (a)
=i Pxy(z0) = Y Proo)pwo(z0) = D> > Py (0)pyo (o)
Yo€Y DoCX yo€Vp,
= > Y Pru@opw@o) + >, Y. Pr(0)pye(o)
DoeAyo€YVp, DoCX yo€Vp,
D()¢.A
(b)
<> Puwo+ D D Pulw)= Y Pr(Vpo)Y + Y Pr(Vn,)
Doe A yoEyDO DoCX yoEyDO DpeA DoCX
Dog¢ A Do¢ A
(¢) (d) 1 1
< Pyo( U yDO>’y’+ Yoy <+ ¥y <@V 4 <
DoeA DoCX @ +2)lx] " |Xx|
Dog A

where (a) follows from the fact that {Vp, : Do C X'} is a partition of ). (b)
follows from the fact that if Dy € A and yo € Vp,, then Ay, = Dy € A and so
xo ¢ Ay, (since zg ¢ Dy for every Dy € A) which implies that p,,(zo) < 7. (c)
follows from the fact that {Vp, : Do C X'} is a partition of )V and from the fact
that Py, (Yp,) < 7' for every Dy ¢ A. (d) follows from the fact that there are at
most 2%l subsets of X. We conclude that if A is not an X-cover, then ﬁ < ﬁ
which is a contradiction. Therefore, A is an X'-cover. ]

The next three lemmas will be used to show that A is a stable partition.

Lemma 3.8. Let k = 22 + scon(x). For every x € X there exists a sequence
X = (Xi)o<i<k of length k such that X; € A™ for every 0 < i < k, and x+xX € (A)F*.

Proof. Since A is an X-cover, we can apply Theorem 2.3. Therefore, there exists
0 <n < 22" such that core(A™) = (A) and per({A)) divides n. Fix z € X and
X € (AF = (A)FE* = core(A™)*=™)* and let A € A be such that z € A.
Choose an arbitrary sequence X1 = (X;)o<i<n such that X; € A for 0 < i < n.

Clearly, A« X; € A™. Since A < (A), we have A™ < (A)™* @ (A) = core(A™),
where (a) follows from the fact that per((A)) divides n. We conclude that there
exists B € core(A™) such that A« X; C B.

Since k = 22" + scon(x) and 0 < n < 22 e have k —n > scon(x). Let
x' € x x Xy. Since k —n > scon(x), we can apply Theorem 2.2 to get a sequence
Xy = (X))o<ick_n such that X! € (A)* = core(A™)™ C A+)* for every 0 < i <
k—mn,and 2’ * X9 = X. Since 2’ € x* X1 C A* X1 C B, we have X = 2/ * Xy C
(z % X1) * X5 C B * Xy. But both X and B % X, are elements of (A)*~")* which
is a partition, so we must have B * X9 = X. Now define X = (X1,X2). We have
X =2'+Xo Cx*xX C Bx*Xy=X. Therefore, z x X = X € (A)F*. O
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Lemma 3.9. For every i > 0 and every X € A™ there exist 2 sets By, ..., Byi_, €
A such that

2i-1
X = {* :XGHB} = {g«(x0,...,T9i_1): @y € Boy...,T9i_1 € Boi_;}.

Proof. We will show the lemma by induction on ¢ > 0. The lemma is trivial for
1 =0: Take By = X € A, we get

X ={z: z€ By} = {g*(x) X € iiiEBj}.

Now let i > 0 and suppose that the lemma is true for i — 1. Let X € A™, and let
X', X" € AU=D* e such that X = X'+ X”. It follows from the induction hypothesis
that there exist 2071 sets BY,... , By, , € Aand 201 sets BY,... B, €A
such that

Qifl_l 2i 1_1

X':{g*(xl): x € H B;} and X":{g* X" e H B"}
j=0

We have:

2i-11 2011
X:X’*X”:{ (X)) %€ H B’} { N x"e ] B;’}
j=0

2i- 1—1 2i-1—1

:{g( Nxge(x"): X' € H 7 x" e H B;f}
=0

o e () (1)) oo < T}

Bj if0<j<271,
B; = { nr =

BY . 271 < <2

where

O]

Lemma 3.10. Let X = (X;)o<i<; be a sequence of length | > 0 such that X; € A™
for every 0 < i < 1. There exist 2\ — 1 sets D1,...,Dy_; € A such that for every
r € X, we have

vt~ {a(ex): xe [ D) = {mto): xe [ 01}

Proof. We will show the lemma by induction on [ > 0. If [ = 1, the lemma is trivial:
If we take D1 = X € A, then for every x € X we have

2t -1
zxX ={z*zo: 20 € Xo} = {g:((2,20)) 1 w0 € D1} = {g*((x,x)) DX € H Dz}.

i=1
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Now let I > 1 and suppose that the lemma is true for [ — 1. Let X = (X;)o<i<i
and define the sequence X’ = (X;)o<i<j—1. The induction hypothesis implies the

existence of 2/=1 — 1 sets D, .. D'zl 1_; € A such that for every z € X we have

rxX = {g*((:v,x')) :x' e Qlf[_lpg}.

=1

On the other hand, since X;_; € A¢=Y* Lemma 3.9 shows the existence of 211

sets Dy, ..., D}, | € Asuch that

ol=1_1

X1 = {g* " x" e H D”}
Define the 2! — 1 sets Dy, ..., Dy_; € A as follows:

D D! if 1 <i< 271
Lo\ Dr,, it <i<ol

For every = € X we have:

rxX=(x*xX)* X1
2l=1—1

2l-1-1
ot w e T1 ot {ors e T o1)
i=0

2l-1_1 2l—1

{g* *g*X//:XEHDZ,XGHD}
—ol-1
2l—1
{g* :XG HDl}

i=1

Lemma 3.11. We have the following:
1. A is a stable partition of (X, ).
2. If yo € Cy and Ayo € A then yg € y_A;y(XQ,K)).

Proof. 1) Let Dy € A. By Lemma 3.6, there exists yg € Cy such that Dy = A,,. Let

ay, = arg rr;axpyo (x). Clearly, py,(ay,) > ﬁ >~ and so ay, € Ay, = Do.
Te
Since A is an X-cover (Lemma 3.7), Theorem 2.3 implies the existence of an in-

teger n satisfying 0 < n < 22", core(A™) = (A) and per((A)) divides n. Moreover,
Lemma 3.8 shows the existence of a sequence X = (X;)o<;<i such that X; € A for
all 0 < i < k and ay, * X € (A)P = (A)F)* Tet

B = ay, x X € (A)F* = (A)k—x, (3.13)
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Lemma 3.10 shows the existence of 2 — 1 sets Dy, ... , Dor_; € A such that

B = {g*((ayo,x)) DX E QﬁlDi} {7Tx Qyy) : X € H D; } (3.14)
i=1

Define
=y ey’ i vi<i<2t 4, =D} =[] Yb.

Since Dy, ..., Dy_; € A, we have

2k—1
k_
Py H Py,(Yp,) =[] PWp) =+ "
i=1
On the other hand, since yy € Cy, we have Pygk_l(CyO) >1-— 7’2k_1 from the
1
definition of Cy. Therefore, Pylzk,l (Cyo N Cy,) > 0 which implies that Cy, N C, # o.

Hence, there exists a sequence (y1,...,ysx_1) € Cy, such that A, = D; for all
1<i< 2k
Now fix a sequence

x' = (2})1<;j<or such that zj € D; forall 1 <i < 2k, (3.15)

Let 2 € m'(B), then there exists #' € B such that 2’ = my(z). Now from
(3.14), since 2" € B, there exists a sequence X = (7)1 <;<or such that z; € D; for all
1 <i <2k and 2/ = mx(ay,). We have:

[ ) (yi>0§i<2k & C Since (yl, e ,y2k_1) c Cyo-

e For every 1 <i < 2*, we have Py, (zi) >+ and py, (2}) > ' since x;, x;, € D; =
2k—1
b -
Ay,. Therefore, pyfk,l(x) = H Py () > % ! and similarly py%k,l(x’ ) >
7/2k—1'
From the definition of C, we get ||py,x —Pyo x’ |loc < 7/ which implies that |py, x(z") —
Pyox’ (2")| < +'. Therefore,

’pyo (ayo) pyo ‘pyo( l(l‘/)) - pyo (7(;'1 (ZL',)) } = |py0,x($,) - pyo,x’ ($/)| < '7/-
We conclude that
Va € 71 (B), |pyo(ayy) — pyo ()] <7, (3.16)
1 1 1 1 1 1
and 50 pyo () > pyo(ay0) =7 2 31 =7 2 [ ~ ey 7 W T 2A] = AT

m > ~" which implies that z € A,; = Dy. But this is true for every z €

7 (B). We conclude that 7' (B) C Dp. On the other hand, since Dy € A < (A),

x/

there exists C' € (A) such that Dy C C. Therefore, 7' (B) C Dy C C and

1A = A&7 = |B] € xg (B)] < |Do| < |C] = (A,
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where (a) follows from the fact that 7y is a bijection. We conclude that ||(A)|| =
\n M (B)| = |Do| = |C|. But 7' (B) C Dy C C, so we must have

7 (B) =Dy =C € (A). (3.17)

X

Now since this is true for every Dy € A, we conclude that A C (A). But A is an
X-cover and (A) is a partition, so we must have A = (A). We conclude that A is a
stable partition.

2) Let yo € Cy, and suppose that Dy = A, € A. Define ay, = arg max py,(x).
rxeX

Let B € A and x’ € X2" 1 be defined as in equations (3.13) and (3.15) respectively.
Equation (3.17) shows that Dy = 77;,1(3). By replacing 7r;,1(B) by Dy in equation
(3.16), we conclude that for every z € Dy we have |py,(ay,) — py, ()| < 7', which
means that

Pyo(ayo) =7 < pyo (%) < Pyolay,) +7. (3.18)
On the other hand, for every z € X' \ Dy = X'\ A4y,, we have

0 < pyola) <. (3.19)

By adding up the inequalities (3.18) for all x € Dy with the inequalities (3.19) for

all z € X'\ Do, we get [Do| - pyy(ay,) — [Do| -7 <1 <[Do| - py,(ay,) +[X] 9", from
|X]

W’y’ < |X]+'. We conclude that for every x € Dy,

which we get [py, (ay) — 7| <
we have

1 1
Pyo () — |D0|' < |pyo (%) =Pyo (ayo ) [+|Pyo (ayy) — |Do|‘ <A H XY < (2|X|+1)’Y/ <,

and for every x € X \ Dy = X \ Ay,, we have py,(z) <+ <. Therefore, ||py, —
[pgllee < and so yo € Ya~(Xo, Yo)- O

Now we are ready to prove Proposition 3.2:

Proof of Proposition 3.2. According to Lemma 3.11, A is a stable partition. More-
over, for every yo € Cy satisfying A,, € A, we have yg € V4 ~(Xo,Yp). Therefore, if
we define

Vi={yey: A4, € A},

then V', NCo C Va(Xo, Y0).
We have V'{ = U Yp. Now since Py, (Vp) < ' for every D ¢ A, we have:

DCcXx
DEA
Py (V5) < Y Py (Vp) < 2%y,
DCcXx
DEA

But Py,(Co) > 1 — 7 by Lemma 3.6, so we have Py, (V) NCy) > 1 — (2141 +
1)y" > 1 — v, which implies that Py,(Va~(Xo,Yp)) > 1 — 7 since Yy NCy C
Ya(Xo,Yp). By letting H = A, which is a stable partition, we get Py (X0, YY) =
Pyo(yyﬁ(XU,ifo)) >1— . ]






MAC Polarization Theory

In this chapter!, we generalize the results of [8] and [9] to arbitrary multiple-access
channels. In Section 4.1, we define the multiple-access channels and their capacity
regions. In Section 4.2, we provide a formal definition of MAC-polarizing sequences
of binary operations. In Section 4.3, we prove that a sequence of binary operations is
MAC-polarizing if and only if every binary operation in the sequence is uniformity-
preserving and its right-inverse is strongly ergodic. In Section 4.4, we explain how we
can use a MAC-polarizing sequence of binary operations to construct MAC-polar
codes for arbitrary multiple access channels. In Section 4.5, we show that if we
use special binary operations (namely, the addition modulo the size of the input
alphabets), the MAC-polar code construction becomes simpler.

4.1 Multiple-Access Channels

Definition 4.1. A discrete m-user multiple-access channel (MAC) is an (m + 2)-
tuple W = (X1,..., X0, Y, pw), where X1, ..., Xy, are finite sets that are called the
input alphabets of W, Y is a finite set that is called the output alphabet of W, and
pw XL X o X Xy x Y — [0, 1] is a mapping that satisfies

V(@1 @2, ) € Xy X o X Xy D pw (@1, @2, Ty y) = L.
yey

Notation 4.1. We write W : X1 x --- x X, — Y to denote that W has m
users, X1, Xo, ..., Xy as input alphabets, and Y as output alphabet. We denote
pw (T1, 22, ..oy Tm, y) as W(y|x1, za,. .., xm) which is interpreted as the conditional
probability of receiving y at the output, given that (z1,z2,...,Ty) is the input.

Note that we use the long arrow (—) in the notation W : X x --- x A, — Y
and not the short arrow (—) which we only use to describe mappings. For example,
W X x Xy — ) denotes a 2-user MAC, whereas V : X1 x Xy — Y denotes a
mapping from X} x X5 to V.

'The material of this chapter is based on [17, 18, 20, 21].

99
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Definition 4.2. An m-user MAC-coding scheme C is a (2m + 2)-tuple
C= (Mla"'7Mm7N7f1a"-7fm7g)'

My, is the message set of the k' user, N is the blocklength, fi, : M), — Xév is the
encoder of the k' user, and g : YN — My x -+ x M, is the decoder.

The rate of transmission for the k' user is defined as Ry, = %NM’“'. The rate
vector of the MAC-coding scheme is the m-tuple (Ry,..., Ry) € R™. The quantity
Ry + -+ Ry, is called the sum-rate of the MAC-coding scheme.

The MAC-coding scheme C = (M1, ..., My, N, fi,..., fm,g) is implemented as
follows:

e For every 1 < k < m, a random message M} is uniformly chosen from M.
M, represents the message that the k' user wishes to transmit to the receiver.

e For every 1 < k < m, the k™" user computes (Xk1y- s XeN) = fro(My).

e For every 1 < k < m, the kP user transmits Xk 1,-.., Xk, to the receiver by
using the MAC N times. More precisely, at the i*" use of the MAC, the k"
user transmits the symbol Xy ;.

e The receiver observes N output symbols Y7,..., Yy.
e The receiver computes an estimate of the transmitted messages as

(Ml,...,Mm) :g(YI,...,YN).

The probability of error of the MAC-coding scheme C when it is used for the MAC
W is given by

P(C,W) =P[(M, ..., My) # (Mi,..., M,).

Definition 4.3. A rate vector R = (Ry,...,Ry,) is said to be achievable for the
MAC W : Xy X -+ X Xy — YV if for every §,¢ > 0, there exists a MAC-coding
scheme of rate vector at least? (Ry — 0, ..., Ry — ) and whose probability of error
is at most €. The capacity region of the MAC W is the set of all achievable rate
vectors.

Definition 4.4. Given a MAC W and a collection of independent random variables
X1,..., X, taking values in Xy, ..., X, respectively, we define the polymatroid re-

gion Jx, ... x,, (W) in R™ as:

-----

Ix1, Xm (W) = {R =(R1,...,Rn) € R™:
0< R(S) < Iy,..x,.s(W) forall Sc{l,... ,m}},
where R(S) := ZRk, X(S) := (Xk)kes, and
keS
Ix,  x,,.s(W):=1(X(S);YX(59).

*We consider that (Ry,...,Rm) < (RY,...,R,) if R; < R} for every 1 <i < m.
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The mutual information is computed for the probability distribution on Xy X --- X
X, X YV which is given by

PX17...7Xm,y(x1, ooy Ty, y) = PX1 (32‘1) e PXm (l’m)W(y’(L‘h N ,iL'm).

JIx1,... xm (W) is called the information-theoretic capacity region of the MAC W
for the input distributions X1, ..., Xy

Theorem 4.1. (Theorem 15.3.6 [3]) The capacity region of a MAC W is given
by the closure of the convex hull of the union of all information-theoretic capacity
regions of W for all the input distributions, i.e,

ConvexHull( U le,‘..,Xm(W)>'

X1 7~~~7Xm
are independent
random variables in
b2 S O m TESP.

Definition 4.5. Iy, _ x,,(W) = Ix, . x,{1,..m}(W) is called the sum capacity
of W for the input distributions X1,..., Xm. Ix, . x, (W) is equal to the maxi-
mum value of Ry + -+ + Ry, among all rate vectors (Ry,...,Ry,) that belong to
TIx1,..xm (W). The set of rate-vectors (Ry, ..., Ry) in JIx, .. x,, (W) which satisfy
Ri+ -+ Ry = Ix, . x,, (W) is called the dominant face of Jx, . x,,(W) .

Notation 4.2. For the sake of simplicity, if X1,..., X, are independent and uni-
form random variables in X1, ..., X, respectively, we write J (W), I¢(W) and I(W)
to denote Jx,... x,,(W), Ix, . x,..s(W) and Ix, . x,, (W), respectively.

J(W) s called the symmetric-capacity region of W, and I(W) is called the
symmetric sum-capacity of W.

4.2 MAC-Polarizing Sequences of Binary Operations

4.2.1 Easy MACs

Notation 4.3. Let W be an m-user MAC. The probability of error of the maximum-
likelihood (ML) decoder® of W for uniformly distributed input is denoted as Po(W).

Definition 4.6. An m-user MAC W : Xy x --- x X,, — Y is said to be d-easy
if there exist m integers L1 < |Xi|,..., Ly < |Xn|, and m independent random
codes By, ..., By taking values in the sets S = {C; C & : |Ci| = L1}, ...,
Sm =A{Cm C X, ¢ |Cn| = Ly} respectively, which satisfy the following:

o |I(W)—logy L| <6, where L =Ly X -+ X Lyy,.

1 1
e Foreveryl < i <m and every x; € X;, we have Z fPBi(Ci)]ll’ieci = m
C—LESZ‘ ¢ g
In other words, if C; € S; is chosen according to the distribution of B; and X;
is chosen uniformly in C;, then the marginal distribution of X; as a random
variable in X; is uniform.

3The ML decoder is the decoder that minimizes the probability of error.
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o If for each1 < i < m and each C; € S; we fix a bijection f; c, : {1, ..., L;} = Cj,
then I(Wp, ... B,,) > 1ogy L — 6, where

Way. B i Al L1} X o x {1,y L} — Y X Sp X -+ X Sy
is the MAC defined by:

Wa, . B (Y, C1y oo, Crplan, ... am)

m

= W(y’fl,C& (a1)7 B fm,Cm (am)) H PBZ(CZ)

i=1

Note that the value of I(ng,m,[gm) does not depend on the choice of the bijec-
tions (fi.c;)1<i<m, CieS;-

If we also have P.(Wpg, . B,,) < €, we say that W is (6, €)-easy.

If W is a d-easy MAC for a small §, then we can reliably transmit information
near the symmetric sum-capacity of W using a code of blocklength 1 (hence the
easiness; there is no need to use codes of large blocklengths): We choose a random
MAC-code according to Bi,...,B,,, we reveal this code to the receiver, and then
we transmit information using this code. The sum-rate of this code is equal to
logy Ly + - -+ + logy Ly, = logy L which is close to the sum-capacity I(WW). On the
other hand, the fact that I(Wg,,  5,.) > log, L — 6 means that Wp, g, is almost
perfect, which ensures that our simple MAC-coding scheme has a low probability of
€rTor.

4.2.2 Polarization Process for MACs

Definition 4.7. Let X1,..., X, be m arbitrary sets. Let x1,...,%, be m binary
operations on Xp,..., X, respectively, and let W : X; x --- x X, — Y be an
m-user MAC. We define the two MACs W~ : X} X -+ X Xy, — Y x Y and
WH Xy x XXy —>YVXYXX X x Xy, as follows:

W= (y1,y2lui1, .oy Um,1)

1
= = Z W (yr|uin %1 w12, -5 Um,1 *m um2) W (y2|ut2, - .. Um,2),
| X1 | X
u1,2€X]
Um,2éXm
and
W+(y1, yg,uu, ceey um71\u172, Ce ,umvg)
1
= mw(yl|ul,l KL UL2, - - - U1 S U 2) W (Y2lun 2, - Um,2).
For every s = (s1,...,sn) € {—,+}", we define W* recursively as:

W* = (W), )n,
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Definition 4.8. Let (By)n>1 be i.i.d. uniform random variables in {—,+}. For
each MAC W with input alphabets X1, ..., Xy, we define the MAC-valued process
(Wh)n>0 recursively as follows:

Wy =W,
W, = WP vn > 1.

Definition 4.9. A sequence of m binary operations (i, ...,%*my) on the sets X1, ...,
X 18 said to be MAC-polarizing if we have the following two properties:

e (Conservation property: For every MAC W with input alphabets X1, ..., Xy,
we have

I(W)+ I(WT) =21(W).

e Polarization property: For every MAC W with input alphabets Xy, ..., X, and
every 6 > 0, W, almost surely becomes d-easy, i.e.,

lim IF’[Wn is (5—6@33/] =1.

n—oo

Notice that in the conservation property we only ask for the symmetric sum-
capacity to be preserved and we do not ask for the whole symmetric-capacity region
to be preserved. The reason for this is because MAC polarization sometimes induces
a loss in the symmetric-capacity region (see [8] and [9]). There are, however, polar
coding techniques that achieve the whole symmetric-capacity region (e.g., [22] and
[23]) but those techniques are not based on MAC polarization; they are based on
monotone chain rules and single-user channel polarization. In the above definition,
we are only interested in the MAC polarization phenomenon itself. We note, how-
ever, that monotone chain rules can be used together with the general single-user
polarization theory that was developed in Chapter 3 in order to construct MAC
codes that achieve the whole symmetric-capacity region.

Remark 4.1. As in Remark 3.1, a sequence of binary operations satisfies the
conservation property if and only if every operation in the sequence is uniformity-
preserving.

Definition 4.10. Let (x1, ..., %y) be a MAC-polarizing sequence on the sets X1, . . .,
X We say that B > 0 is a (1, ..., %, )-achievable exponent if for every 6 > 0 and
every MAC' W with input alphabets X1, ..., X, Wy, almost surely becomes (0, 2*2g")—
easy, i.e.,

lim P[W, is (6,2*2ﬁn)—easy] =1

n—oo

We define the exponent of (k1,..., %) as:
Ei sy i=sup{B8 >0: Bisa(xi,...,%n)-achicvable exponent}.

Remark 4.2. For each 1 < i < m and each ordinary single-user channel W; :
X; — Y with input alphabet X;, consider the MAC W : X1 X -+ X X, — Y
defined as W (ylz1,...,xm) = Wiylz;). Let (W;n)n>0 be the single-user channel
valued process obtained from Wi as in Definition 3.3, and let (Wy,)n>0 be the MAC-
valued process obtained from W as in Definition 4.8. It is easy to see that iof Wy, is
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d-easy, then Wi, is 0-easy. This shows that if the sequence (x1,..., %) is MAC-
polarizing then x; is polarizing for each 1 < i < m. Moreover, if W, is (0, €)-easy,
then Wi, is (0,€)-easy. This implies that Ey, . . < Ei, for each 1 < i < m.
Therefore, Ey, ... x, <min{E, ..., E, }.

m

4.3 Polarization Theory for MACs

Definition 4.11. Let W : X} x --- x X, — Y be an m-user MAC. Let X =
X1 X+ xX,,. The single-user channel obtained from W is the channel W' : X — Y
defined by W’(y!(:nl, ) = W(ylzy, ..., am) for every (z1,...,3m) € X.

Notation 4.4. Let W : Xy x -+ x X, — Y be an m-user MAC. Let %1, ..., %, be
m ergodic operations on Xy, ..., X, respectively, and let x = %1 ® ... X *,,, which is
an ergodic operation on X = Xy X -+ X Xp,. Let H be a stable partition of (X, ).
W(H] denotes the single-user channel W'[H| : H — Y (see Definition 3.9), where
W' is the single-user channel obtained from W.

Lemma 4.1. Let W : X1 X -+ X X, — Y be an m-user MAC. Let *1,..., %y
be m ergodic operations on Xi,...,X,, respectively, and let x = %] ® ... & *,. If
there exists § > 0 and a stable partition H of (X,*) such that |I(W) —logy [H|| < &
and |I(W[H]) — logy [H|| < &, then W is a §-easy MAC. Moreover, if we also have
P.(W[H]) < €, then W is a (J,€)-easy MAC.

Proof. Let (H;)i1<i<m be the canonical factorization of H (see Definition 2.20). Let
L =|H|. For each 1 <1i < mlet L; = |H;| and define S; := {C; C &; : |C;| = L;}.
We have L = Ly x -+ X Ly, (see Proposition 2.12). Moreover, we have

[I(W) —logy L| = [I(W) — logy [H|| < 6. (4.1)

Now for each 1 <7 < m let H;1,...,H;, be the elements of H;, and for each
1 <j < L;let X;; be a uniform random variable in H; ;. We suppose that X ; is
independent from Xy j for all (', j') # (i, 7). Define B; = {Xj1,..., X, 1, } which is
a random subset of Xj. Clearly, |B;| = L; since each X ; is drawn from a different
element of H;. Therefore, B; takes values in S; and By, ..., B, are independent.

For each 1 < ¢ < m and each z; € X}, let j be the unique index 1 < j < L; such
that x; € H; j. Since we are sure that x; ¢ H; ;s for j' # j, then x; € B; if and only
if X@j = ;. We have:

1 1 1
— Py, (Ci)lyec, = —Plo; € B 2 —P[X,, = 2}
L; L; L;
CieS; (42)
1 1 1 1 1

S Li [Higl Ml Ml 1L

where (a) follows from the fact that x; € B; if and only if X, ; = ;.

Now for each 1 <i < m and each C; C S;, let fic, : {1,...,L;} = C; be a fixed
bijection. Let T1,...,T,, be m independent random variables that are uniform in
{1,..., L1}, ..., {1,..., Ly} respectively, and which are independent of By, ..., By,.
For each 1 <i <m, let X; = f; 5,(T;). Send X1, ..., X,, through the MAC W and
let Y be the output. The MAC T1,...,T,,, — (Y, Bi,...,By,) is equivalent to the
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MAC Wg, ... B, (see Definition 4.6). Our aim now is to show that I(Wg, _5,.) =
I(1,...,Tw;Y,B1,...,B,) > logy L — ¢, which will imply that W is J-easy (see
Definition 4.6).

We have

ITy,...., T Y, Bi,...,Bpn) = H(Ty, ..., Tpy) — H(Ty,...,T|Y, By, ..., Bn).

Now since H(Ti,...,Ty) = H(Th) + -+ H(Ty) = logg L1 + ... + logy Ly, =
logy L, it is sufficient to show that H(T|Y,B) < J, where T' = (T1,...,T,,) and
B=(Bi,....,Byn) €S x xSy

Now for each 1 < i < m and each x; € X;, we have:

Py (z) = Plfis (M) =] Y S Plfic(T) = 2] Ps,(Cy)

Ci€S8;: 2,€C;
(b) 1 1 © 1
- Z 7PBZ(CZ) - Z fPBi(Ci)]le'ECi = Ty’
C€8;: 1,60, L — e L; |Xl|
cxeCy C;eS;

where (a) follows from the fact that f;c,(7;) € C; and so if ; ¢ C; then there is
a probability of zero to have f;c,(T;) = x;. (b) follows from the fact that T; is
uniform in {1,...,L;} and f; ¢, is a bijection from {1,...,L;} to C; which imply
that f; ¢, (1) is uniform in C; and so P[f; ¢, (T;) = ;] = ﬁ = L% (c) follows from
Equation (4.2). Therefore, X := (Xi,...,X,,) is uniform in X" since X1,..., X,
are independent and uniform in X7, ..., A}, respectively. This means that

I(W[H]) = I(Projy(X);Y) = H(Projy (X)) — H(Projy (X)[Y)
= logy [H| — H(Projy (X)[Y).
Moreover, we have |I(W[H]) — log, |H|| < & by hypothesis. We conclude that
H(Proj,(X)|Y) < 4. (4.3)

For each 1 <i <m, let Sy, = {{xl,...,xLi} cxj € Hyj, V1< j < Li} be the
set of sections of H; (see Definition 2.21). By construction, B; takes values in Sy .
Now define

SHZ{Cl XX Cp o Ch ESHl,...,CmESHm}.

Foreach C = Cy x---xCy, € Sy, define fo: {1,..., L1} x---x{1,...,Ly,} - H

as
folty, ... tm) = Projy (fi,o,(t1), - - - frncp (tm)) s

Since C1,...,C,, are sections of Hy,...,Hy, respectively, C = C1 X -+ x Cp, i a
section of H (see Proposition 2.12). Therefore, for every H € H, there exists a
unique = (z1,...,2y,) € C such that H = Projy(z). This implies that there
exist unique t; € {1,..., L1}, ...ty € {1,..., Ly} such that fo(t1,...,tn) = H.
Therefore, fc is a bijection from {1,..., L1} x ---x{1,..., Ly} to H.

Now since f¢ is a bijection for every C' € Sy and since By X - - - X By, takes values
in Sy, we have

H(T|Y,B) = H(f8,x-.xB,,(T)|Y,B)
:H(PrOJH(fl B Tl) "7fm,Bm(Tm))‘Y78)
= H(Projy(X1,..., Xm)|Y,B) = H(Proj(X)|Y, B)
< H(Proj,(X)IV) < s
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as required, where (a) follows from (4.3). We conclude that W is d-easy.
Now suppose that we also have P.(W[H]) < e. Consider the following decoder
for the MAC Wi = Wpg, ... B..:

e Compute an estimate H of Proj; (X) using the ML decoder of the channel
e Compute 7' = fz;lx---xlsm(ﬁ)'
The probability of error of this decoder is:
P[T # T) = PIH # f5,x-x85,(T)] = P[H # Projy (fri,(T1), - - 5 (Tn))]
= P[H # Proj,(X1,...,Xm)] = P[H # Projy(X)] = P.(W[H]) < e.

Now since the ML decoder of Wy minimizes the probability of error, we conclude

that P.(Wg) < €. Therefore, W is a (9, €)-easy MAC. O
Theorem 4.2. Let x1,...,%,;, be m binary operations on Xi,..., X, respectively.
The sequence (x1, . .., %m) is MAC-polarizing if and only if x1, ..., %y are polarizing.

Proof. Suppose that (xi, ..., ;) is MAC-polarizing. By Remark 4.2, x;,..., %, are
polarizing.

Conversely, suppose that *i,...,%*,, are polarizing. Theorem 3.2 implies that
*1,...,%y are uniformity-preserving and /*!,...,/*m are strongly ergodic. Now
Theorem 2.5 implies that the binary operation /*! @ ...® /*m is strongly ergodic.
By noticing that /*1®-@*m = /*1 & @ /*m we conclude that /* is strongly ergodic,
where * = %1 ® ... ® *,,.

Now let W : X x --- x X,;, — YV be an m-user MAC. Let X = X} x --- x X},
and let W/ : X — Y be the single-user channel obtained from W (see Definition
4.11).

For each n > 0 and each s € {—,+}", let W’® be obtained from W' using the
operation # (see Definition 3.2), and let W* be obtained from W using the operations
%1, ..., %y (see Definition 4.7). Now since /* is strongly ergodic, then by Corollary
3.1, for every § > 0 we have:

lim —
oo 21

{3 € {—,+}": IHs a stable partition of (X, /%),
[ I(W"*) —logy [Hsl| < 6, [T(W'[H,]) —logy [Hsl| < 5}' =1.

It is easy to see that W'¢ is the single-user channel obtained from W#. Therefore,
I(Ws) = I(W') and I(W*[H]) = I(W'*[H]) (by definition). Therefore,

{s € {—,+}" : IH; a stable partition of (X, /"),

. 1
lim —
n—oo 2N

[T(W?®) —log, |Hs|| < 6,

HOV3]) — toga ] < 5} =1
Now Lemma 4.1, applied to /*1,..., /*™ implies that:

lim 2%‘{5 € {—,+}": W¥isé-ecasy}| =1.

n—oo
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Therefore, (*1,...,%,) satisfies the polarization property of Definition 4.9. On the

other hand, since *i,...,%*,, are uniformity-preserving, Remark 4.1 implies that
(1, . . ., %) satisfies the conservation property of Definition 4.9. We conclude that
(*1,...,%m) is MAC-polarizing. O

4.4 MAC-Polar Code Construction

Let X1,...,X, be m finite sets, and let *1,...,%, be m binary operations on
X1, ..., X, respectively. Assume that (xq,...,%,) is a MAC-polarizing sequence
of binary operations of exponent? E... .. +, > 0. Fix an m-user MAC W with

input alphabets Xj,..., &, and output alphabet ). Choose 0 < § < 1 and
0<p<p <E. ., and let ng > 0 be such that for every n > ng, we have

I’IL n 1 5
272727 < 27" and —|E,|>1-
and 5 [Enl 21og, (|A1] X -+ X [Xm])’
where
E,={se{—,+}":Wis (%,2*2[3 ")-easy}.

Such an integer exists because (x1,. .., %) is MAC-polarizing and ' < E,, ...
(see Definition 4.10). For every s € E,, W* is (%, 22" ")-easy, hence there exist m
integers L < |Xi|,..., L, < |X|, and m independent random codes Bj, ..., B,
taking values in the sets §§ = {C1 C &1 : |Ci| = L3}, ..., S5, = {Chn C Xy

|Cim| = L, } respectively, which satisfy the following:
o |[I(W?) —logy L°| < §, where L® = L§ x -+ x LS,.
e For every 1 <1 < m and every x; € &;, we have
1

1
> =Ps:(Cilyec, = 55 (4.4)
Ciess L il

o Ifforeach 1 <i < mandeach C; € S we fix a bijection ffcl AL, L LEY — G,
then I(W*ps . s ) > logy L* — § and P.(W*ps

. —2#'n
s ..Bs) <2 , where

W#gs

Toveey

Bs, AL, LT} x oo x {1, ., L3} — VP x ST x -+ x Sy
is the MAC defined as:

Wegs s (4,C1, ..., Crlar, ... am)

= Wl fi e, (ar)s- - Finc, (am)- [T Po: (Co).

=1

Note that )* denotes the output alphabet of W*. In the rest of this section,
we assume that the bijections (f{gci)lgz‘gm,seEn,CieSf are fixed and known to
the m users and the receiver.

4As we will see in Chapter 5, not every MAC-polarizing sequence of binary operations has
a strictly positive exponent. In this section, we assume that (x1,...,%m,) is a MAC-polarizing
sequence of binary operations which satisfies E.,

,,,,,
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A MAC-polar code is constructed as follows:

o If s¢ E, and 1 < i < m, let U’ be a frozen symbol in Xj, i.e., we suppose
that the receiver knows U;’.

o If sc F,and 1 <i <m, let C7 be a frozen code of blocklength 1 and rate
logy L? (i.e., the code C¥ is chosen from S and it is known to the receiver).
Let U? be a random variable that is uniformly distributed in {1,..., L{} and
let Uis = is,Cf(Uis)'

e After computing U} for every s € {—,+}", the ith user applies n polarization
steps on the sequence (U;)scq— 41» to obtain another sequence of 2" symbols
(Uis) se{—,+}n, which will be transmitted through 2" independent copies of the
MAC W (see Section 4.4.1).

Since we have a freedom in the choice of the frozen symbols (U;)1<i<m s¢p, and
the frozen codes (C?)i<i<m scE,, We can assume that these symbols and codes are
randomly generated as follows:

o If s¢ I, and 1 <i <m, we assume that U’ is chosen uniformly from X;.

e lf s € F, and 1 < 7 < m, we assume that C7 is a random code taking
values in S7 according to the distribution of Bf. Equation (4.4) implies that
U? = fcs(U7) is uniformly distributed in A&;.

Furthermore, we assume that the random variables (U)1<i<m, s¢E, » (UP)1<i<m.scE,

and (C?)i<i<m,sck, are independent.

4.4.1 Encoding

We associate the set S, := {—, +}" with the strict total order < that we define as
(81,---,8n) < (81,...,8,,) if and only if s; = —, s = + for some j € {1,...,n} and
sp = s, forall j < h <n.

Let 1 <14 < m. For every u; = (uf)ses, € X%, every 0 < n’ < n and every

(s',8") € Spr x Sy, define Sf;/, (u;) € X; recursively on 0 < n/ < n as follows:

° Sf’g(ui) =i if n' =0 and s € S),.

° Sfl(ls, 7)(ui) = 8(8/,/’_)(ui) *; Si(j,/’ﬂ (u;) if ' > 0,8 €8S,_1and " € S,_,.

1,8

o Ef"('s,ﬁr) (u;) = Si(;l,l’ﬂ (u;) if ' >0,s €Sy and " €S,
For every s € S, we write 51-3,@(7«%) as & (u;) and st(ui) as & s(ui).

Let {Ws}ses, be a set of 2 independent copies of the MAC W. W; should not
be confused with W?*: W is a copy of the MAC W whereas W* is a synthetic MAC
obtained from W as before.

Let (U?)ses, = ( ffcis(Uf ))ses, be the sequence of 2" independent random vari-

2

ables that were defined above. For every 0 < n’ < n, s’ € S,y and s’ € S,,_,, define
U, =&, ((Uf)ses, ). We have:

o Ui, =Uifn' =0and s e {—,+}"
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° Uisvl(ls,ﬁ) = Ui(;,,,’ﬂ % Ui(,i/’/7_) ifn' >0,s e {- —i—}”/*l and s” € {—,+}”7”/.

1
o U?

Sy = Uit 0 > 0,8 € {—, 4} and 8" € {—,+}" "

For every s € Sy, let U; s = Ufs. Since (k1, ..., %) is MAC-polarizing, *1,. .., *,, are
uniformity-preserving. This implies that (U; s)scs, are independent and uniformly
distributed in Xj.

It is easy to see that the complexity of the encoding algorithm is O(N log N),
where N = 2" is the blocklength of the MAC-polar code.

For every s € §,,, the ith user sends Ui s through the MAC W,. Let Y, be
the output of the MAC Wy, and let Y = {Yi}scs,. We can prove by back-
ward induction on n/ that for every s” € S,,_,/, the MAC (Uf:;/, .. .,Ufr:s,) —
({YS}S has s/ asapreﬁx,{U{S,}lggm’r@n) is equivalent to the MAC ws" for every
0<n <n,s €S, and s’ € S,_,y. In particular, the MAC (U},...,Us) —
(Y, {U;] }1§i§m,r<s) is equivalent to the MAC W?* for every s € S,. This implies
that the MAC

(Uf’ ceey Ursn) — (Y7 {Uir}lﬁiﬁm,?“<5’ {Cis}lﬁiﬁm)

is equivalent to W* Bs,...Bs, for every s € F,.
Figure 4.1 is an illustration of a MAC-polar code construction for n = 1 (i.e.,
the blocklength is N = 2! = 2).

Uy € X =()—=
1174 g
Uy € X — (2>

U1+€X1

w — Y,

U € X,

Figure 4.1 — One polarization step.

4.4.2 Decoding

If s ¢ E,, there is nothing to decode because the receiver knows (U7 )1<i<m. Suppose
now that s € E,. If we know {U/ }1<i<mr<s then we can estimate (Uf)lgigm from
(Y, {U] hi<i<m,r<s, {Cf}lgigm) using the maximum-likelihood decoder of the MAC
W%;,_g;ﬂ. After that, for every 1 < ¢ < m, we can obtain an estimate of U by
applying f’~s on the estimate of Uf.

This motivates us to consider the following successive cancellation decoder:

e If s ¢ E,, the receiver computes Uf = Uy for every 1 <i < m.

e If s € F,,, the receiver first computes

~

(U)1<icm = Ds(Y, {U! M<icmur<s, {C5 h1<i<m)),
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where D, is the ML decoder of W* Bs,...BS, - The receiver then computes (A]f =

fics(U;) for every 1 < i < m.

The symbols (U?)1<i<m,ses, are successively decoded according to the total or-
der < of S,,. By using essentially the same method that Arikan used for binary-input
channels [2], the successive cancellation decoder can be implemented with a com-
plexity of O(N log N).

4.4.3 Performance of MAC-Polar Codes
We have

{O1<icm = U higicm, Vs € Su} & {(U1<icm = (U 1<icm, Vs € En}
{( is,cg((}f))lggm = (£205 (U)o V5 € En}
{([}f)lggm = (U)1<i<m, Vs € En}

& {DuY (0 hicim res: {CThisizn)) = Ogicm, Vs € Bu

& DV (U heismrs {C hizm)) = (O hi<im, Vs € Bu .

Therefore, the probability of error of the above successive cancellation decoder is
upper bounded as

> P(DJ(YAU] h<icmar<s: {C h<icm)) # (U)1<i<m)
s€eFk,

(a) . I "
=3 P(Wg..s) < |Eaf27? " <2m27 " <272

SGEn

where (a) follows from the fact that Wegs  5s is (g, 2_2ﬁln)—easy.

This upper bound was calculated on average over the random choice of the
frozen symbols (U?)i<i<m, s¢p, and codes (Cf)i<i<m ser,. Therefore, there exists
at least one choice of the frozen symbols and codes for which the upper bound of
the probability of error still holds.

We should note here that unlike the case of binary-input symmetric memoryless
channels where the frozen symbols can be chosen arbitrarily [2], the choice of the
frozen symbols (U;)1<ij<m s¢p, and codes (CF)i<i<mserg, in our construction of
MAC-polar codes cannot be arbitrary. The code designer should make sure that his
choice of the frozen symbols and codes does indeed yield the desirable probability
of error®.

The last thing to discuss is the sum-rate of MAC-polar codes. The transmission

1
rate at which the i user is communicating is R; = on Z log, L;. Therefore, the
sely

5In practice, the code designer can generate the frozen symbols (Ui )1<i<m,sgm, and codes
(C7)1<i<m,scE, randomly, and then runs a numerical simulation to assess the performance of the
MAC-coding scheme. The code designer repeats this experiment until he finds a suitable choice for
the frozen symbols (U;)1<i<m,s¢r, and codes (C})i<i<m,scp,. With high probability, the code
designer is expected to find good frozen symbols and codes after a few trials.
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sum-rate is

m m
1 1
R=Y) Ri=__% > logLi=o ) logL°.
i=1 i=1 scBy, $€En
On the other hand, we have |I(W*) —log, L*| < % for all s € F,,. We conclude that:
(a) 1 1 1
(W) = o d>ooIwr) = > > Iwe) + T > I(we)
se{—,+}m s€En sEES
1 S 5 1 C
<5 2 (loga Lo+ 0) + oIl logy (1] x -+ x | Xo])
seky,
) )

log (| 1] > - - x | An])

1
<R+ —|E,°
o Bl Som i X ]

6 6
<R+_-+_-=R+96
<R+ 5 + 5 + 0,
where (a) follows from the conservation property of MAC-polarizing sequences of
binary operations.
To this end we have shown the following proposition, which is the main result of
this section:

Proposition 4.1. Let (%1,...,%y,) be a MAC-polarizing sequence of binary op-
erations on the sets X1,...,Xy. If By, > 0, then for every MAC W with
input alphabets X1, ..., Xy, every B < E, ., and every d > 0, there exists
ng = no(W, 5,6,%1,...,%n) > 0 such that for every n > ng, there exists a MAC-
polar code of blocklength N = 2™ and of sum-rate at least I(W) — § such that the

probability of error of the successive cancellation decoder is at most 9N,

4.5 A Special MAC-Polar Code Construction

If we have |X;| = pi'py?.. pn*, where py, ..., Pn, are prime numbers, we can
assume that X = Fj1F72 .. .F;Zi, where [F), denotes the Galois field of size p. This

means that we can replace the kP user by r1 + rg + -+ + 7y, virtual users such
that ry virtual users have I, as input alphabet, 7o virtual users have [F,, as input
alphabet, and so on.

Therefore, we can assume without loss of generality that A, = F,, for every
1 < k < m, where ¢ is a prime number. In this section, we consider the polarization
transformation of Definition 4.7, where for every 1 < k < m, the binary operation
that is used for the k" user is the addition modulo gj.

Let p1, po, ..., p; be the distinct primes that appear in the sequence q1, ..., gm,
and for each 1 < i <, let m; be the number of times p; appears in the sequence ¢,

.5 @m- We adopt two notations to indicate the users and their inputs:

e The first notation is the usual one: We have an index k taking value in
{1,...,m}, and the input of the k" user is denoted as X}, € Fq, -

e In the second notation, the m; users having their inputs in F,,, will be indexed
by (i,1), ..., (4,7) 4 ..., (i,m;), where 1 <i <l and 1 < j < m,;. The input
of the (i, 7)!" user is denoted as Xij € Fp,. The vector (Xi1,..., Xim,) € Fpi

is denoted as )_Q
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Definition 4.12. In order to simplify our notation, we will introduce the notion of
generalized matrices:

!
A generalized matriz A = (Ay,..., A;) € HIF';’?X” is a collection of I matri-
i=1
ces. FZ;Z'X” denotes the set of m; x r; matrices with coefficients in I, .

l
Ifri=01in A= (A1,...,4) € HF;’;”X”, we write A; = ¢. In case A; = ¢
i=1
for all i, we write A = ¢.

l
A generalized vector & = (Z1,...,%)) € HIFZ:" is a collection of | vectors.
i=1

Addition of generalized vectors is defined as component-wise addition.

The transposition of a generalized matriz is obtained by transposing each ma-
triz in it: AT = (AT, ... A]).

A generalized matrix acts on a generalized vector in a component-wise fashion:
If A e HIF'Z;Z'X” and T € HIFZ;”, then f = A% € HIFE is defined as
i=1 i=1 i=1
= (ATd,..., ATE).
We adopt the convention that ¢T Z; = 0.

A generalized matriz A is said to be full rank if and only if each matriz com-
ponent in it is full rank.

!
The rank of a generalized matriz A € HIFZ;”X” is defined as:
i=1

!
rank(A) = Z rank(A
i=1

The logarithmic rank of a generalized matrix is defined as:
Irank(A) = Z rank(A4;) - logs p;.
i=1

If A is a generalized matriz satisfying A; # ¢ and A; = ¢ for all j # i, we say
that A is an ordinary matriz and we identify A with A;.

Definition 4.13. Let W : Hle — Y be an m-user MAC, and let A € HIE‘"“X“

=1

be a full-rank generalized matrzx We define the rank(A)-user MAC

l
A ]F — Y

i=1
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as follows:
q 1 -
W A](yli) = TN Y Wyla).
i=1P; Fell_, F
AT 7=ii

The main result of this section is that as the number of polarization steps be-
comes large, almost all the synthetic MACs W* become MACs for which the output
is “almost determined” by the action of a generalized matrix A, on the input:

l
Theorem 4.3. Let W : HIFZ:Z — Y be an m-user MAC. For every 0 < § < 1, we

=1
have:
1 l
lim {5 € {— +)": 34, € [[Fp7", A, is full rank,

i=1

[I(W#) — Irank(Ay)| < 6, [I(W*[A,]) — Irank(A,)| < 5}' ~1.

l
Proof. Since G := HIFZ;" is an Abelian group, we can view W as a channel from

i=1
the Abelian group G to ). From Corollary 3.1, we have:

. 1
lim —
n—oo 2N

{s € {—,+}" : IH, a stable partition of (G, /),

|[I(W*) —logy | M| < 6,

O3] Togy ]| < 6} =1

On the other hand, from the proof of Proposition 2.4 we can see that every
stable partition of (G, /1) is the quotient of G' by a (normal®) subgroup of (G, +).
Therefore,

. 1
lim —
n—oo0 2N

{s € {—,+}": JH; a subgroup of (G, +),

|[T(W*) —log, |G/H,|| <6,

HOVIG/ ) logs |G/ ]| < 3| = 1.

Let s € {—,+}"™ be such that there exists a subgroup Hy of G which satisfies:
o [I(W?) —log, |G/H,|| < 6.

o [L(W*[G/H,)) — log, |G/H,]| < o.

From the properties of Abelian groups, there exist [ integers: 71 s < mq, ...

I

l
r.s < my such that G/H, is isomorphic to HIF;?S (Note that 7; ¢ can be zero).
i=1

5Note that every subgroup of an Abelian group is normal.
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l l
Therefore, there exists a surjective homomorphism f; : HF;“ — HIE‘;,’;‘S, such

i=1 i=1

!
that for every € HIF;:,”, fs(Z) can be determined from & mod H, := Projg, g, (7)
i=1
and vice versa.
l

For every 1 < i <[ and 1 < j < m;, define the vector ehl e H]F;’fl in such
i=1
a way that the (4,7)"" component is equal to 1, and all the other components are
equal to 0. Clearly, the order of €%/ in the group G is equal to p;. Define

l
7= G075 = (@) e [T
=1

If 37;‘7 +£ 0 for some ' # 4, then p; divides the order of 7. But ™ = fs(€%9),
so the order of ¢*/ divides the order of €*/, which is equal to p;. Therefore, if
7]';’] # 0 for some 4’ # i, then p; divides p;, which is a contradiction. We conclude
that 7,7 = 0 for every i/ # i.
l L m
Now for every ¥ € HIFZ;”’, we have ¥ = Zmeé'w. Therefore, fq(Z) =
i=1 i=1 j=1
Zin,jgj”. Since g,7 = 0 for all ¢ # i, then fy(Z) = ATZ where A; =
i=1 j=1
l

(Ars,..., A1) € HIFZ: " is the generalized matrix whose components are given
i=1

by Ais = [gj’;’l @1’2 g™ Ay s full rank since fs is surjective. Furthermore,

we have:

l

l
Irank(A;) = Zri,s -logy pi = log, (Hp:”) = log, |G/ H|.
=1 =1

!
Now recall that for every € HIFZ;”, ATZ = f (%) can be determined from # mod
i=1
H; and vice versa. We conclude that W*[G/H] is equivalent to W?*[A;]. Therefore,

. 1
lim —
n—oo 2N

l
{3 e{—,+}": 34, € Hinxri,s’ Ay is full rank,
i=1

\I(W*) — Irank(A,)| < 6, |T(W*[A,]) — Irank(A,)| < 5}‘ =1

O]
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4.5.1 MAC-Polar Code Construction
Choose 0 < § < 1, and let n be an integer such that

o
1 Y
2> "mjlog, p;
i=1

1
2—n|En| >1-—

where

l
E, = {s e{—,+}":3As € HIF;?X”’S,AS is full rank,
i=1
s g s g
|[I(W?) — Irank(As)| < 3’ |[I(W?[As]) — Irank(As)| < 30
Such an integer exists due to Theorem 4.3.

For every s € E,, fix a generalized matrix A; = (A s,..., A s) that satisfies the
conditions in F,,. Furthermore, for every 1 <14 </, fix a set of r; ; indices

Jz,s = {jl’ .- 'jn',s} C {17 cee 7mi}

such that the corresponding rows of A; ¢ are linearly independent.
Now for every s € {—,+}", 1 <i<land 1 <j <m;, define F(s,1,j) as follows:
Fs,i,5) = {0 if s € En and j € J;.q,
1 otherwise.
F(s,i,j) = 1 indicates that the user (i,7) will be frozen in the channel W*#, i.e., no
useful information will be sent.

A MAC-polar code is constructed as follows: The user (i,j) sends a symbol
U?; € Fp, through a MAC that is equivalent to W*. If F(s,i,j) = 0, U?; is an
information symbol, and if F'(s,i,j) = 1, U7, is a frozen symbol. Since we are free
to choose any value for the frozen symbols, we will analyze the performance of the
MAC-polar code averaged over all the possible choices of the frozen symbols, so we
will consider that U, is a random variable that is uniformly distributed in Fy, for
every s € {—,+}", 1 <i <land 1< j <m; However, the value of U, Wlll be
revealed to the receiver if F(s,i,j) = 1, and if F(s,i,7) = 0 the recelver has to

estimate U;; from the output of the MAC.
Let s € {—,+}". For every 1 < i <[, we denote (U?y,..., U7, ) as Us. Fur-
thermore, we denote (UF, ..., (715) as U*.

Encoding

We associate the set S, = {—, +}" with the same strict total order < that we defined
in Section 4.4.1. Let {Wi}sc(— 3 be a set of 2" independent copies of the channel
W. As in Section 4.4.1, W, should not be confused with W?*: W is a copy of the
MAC W, whereas W¥ is a synthetic MAC obtained from W as before.

Let 1 <i<land 1< j<m; Forevery 0 <n' <n,s €8, and s" € S,,_,,
define Ui; ¢ recursively on 0 < n' < n as follows:
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o Ui, =Uf ifn' =0and s € {—,+}".

° Ui/jly(sfy_) = Ul(jl;/ﬂ + Ui‘;:;’,_) ifn’ >0, ¢ {—,+}"/_1 and s” € {—, —i—}”_”/.
o Ul =US itn > 0,8 € {— 4} and 5" € {— +} .
For every s € Sy, let U; j s = Uinj,s‘ The user (7, j) sends U; j s through the MAC W,

for all s € {—, +}". Let Y; be the output of the MAC W, and let Y = {Y;} e yn-

Let 0 <n/ <n, s €8, and s” € S,,_,,. For every 1 < i < [, we denote
(U] oy, Uf:m o) as ﬁf;,, Furthermore, we denote (ﬁf/;,, e ﬁf;/,) as ﬁﬁ,ﬁ.

/:We can prove by backward induction on n’ that for every s” € S,,_,, the MAC

ﬁj — ({Y}s has o' as a prefix: {ﬁg,}r<s//) is equivalent to W*". In particular, the
MAC U* — (Y, {ﬁ’"}r<s) is equivalent to the MAC W* for every s € S,,.

Decoding

If s ¢ E,, there is nothing to decode because F'(s,i,7) = 1 for all (,j), i.e., the
receiver knows U7, for all (i, j).

Now suppose that s € E,. If we know {ﬁr}Ks then we can estimate U, as
follows:

o If F(S7i)j) = 1 then we know UZS"7

e We have F(s,i,5) = 0 for r; s values of j corresponding to r; ¢ linearly inde-
pendent rows of A; ;. Therefore, if we know Agsﬁf , we can recover U7, for all
the indices j satisfying F'(s,,7) = 0.

e Since ATUS — (v, {ﬁr}r<5) is equivalent to W*[A,], we can estimate ATU*
using the maximum likelihood decoder of the MAC W*[A].

e Let Dy(Y,{U"}r<s) be the estimate of U* obtained from (Y, {U"},,) by the
above procedure.

This motivates the following successive cancellation decoder:
e Us=Usifs ¢ E,.

o Us =Dy (Y, {U"}ros) if s € Ey,.

Performance of MAC-polar codes

As we will see in Chapter 5, the exponent of a sequence of quasigroup operations is
equal to % This means that the probability of error of the MAC-polar codes that

we constructed in this section decays faster” than 2=V ? for any [ < %

By changing our choice of the indices in J; 5, we can achieve all the portion of
the dominant face of the symmetric-capacity region that is achievable by MAC-polar
codes. This portion of the dominant face that is achievable by MAC-polar codes
might be strictly smaller than the dominant face. In such case, we say that we have
a loss in the symmetric-capacity region. We study this loss in Chapter 6.

"In order to ensure that the probability of error of the MAC-polar code decays faster than 27V ﬂ,
we should add the condition P.(W?[A,]) < 272" {0 the definition of E,, where 8 < 8’ < L
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There are two common approaches to assess the performance of a family of codes:

e The error exponent approach: We fix a rate R and study the decay of the
probability of error as the blocklength N increases. It is known that the decay
of the probability of error of random codes is exponential in N (see e.g., [24]).
Unlike random codes, the probability of error of polar codes does not decay
exponentially in the blocklength. Arikan and Telatar showed that the proba-
bility of error of polar codes for binary-input channels decays exponentially in
the square root of the blocklength. This behavior was also shown for the polar
codes of [4, 5, 6, 7], and the MAC-polar codes of [8, 9].

e The scaling exponent approach: We fix a probability of error and study the
growth of the blocklength N as the gap to capacity C'(W)—R decreases towards
zero. It was shown in [25, 26, 27, 28] that the blocklength of optimal codes

grows as O (m) The scaling exponent of polar codes in the case of
binary-input channels was studied in [29, 30, 31, 32].

In this chapter!, we study the error exponents of polarizing binary operations
and MAC-polarizing sequences of binary operations. In Section 5.1, we define the
Bhattacharyya parameter of a channel, which is a very useful tool for the study
of error exponents of polar codes. In Section 5.2, we show that the exponent of a
polarizing binary operation cannot exceed % We also provide a sufficient condition
for a polarizing operation to have a zero exponent. In Section 5.3, we prove that
the exponent of a quasigroup operation is exactly % In Section 5.4, we show that
the exponent of a MAC-polarizing sequence of binary operations is upper bounded
by the exponent of the product of all the binary operations that are present in
the sequence, which in turn is upper bounded by the exponent of every binary
operation in the sequence. Furthermore, we prove that the exponent of a sequence
of quasigroup operations is exactly %

'The material of this chapter is based on [17, 18, 20].

117
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5.1 The Bhattacharyya Parameter

Definition 5.1. Let W be a channel with input alphabet X and output alphabet ).
For every z,2' € X, we define the channel Wy o - {0,1} — Y as follows:

W (y|x) if b =0,

Wea (y]0) = {W(y:ﬂ’) ifb=1.

The Battacharyya parameter between x and 2’ of the channel W is the Bhat-
tacharyya parameter of the channel Wy, ,:

Z(Waw) = >/ Waw WOWaw (y]1) = 3 VW ()W ().

yey yey

It is easy to see that 0 < Z(Wy ) < 1 for every xz,a’ € X. Moreover, if v = x’ we
have Z(Wy ) = Z(Wy ) = 1.
If |X| > 2, the Battacharyya parameter of the channel W is defined as:

1
W)= — Z(Wy.a).
W= = 2 P
x#x’

We can easily see that 0 < Z(W) < 1.

Proposition 5.1. The Bhattacharyya parameter of a channel W : X — Y has the
following properties:

1. Z(W)*<1— 1;;:4())('.
|X]
2. I(W) > log, T (X = DZ0W)

1
3. ZZ(W)Q < P.(W) < (|X| = 1)Z(W), where P.(W) is the probability of error

of the maximum likelihood decoder of W for uniformly distributed input.

Proof. Inequalities 1) and 2) are proved in Proposition 3.3 of [33], and the upper
bound of 3) is shown in Proposition 3.2 of [33]. It remains to show the lower bound
of 3).

Let D%L : Y — X be the ML decoder of the channel W : X — ). l.e., for
every y € Y, DN (y) = argmax W (y|z). For every 2 € X, let P. (W) be the

TEX
probability of error of D%/IVL given that x was sent through W. Clearly, P.(W) =
1
— P.. .
7 2 FrelV)
TeEX

Now fix z,2/ € X such that  # 2’ and define P., (W) = $P.,(W) +
Lp, . (W). Consider the channel W, . : {0,1} — Y. We can use DM to construct
27 e, ; 1%

a decoder for W, ,/ as follows:

o If DML (y) = z, the decoder output is 0.
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o If DM(y) = 2/, the decoder output is 1.
o If DML(y) ¢ {x,2'} for y € Y, we consider that an error has occurred.

It is easy to see that the probability of error of the constructed decoder (assuming
uniform binary input to the channel W, ,/) is equal to %Peyx(W) + %Pe,x/(W) =
P, 7 o/(W). But since the ML decoder of W, ,» has the minimal probability of error
among all decoders, we conclude that:

Prgw (W) > Pu( Zmln{Wm (y]0), Wa o (y[1) }
yey (51)
mem {W ylx), y|x)}
yey
On the other hand, we have:
=Y VW (yle)W (yl2')
yeY
= Z\/ mm{W ylx), W(ylz') }) (max{W(y\x),W(y’f)})
yey
(Zmln{W ylz), W(y|z") ) (Zmax{W ylx), W y|x)}>1/2
yey yey
(b)
< V2P W) (WGl + Wirla)) ' = 2P (W).2
yey
=2 Pe,x,x’(W)7

where (a) follows from the Cauchy-Schwartz inequality. (b) follows from (5.1) and
from the fact that max {W (y|z), W (y|2')} < W (y|z) + W (y|2’). We conclude that:

Pezw (W) > —Z(W, :c’)z- (5.2)

)

=

Now since P, (W) | X| Z P, (W), we have:

TeX
ZXPe,x,m/(W) = %( ZXPM(W)) + %( ZXPM/(W)>
g e g
= (01 =P ) + 5 (S (]~ 1P ()
rzeX r'eX

- %(m —1)|X|P.(W) + %(!X\ — D|X[F(W)
= (|X] = D|X[Pe(W).
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Therefore,
qu———i——fsz (Wﬁ?——i——fgzlﬂw )?
R (e DI E B (< VI B N I
oz’ r#x’
1 1 2 1
> (o Z(Wpw)) ==Z(W)?,
4<(|X|—1)|X]”Z€:X ) 4
r#x’

where (a) follows from (5.2) and (b) follows from the convexity of the mapping
t— 12 O

Remark 5.1. Proposition 5.1 shows that Z(W') measures the ability of the receiver
to reliably decode the output and correctly estimate the input:

o If Z(W) is low, the inequality P.(W) < (|X| —1)Z(W) implies that P.(W) is
also low and the receiver can determine the input from the output with high
probability. This is also expressed by inequality 2) of Proposition 5.1: If Z(W)
is close to 0, I(W) is close to logy | X|.

o If Z(W) is close to 1, inequality 1) of Proposition 5.1 implies that I(W) is
close to 0, which means that the input and the output are “almost” independent
and so it is not possible to recover the input reliably. This is also expressed by

1
the inequality P.(W) > ZZ(W)Q: If Z(W) is high, P.(W) cannot be too low.

Since Wy, 5 is the binary input channel obtained by sending either x or x' through W,
Z(Wya) can be interpreted as a measure of the ability of the receiver to distinguish
between x and «': If Z(Wy ) = 0, the receiwver can reliably distinguish between x
and &' and if Z(Wy ) = 1, the receiver cannot distinguish between x and z’.

5.2 Exponent of a Polarizing Operation

In this section, we study the exponent of polarizing operations.

Notation 5.1. Let z, 2’ € X and let s € {—,+}". Throughout this section, W7 ,
denotes (W#)y 2. The channel W7 , should not be confused with (W ,)° which is
not defined unless a binary operation on {0, 1} is specified.

1
Lemma 5.1. For every ui,uy,v € X, we have Z(W,_ ) > WZ(Wm*v ) -
sy ’

u
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Proof.

W)= S0 W welu) W=y, ol

Y1,Y2€Y

1
= Z Z Ww(yﬂul*UQ)W(yﬂUQ)W(yl\U/l*U/Q)W(yﬂulz)

y1,y2€Y \| uz,ubeX

> 2 VW)W el W« )W (aelo)

y1,y2€Y
= ST Wlslo) W 5 )W (gl xv)
|X] !
y1,y2€Y
1 1
- m Z \/W(yl‘ul * U)W(y1|u/1 * U) = WZ(Wuwv,ui*v)'
€Y
O
Lemma 5.2. For every ug,u) € X, we have
1
Z(Wiz,ug) - m Z Z(Wu1*u2,u1*u’2)Z(Wug,u’z)'
ul€X
Proof.
Z(WL,UQ) = Z Z \/W+(y1,y2,u1]u2)W+(y1,yQ,ul\u’Q)

Y1,y2€Y u1€X

- Z Z \/‘XlPW(yﬂUl s ug )W (y2|u2) W (y1 |ug * ub) W (yo|ub)

Y1,¥2€Y u1€X

— |21(| Z Z \/W(y1|u1 * ug )W (y1|uy * u’Z)\/W(yQ]uQ)W(yQ‘u/Q)

u1 €X y1,y2€Y

1
= m Z Z(Wul*uz,ul*ug)Z(Wuz,u’z)'
ul€X

O]

Notation 5.2. If W is a channel with input alphabet X. We denote max Z(Wj ,)
a'eXx
$z£7$x’
and min Z(Wy ) by Zmax(W) and Zpyin(W) respectively. Note that we can also
x'eX ’
mxg;ac’
express Zmin(W) as min Z(W, ,) since Zmin(W) < 1 and Zy (W) =1 for every
z,x'eX ’ ’

reX.

Proposition 5.2. Let x be a polarizing operation on X, where |X| > 2. If for every
ug, uhy € X there exists uy € X such that uy * ug = uy * uhy, then E, = 0.

]. /n 2 n
Proof. Let 3> 0 and 0 < ' < 3. Clearly, 1 (2_2ﬁ ) > 272" for n large enough.
We have:
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e For every ug,u), € X satisfying ug # uf, let uy € X be such that uy * ug =
. . 1
uy *ub. Lemma 5.2 implies that Z(WJQM,Q) > mZ(Wm*uz’m*ué)Z(Wu%%) =

1
WZ(WM’%) since Z(Wy,sup uysuy,) = 1. Therefore,

1
I{/‘-‘r _ VVJ'_ w. _
Zmax( ) N x{?%%f Z( z,x’) 2 ‘X‘ ;rr,rzl’ae)gc' Z( x,m/) N
xAT zAz!

e By fixing v € X, Lemma 5.1 implies that

_ _ 1
Zmax(W™) = mr,fpl%}f\f Z(Wx,z/) 2 mffil%}; Z(Wsw,a'sv)
x#T z#x’
“ Z(Wir) = 1 Za(V)
= — Inax / —
|X| o e T, ‘X| max )
x#x’

where (a) follows from the fact that * is uniformity-preserving, which implies
that

{(x*xv, 2" xv): 2,2’ € X, v #2"} ={(x,2)): z,2/ € X, x #2'}.

By induction on n > 0, we conclude that for every s € {—,+}" we have:

1 1
S > —
Zmax(W ) - |X|anax(W) 27’L10g2 |X| Zmax(W)-
If Z(W) > 0 we have Zpax(W) > 0, and
1 Zmax(W)
ZW?) 2 oo Zmax(W?) = - :
x| &[] = 1) |X1(1X] = 1) - (2n) 82 ]

which means that the decay of Z(W?®) in terms of the blocklength 2" can be at

best polynomial. Therefore, for n large enough we have Z(W*) > 927" for every
se{—,+}"

Now let § = %logy |X| — +logy(|X| — 1) > 0 and let W be any channel sat-
isfying logy |X| — 0 < I(W) < logy |X| (we can easily construct such a channel).
Since I(W) < log, |X|, Proposition 5.1 implies that we have Z(W) > 0. Let
W, be the process introduced in Definition 3.3. Since x is polarizing, we have
P[W,, is d-easy] > 2 (ie, z-/{s € {—,+}" : W? is d-easy}| > 2) for n large
enough. On the other hand, since x satisfies the conservation property, we have

1
E[I(W,)] = on Z I(W?) = I(W) > log, |X| — 0. Therefore, we must have
se{_7+}n

P[I(W,,) > logy |X| — 20] > £ and so for n large enough, we have
1
P[I(Wy) > logy |X| — 26 and W, is 6-easy| > T

Now suppose s € {—, +}" is such that W* is §-easy and I(W?*) > log, |X| — 20, and
let L and B be as in Definition 3.1. We have I(W?*) —log,(|]X| —1) > 35§ —26 =6
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and so the only possible value for L is |X|. But since the only subset of X of
size |X| is X', we have B = X with probability 1. Therefore, W} is equivalent

to W* which means that Z(Wg3) = Z(W?*) > 22" Now Proposition 5.1 im-
’ 2
plies that P.(W35) > 1 (2*2[3 n) > 272" and so W* is not (8,27%")-easy. Thus,
P[Wn is (9, 2*2ﬁ")—easy] < % for n large enough.
We conclude that no exponent 8 > 0 is x-achievable. Therefore, E, = 0. O

Remark 5.2. Consider the following uniformity-preserving operation:

(«[of[1][2]3]
0] 3]3]3]3
o0/ 1]0]0
210 1]1
sl 2]2]2]2

It is easy to see that /* is strongly ergodic and so x is polarizing. Moreover, x*
satisfies the property of Proposition 5.2, hence it has a zero exponent. This shows
that the exponent of a polarizing operation can be as low as 0.

The following lemma will be used to show that E, < % for every polarizing
operation .

Lemma 5.3. Let x be a uniformity-preserving operation on X and let W be a
channel with input alphabet X. For every n > 0 and every s € {—,+}", we have

_ ‘S‘+
Zmin(W) ) o1 +D2
Zmin(WS) Z ()

|X]

signs (resp. + signs) in the sequence s.

, where |s|~ (resp. |s|T) is the number of —

Proof. We will prove the lemma by induction on n > 0. If n = 1, then either s = —

or s =+4. If s=—,let v € X. We have:
Zmin(W?) = Zpin(W™) = min Z(W )
ui,uf €X u1,Uy
(a) 1 ®) ( Zin (W) (5]~ +1)21sI (5.3)
> . 72 W *fvu’*v Z L ,
2 iAW) 2 (P50

where (a) follows from Lemma 5.1 and (b) follows from the fact that (|s|~+1)2/s/" =
2 since |s|” =1 and |s|" = 0 when s = —.
If s = +, we have:

Zmin(Ws) = Zmin(WJr) - uzrglirel)( Z(W?;Zﬂé)
2
@ 1
2 ] 2 Ao Wia)

Z Zmin(W) ) (54)

®) . (Is|=+1)2l!"
2 > <me(W)>
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where (a) follows from Lemma 5.2 and (b) follows from the fact that (|s|~+1)2/<" =
2 since |s|” = 0 and |s|" = 1 when s = +. Therefore, the lemma is true for n = 1.
Now let n > 1 and suppose that it is true for n — 1. Let s = (¢',s,,) € {—,+}",
where s’ € {—,+}""! and s, € {—,+}. From the induction hypothesis, we have

/- 1s’|F
, Zmin(W) (Is"]=+1)2
iy 2 (Y
| X

If s,, = —, we can apply (5.3) on W to get:
/- [s'|t
1 <Zmin(W) ) (Is"|~+1)2

1 /
Zmin(WS) Z 7Zmin(WS ) 2 T
|X] || |X]

- s! + 1 — s! +
y Zonin(W) 1+(]s' [~ +1)2!¢] N Zonin(W) (Is'|=+2)2!¢
RN RN

B (Zmin(w) ) (|s|7+1)2|5|+
| X] '

If s, = +, we can apply (5.4) on W to get:
= st
, Zoi (W (s~ +1)2l<'l
Zmin(Ws) Z Zmin<Ws )2 Z (()>
X
Zrwin (W) 2(|s'|~+1)2!% I Znin(W) (|s'|~+1)2!s 1T +1
- (") - (%)

<Zn1in(W) > (|s|_+1)2\3\+
B ] '

We conclude that the lemma is true for every n > 0. O
Proposition 5.3. If x is a polarizing operation on X, where |X| > 2, then E, < %

Proof. Let 8 > %, and let 3 < B’ < 3. Let € > 0 be such that (1 — €)logy |X| >
logy | X| — 6, where § = £|X| — 2(JX| —1). Let e ¢ X and consider the channel
W:X — X U{e} defined as follows:

1—e¢ ify=ux,
Wi(ylz) = (e ify = e,
0 otherwise.

We have I(W) = (1 —¢€)log, |X| > log, |X| —d and Z (W, /) = € for every z,2" € X
such that = # 2/, and thus Z,;, (W) = e. We have the following:

e Since ' > %, the law of large numbers implies that
1
g [{s € {= 4" [sl" < Bn}

converges to 1 as n goes to infinity. Therefore, for n large enough, we have

1 7
2—n|Bn] > 9 where

B, = {s e{— +}": st < B’n}.
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1 1
o Since Y I(W*)=2"I(W) > 2"(logy |X| — 6), we must have g|Cnl > 5

se{—,+}"
where

Cp={se{— +}": I(W?®) > log, |X| —25}.
. . .. 1 7
e Since * is polarizing, we have Q—n\Dnl > 3 for n large enough, where

Dp={se{—,+}": W*is b-easy}.

1 1
We conclude that for n large enough, we have 27’An| > where

A, =B,NnC,ND,
={se{—+}": |s|" < B'n, W*is b-casy and [(W?) > log, | X| — 26}.

Now let s € A,,. Let L and B be as in Definition 3.1. We have I(W?)—log,(|X|—1) >
30 — 20 = 0 and so the only possible value for L is |X|, and since the only subset of
X of size |X| is X, we have B = X with probability 1. Therefore, W} is equivalent
to W#. Thus,

+ /
S s (@) Zmin w (|S|7+1)2|5| (b) € (n+1)26n
2088) =207 2 24 S (S ()

where (a) follows from Lemma 5.3 and (b) follows from the fact that |s|~ < n and
|s|T < B'nfor s € A, and from the fact that Zyin (W) = € which was proved earlier.

1

2(n+1)28'n
Now Proposition 5.1 implies that P.(WWg) > 1 <|;(’> . On the other hand,

€ 2(n+1)2°" 8
) > 272" for n large enough. Therefore,

[
W* is not (8,27°")-easy if s € A,, and n is large enough. Let W, be the process
introduced in Definition 3.3. For n large enough, we have

1
since 3’ < 3, we have 1 <

. _9Bn 1 1 3
W, is - <1l-—|A 1—-=-.
P[W, is (6,277 )-easy| < 2n\ nl < 171
We conclude that no exponent 5 > % is x-achievable. Therefore, F, < % O

5.3 Exponent of a Quasigroup Operation

Definition 5.2. Let (Q,*) be a quasigroup with |Q| > 2, and Y be an arbitrary set.
Let W : Q — Y be an arbitrary channel, and H be a stable partition of (Q,/*).
We define the channels W[H]™ : H/" — Y x Y and W[H]T : H — Y x Y x H/"

as:

WIH] (y1,y2, Hi|Ha) = |,H1‘W[’H](y1|H1 * Hy)W([H](y2| H2),

WIH] (1, 4ol Hy) = ,Hﬂ S WM (g i+ Ho) V(M) (3] ).
HoceH
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Lemma 5.4. W[H|" is degraded with respect to W [H], and W[H]~ is equivalent
to W—[H/"].

Proof. Let (Hy, Ha,y1,1y2) € H/" x H xY x Y, we have:

WHI™ (91, v, Hi | Ha) = —WH) (1 | Hy % Ho) W [H) (o] H»)

]
1
o X W) X Wik
: (EleQ, IQGQ’
Projy (x1)=H1xHa Projy (z2)=Hz
1
= Z Z W(yi|z1 * 22)W (y2|72)
QLM % ap=ra

Proj,, /= (z1)=H1 Projy (z2)=H>2

1
= Tl > > Wy, yz,wira)

T1€Q, z2€Q,
Proj, /« (x1)=H1 Projy (xz2)=H2

= > W H](y1,yo, 21| Ha).
T1€Q,
PI‘Oj,H/* (:vl):Hl
Therefore, W[H]* is degraded with respect to W*[H]. Now let (Hy,y1,12) € H/" x
Y x Y, we have:

— 1
WIH]™ (y1,y2|H1) = 2 Z W H](y1|Hy * Ho)W [H](y2| Ha)

HoeH
1

=G 2 W) > Wl
. HaeH 11€Q, T2€Q,

Proj’H.(xl):Hl*HQ PI‘OjH(:EQ):HQ

1

=an e ST Wl 22 W(psla)
' HaoeM 1€Q, 220,

ProjH/* (z1)=H1 ProjH(;p2):H2

1

~[QLIHII Z Z W (y1|w1 * 22)W (y2|22)
' x1€Q, z2€Q

ProjH/* (z1)=H1
1 — _ *
T 2 W™ (g1, y2l21) = W [H ] (y1, yol H).
T1€Q,
PI‘Oj,H/* (a;l)zHl
Therefore, W[H]~ is equivalent to W*[’,L[/ . 0

Definition 5.3. Let H be a stable partition of (Q, /*), we define the stable partitions
H~ and HT, by H/™ and H respectively.

Lemma 5.5. Let (By)n>0 and (Wy)n>0 be defined as in definition 3.3. For each
stable partition H of (Q,/*), we define the stable-partition-valued process (Hnp)n>0

by:
Ho :=H,
Hp =MD, vn > 1.
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Then I(Wy[H,]) converges almost surely to a number in
Ly :={logyd : d divides |H|}.

Proof. Since W,[H,]|™ is equivalent to W, [H{L} and W,[H,]" is degraded with
respect to W, [H,] (Lemma 5.4), we have:

B (TWoa o )|Wn ) = LIV (L) + ST )
> SIWalHal ) + STV Ha]*) = T(W, ).

This implies that the process I(W;[H,]) is a sub-martingale and so it converges
almost surely. Let § > 0, and define

D, s = {s € {—,+}": IHs a stable partition of (Q, /"),

|[Hs| [ Hs A H]

|1V — togy =

< ¢ for all stable partitions H' of (Q, /*)}

1
Theorem 3.1 implies that lim 27\Dn,5] = 1. It is easy to see that almost surely, for
n—oo

every 0 > 0 and for every ng > 0, there exists n > ng such that (Bi,...,B,) € D;;.
Let (Bp)n>0 be a realization that satisfies:

e The sequence (I(Wy[H,]))

n>0 Converges to a limit x.

e For every ¢ > 0 and every ng > 0, there exists n > ng such that (By,...,B,) €
D, 5.

Let 0 > 0 and let ng > 0 be chosen such that |I(W,,[H,]) — 2| < ¢ for every n > ny.
Choose n > ng such that s = (By,...,By) € D, 5. By taking #' = H,, in (5.3), we

obtain |I(W,[Hy]) — log, H8||‘||ZS /|\/HnH < 4. Therefore,
Hal || Hs N Hn
m—log2| | ||||7'ls|| I < 26.
But |Q] = [Hal [[Hal| = [Hal [ Hall, hence |z — log, 'HS"||‘|ZS ﬁ Hall| 9.
By noticing that ’HnH”‘ZS ’/‘\HnH divides |H,| = ||, we conclude that
P{glﬁrql{ |r — R| < 20, V6 > 0.

Therefore, x € Ly. O

Lemma 5.6. Let (Q,*) be a quasigroup satisfying |Q| > 2, and let W : Q — V.
Let H be a stable partition of (Q,/*). For every 0 < 6 < 1 and every 0 < 8 < %, we
have:

. 1
lim —
n—oo0 2N

{s e {—,+}": IH a stable partition of (Q, /"),

I(W[H]) > logy |H| — 8, Z(W*[H]) > 2*2’”’} —0.




128 Error Exponents

Proof. Let 0 < 6 < 1 and 0 < B < 3, and let H be a stable partition of (Q, /*).
I(Wy[Hy]) converges almost surely to an element in £y. Due to the relations
between the quantities I(WW) and Z(W) (see Proposition 5.1), we can see that
Z(Wn|Hn]) converges to 0 if and only if I(W,[Hy,]) converges to log, |#H|, and there
is a number zy > 0 such that liminf Z (W, [H]) > 2z whenever I(W,[H]) converges
to a number in L other than log, [#|. Therefore, we can say that almost surely,
we have:

lim Z(Wy,[H,]) =0 or liminf Z(W,[H]) > 2o

Z(WEHE]) < Z(Wy[Hp]T) since W, [H,] T is degraded with respect to W, [H;}],
and Z(W, [H,]) = Z(Wy[H]") since Wy, [H,]~ and W, [H, ] are equivalent (see
Lemma 5.4). On the other hand, from [33, Lemma 3.5], we have:

o Z(Wn[Hn]") < (|H‘2 — H| + 1)Z(Wn[Hn])
o Z(Wy[HalT) < (1H] = 1) Z(Wy[Ha))?.

Therefore, we have Z (W, [Hy]) < K.Z(Wy[Hy]) and Z(W,F[H,)) < K. Z(W,[Ha])?,
where K := (|’H\2 — |H| + 1). By applying exactly the same techniques that were
used to prove [33, Theorem 3.5] we get:

lim P[1(Wo[Ha]) > logy [H| = 6, Z(Wa[Ha]) = 272 =0.

n—ro0
But this is true for every stable partition H of (Q, /*). Therefore,

. 1
lim —
n—oo 2N

{5 € {—,+}": IH a stable partition of (Q, /*),

I(WE[H?)) > log, [H| — 6, Z(W5[H?)) > 22”‘3}‘ = 0.

By noticing that for every s € {—,+}", there exists a stable partition Hs of (@, /*)
satisfying H = H3, we conclude that:

1
lim —
n—oo 2N

{5 € {—,+}": IH a stable partition of (@, /"),
I(WP[H]) > logy [H| — 6, Z(WP[H]) > 2—2"ﬁ}‘ =0.
]

Theorem 5.1. The convergence of W, to projection channels is almost surely fast:

. 1
lim —
n—oo0 2N

{s € {—,+}" : IH; a stable partition of (Q, /),

10V oy [1]] < . [F(V°[]) ~ oy [ < 3, Z09°fr]) <272 }| =1

1
for every 0 < <1, and every 0 < B < 3.
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Proof. Let 0 <0 < 1,and 0 < 8 < % Define:

Ey = {s € {—,+}" : IH a stable partition of (Q, /"),

LW [H]) > logy [H] — 0, Z(W*[H]) = 27"},

E, = {s € {—,+}" :3IH, a stable partition of (Q, /¥),

1) — log, [Ha]| < 6.

T(W*[M,]) — logy [Fe]| < 0},

Ey, = {s € {—,+}" : IHs a stable partition of (Q, /"),

‘I(WS) - 10g2 |H5H < (5, I(WS[HS]) o 10g2 ‘HSH < 5, Z(WS[HS]) < 223”}.

It is easy to see that Ej \ Ey C Ey and |Es| > |Ej| — |Ep|. From Corollary 3.1
and Lemma 5.6, we obtain

1 1
> lim — > lim — - =1-0=
L2 i gel Bl 2 lim o (] - 1B =1 -0 =1

Proposition 5.4. If (Q,*) is a quasigroup satisfying |Q| > 2, then E, = %
Proof. Let § < ' < % Let W : Q — Y be a channel. From Theorem 5.1, we have:

. 1
lim —
n—oo 21

{s € {—,+}": IH, a stable partition of (X, /*),

10V oy ] < 8, (1071 ~ o 14| < 0. 20w <277} =1

On the other hand, from Proposition 5.1, we have
Pe(W?[Hs]) < (s = 1)Z(W?[H,]) < (J1X] = 1) Z(WP[H,]).

Therefore,

. 1
lim —
n—oo 2N

{S € {—,+}": IH, a stable partition of (X, /*),

=1.

[L(W®) —logy [Hal| < 0, [I(W?[Hs]) —log, [Hs|| < 8, Pe(W*[Hs]) < (|¥] - 1)2*2[3/"}

But (|X] — 1)2_2ﬁ/n < 272" for n large enough, hence

1
1i_>m o0 {s € {—,+}": IHs a stable partition of (X, /%),

|1(W*) — logy M| < 4,

T(W?[H,]) — logy [Hs|| < 6, P.(WPIH,]) < 22“}’ _1



130 Error Exponents

Lemma 3.4 now implies that:

. 1 . _2371
nh—>n<>1027‘{8 e{— +}": W*is (6,277 ")-easy}| = 1.
We conclude that every 0 < g < % is a x-achievable exponent. Therefore, F, >
On the other hand, since % is polarizing, Proposition 5.3 implies that F, <
Therefore, F, = %

Corollary 5.1. For every § > 0, every 8 < %, every channel W : Q — Y, and
every quasigroup operations x on @, there exists a polar code for the channel W
constructed using x such that its rate is at least I(W) — 0 and its probability of
error under successive cancellation decoding is less than 2_NB, where N = 2" is the
blocklength.

Proof. The corollary follows from Propositions 3.4 and 5.4. O

Conjecture 5.1. If x is a polarizing operation that is not a quasigroup operation,
then F, < %

Conjecture 5.1 implies that quasigroup operations are the best polarizing oper-
ations. Therefore, if the conjecture is true and we are looking for good polar codes
with large blocklength, it is sufficient to consider quasigroup operations.

5.4 Exponent of a MAC-Polarizing Sequence of Binary
Operations

Proposition 5.5. Let x1,..., %, be m binary operations on Xy, ..., X, respectively.
If max |Xi| > 2 and (%1,...,%m) is MAC-polarizing, then
sSitsm

E < E*1®‘..®*m S min{E*la ey E*m} S

K] yeenykm —

DN | =

Proof. Define x = %1 ®...®%p,. Let W : X1 x---xAX,;, — Y be an m-user MAC and
let W': X — Y be the single user channel obtained from W (see Definition 4.11).
Note that every MAC polar code for the MAC W constructed using (xi, ..., %)
can be seen as a polar code for the channel W' constructed using the operation .
Moreover, the probability of error of the ML decoder is the same. Therefore, every
(*1, ..., %m)-achievable exponent is x-achievable. Hence, E,, .. < E..

Now let X = Ay x -+ x A,,,. For each 1 <7 < m and each single user channel
Wi+ X; — Y with input alphabet X;, consider the single user channel W : X — Y
with input alphabet X' defined as W (y|(z1,...,zm)) = Wi(y|z;). Let (Wip)n>0 be
the single user channel valued process obtained from W; using the operation *; as in
Definition 3.3, and let (W,,)n>0 be the single user channel valued process obtained
from W using the operation * as in Definition 3.3. It is easy to see that for every
d > 0 and every € > 0, W;,, is (d,¢€)-easy if and only if W,, is (,€)-easy. This
implies that each x-achievable exponent is *;-achievable. Therefore, E, < E,, for
every 1 < ¢ < m, hence E, < min{F,,,...,E, }. Now from Proposition 5.3, we
have min{E.,,,..., B, } < 3. O
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Proposition 5.6. Let xq, ..., %, be m quasigroup operations on the sets Q1, ..., Qm,
1

respectively. If . |Qi| > 2, then By, . «,, = 5-
Proof. Let x = x1 ®...® *,,, then * is a quasigroup operation. Let 8 < 3’ < % Let
W:Q1 X X Qn — )Y be an m-user MAC. Define Q = Q1 X --- X Q,, and let
W’ :Q — )Y be the single user channel obtained from W (see Definition 4.11). For
each n > 0 and each s € {—,4+}", let W'* be obtained from W’ using the operation
(see Definition 3.2), and let W* be obtained from W using the operations *1, ..., %,
(see Definition 4.7). From Theorem 5.1, we have:

. 1
lim —
n—o0 2N

{s € {—,+}": IHs a stable partition of (@, /"),

[T(W'®) —logy [Hs|| < 6, |[I(W'[H]) —logy [Hs|| < 8, Z(W"*[H,]) < 2—2‘3'"}’ =1

On the other hand, from Proposition 5.1, we have
Pe(W™H]) < (1Hs| = DZ(W"[Hs]) < (1Q| — 1) Z(W"[H,)).

Therefore,

1
lim —
n—oo 2N

{s € {—,+}": IHs a stable partition of (Q, /),

[T(W'®) —logy [M]| < 6, [I(W"[H]) —log [Hs|| < 8, P(W"[H]) < (|Q] — 1)27%’ } =1

It is easy to see that W’® is the single user channel obtained from W#*. There-
fore, I(W*) = I(W'), I(W*[H,]) = I(W'*[H,]) (by definition) and P,(W*[H,]) =
P.(W’s[H,]). On the other hand, we have (|Q|—1)272"" < 2-2"" for n large enough.
We conclude that:

. 1
lim —
n—oo 2N

{s € {—,+}": IH, a stable partition of (Q, /™),

[ I(W?) —logy | Hs|| < 6, [I(W*[Hs]) —logs [Hs|| < 8, Po(W*[Hs]) < 2—2’3"}’ = 1.

Now since /* = /*1®...®/*™ and since /* is ergodic (as it is a quasigroup operation)
for every 1 <14 < m, Lemma 4.1 implies that:

. 1 n s —2°n
nh—>n;<>27n’{‘3€{_v+} : Wis (5’2 2 )_easy}‘ =1

We conclude that every 0 < 8 < % is a (1, ..., %, )-achievable exponent. Therefore,
Eyi v = % On the other hand, we have E,, ., 6 < % from Proposition 5.5.
Hence Fy, .+, = % O
Corollary 5.2. For every d > 0, every 5 < %, every MACW Q1 X+ XQp — Y,
and every quasigroup operations *i,...,%m, on Q1,...,Qn respectively, there exists
a polar code for the MAC W constructed using *1, ..., %, such that its sum-rate is

at least I(W') — § and its probability of error under successive cancellation decoding
15 less than 2_Nﬂ, where N = 2" 1is the blocklength.

Proof. The corollary follows from Propositions 4.1 and 5.6. O






Fourier Analysis of MAC
Polarization

We saw at the end of Chapter 4 that the multiple-access channel (MAC) polarization
process might induce a loss in the symmetric-capacity region. This means that
MAC-polar codes might not achieve the entire symmetric-capacity region.

In this chapter', we provide a single-letter necessary and sufficient condition
that characterizes the set of MACs that do not lose any part of their symmetric-
capacity region by polarization. The characterization that we provide works in the
general setting where we have an arbitrary number of users and each user uses
an arbitrary Abelian group operation on his input alphabet. We will show that
the reason why a given MAC W loses parts of its symmetric-capacity region by
polarization is because its transition probabilities are not “aligned”, which makes
W “incompatible” with polarization. The “alignment” condition will be expressed
in terms of the Fourier transforms of the transition probabilities of W. The use
of Fourier analysis in our study should not come as a surprise since the transition
probabilities of W~ can be expressed as a convolution of the transition probabilities
of W. This is what makes Fourier analysis useful for our study because it turns
convolutions into multiplications, which are much easier to analyze.

Note that there are alternate polar coding solutions that can achieve the entire
symmetric-capacity region without any loss. These techniques, which are not based
on MAC polarization, are hybrid schemes combining single-user channel polarization
with other techniques. In [8], Sasoglu et al. used the “rate splitting/onion peeling”
scheme of [36] and [37] to transform any point on the dominant face of an m-user
MAC into a corner point of a (2m — 1)-user MAC and then applied single-user
channel polarization to achieve this corner point. In [22], Arikan used monotone
chain rules to construct polar codes for the Slepian-Wolf problem, but the same
technique can be used to achieve the entire symmetric-capacity region of a MAC.

Although the alternate solutions of [8] and [22] can achieve the entire symmetric-
capacity region, they are more complicated than MAC-polar codes (i.e., those that
are based on MAC polarization). The alternate solution in [8] requires more encoding
and decoding complexity because it adds m — 1 virtual users. Arikan’s solution [22]

'The material of this chapter is based on [34, 35].
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does not add significant encoding and decoding complexity, but the code design is
much more complicated than that of MAC-polar codes. So if we are given a MAC W
whose symmetric-capacity region is preserved by polarization (i.e., MAC-polar codes
can achieve the entire symmetric-capacity region of this MAC), then using MAC-
polar codes for this MAC is preferable to the alternate solutions. One practical
implication of this study is that it allows a code designer to determine whether he
can use the preferable MAC-polar codes to achieve the symmetric-capacity region.

In Section 6.1, we introduce the preliminaries of this chapter: We describe the
MAC polarization process and explain the discrete Fourier transforms on Abelian
groups. In Section 6.2, we provide a sufficient condition for the preservation of
the symmetric-capacity region. This sufficient condition, which is relatively easy to
understand, provides an intuition that clarifies the necessary and sufficient condition
that we prove later. In Section 6.3, we characterize the two-user MACs whose
symmetric-capacity regions are preserved by polarization. Section 6.4 generalizes
the results of Section 6.3 to MACs with arbitrary number of users.

6.1 Preliminaries

Throughout this chapter, Gy, ..., G,, are finite Abelian groups. We will use the
addition symbol + to denote the group operations of G, ..., G,,. Since every finite
Abelian group is isomorphic to the product of cyclic groups, we may assume without
loss of generality that G1,...,G,, are products of cyclic groups. In other words,
for every 1 < ¢ < m, there exist k; integers Nj1,...,N;x, > 0 such that G; =
ZNi,l X oo X ZNi,ki'

6.1.1 Polarization

Notation 6.1. Let W : Gy x --- X Gy —> Z be an m-user MAC. We write
(X1,..., Xm) W, Z to denote the following:

o Xi,..., X, are independent random variables uniformly distributed in G, .. .,
Gy, respectively.

e 7 is the output of the MAC W when X1,...,X,, are the inputs.

Notation 6.2. Fir S C {1,...,m} and let S = {i1,... i}, where iy < ... <ig.
Define Gg as

Gs:=][Gi=Gi x---xG

i€S

is|*
For every (x1,...,xy) € G1 X -+ X Gy, we write xg to denote (x;,,. .. v$i|5\)-

Notation 6.3. Let W : Gy X -+ X Gy — Z and (X1, ..., Xm) W, 7. For every
S c {1,...,m}, we write Ig(W) to denote 1(Xg;ZXge). If S = {i}, we denote
I{Z}(W) as Il(W)

IW) =15, (W) =1(X1,...,X;m; Z) is called the symmetric sum-capacity
of W.
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The symmetric-capacity region of an m-user MACW : Gy X -+ X Gy — Z is
defined as:

T(W) = {(Rl,...,Rm) ER™: VS C{l,....m},0<Y R, < IS(W)}.
€S

Note that I(WW) is called the symmetric sum-capacity because it is computed
using uniform input distributions. The same is true for J(W).

Notation 6.4. {— +}" := U{—,—F}n, where {—, +}° = {a}.
n>0

Definition 6.1. Let W : G; x --- x Gy, — Z. We define the m-user MACs
WG X XGmp — Z2and WT : Gy XX Gy — 22X G X -+ X Gy, as

follows:

W™ (y1,y2lu1,1, -+ s Um,1)

1
=T 0 Z Wiyiluig +ui2, oo um1 + um2)W(yzlui2, ... tm 2),
Gl |Gl
u1,2€X1
umyz'EXm
and
W+(y1, yg,ul,l, Ce ,um71]u1,2, . ,um’g)

1
= —————W(yiluig +u12, .., Um1 + Um2)W(y2lur2, ..., Um2).
|G| |Gl

For every s € {—,4+}*, we define the MAC W* as follows:

S {W ifs = o,
(c..((Ws)s2) o) ifs = (S1,...,Sn)-

The following remark explains why polarization might induce a loss in the
symmetric-capacity region.

Remark 6.1. Let U* = (Uy,...,Uy) and U = (Uy, ..., Uy) be two independent
random variables uniformly distributed in Gy X - -+ X Gy,. Let X{* = U{" + U{" and

XM =TUM. Let (X1,...,Xm) -5 Z and (X1, ..., Xm) -5 Z. We have:
o IW)=I1(X2)=1(X2).
o (W) =IUM™ZZ) and I(W+) = I(U; ZZU™).
Hence,
21(W) = [(X{%; 2) + [(X{"; Z) = [(X{"X{"; Z2) = [(U}"UT™; 2 2)
LU 22) + 107 Z2Z|om) 2 (o, 22) + 107 2Z07)
I(W™) +I(WT),
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where (a) follows from the fact that U™ is independent of Ulm

Therefore, the symmetric sum-capacity is preserved by polarization. On the other
hand, Is might not be preserved if S C {1,...,m}.

For example, consider the two-user MAC case. Let W : Gy x G — Z. Let
(U1, V1) and (Us, Vo) be two independent random pairs uniformly distributed in G X

Go. Let X1 =U1+ Uz, Xo=Us, Y1 =V1+ Vo and Yo = V5. Let (Xlayl) % Z
and (X2,Y?) v, Zy. We have:

o (W) = I(Us; Z1ZoVi) and I (W) = I(Us; Z1 ZoU1 Vi V).

o L(W) =I(Vi; Z125U1) and Iy(W+) = I(Vi; Zy ZoUy ViUs).

On the other hand, we have:

o L(W)=I(X1; Z1Y1) = [(X; ZoYa).

o L(W)=I(Yi:Z1X1) = I(Ya; ZoXs).

Therefore,

2 (W) = I(X1; Z1Y1) + I(Xo; ZoYa) = [(X1X2; Z1 ZoY1Y2)
= [(U1Usz; Z1 25V Va) = I(Ur; Z1 Z2V1Va) + 1(Us; Z1 Z2V1Valn)
(g) I(Uy; Z122V) 4 1(Ua; Z1 ZoViVaUsy ) = L (W) + (W), (6.1)
where (a) follows from the fact that
I(Uy; Z129ViVa) = I(Ur; Z122V1) + 1(Ur; Va| Z1Z2V1) > 1(Us; Z1Z2V7).

Similarly,

QIQ(W) == I(Yl; Zle) -+ I(YQ; ZgXQ) - I(Y1Y2; Z1Z2X1X2>
= I(ViVa; Z1ZoU0Us) = 1(Vh; Z12:U0Us) + 1(Va; Z1 ZoU Us Vi)
> [(Vi; Z125U1) + 1(Va; Z1 ZoUhUsVy) = Io(W ™) + L(WT).

1 1
Note that 20 Z L(W?®) = I1'1(VV‘3) =0L(W) < L;(W). Nowletn >0 and
56{774’}0

1 S
assume that on Z L(W?®) < I (W), then

sE{—,+}"
g X =g 3 () e ()
se{—,+}nt1 se{— 47
< 2n1+1 > 21'1(VV)=2% > LWt <n(w),

56{774’}” 56{774’}”

where (a) follows from applying (6.1) to W*. We conclude that for every n > 0 we

have:
1

L L(W*) < L(W), (6.2)
o 2
se{—,+}m
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Similarly,

L > LW < L(W). (6.3)

2n
36{77+}n
By using a similar induction argument, but using the equality I (W(S’f)) +
I (W(S"H) = 2I(W?), we can show that for every n > 0, we have:

2in S = 1w, (6.4)
se{—,+}"

While (6.4) shows that polarization preserves the symmetric sum-capacity, (6.2) and
(6.3) show that polarization might result into a loss in the symmetric-capacity region.
Similarly, for the m-user case, we have

n
SE{_7+}n

1 N Is(WP) < Is(W), VS € {1,...,m}.

Definition 6.2. Let S C {1,...,m}. We say that polarization x-preserves Ig for
W if for all n > 0 we have:

1
i S IsOW) = Is(W).
56{_7""}”

If polarization *-preserves Ig for every S C {1,...,m}, we say that polarization
x-preserves the symmetric-capacity region for W.

Remark 6.2. If polarization x-preserves the symmetric-capacity region for W, then
the entire symmetric-capacity region can be achieved by polar codes.

Section 6.3 provides a characterization of two-user MACs whose [; is x-preserved
by polarization. Section 6.4 generalizes the results of Section 6.3 and provides a
characterization of m-user MACs whose [g is *-preserved by polarization, where
S C {1,...,m}. This yields a complete characterization of the MACs with x-
preserved symmetric-capacity regions.

6.1.2 Discrete Fourier Transform on Finite Abelian Groups

A tool that we are going to need for the analysis of the polarization process is
the discrete Fourier transform (DFT) on finite Abelian groups. Since every finite
Abelian group is isomorphic to the product of cyclic groups, the DFT on finite
Abelian groups can be defined based on the usual multidimensional DFT.

Definition 6.3. The k-dimensional discrete Fourier transform of a mapping f :
Zn, X -+ X LN, — C is the mapping [ : Zn, X -+ X Zpn, — C defined as:

~ _p2miqmy 2wy
f(i‘lw'w:%k) — Z f(xl,...,xk)e J Ny Ny

TLELNy - T ELN,
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Notation 6.5. Let G = Zy, X --- X Zn, be a finite Abelian group. For every
x=(x1,...,2) € G and every & = (&1,...,2%) € G, define (¥,x) € R as:
ilxl i’kxk

- R.
(Z,x) N, +-- 4 N, €

Using this notation, the DFT on G has a compact formula:

Zf —]27r Z,x)

zeG

In the rest of this section, we recall well known properties of DFT.

Proposition 6.1. The inverse DF'T is given by the following formula:
f x Z f @ j2m(&,x)
’G| el

Definition 6.4. The convolution of two mappings f: G — C and g : G — C is the
mapping f*xg: G — C defined as:

(fxg)(x) =Y fl@)g(z - ).
e

We will sometimes write f(x) * g(x) to denote (f * g)(x).

Proposition 6.2. Let f : G — C and g : G — C be two mappings. We have:

o If fo: G — C is defined as fo(x) = f(x — a), then fo(&) = f(&)e 72mtEa),

o If f: G — C is defined aAf( ) = f(—x), then f(fu) = f(&)*, where f()* is
the complex congugate of f(Z).

6.1.3 Useful Notation

This subsection introduces useful notation that will be used throughout this chapter.
The usefulness of this notation will be clear later. We added this subsection so that
the reader may refer to it anytime.

Let W : G1 x Ga — Z be a two-user MAC and let (X,Y) W, Z. Define the
following;:

o YZ(W) == {(y,2) € Ga x Z: Pyz(y,z) > 0}. This is just the support of
PY,Z-

e For every (y,z) € YZ(W), define p,.w : G1 — [0,1] as

py,z,W(x) = PX\Y,Z($|yuz)7 Vo € Gl-
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For every z € Z, define:

e Y*(W):={yeGa: Pyrz(y,z) >0}

o AY*(W):={y1—y2: y1,y2 € Y(W)}.

o X'(W) = {2 €Gy:3y e Y*(W),py.w(E) #0}.

o DF(W) :=X"(W) x AY*(W) = {(&,y) : &€ X (W), y e AY*(W)}.
Now define:

o XZ(W):={(#,2): 2€ Z, & € X (W)}.

o D(W):= | D*(W).
z€EZ

6.1.4 Pseudo-Quadratic Functions
Definition 6.5. Let D C Gy x G5. Define the following sets:
e Hi(D):={zxe€Gy: Jyec Gy, (x,y) € D}.
o For every v € Hi(D), let HY(D) :={y € Gy : (z,y) € D}.
e Hy(D) :={ye€Gy: Jx Gy, (z,y) € D}.
e For every y € Hao(D), let H{ (D) := {zx € Gy : (z,y) € D}.
We say that D is a pseudo-quadratic domain if:
e HY(D) is a subgroup of Gy for every y € Ha(D).
e HI(D) is a subgroup of Go for every x € Hi(D).

Definition 6.6. Let D C G1 x Gy and let F : D — T be a mapping from D to
T={weC: |w|=1}. We say that F is a pseudo-quadratic function if:

e D is a pseudo-quadratic domain.

e For every y € Ho(D), the mapping v — F(x,y) is a group homomorphism
from (H{(D),+) to (T,-).

e For every x € Hy(D), the mapping y — F(x,y) is a group homomorphism
from (H3(D),+) to (T,-).

Definition 6.7. We say that W : G1 x Gy — Z is polarization compatible with
respect to the first user if there exists a pseudo-quadratic function F : D — T such
that:

e D(W)C D C Gy xGs.

o For every (&,z) € XZ(W) and every yi,yo € Y*(W), we have Pyrzw (Z) =
F(Z,y1 = y2) - Pyo,zw (2).
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6.1.5 Main Result
The following theorem is the main result of this chapter:

Theorem 6.1. If W is a two-user MAC, then polarization x-preserves Iy for W if
and only if W 1is polarization compatible with respect to the first user.

Theorem 6.1 has the following implications:

e (Proposition 6.9) If G; = G = [, for a prime ¢ and (X,Y) w, Z, then
polarization *-preserves I; for W if and only if there exists a € F, such that
I(X +aY;Y|Z) =0.

e (Corollary 6.3) Polarization *-preserves the symmetric-capacity region for the
binary adder channel.

e (Proposition 6.10) If |G| and |G2| are co-prime and (X,Y) v, Z, then po-

larization *-preserves I; for W if and only if I(X;Y|Z) = 0 (i.e., if and only
if the dominant face of J (W) is a single point).

The reader may find the polarization compatibility condition (Definition 6.7)
too abstract at this stage and it may not be clear why the x-preservation of I; has
anything to do with pseudo-quadratic functions. In order to clarify the meaning of
polarization compatibility and make it more intuitive, we provide in Section 6.2 a
sufficient condition for the x-preservation of I; that is easy to understand. After
expressing this condition in terms of {py.w : (y,2) € YZ(W)}, the link between
the x-preservation of I; and pseudo-quadratic functions should become clear.

6.2 A Sufficient Condition for the *x-Preservation of [;

In this section, we only consider two-user MACs W : G; x Go — Z, where G1 and
G are finite Abelian groups. We derive a sufficient condition which ensures that
polarization x-preserves I.

Definition 6.8. Let W : Gy x Gy — Z be a two-user MAC. We say that I is
preserved for W if and only if (W ™) + I;(W™T) = 2I;(W).

Lemma 6.1. Polarization x-preserves 11 for W if and only if Iy is preserved for
W* for every s € {—, +}*.

Proof. Polarization x-preserves I; for W if and only if

Vn >0, I} (W) = L > nwe)

n

Se{_7+}n
1 . 1 .
& vn>0, o > nwe) = Tl > nw)
se{—+}" s'e{—+}nt1
& Vn >0, Z 20 (W?) = Z (LW + [ (W)Y
se{—+}" se{—,+}"

& vn>0, Y (LW - LWE))—nwh)) =o.
56{77+}n
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But since 211 (W*)— Iy (W) =1 (W) > 0 (apply (6.1) to W#), we conclude
that polarization x-preserves I; for W if and only if

Vn > 0,¥s € {—, +}", LWS )+ n(weEH)) =21, (W*).

In other words, polarization x-preserves Iy for W if and only if I is preserved for
W# for every s € {—,+}*. O

Suppose we want to prove that a given condition on W is sufficient for the
x-preservation of I;. Lemma 6.1 suggests a method to do that:

1. Show that if W satisfies the condition, then I; is preserved for W.

2. Show that if W satisfies the condition, then W~ and W™ satisfy the condition
as well.

By doing that, we would have shown that if W satisfies the condition, then W*
satisfies the same condition for all s € {—,+}*, which in turn implies that I; is
preserved for W*# for all s € {—,+}*, hence polarization x-preserves I; for W due
to Lemma 6.1.

Definition 6.9. Let W : G1 X Ga — Z be a two-user MAC and let (X,Y) v, z.
We say that W is homomorphic-independent with respect to the first user if and
only if there exists a subgroup Ha of Ga, a group homomorphism f : Ho — G and
a mapping g : Z2 — Go such that:

° ]P)[Y —g(Z) S HQ] =1.
e I(X+ f(Y —g(2));Y]|Z) =0.

The condition P[Y — ¢g(Z) € Hz] = 1 means that Y and ¢g(Z) belong to the
same coset of Ho. In other words, given Z = z, Y belongs to a single coset of
Hj, and this coset is determined by g(z). On the other hand, the condition I (X +
fly — g(Z));Y‘Z) = 0 is equivalent to say that given Z, a shifted version of X
is conditionally independent of Y, and the amount by which X should be shifted
is f(Y —g(Z)). One might be tempted to simplify the expression I(X + f(Y —
9(2));Y|Z) as follows:

X+ fY=g(2):Y|2)=1(X+ fY) = f(9(2));Y|Z2) =I(X + f(Y);Y]|Z).

This would be correct if f were defined on the whole group Go2. However, f is only
defined on a subgroup Hjy of Gy. This is why f can be applied on Y — ¢g(Z) which
belongs to Hj, but cannot be applied to Y and ¢g(Z) individually because they can
lie outside Hs.

In the rest of this section, we show that if W is homomorphic-independent
with respect to the first user, then polarization *-preserves I; for W. For the
sake of brevity, we will write homomorphic-independent to denote “homomorphic-
independent with respect to the first user”.

Lemma 6.2. If W : G1 x G2 — Z is homomorphic-independent, then Iy is pre-
served for W.
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Proof. Let Uy,Us, Vi, Vo, X1, Xo, Y1, Y, Z1, Z5 be as in Remark 6.1. We can see from
(6.1) that I; is preserved for W if and only if I[(Uy; Z1Z5V1) = 1(Ur; Z1Z5V1Va).
Therefore, it is sufficient to show that I(Uy; Va|Z1Z2V1) = 0.

Let Hs, f and g be as in Definition 6.9. We have:

Vi—g(Z0) + 9(Za) = Yi — Yo — g(Z0) + 9(Za) = (Vi — 9(20)) — (Y — 9(Z)) € Ho,

where (a) is true because P[Y] — g(Z1) € Ho| = P[Ya — g(Z3) € Ho] = 1.
Let X7 =X7+ f(Y1 — g(Zl)) and Xo = X9 + f(Yé — g(Zg)) We have:

Ur+ f(Vi — 9(Z1) + 9(Z2)) = X1 — Xo+ f(Y1 — Yo — 9(Z1) + 9(Z2))
=X1+fM1—g(Z21)) — Xo— f(Ya—g(Z2)) (6.5)
=X, — Xo.

Therefore,

I(Uy;Va|Z1Z5Vi) = 1(Uy — f(Vi — 9(Z1) + 9(Z2)); Va| Z1 22 V1)

[(Xy = Xo; Va| 21 Z5V1) < 1(X1 Xo; Va|Z122V1)
I(X1 X0 VVa|Z1 Z5) = 1(X1X2; Y1Ya|Z1Z5)
I(

IN

- - b
X0i20) + (X Yol 22) Do,

where (b) follows from the fact that W is homomorphic-independent. We conclude
that I(Uy; V2|Z1Z5V1) = 0 and so I is preserved for W. O

Lemma 6.3. If W : G; x G2 — Z is homomorphic-independent, then W~ and
W are homomorphic-independent as well.

Proof. Let Uy,Us, V1, Vo, X1, Xo,Y1, Yo, Z1, Z5 be as in Remark 6.1. Let Ho, f and ¢
be as in Definition 6.9. Define the mappings ¢~ : 22 — Gy and g+ : 22 x Gy x Gy —
Gy as follows:

g (21,22) = g(21) — g(22) and g7 (21,22, u1,v1) = g(22).

Since W is homomorphic-independent, we have P[Y; — ¢g(Z;) € Hs] = 1 and
P[Y2 — g(Z2) € Hy] = 1. Therefore, P[Y1 — Ys — g(Z1) + g(Z2) € Hy] = 1 which
implies that IF’[Vl — 9 (Z,2s) € Hg] = 1. Similarly, IP’[VQ — gt (Z1, 29, Uy, V1) €
Hy) =PYs — g(Z2) € Ho = 1.

Define X; = X1 + f(Y1 — g(Z1)) and Xo = Xo + f(Ya2 — g(Z2)) as in the proof
of Lemma 6.2. From (6.5) we have U; + f(Vi — g~ (Z1, Z2)) = X1 — X». Therefore,

LUy + f(Vi—g (21, Z2)); V1| Z1 Z2)
= (X1 — X0, Vi|Z1Z5) < I(X1Xo; Vi Va|Z125)

— [(X X V|21 25) = IR0 Yi| Z0) + I(K: Ya) Zo) 0,

where (a) follows from the fact that W is homomorphic-independent.
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On the other hand, we have

I(Us + f(Va — gt (21,22, U1, V1)); Va| Z1 22U 1)
= 1(Xo + f(Ya = g(Z2)); Vo| 21 Z2U1 V1)
= [(X2;Va|Z1Z2, U + f(Vi — g~ (Z1, Z2)), V1)
= [(X9;Va| 21 Z, X1 — Xo, V1) < [(Xs, X1 — Xo; Vo V1|21 Z2)
= [(X1 Xo; V1Y3| 21 Z5) = 1(X1; Y11 Z1) + 1(X2; Ya| Z2) = 0.

We conclude that W~ and W are homomorphic-independent. O

Proposition 6.3. If W : G; x Go — Z is homomorphic-independent, then polar-
ization x-preserves Iy for W.

Proof. We first show by induction on n > 0 that for every s € {—,+}", W? is
homomorphic-independent. If n = 0, there is nothing to prove. Now let n > 0 and
suppose that the claim is true for n — 1.

Let s € {—,+}", then there exists s’ € {—,+}" ! such that s = (s’,—) or
s = (¢,+). We know from the induction hypothesis that W+#" is homomorphic-
independent, and by applying Lemma 6.3 to W< we deduce that both W"~) and
W) are homomorphic-independent. Therefore, W* is homomorphic-independent.

We conclude that for every n > 0 and every s € {—,+}", W# is homomorphic-
independent. Lemma 6.2 implies that I; is preserved for W* for every s € {—, +}*,
and Lemma 6.1 shows that polarization x-preserves I; for W. ]

One might try to simplify the sufficient condition that we have just shown in
the following way. If Ho, f and g are as in Definition 6.9, let f : Go — G be an
extension of f which is a homomorphism from (G, +) to (G1,+). We have:

I(X+f(YV);Y|2)=I(X + f(Y) — f(9(2));Y|2)
:I(X+f(Y 92 Y|Z)=1(X + f(Y —g(2));Y|Z) = 0.

This would suggest that homomorphic-independence is equivalent to the existence
of a homomorphism f : Gy — Gy satisfying I(X + f(Y);Y|Z) = 0, which is of
course simpler than the way homomorphic-independence was defined in Definition
6.9. This argument breaks down when we realize that not every homomorphism
f : Hy — G can be extended to a homomorphism from (Ga,+) to (Gi,+). For
example, if G1 = Fo, Gy = Zy, Hy = {0,2} C G2 and f : Hy — G is defined as
f(0) =0and f(2) =1, then f is clearly a homomorphism from Hs to G;. However,
f is not extendable to a homomorphism f : Go — G1 defined on the whole group
Go. If f were extendable, we would have 1 = f(2) = f(1)+ f(1) = 2f(1) = 0, which
is a contradiction.

The existence of a homomorphism f : Gy — Gy satisfying I(X + f(Y);Y|Z) is of
course a sufficient condition for the x-preservation of I; because it is a particular case
of homomorphic-independence. However, homomorphic-independence is a strictly
more general condition as we have shown in the previous paragraph.

Note that there is a large freedom on the choice of the mapping g : Z2 — G5 in
Definition 6.9. The main role of the mapping ¢ is to find the coset of Hs to which
Y belongs, and any other mapping ¢’ playing this role will satisfy the conditions of
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Definition 6.9: Let Ho, f and g be as in Definition 6.9 and assume that ¢’ : Z — G5
satisfies ¢'(z)—g(z) € Hoforall z € Z. WehaveY—¢'(Z) =Y —-9(Z)+9(Z)—4¢'(Z) €
Hy with probability 1. On the other hand,

X+ fY=d(2):Y|Z2)=I(X+ f(Y —9(Z)+9(Z2) - §(2)):Y|2)
=I(X+ (Y —9(2)+ f(9(2) - ¢'(2));Y|2)
— I(X + f(Y —g(2));Y|2) = 0.

Therefore, Hs, f and ¢’ also satisfy the conditions of Definition 6.9.
Let us now see how homomorphic-independence can be expressed in terms of
{Pyw + (y,2) € YZ(W)}. For the sake of brevity, we will write p, . to denote

Py,z,w -

The condition I(X + f(Y — g(Z));Y‘Z) = 0 is equivalent to the conditional
independence of X 4+ f(Y — ¢g(Z)) and Y given Z. This is equivalent to say that
for every x € Gy, every y1,y2 € G and every z € Z satisfying Py z(y1,2) > 0 and
Py z(y2,2) > 0, we have

PX+f(Yfg(Z))\Y,Z(x‘yla = Pxii(y—g2)v.z(® Y2, 2).

On the other hand, we have

Px i rov—gzyv.z(@|y1,2) = Pxpyz(z = flyr — 9(2)) |y, 2)
= py1,z(x - f(yl - g(z))),

and

Px g pv—gznv.z(@|y2, 2) = Pxpv.z(x — fy2 — 9(2)) |2, 2)
= Py — f(y2 — 9(2))).

Therefore, the condition I(X + f(Y — g(2)); Y|Z) = 0 is equivalent to say that for
every z € Z and every y1,y2 € Y*(W), we have

Py (T = f(y1 — 9(2))) = pyoz(x — f(y2 — 9(2))), Vo € Gy
S Py 2(T) = Pyo (x + flyr —9(2)) — fly2 — 9(2)))7 Vz € Gy
& Py (1) = (@ + f1 — 9(2) —y2 + 9(2))), Vo€ G
& py(T) =Dy (x4 fly1 — y2)), Vo € Gi.

This shows that if we want to get rid of the mapping ¢ in the second condition
of Definition 6.9, we have to express the homomorphic-independence condition in
terms of the conditional probability distributions {p, . : (y,z) € YZ(W)}. On the
other hand, due to the freedom on the choice of the mapping g that we have shown
above, we can see that g in the condition P[Y — g(Z) € Hs] just serves the purpose
of saying that given Z = 2, Y belongs to a single coset of Hy. In other words,
y1 —y2 € Hy for all z € Z and every y1,y2 € Y?(W), which is equivalent to say that
AY?#(W') C Hy for all z € Z. Therefore, the first condition of Definition 6.9 can be
replaced by D(W) C G1 x Hs. This shows the following lemma:

Lemma 6.4. W is homomorphic-independent if and only if there exists a subgroup
Hy of Gy and a homomorphism f: Hy — G1 satisfying:
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° D(W) C G1 x Hs.

e For every z € Z and every y1,y2 € Y*(W), we have:

pym(x) = pyz,z(x + f(yl - y2>)7 Vo e Gy
S Py a(®) = Py, 0 (8) 2B @1702) vz € Gy

Lemma 6.4 suggests that if we are given a two-user MAC W and we want to
check whether it is homomorphic-independent, then one way to do that is to com-
pute Q(&,y1,y2,2) = zz;:gg for every z € Z, every y1,y2 € Y*(W) and every &
satisfying py, .(Z) # 0, and then make sure that Q(Z,y1,y2,2) can be expressed as
eI2m(&f(y1=2)) for some homomorphism f : Hy — Gy, where Hj is a subgroup of G
that satisfies D(W) C G1 x Ha.

We can now make the following remarks:

o 2m(@f(y1-12)) ¢ T .= {fweC: |w =1}
o ¢72m(@.f(¥1-v2)) depends only on & and y; — yo.

e For every y € Hy, the mapping £ — e2m@fW) ig a group homomorphism
from (G1,+) to (T,-).

e For every & € Gy, the mapping y — €727 f()) is a group homomorphism from
(HQ, +) to (T7 )

Therefore, the mapping (Z,y) — eI2m(#,F (V) ig a pseudo-quadratic function from
G1 x Hy to T.

We can now show the following characterization of homomorphic-independent
MACs:

Proposition 6.4. Let W : Gy x Gy — Z be a two-user MAC. W is homomorphic-
independent if and only if there exists a subgroup Hs of Go and a pseudo-quadratic
function F : Gy x Hy — T satisfying:

° D(W) C G1 X Hs.

e For every (&,2) € XZ(W) and every yi1,y2 € Y*(W), we have py, .(2) =
F(&,y1 — y2)Py, - (2).

Proof. The above discussion shows that the existence of such Hy and F' is a necessary
condition for the homomorphic-independence of W. For the proof that it is also
sufficient, see Appendix 6.5.1. O

Note that the only difference between polarization compatibility (Definition 6.7)
and the characterization of homomorphic-independence of Proposition 6.4 is that the
domain D of the pseudo-quadratic function F' in Definition 6.7 can be an arbitrary
pseudo-quadratic domain, whereas the domain of F' in Proposition 6.4 needs to
be of the form G; x Hs for some subgroup Hs of Go. In the next section, we
show that polarization compatibility is a necessary and sufficient condition for the
x-preservation of I.
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6.3 Two-user MACs with *-Preserved I;

Throughout this section, we fix a two-user MAC W : G1 x Go — Z, where 1 and
G2 are finite Abelian groups. This section is dedicated to proving Theorem 6.1.

6.3.1 Polarization Compatibility is Necessary

For the sake of simplicity, we write p, .(x) to denote p, . w(x).
According to (6.1), I; is preserved for W if and only if I(Uy; V2|Z1Z5V1) = 0,
which means that for every 21,29 € Z and every vy, vs € G, if

Py, 2,25 v1 (V2, 21, 22,01) > 0,

then Py, v, 2,,2,,v, (U1]ve, 21, 22, v1) does not depend on vs.
In order to study this condition, we should keep track of the values of 21,29 € Z
and vy, ve € G for which Py, z, 7, vi (v2, 21, 22,v1) > 0. But

Py, 7,.7,,v1 (U2, 21, 22,v1) = Pyy, 7, (01 + v2, 21) Py, 7, (v2, 22),

so it is sufficient to keep track of the pairs (y, z) € Go x Z satisfying Py z(y, z) > 0.
This is where YZ(W) and {Y*(W) : z € Z} become useful.

The following lemma gives a characterization of two-user MACs with preserved
I in terms of the Fourier transform of the distributions p, ..

Lemma 6.5. I is preserved for W if and only if for every yi,y2,y},y5 € G2 and
every zi,z9 € Z salisfying

°* Y1 — Y2 =Y — Y,
o yi,yp € YA(W) and y2,y5 € Y2(W),

we have
ﬁylyzl (‘%) 'ﬁy272’2 (i')* :ﬁyi,zl (‘%) 'ﬁyéyzg (j)*7 Vi e Gl'

Proof. Let Uy,Usy, Vi, Vo, X1, X5, Y1,Ys, Z1, Z5 be as in Remark 6.1. We know that
I, is preserved for W if and only if I(Uy; Va|Z1Z5V1) = 0, which is equivalent to say
that Uy is conditionally independent of V5 given (Z7, Z2, V7).

In other words, for any fixed (z1, 22,v1) € Z X Z X G9 satisfying

Pz, 7, v (21, 22,v1) > 0,

if vo, vy € Go satisfy Py, z, 7, v, (v2]21, 22,v1) > 0 and Py, z, 7, v; (V5|21, 22, v1) > 0,
then we have

/
Vur € G1, Py, vy, 2,201 (W1|v2, 21, 22,v1) = Puyvy 21, 20,v; (W1]0g, 21, 22, 1)

This condition is equivalent to saying that, for every z1, z2 € Z and every vy, ve, v} €
Go satisfying PZl,ZQ,Yl,YQ (Zl, 29,V1+v2, 212) > (0 and PZ1,Z2,Y1,Y2 (Zl, Z29,U1 +Ué, Ué) > 0,
we have

/ /
Vur € G1, Px,—xy21,20,v1,v2 (U121, 22,01 + v2,v2) = Px,_x,|2,,2:,71,v> (U1]21, 22, 01 + v3, v3).
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By denoting vy + vg,ve,v1 + vh and v} as yi,y2,y) and yh respectively (so that
y1 — Y2 = Y} — yh = v1), we can deduce that I is preserved for W if and only
if for every y1,y2,y],v5 € Ga and every 21,29 € Z satisfying 11 — y2 = y| — vb,

Pz, 72w,y (21, 22,91, y2) > 0 and Py, 7, vi v, (21, 22, Y1, y5) > 0 (ie., y1,y; € Y*H(W)
and y2,y5 € Y?2(W)), we have

/ /
Vur € G, Px,—x,|71,20.v1,v, (U121, 22, Y1, Y2) = Px,— X512, 20,1, v: (U121, 22, Y1, Ya).-
On the other hand, we have:

Px\_x5|21,20,v1,v2 (U121, 22, Y1, y2)

= Z Px 12, v (w1 + uz2|21,y1) Px, |2, v, (U2] 22, Y2)
us€G1

= Z Py1,z1 (Ut + U2)Pys 2 (U2) = (Pyy 21 * Dya,z) (W),
u2€G

where we define py, ., (%) := Dy, 2, (—x). Similarly,

PXl—X2|Zl,Zg,Y1,Y2 (u1]21, 22, y/byé) = (pyg,zl *ﬁyé,zz)(ul)‘

Therefore, for every u; € G1, we have

(py1,z1 * ﬁy272’2 ) (ul) = (py’l,zl * ﬁyé,zg ) (ul)a

which is equivalent to Py, 2, (1) - Pys,z, (11)" = Pyt -, (U1) - Py -, (61)" for every iy €
G1. O

Definition 6.10. Let W : Gy X Go — Z be a two-user MAC. We say that I
is *~ preserved for W if and only if I, is preserved for W™ for every n > 0,
where [n]~ € {—,+}" is the sequence containing n minus signs (e.g., [0]7 = @,
2] =(=-))

The following three lemmas study the MACs W for which I is x~ preserved.

Lemma 6.6. If I is x~ preserved for W, then for every n > 0, every y1,...,Yyon,
Yl Yhn € Go and every zy, ...,z € Z satisfying

on on
S
i=1 i=1
ey €YW), ...,yon € Y2 (W), and

o Y, EYI(W),... € Y2 (W),

we have
2m on
[T 502 (@) =[] by (@), V& € G
=1 i=1
Proof. See Appendix 6.5.2. 0

Lemma 6.7. If I; is x~ preserved for W then for every (&,z) € XZ(W), we have:
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o ﬁyz(a%) #0 for ally e Y*(W).

o (( )) €T for every y,y € Y*(W), where T := {w € C: |w| = 1}.
py z

Proof. 1f & € X™ (W), there exists y € Y*(W) satisfying p,.(&) # 0. Fixy € Y*(W)
and let a > 0 be the order of y — ¢ in G (i.e., a(y —y') = 0). Let n > 0 be such
that a < 2" and define the two sequences (y;)i1<i<2» and (y,)1<i<on as follows:

® Iflglga,yzzyandy;:y’
e lfa<i<2y =y =y.

Since a(y — y') = 0, we have ay = ay’ and so

2”
dovi=ay+ (2" —a)y =ay + (2 y—zyz
=1

By applying Lemma 6.6, we get

(ﬁy,z(i)) (py 2 ZLCL = pru prﬂ

= (py’,z(l‘)) 7& 0.
Therefore, p, (&) # 0. Moreover,

(ﬁy,z(i”) )“ —1

ﬁy/,z(j) ,

which means that M is a root of unity. Hence M e T. OJ
Dy 2 (2) Dy 2(2)

Lemma 6.8. If I} is x= preserved for W, there exists a unique mapping fW :
D(W) — T such that for every (z,z) € XZ(W) and every y1,y2 € Y*(W), we have

ﬁyl,z(i‘) = fW(jayl - y2) 'ﬁyz,z(i)'

Proof. Let (2,y) € D(W). Let z be such that (2,y) € D*(W) = X (W) x AY'Z(W)
and let y1,y2 € Y?(W) be such that y; — yo = y. We want to show that Dys,z EC?
Pys,=

depends only on (Z,y) = (&,y1 — y2) and that nylz(ic) eT.

Dys,2(Z) )

Suppose there exist 2’ € Z and v}, y, € Y* (W) which satisfy # € X~ (W) and
pyL (A) _ pyivz/(x)

P = — e T.

py27 ( ) pyé,z/(x)

From Lemma 6.7 we have py, »(2) # 0, py, (%) # 0, py (%) # 0 and py; /() #

0. On the other hand, since y; + y5 = y2 + ¥}, Lemma 6.6 shows that p,, .(z) -

Py, (£) = Pys,2(2) - Py, (2). Therefore,

Yy —yh =y =y1 — y2. We need to show that

Py ,2(2) py’l,z’(f) (a)
< = e,
Pys2(2) Py (2)




6.3. Two-user MACs with x-Preserved I; 149

where (a) follows from Lemma 6.7. This shows that the value of pylexA;
Pys,2\T

depends only on (Z,y) andAdoes not depend on the choice of z,y1,y2. We conclude
that there exists a unique fy (Z,y) € T such that for every z € Z and every y1,y2 €
Y (W) satisfying 2 € X (W) and y; — y2 = y, we have Dy12(2) = fw (Z,Y) - Dys,2(T).
O

e T

Notice that the only difference between the mapping fW in Lemma 6.8 and the
function F' in Definition 6.7 is that F' is a pseudo-quadratic function defined on a
pseudo-quadratic domain D containing D(W'), whereas fW is only defined on D(W).
Therefore, if we want to prove that W is polarization compatible, we have to show
that fW can be extended to a pseudo-quadratic function.

Another important remark is that if polarization *-preserves I; for W, then from
Lemma 6.1 we can see that I; is preserved for W&[M7) for every s € {—,+}* and
every n > 0. Therefore, I is *+~ preserved for W* for every s € {—, +}*. Lemma 6.8
now implies that for every s € {—,+}*, there exists a function fws : D(W#) —» T
such that for every (&,2%) € XZ(W?*) and every y1, 12 € Y (W*), we have

ﬁyhzs,WS (i') = fWS (i'ayl - y2) ) ﬁyz,ZS,WS (i‘)

By studying the relations between D(W) and fw on one hand and D(W?#) and fws
on the other hand, we can deduce restrictions on fW which will allow us to extend
it to a pseudo-quadratic function.

The following proposition shows how D(W ™) and fy,— are related to D(W) and
fW in the case where [ is *~ preserved for W.

Proposition 6.5. If I1 is x~ preserved for W, we have:
1. DW™) ={(@, 91 +v2) : (&,91), (£, 12) € D(W)}.
2. For every & € Gy and every y1,y2 € Ga satisfying (Z,y1), (Z,y2) € D(W), we

have

A A~

fir- @y + 1) = fw(@.01) - fwr(2,2).
Proof. See Appendix 6.5.3. O

Corollary 6.1. If Iy is «~ preserved for W, then D(W) cC D(W?) and fiy- (Z,y) =
fw (&, y) for every (z,y) € D(W), i.e., fyy— is an extension of fy .

Proof. Let (z,y) € D(W). There exists z € Z and y;,y2 € Y?*(W) such that
Y =Y1— Y2, Py1,-(Z) # 0 and py, (Z) # 0. Since y; € Y*(W), we have 0 = y; —y; €

AY?(W). Therefore, we have (&,0) € D(W) and fy(2,0) = Py, (@) =1.

 Pya(2)
Since (2,y) € D(W) and (£,0) € D(W), Proposition 6.5 implies that (Z,y) =

_ The following proposition shows how D(W¥) and fur+ are related to D(W) and
fw in the case where polarization x-preserves I; for W.

Proposition 6.6. If polarization x-preserves Iy for W, we have:
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1. {(‘%1 +i’27y) : ('ﬁlay)v <§:27y) S D(W)} - D(W+)'

2. For every T1,%2 € G1 and every y € Gy satisfying (21,y), (Z2,y) € D(W), we
have

fw @1+ d2,9) = fw (@1,9) - fiw(@2,9).
Proof. See Appendix 6.5.4. O

Corollary 6.2. If polarization x-preserves Iy for W, then D(W) C D(W™) and
fw+(&,y) = fw(z,y) for every (z,y) € D(W), i.e., fyy+ is an extension of fy .

Proof. For every (z,y) € D(W), there exists z € Z and y1,y2 € Y*(W) such that
~z

2z € X (W) and y = y1 — y2. Lemma 6.7 implies that p,, .(Z) # 0 and py, .(&) # 0.

We have:

Dunz(0) = D pya(@)e 270D = 3 T py, o(x) = 1 £ 0.

zeGy el

Similarly, py, -(0) = 1 # 0. Therefore, we have 0 € X*(W) and y € AY*(W). Hence,

(0.y) € DOW) and fiw (0,5) = m —1

y I
Since (#,y) € D(W) and (O,Qy) € D(W), Proposition 6.6 implies that (2,y) =
(+0,y) € DIWT) and fiy+(2,y) = fw (2,9) fw (0,y) = fw (%, y). O

The next proposition gives a necessary condition for the x-preservation of I;:

Proposition 6.7. If polarization x-preserves Iy for W, then fW can be extended to
a pseudo-quadratic function.

Proof. Define the sequence (W,,),>0 of MACs recursively as follows:
o Wy =W.
o W,=W,_,ifn>0is odd.
o W, = W;Zl if n > 0 is even.

For example, we have Wi = W=, Wy = WD), Wy = w2, wy, = w+—1)

It follows from Corollaries 6.1 and 6.2 that:

e The sequence of sets (D(W,)) _ is increasing.

n>0
e fy, is an extension of fy for every n > 0.

Since (D<Wn>)n20
that for every n > ng we have D(W,,) = D(W,,) for all n > ng. We may assume
without loss of generality that ng is even. Define the following sets:

is increasing and since G1 x (G2 is finite, there exists ng > 0 such

L f{l = {i' € Gl : 31/ € G27 (i'vy) € D(Wno)}

e For every & € Hy, let HY = {y € Go: (2,y) € D(Wy,)}.
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e Hy = {y € Gy : dz € Gy, (ﬁ;,y) S D<Wn0)}-
e For every y € Hy, let HY = {2 € Gy : (&,y) € D(Wy,)}.
We have the following:

e For every fixed y € Ho, let 1,39 € fIiy so that (21,y), (Z2,y) € D(Wy,) C
D(Wyy+1). It follows from Proposition 6.6 that (&1 + Z2,y) € D(W;;H) =
D(Why+2) = D(W,,,) which implies that 2, +22 € fI‘qf Hence Iﬁ/ is a subgroup
of (G1,+). Moreover, we have:

s . N (a) 2 N N 2 N N
fwiy (31 + 32,y) = fmg0+20t1+-m2,y)==fﬁqz+ltv1+-x2,y)

D) ) . N .
o IWog i1 (B1,9) + [y (E2, ) © fwog (B1:9) - fwy (22, 9),

where (a) and (c) follow from corollaries 6.1 and 6.2 and (b) follows from
Proposition 6.6. Therefore the mapping & — fw,, (Z,y) is a group homomor-

phism from (H?,+) to (T, ).

e For every fixed & € Hy, let yy,yo € HE so that (&,1), (&, y2) € D(Why,). It
follows from Proposition 6.5 that (&, y1+y2) € D(W;,)) = D(Wyg41) = D(Why,)
which implies that y; +y2 € H5. Hence Hj is a subgroup of (G2, +). Moreover,
we have

; ; (@) 2 . ; .

anO (& 91 +12) = an0+1 (Z,y1 +y2) = fW;o (Z,91 +y2)
® 2 A ; .
= Wi (&,91) - fi, (2, 92),

where (a) follows from corollary 6.1 and (b) follows from Proposition 6.5.
Therefore the mapping y — fw,, (%,y) is a group homomorphism from (H. 2 4)
to (T,-).

We conclude that anO (which is an extension of fw) is pseudo-quadratic. Ol

Proposition 6.7 shows that if polarization x-preserves I; for W then W must be
polarization compatible with respect to the first user.

6.3.2 Polarization Compatibility is Sufficient

For the sake of brevity, we will write “polarization compatible” to denote “polar-
ization compatible with respect to the first user”. In this subsection, we show that
polarization compatibility is a sufficient condition for the s-preservation of I;.

Lemma 6.9. If W : Gy x Go — Z is polarization compatible then 11 is preserved
for W.

Proof. Let F: D — T be the pseudo-quadratic function of Definition 6.7. Suppose
that y1,y2, 9], v5 € G2 and 21, 29 € Z satisfy:

o Y1 — Y2 =Y — Y
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e y1,y) € Y (W) and y2,y) € Y2(W).
For every & € G1, we have:
o If (&,21) ¢ XZ(W) then py, -, (&) = 0 and py; ., () =0, so

Dyrz1 ()Dys 20 (8)" = Dy 2, (8)Byy 2y (£)" = 0.
o If (& 22) ¢ XZ(W) then py, -, (&) = 0 and pyy ., (%) = 0, so

Dyso1 (2)Pyo 20 (£) = Dyt 2, (2)Dyy 2, (2)" = 0.
o If (#,2) € XZ(W) and (&, 22) € XZ(W), then

Pyron (2)Dyo 20 (£) = By 20 (B)F (2,91 — Y1)Pyy 2, (2) " F (2, 92 — 43)"
(@) . AN A o\

= py’l,z1 ('T)py/g,ZQ (l‘) )

where (a) follows from the fact that y; — ¢} = y2 — ¥4 and so

F(&,y1 —y)F(&,y2 — y)* = |F(&,51 —y)|* = 1.

Therefore, we have Py, 2, (2)Py,,2 ()" = Py -, (£)Dyy -, (2)" for all & € G1. Lemma
6.5 now implies that [ is preserved for W. O

Lemma 6.10. If W : G1 x Gy — Z is polarization compatible then W~ and W
are polarization compatible as well.

Proof. See Appendix 6.5.5. Ol

Proposition 6.8. If W is polarization compatible then polarization x-preserves I
for W.

Proof. Suppose that W is polarization compatible. Using Lemma 6.10, we can show
by induction that W*# is polarization compatible for every s € {—,+}*. Lemma 6.9
now implies that I; is preserved for W*# for every s € {—, +}*. By applying Lemma
6.1, we deduce that polarization s-preserves I, for W. ]

Propositions 6.7 and 6.8 show that polarization #-preserves I; for W if and only
if W is polarization compatible. This completes the proof of Theorem 6.1.

6.3.3 Special Cases

The characterization found in Theorem 6.1 (i.e., polarization compatibility) takes a
simple form in the special case where G| = G2 = F, for a prime g¢:

Proposition 6.9. Let W : F, x F, — Z be a two-user MAC and let (X,Y) v,
Z. Polarization x-preserves Iy for W if and only if there exists a € Fy such that
I(X+aY;Y|Z)=0.
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Proof. If polarization x-preserves I1 for W then W is polarization compatible. Let
F : D — T be the pseudo-quadratic function of Definition 6.7. We have the follow-
ing:

o If there exists (Z,y) € D such that & # 0 and y # 0 then D = F, x F, since D
is a pseudo-quadratic domain and since ¢ is prime.

e If for all (#,y) € D we have either & = 0 or y = 0, then F(Z,y) = 1 for every
(#,y) € D. Hence the mapping F’ : F, x F; — T defined as F'(Z,y) = 1 is an
extension of F' which preserves the pseudo-quadratic property.

Therefore, we can assume without loss of generality that D = F, x F,. Now since
F(1,1)? = F(l,q-1) = F(1,0) = 1, F(1,1) is a ¢"" root of unity. Therefore, there
exists a € F, such that F(1,1) = 2.

Fix z € Z and yi,y2 € Y*(W). For every & € F, we have

~ A R N . R R iowa W1=y2)®
Dy 2(8) = Pys 2(2) - F(2,91 — Y2) = Pyp 2(2) - )77 70,
which is equivalent to say that for every 2’/ € F,, we have
py172($/) = py27z(x/ +a(y1 — y2)),
ie.,
Pxy,z(2'ly1, 2) = Pxjy,z(z' + alyr — y2)|y2, 2). (6.6)

By applying the change of variable #’ = x — ay;, we can see that (6.6) is equivalent
to

x — ayily1, z) = Pxjy,z(2'|y1, 2)

&+ alyr — y2)ly2, 2)

T —ayr +a(yr — y2)|y2, 2)

T —ay2|y2, 2) = Pxiay|y,z(T|ye, 2).

Pxtaviv,z(®|y1,2) = Px|y,z
= Px|y,z

= Px|y,z

o~ o~ o~ o~

= Pxv,z

This shows that X + aY is conditionally independent of Y given Z, i.e., I(X +
aY;Y|Z) =0.

On the other hand, let W : F; x F; — Z be a two-user MAC and let (X,Y) v,
Z. If there exists a € Fy such that I(X +aY;Y|Z) = 0, then Proposition 6.3 implies
that polarization x-preserves I; for W. O

Corollary 6.3. Polarization x-preserves the symmetric-capacity region for the bi-
nary adder channel.

Proof. Let X and Y be two independent uniform random variables in {0,1}, and
let Z=X+Y €{0,1,2} (where + here denotes addition in R). It is easy to check
that I(X @ Y;Y|Z) = (X & Y; X|Z) = 0. Therefore, polarization *-preserves I
and I» for W. We conclude that polarization x-preserves the symmetric-capacity
region for W. O

Remark 6.3. It may seem promising to try to generalize Proposition 6.9 to the case
where G1 = Flg and Gy = Fé by considering the condition [(X + AY;Y|Z) =0 for
some matriz A € F';Xl. Although this condition is sufficient for the x-preservation
of Iy (Proposition 6.3), it turns out that it is not necessary.
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Proposition 6.10. If |G1| and |G| are co-prime and (X,Y) v, Z, then polar-
ization x-preserves Iy for W if and only if [(X;Y|Z) = 0 (i.e., if and only if the
dominant face of J(W) is a single point).

Proof. Let F : D — T be a pseudo-quadratic function. For every (&,y) € D, we
have:

Therefore, F(#,y) is both a |G1|"" root of unity and a |Ga|*" root of unity. This
shows that F(Z,y) must be equal to 1 because |G| and |Ga| are co-prime. We
conclude that every pseudo-quadratic function F : D — T must be equal to 1.
Therefore, polarization s-preserves I; for W if and only if py, .(2) = Py, .(2) for
every (Z,z) € XZ(W) and every y1,y2 € Y*(W).

Now since py, - (&) = Py,,-(Z) = 0 for every & ¢ X*(W) and every y1,y2 € Y*(W),
we conclude that polarization s-preserves I; for W if and only if p,, .(Z) = Py, -(Z)
for every (Z,z) € G1 x Z and every y1,y2 € Y?(W). This is equivalent to say that
Pyr,2(T) = Dyo,-(x) for every (x,2) € G1 x Z and every y1,y2 € Y*(W). This just
means that X and Y are conditionally independent given Z. OJ

6.4 Generalization to Multiple User MACs

Definition 6.11. Let W : Gy X - - - X Gy — Z be an m-user MAC. For every S C
{1,...,m}, we define the two-user MAC Wg : Gg X Gge — Z as Ws(y|rg, xge) =
W(ylz1,. .., Tm)-

Remark 6.4. It is easy to see that for every s € {—,+}* and every S C {1,...,m},
we have (W#)g = (Wg)®. Therefore, polarization x-preserves Is for W if and only
if polarization x-preserves Iy for Wyg.

Theorem 6.2. Let W : G1 X --- x G, — Z be an m-user MAC. Polarization
x-preserves Ig for W if and only if Wg is polarization compatible.

Proof. Direct corollary of Theorem 6.1 and Remark 6.4. O

6.5 Appendix

6.5.1 Proof of Proposition 6.4

We need the following lemma:

Lemma 6.11. Let (G,+) be an Abelian group and let f:G = T be a group
homomorphism from (G,+) to (T,-). There exists vy € G satisfying:

° f(:%) = eI2m&21) for every & € G.

e [fn >0 is such that f(i)” =1 for every & € G, then nzy = 0.
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Proof. Let Ni,..., N > 0 be k integers such that G = Zy, x --- x Zy,. For
every 1 <i <k, let ¢; = (0,...,0,1,0,...,0) € G be the element of G whose j*
coordinate is 1 if j =4 and 0 otherwise.

Since Nie; = 0, we have f(e;)Vi = f(Nse;) = f(0) = 1. Therefore, f(e;) is an

j2mx;

N root of unity, so there exists 0 < x; < N; such that f(e;) =e ™ .
Let x¢ := (x1,...,2%) € G. For every & = (Z1,...2}) € G we have:

k J2ma;x,

k k k oma; T ‘ X
f@) =7 ( xe) =TI/ =] (e“ﬁ) =X TN = ),

i=1 i=1
N j2mnz; N

If n > 0 is such that f(&)" =1 for every & € G, then e M = f(e;)" =1 for
every 1 < ¢ < k. This means that NN, divides nx; for every 1 <+ < k. Therefore,

nz s = (nzp mod Ny, ..., nx, mod Ni) = 0.

Now we are ready to prove Proposition 6.4.

Since we have shown the necessary condition in the discussion before the state-
ment of Proposition 6.4, we only need to show the sufficient condition.

Let W : G1 x Go — Z be a two-user MAC, and assume that there exists a
subgroup Hs of G and a pseudo-quadratic function F : G; x Hy — T satisfying:

° D(W) C G1 x Hs.

A~

e For every (&, z)

€ XZ(W) and every y1,y2 € Y*(W), we have py, .(2) =
F(&,y1 — y2)Py, »(2).

Since (Ha, +) is an Abelian group, it is isomorphic to the product of cyclic groups.
Let Ni,..., N, >0 be k' integers such that Hy is isomorphic to Zy; x -+ X ZN;;/'

Because of this isomorphism, we can find &’ elements €/, ..., €}, € Hy such that:

e ¢! is of order N/ for every 1 <i < k.

e For every y € Hy, there exist unique integers 0 < y; < N7y, ..., 0 < yp < N,
k/
such that y = Z yiel.
i=1

For every 1 < i < K/, the mapping & — F(Z,e}) is a group homomorphism
from (G1,4+) to (T,:). Lemma 6.11 shows that there exists f; € G such that
F(z,€}) = e2m&.i) for every & € Gi. Moreover, for every 1 < i < K/, we have
F(i,e)Ni = F(i&,Nle)) = F(2,0) = 1 for every & € G, hence N!f; = 0.

k/
For every y € Hy, define f(y) = Zyifi, where 0 <y; < N{, ..., 0 <y < N,,
i=1
k_/
satisfy y = Z yiei. We can show that f is a group homomorphism from (Hs, +) to
i=1
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(G1,+): Let y, y € Hy and let 0 <yiL,y,y <N{, ..., 0 < yw,yp, vy < N be
kl
such that y = Zyzel, y = Zy and y + ¢ = Zy” ’. We have:
=1
k’l () k/
a
O=y+y —y—y =Y W —vi—v)ei = > (U] — v — v mod N))e},
=1 i=1

where (a) follows from the fact that €] is of order N/. Thus, y! = y; + v, mod N/ for
every 1 < i < k’. Therefore,

fly+y) ny@ )Zyﬂry@fz—(Zysz) <Zy1f1>— + 1),
=1

where (b) follows from the fact that N/f; = 0 and y; = y; + y; mod N] for every
1 <i < k. We conclude that f is a group homomorphism from (Hs, +) to (G1,+).
On the other hand, for every & € Gy, we have:

F(z,y) = F (az iyie;) = ﬁF (2,e))" = ﬁ (eﬂ”@’fﬁ)yi
=1 =1 =1
_ S g _ g2 (B vih) _ i sw)
Let z € Z and y1,y2 € Y?(W). For every & € G, we have:
o If & ¢ X°(W), we have py, .(2) = py,..(2) = 0, hence

pyl ( ) pyz ( ) 72m{@.f (1 =v2))

o If 7 € XZ(W), we have
Dy1,2(E) = Pyo 2 (2)F (T, 51 — y2) = Dyo.-(2 )eﬂﬂ( Z,f(y1—v2))

We conclude that

Dy 2 (8) = Py ()27 @S 017020 i € @y
s pyl,Z(x) = pyz,z(x + f(y1 - yQ)) Ve € G.

Lemma 6.4 now shows that W is homomorphic-independent.

6.5.2 Proof of Lemma 6.6
We need the following two lemmas:

Lemma 6.12. Suppose that I is x~ preserved for W. Fizn > 0 and let (U;, V;)o<i<on
be a sequence of random pairs which are independent and uniformly distributed in

G1 X GQ. Let
11
F= [0 1] '

Define X3t = F® . U2t and Y271 = FE . V'L and for each 0 < i < 2" let
(X3, Y)) W, Zi. We have the following:
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e The MAC (Uy, Vp) — Zgn_l is equivalent to W™

o I(Uy; V" HZ¥ V) =o.

Proof. We will show the lemma by induction on n > 0. For n = 1, the claim
follows from Remark 6.1 and from the fact that I; is preserved for W if and only if

1(Uo; Vi| ZoZ1 Vi) = 0 (see (6.1)).

Now let n > 1 and suppose that the claim is true for n — 1. Let N = 2"~1. We
have X7 1= F" . U2t and Y2 ' = FO .V e, XPN T = pon L Nt

and YV~ = Fer . V2NTL Therefore, we have:

X(])Vfl — p®n-1) (Ué\ffl + U]2VN71)’
X]2VN—1 — F®(r-1) U]2VN—1’

YON—I _ F®(n—1) . (‘/E)N_l + V]%N—l)’

and
erN— n— VQN—l
N = F®( RE N :

This means that
(UéV—l i UJQVN_l’VoN_l i VJ%N—I’ Zé\f—l)

and
(UJ2\7N_17 V]\2[N—1’ Z]2VN_1)

satisfy the conditions of the induction hypothesis. Therefore,
o I(Uo+Un; VN '+ VAT ZY Vo + Viv) = 0.
o I(Un; VRETHZ 1 Vi) = 0.

Moreover, since
N—1 2N—-1 1,N—1 2N—-1 N—-1
Uy +Uy Vo +Vy 40 7)

is independent of
(U]2VN—17 V]\2[N—1’ ZIQVN—I)’

we can combine the above two equations to get:
I(Uo + Un, Uns V¥ + VI VAT ZEY Vo + Vv, Viv) = 0,
which can be rewritten as
H(UUn; VN VR ZEN Vo Vi) = 0.
On the other hand, it also follows from the induction hypothesis that:
e The MAC (Uy+Un, Vo + VN) — Zév_l is equivalent to W—1",

e The MAC (Uy, Vy) — Z3 ! is equivalent to =1~

(6.7)
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This implies that the MAC (Up, Vo) — Z3V ! is equivalent to W™, Now since
I is = preserved for W, I} must be preserved for W1~ Therefore,

@,

I(Uo; V| 22N Wh) = I(Up; Viv| 25 1 23N 1) = (6.8)

where (a) follows from (6.1). We conclude that:
I(U; V25N 1Vo) = 1(Uo; Vvl 2571 V0) + 1(Uo; Vi VT 257 Vo Viy)

< I(Uo; V| ZgN~Wo) + LU UnN; VN VRN ZEN Vo Viv)
®)

0,
where (b) follows from (6.7) and (6.8). O
an 1 ‘
Lemma 6.13. For every n > 0, if X2 ' = F®”U5n*1, then Uy = Z (=Dl x;,
=0

where |i|y is the number of ones in the binary expansion of i.

Proof. We will show the lemma by induction on n > 0. For n = 1, the fact that

X& = F®L. UO1 = F- U(} implies that Xg = Uy + Uy and X7 = U;y. Therefore
1
Up=Xo— X1 =) (-1)hX,
i=0
Now let n > 1 and suppose that the claim is true for n — 1. Let N = 2"~!. The
fact that Xngl = [on. U(?N*l implies that:

° X(])V*]. — F@(n—l) . (Ué\/vf]. + UJQ\[N*].).

° X]QVN—I _ F®(n71) . U]2\7N_1-

We can apply the induction hypothesis to get:

N—-1
o Uy+Un = Z(—l)'ilei.
=0

N—

Z Dl X,y

Therefore,
N-1 N-1 A N-1 A
Uy = Z | i x, — Z \ iy x. N = Z(_l)lllei + Z(_l)lﬂl\bXHN

i=0 i=0 i=0
N-1 2N-1 N— 2N—1

:Z |\bX+Z 1)MH=Nb x; gz \le+Z 1)l x;
=0 =
2N-1

— (=1)lh x;,
i=0

where (a) follows from the fact that for 2" = N < i < 2N = 2""1 we have
li— Nlp=i —2"|p = |i]p — 1. O
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We are now ready to prove Lemma 6.6:
Let W be a two-user MAC such that I; is *~ preserved for W. Let n > 0,
Yly ooy Y2n, Yis -, Yo € Ga and 21, ..., 29n € Z be such that

2" 2"
DTS

i=1 i=1
o y1 € YH(W),...,ysn € Y?2" (W), and

o Yy e YH(W),...,yhn € Y2 (W).

Now fix 2 € Gy. If p, (&) = 0 for every (y,z) € YZ(W), then we clearly have

2’I’L 271
Hﬁyi,zi ('@) - H ﬁyg,zi (‘%)
=1 i=1

Therefore, we can assume without loss of generality that there exists (y,z) €
YZ(W) which satisfies p, (&) # 0.
2n+1_1 27L+1_1 2n+1_1 2n+1_1 2n+1_1 .
Let Uj A » X)) Y, and Z; be as in Lemma 6.12 and
let N = 2"t 50 that we have

I(Uo; VN ZN V) = 0. (6.9)

Since X't = FEOHD. Nt and YV = FEOHD. YN Temma 6.13 implies
that

N— N-1 ‘
Z DX and Vg =Y (-1)y;. (6.10)
i=0 =0

Notice that {0 <i< N =2"""": |i|, = 0mod 2}} = ‘{0 <i< N =2l
lilp, = 1 mod 2} = 2" Let ki,...,kon be the elements of {O <i< N: il =
0 mod 2} and let ly,..., Iy be the elements of {0 <i < N : |i|, =1 mod 2}.

Define (9;, 9., Zi)o<i<n as follows:

e Tor every 1 <i < 2" let g, = yi, Uj,, = y; and Z, = 2.

e For every 1 <4 < 2" let g, = g{i =y and Z;, = z (where (y, z) is any fixed
pair in YZ(W) satisfying p, .(Z) # 0).

Now let 95~ = (FEM+D)=1. gN=1 and V=1 = (FOO+1) =1 !N =1 We have

( )N 2" 2"
B0 = D (=1)gs =D (5 — ) = (Z ) —2"y

72 1712" N—
i=1 i= 1 z:0
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27’1,
where (a) and (c) follow from Lemma 6.13. (b) follows from the fact that Z Y =
=1
2m '
Z yi. Therefore,
i=1
(60’5(])\771) (Y)a ~éV 1)' (611)
On the other hand, since ; € Y* (W) for every 0 < i < N, we have
Py vt gv-1(T0,07 1, 2 1) = Pyno1 v (g F) )
Y (6.12)
YN IZN 1(y0 y 20 )>0.
Similarly, since g} € YZi (W) for every 0 < i < N, we have
PVO,VN 1 zN- 1(6677~/1N 1’§(J)\7 1) PVN LNt (véN 1’26\] 1) (6.13)

YN IZN 1(:&6]\[ 1,~[])V 1) > 0.

Equation (6.9) implies that given (Vp, Zév ~1), Uy is conditionally independent of

V=1, Equations (6.11), (6.12) and (6.13) now imply that for every uy € G1, we
have:
PU |VN71 Voyszl(uO”lN){V 60’5(1)\7 1) PU ‘VN 1 Vo, ZN 1(U0"Ul -1 176,5(])\[ 1)

= P |VN 1ZN 1(U0|UO -1 Z(J]V 1) PU0|VN 1ZN 1(U0|U0 1,~(])V 1)

= P |YN 1ZN 1(U0|y0 -1 2(]]V 1) PU0|YN 1ZN 1(u0|y/N 1,2(]]\[ 1)

(@ N-1 N—-1

= > 11 Pxviz Gilgi, ) = > 11 Px.vi.z (Eildi, 2)

iy leal: =0 iy teay: =0
S5 ()b zi=uo I (D) di=uo

4 >
a:{v GG]lV:
n
Z?:l Zi

N
=2 iman 41 Ti=Uo

pr“ 2 (i) H pyz ;)

1=2"+1

H pyz xz

1=2"41

- Z pr 2 (7)
=V eGl:

2321 xi_zz{iznﬂ Ti=uo
(6.14)

where (a) follows from (6.10) and (b) follows from the following change of variables:

o

B, if1<i<on

# ifon << ontl = N,

i—2M

Now notice that the left hand side of (6.14) is the convolution of (py, ., )i<i<on

with 2" copies of p, . (where we define p, .(x)

= py,.(—x)). Likewise, the right hand
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side of (6.14) is the convolution of (pyg’zi)lgiggn with 2" copies of p, .. By applying
the DFT on (6.14), we get:

on N an N
[Ipsci0) T buetiao) =[] by ta0) T Buslio), Vao € G
i=1 i=2n41 i=1 i=2n41
In particular,
2n N on N
Hl’ayi,zz- (2) H Dy,(2)" = Hﬁywi (@) H Dy,=(2)"
i=1 i=2n41 i=1 i=2n41

Now since py (&) # 0, we conclude that

271 2’n
[T 50, @) =[] Byr.-: ()
=1 1=1

6.5.3 Proof of Proposition 6.5

We need the following lemmas.

Lemma 6.14. For every two-user MAC W : Gy x Go — Z and every z1,z3 € Z,
we have:

YR (W) = YH(W) = Y2(W) = {y1 —y2: 31 € Y1 (W), 92 € Y2(W)}.

Proof. Let Uy, Uy, Vi, Va, X1, Xo, Y1, Y5, Z1, Z5 be as in Remark 6.1. For every vy €
G9 and every z1, 20 € Z, we have:

Py,21,2,(v1, 21, 22) = Z Py, ¥2,21,2: (Y1, Y2, 21, 22)

y1,y2€G2:
V1=Y1—Y2

= Z PYl,Zl(ylvZl)PYQ,ZQ(Z/QaZQ)'

y1,y2€G2:
V1=Y1—Y2

Therefore, v € Y(zl’ZZ)(W_) if and only if there exist y1,y2 € G2 such that y; €
Y*H(W), y2 € Y?2(W) and v1 = y1 — y2. Hence,

Y2 (W) = {y1 — 20 g1 €YW), 90 € Y2(W)}.
L]

Lemma 6.15. Let Uy,Us, Vi, Vo, X1, X0, Y1,Yo, Z1,Zs be as in Remark 6.1. For
every z1,29 € Z, every vy € Y(Zl’ZQ)(W*) and every iy € G1, we have:

5 N Py, |7, (v1 + v2|21) Py, 7, (va22) SN s
Doy (21,22),W (a1) = § 1| 1P s gzz) Dot va,z1 (1) * Dug,zo (1) (615)
vweEY?2(W): Vi1Z1,22 V1|71, 22

v+ €Y*1L(W)



162 Fourier Analysis of MAC Polarization

Proof. Fix 21,29 € Z and v € Y(zl’ZQ)(W*), and let 8 = PVI‘Zl,ZQ(Ul‘Zl,ZQ) > 0.
For every u; € G1, we have:

pv1,(z1,22)7W7 (ul)

1
= Pyy\vi, 2,7 (uave, 21, 22) = BPUl,Vl\Zl,ZQ(Uh 1|21, 22)

1 Z
= 5 PU17U27V1,V2|Z1’Z2(U17u27v].71}2|Z].722)

u2€G1,
v2€G2

1
== Y Px, xyvive170,7 (U1 + U, ug, v1 + vz, 0221, 22)

u2€G,
v2€G2

1
=2 Z Z Py, vi|z, (u1 + ug, v1 + v2]21) Px, vy| 7, (U2, v2]22)
5 K%
2€G2 u2€Gy

g g Px, vz, (U1 + u2, v1 + v2|21) Px, vy 2, (u2, v2|22)
UQEYZ2(W)I u2€G
v1+v2€Y*1 (W)

1
== Z Py, 1z, (v1 + v2|21) Pyy| 7, (v2] 22) Z Dot s,z (U1 + U2) Doy 2 (U2)
’UQEYZQ(W): us€G1
v1+v2€YAL(W)
1 .
== D Pyyz(v1+ v221) Py, (02]22) Dy tommn * Busza) (1),
v2€Y?2(W):
v1+v2€Y A1 (W)

IS

where we define Py, 2, () = Pyy,z(—2) for every x € G;. Therefore, for every
11 € G1, we have:

ﬁvl,(zl,zz),W* (ul) =

. > Py, |z, (01 + v2|21) Py, 2, (v2]22) (81) oy o0 (01)"
PVﬂZl,ZQ(Ul‘ZlaZQ) DPovi4v9,20 \UL) * Pug,zo(UL) -

va€Y?2(W):
v1t+va €Y1 (W)

Lemma 6.16. If Iy is x~ preserved for W, then

DW™) C{(&,y1 +y2): (&,51),(2,y2) € D(W)}.

Proof. Let Uy, U, Vi, Vo, X1, Xo,Y1,Y2, Z1, Z be as in Remark 6.1. Let (u1,v1) €
D(W ™). There exists 2~ = (21, 22) € Z2 such that (4y,v1) € D* (W), i.e., 41 €

2

X° (W~) and v; € AY? (W~). This implies the existence of v},v? € Y* (W)

such that v; = v] —vf. Since 4y € X (W7), Lemma 6.7 shows that p,; .- w- (1) #
0 and P,y .- w- (1) # 0. From (6.15), we have:

. . Py, |7, (V] + v5|21) Py, 2, (vh]22) o o
pvll,z_J/V— (ul) = Z P / pvi.’.vé,zl (’U,1> .p’Ué,ZQ(ul) .
vhEYZ2(W): V11Z1,Z2 (v1]z1, 22)

v+ €YW)
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Since 13@1727’W7 (41) # 0, the terms in the above sum cannot all be zero. There-
fore, there exists vy € Y*2(W) such that vy + vy € Y*' (W), Py ., (1) # 0 and
Dup,zp (1) # 0. Similarly, since pyy .- w- (1) # 0, there exists vy € Y*(W) such
that v + vy € Y1 (W), Py yoy 2 (1) # 0 and pyy ., (1) # 0. Therefore, we have

2

~Z1

o 4 € X (W) (because Pyt (41) # 0).

o v + v — v = (v] +vh) — (v] +0vY) € AY*(W).

A Zo

e 43 € X (W) (because pyy ., (11) # 0).
o v —vh € AY?(W).

We can now see that (i1, v, + v) —vy) € D*(W) C D(W) and (a1, — vh) €
D* (W) c D(W). By noticing that v1 = (vy +vh —v)) + (v) —v}), we conclude that:

D(W_) C {(i‘vyl +y2) : (j7y1)a (£7y2) € D(W)}

Now we are ready to prove Proposition 6.5.

Let W be a two-user MAC such that I is *~ preserved for W. Let Uy, Us, V1, Vb,
X1,X9,Y1,Y5, 71, Z5 be as in Remark 6.1.

1. Let & € G and y1,y2 € G2 be such that (Z,y1), (Z,y2) € D(W).A;[‘here exist
21,20 € Z, 94,y € YA(W) and b, 94 € Y*2(W) such that 2 € X (W), & €
XZ2W), y1 =, —y and y3 = v}, — y4. Lemma 6.7 implies that Dyt 2 (2) # 0,
Dyt 21 (z) # 0, Dy 2 (z) # 0 and Dy 2 (z) # 0. Now from Lemma 6.14 we get
v — vy € Y= (W) and g — gy € YU (W),

For every vg € Y**(W) satisfying y] — v4 + va € Y* (W), we have:

>

ﬁyi—yé'-i-vmzq (2) Dug,zo (%)

Byt 0 (2) v (2,02 = y5) - Dy 2o (2)" v (2,02 — 95)™ (6.16)

—

a) AN A ~
= py’l,zl (x)pyé’,zg (IL‘)*,

N

where (a) follows from the fact that fy (&, vs — 4) € T, which means that

~

f (@, 9 — ) fv (&, v2 — ¥8)* = | fv (&, v2 — y5)[> = 1.
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Let 2= = (21, 22) € Z2. From (6.15), we have:

Dy —yy = w—(2)
_ 3 Prijz, (1 — vz +v221) Py iz, (val22) (5) - foy o (8"
v €Y #2(W): Py 12,2, (W1 —v3lz1, 22) P vt s Prazs

Y1 —ys Hu2€YL (W)

(a) Py 12, (y1 — vy + va|21) Pyy| 2, (va]22) . ()P0 (2)"

ety PonzWh = vhlan,z) e R
Y~y Fv2 €Y1 (W)
D S e

€Y7 (W): Vi121.2, (Y1 — Y321, 22)

Y1 Yy Hv2€YFL(W)
= Dy} 21 (8)Dyy 2, (£)" # 0,

where (a) follows from (6.16). This shows that & € X (W~). Now since
Y —ys € Y? (W7)and yf —yy € Y* (W7), we have (v —y3) — (] —v3) €
AY?* (W™). Therefore,
(91 +u2) = (Z, 91 — 91 +y2 — ) = (&, (h —v2) — (¥ —v2)) € DW™).
Hence, {(2,y1 +y2) : (&,31), (2,42) € D(W)} C D(W™). We conclude that
DW™) = {(Z,y1 +v2) : (&), (&,y2) € D(W)}
since the other inclusion was shown in Lemma 6.16.

2. Let &, y1,y2 be such that (z,y1), (£, yg) € D(W). Define y1,y{, v, y5, 21, 22, 2~
as in 1). We have shown that p,; _» .~ w—(2) = Py ., (2)Pyy ., (2)". Similarly,
we can show that pyy s .- w-(Z ) py,, 21 (2)Dy; 2, (2)". Therefore,

Jw- (@ +y2) = f- (@91 — 9yl +vh —yh) = fW, (&, (1 —v5) — (Wi — b))
. ﬁyl yg: _7W_ (i.) pylvzl( ) ( )* . fW(i.7 yl)
ﬁyl _y27277W7 (i.> 1a21( ) ( ) AI/I/(‘/fj7:y2)*

@ fw({i‘,yl) . fW(£7y2)7

A~

where (a) follows from the fact that fiy (Z,y2) - fw (&, y2)* = | fw (&, y2)|2 = 1.

6.5.4 Proof of Proposition 6.6
We need the following lemmas.

Lemma 6.17. For every y1,ys € Go and every z1,z9 € Z, we have:

o If (y1,21) ¢ YZ(W) or (y2,22) & YZ(W), then (y2, (21,22, u1,y1 — y2)) ¢
YZ(WT) for every uy € Gi.

o If (y1,21) € YZ(W) and (y2,22) € YZ(W), there exists uy € G1 such that
(92, (217 22,U1,Y1 — y2)) c YZ(W+)



6.5. Appendix 165

Proof. Let Uy,Us, Vi, Vo, X1, Xo,Y1,Ys, Z1, Z5 be as in Remark 6.1. For every u; €
G, every y1,y2 € Go and every z1, zo € Z, we have:

Py, 2,750, i (Y2, 21, 22,u1, Y1 — Y2)

= E Puy vy, 7:0,20,01,v1 (U2, Y2, 21, 22, U1, Y1 — Y2)
uz€G1

= Z Px, x5,v1,Y2,21,25 (w1 + uz,u2,y1, Y2, 21, 22)
use€G1

= § Px, vi,z, (w1 +u2, 91, 21) - Pxy.v5,2, (U2, Y2, 22).
uz€G

Therefore, we have:
o If (y1,21) ¢ YZ(W) or (y2,22) ¢ YZ(W), then for all uj,us € Gy, we
have Px, v,z (u1 + u2,y1,21) < Pyvy .z, (y1,21) = 0 or Px, v, 7, (u2, 92, 22) <

Py, 7,(y2, z2) = 0, which means that Py, 7z, 7z, v, v, (Y2, 21, 22,41, y1 — y2) = 0.
Hence (yg, (21,22, u1,y1 — yg)) ¢ YZ(W™) for every u; € Gy.

o If (y1,21) € YZ(W) and (y2,22) € YZ(W), then Py, z (y1,21) > 0 and
Py, 7,(y2,22) > 0. This means that there exist 1,22 € Gy such that

Px, vi,z:(x1,91,21) > 0
and

Px, vy, 7, (22,92, 22) > 0.
Let up = 21 — 29 and us = 9. We have

Px, vi,z, (u1 +u2,y1, 21) - Pxy,vs,2, (U2, Y2, 22) > 0,
which implies that Py, 7, z, v, vi (Y2, 21, 22, u1, Y1 — y2) > 0 hence
(yz’ (21,22, u1, Y1 — y2)) € YZ(W™).
O

Lemma 6.18. Let Uy,Us, Vi, Vo, X1, X0, Y1,Yo, 21, Z> be as in Remark 6.1. For
every (vg, (21,22, u1,v1)) € YZ(W™), we have:

N ) _ ﬁv1+02721 (12/2) 'ﬁv2,22 (ﬂg — a/2)ej27r(ﬁ’2,u1>

p +(u2) =
va,(z1,22,u1,01),W ( ) ]Glya(ul,zl,zz,m,vz)
2

. (6.17)

where O[(Ul, 21,22, V1, /UQ) = PU1|Z1,ZQ,V1,V2 (U1|Zl, z2, 01, UQ)‘
Proof. For every (Ug, (21, 22, ul,vl)) € YZ(W™) and every us € Go, we have:

Pug(21,22,u1,01),W+ (u2) = PU2|V27Z17Z27U1,V1 (u2|1)2, ?1, %2, U1, vl)
Py, vy120,20 v va (W, w2| 21, 22, 01, 02)

PU1|Z1,Z2,V1,V2 U1|21,2’2,U1,1)2)
_ PX17X2\Z17ZQ,Y1,Y2(U1 + ug, ualz1, 22, v1 + V2, v2)
N a(ut, 21, 22, V1, v2)
_ PXl\ZhYl (u1 +uglz1,v1 + U2)Px2‘z2,y2 (uz|z2,v2)
- a(ui, 21, 22,1, v2)
_ Pvituazn (ul + u2)pv2,22 (UQ)
a a(u, 21, 22, v1, v2) '
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Therefore, for every i € Go, we have:

T (Poyrvm o (82)927 000 s, (1)

OK(Ul, 21, %22,V1, U?)

Dua,(21,22,u1,01), W+ (2) =

Zﬂ'QEGl ﬁvl+v2721 (al2)€j2ﬂ<%’m>ﬁv2722 (a2 - UIQ)

|G1|a(u1, 21, 22, v1, v2)

ﬁv1+v2,21 (aé) 'ﬁvz,ZQ (ﬂQ - 7:5/2) 6j27r(12’2’u1>
|G la(uy, 21, 22,v1,v2)

ﬁ/QEG1
O

Lemma 6.19. Let (y1,21), (y2,22) € YZ(W) and & € Gy. If there exists up € Gy
such that

Z ﬁy1721 ('&) 'ﬁyz,zz (53 — ﬂ)eﬂﬂ(ﬁ,m) £ 0, (6.18)
ueGq

then we have:

o (y2,27) € YZ(WT), where 2 = (21, 20, u1, y1 — y2).

oot
e 2 X (WT).

Proof. Let Uy, Uz, V1, Vo, X1, Xo, Y1, Y2, Z1, Z5 be as in Remark 6.1. Let v; = y1 —yo
and vo = y9. Notice that the expression in (6.18) is the DFT of the mapping
K : G1 — C defined as

K(l‘) = ‘Gl‘ 'py1,z1(ul +l’) 'py2,z2(x)'

Equation (6.18) shows that K is not zero everywhere which implies that K is not
zero everywhere. Therefore, there exists z € G such that K (z) # 0. We have:

Py, 7., 7,,00, 1 (V2, 21, 22, u1,01) > Py, v, i Ve, 24,2, (U1, 2,91 — Y2, Y2, 21, 22)

= Px, ,Xo,Y1,Ys,21, 25 (U1 + T, 2, Y1, Y2, 21, 22)

= Px, v,z (u1 + ,y1, 21) Px, 5,2, (2, Y2, 22)

= Py, 7z, (1, Zl)py1,z1 (ul +z) - Py, z, (Y2, 22)py2,22 (x)
K(x) (a)
2 \> o

= Py, z,(y1,21) - Pyy, 2, (Y2, 22) -

where (a) follows from the fact that y; € Y**(W), yo € Y?2(W) and K(z) > 0.
We conclude that (vg, (21, 22,u1,v1)) € YZ(W™) and so we can apply (6.17) to
(v2, 21, 22, u1, v1):

) @ pyLZl (12) 'ﬁyz,m (j7 — a) ej27r(a,m> (;2 0
|G| o(ur, 21, 22,01, v2) ’

Doy, (21,22,u1,01), W (l‘
ueGh

where (b) follows from (6.18). Therefore, p,, .+ w+(Z) # 0, where

2t =(

Z1,22,U1,Y1 — ?JZ)

N
Hence 2 € X~ (WT). O
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Now we are ready to prove Proposition 6.6.
Let W be a two-user MAC and assume that polarization x-preserves I for W.
Let Uy, Us, Vi, Vo, X1, Xo,Y1, Y5, Z1, Z5 be as in Remark 6.1.

1. Suppose that &1,29 € G1 and y € Gq satisfy (21,y), (Z2,y) € D(W) and let
& = 21 + 9. There exist z1,20 € Z, y1,y; € Y1 (W) and yo,v5 € Y2(W)
such that

e i1 e X '(W)and y =y, — v,
.

e 1o e X (W) and y =y — yb.
Lemma 6.7 implies that py, », (21) # 0, Py ., (£1) # 0, Dys,zp(22) # 0 and
ﬁyé,zz (1‘2) 7é 0.
Let v1 = y1 — Y2 = ¥} — yh, v2 = y2 and vy = yh. Define the mapping

L:Gy — Cas )

L(ﬂ) = ﬁy1,z1 (ﬂ) ’ ﬁyz,zz (j - ﬂ)
We have: L(#) = Pyt (1) Dyo 2 (£2) # 0. Therefore, the mapping L is not
zero everywhere, which implies that its inverse DF'T is not zero everywhere.
Hence there exists u; € G1 such that:

Z Dyr,z1 () * Pyo,z (& — ﬂ)ej%@’ul) # 0.
ueGh

~ >t
It follows from Lemma 6.19 that (v9, 27) € YZ(WT) and & € X~ (W), where
2t = (21,292,u1,v1). If we can also show that (v}, 27) € YZ(W™) we will be
able to conclude that (#,y) € D(W™) since y = vy —v). We have the following:

e Since (vg,27) € YZ(WT), we have
Py, 70,701 (U1, 21, 22,v1) > Py, 20, 2,0:,v1 (V2, 21, 22, u1,v1) > 0.

Hence,
Py, 2,25, v, (U121, 22,v1) > 0.

e Since y; € Y*(W) and y) € Y*?>(W), we have
Py, 71 7501 (Vb 21, 22,01) = Pyy 7z, va.2, (Y1, 21, Yh, 22) > 0.

Thus,
/
PV2|Z1,Zz,V1 (vg|z1, z2,v1) > 0.

But I; is preserved for W, so we must have I(Uy; Va|Z1Z5V1) = 0. Therefore,

PU1,V2|Z1,Z2,V1 (uh Ul?"zlv 22, Ul)

, (6.19)
= Py, \z,,20,vi (W21, 22,01) - Pigy 2, 2,7 (Va]21, 22,v1) > 0.

We conclude that Py, z, 7,0, v4 (Vh, 21, 22, u1,v1) > 0, L.e., (vh,27) € YZ(WT).
Hence, (Z,y) € D(W™). We conclude that (1 + #2,y) € D(W™) for every
Z1,2Z2 € Gy and every y € Gq satisfying (Z1,y), (Z2,y) € D(W). Therefore,

{(@1+d2,9) ¢ (21,9), (Z2,y) € D(W)} C D(WT).
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2. Suppose that Z1,%9 € Gy and y € Gq satisfy (Z1,y), (Z2,y) € D(W) and let
& = I1 + &2. Let y1,y2, ), Yh, v1,v2,0), 21, 22,27 be defined as in 1) so that

N
Vo, vy € YT (W), y = vo — v} and & € X (WT). Lemma 6.7 implies that
Pyy o+ w+ (&) # 0 and Dupy 2+ W+ (%) # 0. Now since (&,y) = (T,v2 — vh) €
D(W™), we have:
ﬁ’l}Q,(Zl,ZQ,Ul,'Ul),W+ (j;> = ﬁ'ug,er,VV+ (‘%) = fW+ (-%7 y) : ﬁvé,z*,W* ('f)

= fW"" (i‘a y) 'ﬁvé,(zl7z2,u17vl)7w+ (i)
Define F': G; — C and F' : G; — C as follows:

§ : ~\ 527,
pyhzl py2,22(x u)ej ( 1>~
ueGy

§ : A ~N G2,
py17zl py2722 (x - u)ej < 1>‘
ueGy

For every u} € G1, we have:

e If F(u}) # 0 then from Lemma 6.19, we have

(U% (21722,U'17v1)) €YZ(W™) and € X(Zlm ul,vl)(WJr)-

By replacing u; by u} in (6.19), we get (v}, (21,22, u},v1)) € YZ(WT).
Therefore,

ﬁvg,(zl,zz,u’l,vl),W"' ('@) = fW+ (jay) .ﬁvé,(21722,’ll4/17’[)1)7w+ (i‘) (620)
We have:
F(uy)

§ : A ~N G2,
pyhzl pyz,zz (x - u)ej ()
ueGh

a) R R
= ‘G1’ : a(u/1> <1, %2, V1, vz)p’ug,(zl,zg,ull,vl),WJr (ZIL')

() a(uy, 21, 22,01, v2) / IR o 7 .
= o u1:2’1322:’l}1:’l)/2) |G1|a(u17zlaZ27Ul?v2)pvé,(z1,zz,u’1,v1),W+(x)fW‘*'(xvy)

C

~

3" By (@) - By oy (& — )P fi (2, )

(u)
a(ul, 21, z2,v1, v2)
/
(u} et

alu 721722,1}1702)

_ PUl\Z17Z27V17V2 (u1|z1, 22,V1,02) 4

a PUl\Zl,ZQ,VLVz(ul’Zlv227U17U2)
@ 2 .

= fu+ (@, y)F'(uy),

where (a) and (c) follow from (6.17), (b) follows from (6.20) and (d)
follows from the fact that I(Uy; Va|Z1Z2V1) = 0. Therefore, F'(u}) # 0

and F(u}) = fw+(j7y)F’(u’1).

fw+ (@, 9)F' (uy)
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e If F(u})) = 0 then we must have F’'(u}) = 0 (because F'(u}) # 0 would
yield F(u}) # 0 in a similar way as above, which is a contradiction).
Therefore, we have F(u}) =0 = fy+ (&, y)F'(u)).

We conclude that for every v} € Gy, we have

F(uy) = fu+ @ 9)F'(@h) = D fws(8.9) - By oy () - Dy 2y (2 — )00,
ueGy
(6.21)

Now define g : G1 X Go — C as follows:
o) = {fw<a:~',y’> if (&/,4/) € D(W),

] (6.22)
0 otherwise.

9

For every &’ € G, we have:

o If py, ., (') # 0 then ﬁy (@) # 0 (by Lemma 6.7) and py, ., (2') =
fw (@ y1 = y)Py; -, (37) = 9(2', )Py, -, (21).
o If py, ., (') = 0 then Dy 2 (2") = 0 (by Lemma 6.7) and so py, ., (1) =
0=g(d, y)py1 5 (@)
Therefore, for every ' € G we have Py1,1 (2') = g(2,y)Dy -, (27). Similarly,
Dys .20 (21) = (&, y)py2 5 (T #') for all ' € G;. Hence,

F(uy) = Z Pys o1 (@) - Pyp 2y (T — u)ej27r<u )
ueGh

- E g(a7 y)ﬁyll’zl (u) g(x - u y)pr’ZQ (ZC - u)eJQTI'(u u1>
ueGh

(6.23)

We conclude that for every v} € G, we have:

Z [fAVV+ ('%7 y) - g<'&7 y)g(:& - ﬂv y)]ﬁy’l,zl (ﬂ)’ﬁyé,m (‘% - a)ej27l'<ﬁ,u/1>
icth (6.24)
< Fuh) - F(uh) =0,

where (a) follows from (6.21) and (6.23). Notice that the sum in (6.24) is the
inverse DFT of the function K : G1 — C defined as:

(@) = 1G] - |+ (@,9) = 9(0.9)9(@ = 0,9)| By o (@) - g (3 — ).

Now (6.24) implies that the inverse DFT of K is zero everywhere. Therefore,
K is also zero everywhere. In particular,

K1) = G| - [ fir+ (@,9) = (81, 9)9(82,9) | Byg 20 (31) - By 2, (82) = 0.
But p,; ., (21) # 0 and py ., (Z2) # 0, so we must have

fwr+ (#,y) — 9(#1,9)g(d2,y) = 0.

Therefore,

A~ ~
A~

fw+(@,y) = g(@1,9)9(@2,y) = fw (@1, y) - fw (E2,y).
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6.5.5 Proof of Lemma 6.10

Lemma 6.20. If W : G1 x Go — Z is polarization compatible then W™ is also
polarization compatible.

P’FOOf. Let U17 UQ,‘/]_, ‘/Q,Xl,XQ,Yl,YQ, Zl, ZQ be as in Remark 6.1. Let F': D — T
be the pseudo-quadratic function of Definition 6.7.

Let (d1,v) € D(W™). There exists 2~ = (21, 22) € Z2 such that 4, € X~ (W™)
and v € AY? (W™). We have:

o Since iy € X~ (W™), there exists vy € Y* (W) such that p,, ,— - (1) # 0.
From (6.15), we have:

Z PY1|Z1(U1 +’02|21)Py2‘22(1)2|22)
Pyy\7,,2,(v121, 22)

ﬁvl,z*,W* (1) = Doy +va,z1 (1) - Dug,z (t1)"

v €Y ?2(W):
v1+v2€YF1L (W)

Since p,, .- w- (1) # 0, the terms in the above sum cannot all be zero. There-
fore, there exists vy € Y*2(W) such that vy + vy € Y** (W), Py 4ve,z (U1) # 0
and P, ., (i1) # 0. Hence, 4, € X (W) and 4y € X7 (W).

e From Lemma 6.14 we have Y* (W~) = Y* (W) — Y*2(W) which implies that
AY? (W) = AY*(W) — AY*2(W). Now since v € AY? (W ™), there exists
y1 € AY* (W) and yo € AY?*(W) such that v = y; — yo.

We conclude that

(ar,y1) € X (W) x AY* (W) = D* (W) Cc D(W) C D,
and R

(Gi1,y2) € X (W) x AY*(W) = D*=(W) c D(W) C D.

Therefore, (t1,v) = (G1,y1 — y2) € D since D is a pseudo-quadratic domain. Since
this is true for every (i1,v) € D(W™), we conclude that D(W™) C D.

Now let (G1,27) € XZ(W ) (where 2= = (21, 29) € Z?). We have shown that
@y € X'(W) and 41 € X 2(W) and so (i1, 21) € XZ(W) and (41, 22) € XZ(W). Fix
y1 € Y1 (W) and yo € Y?2(W). For every v] € Y* (W), we have:

ﬁvg,z*,W* (al)

= > Pz 0 + o) Py (thle) oy
PV1 | 21,25 (vi |Zl, 22) V] +v5,21 vh,z2

vhEeY?2(W):
v1+v2€Yz (W)

. Dy, 2o (11)"
By (i) - F g 0 — ) - om0

(@) Z Py, 7, (v] + v5|21) Pyy| 7, (v3] 22)

vhEY?2(W): Pyjz,,2, (1121, 22) (i1, vy — 112)
vf FupeY 1 (W)
b P, o+ vhlz1) Pyt g (012
D i) Bl 3 DAL g g )
vhEY?2(W): Pyi\z1,2,(v1]21, 22)
o] +uh €Y1 (W)

Py, 7, (v] + v3]21) Py, 7, (v3]22)
Pyi\7,,2,(v1]21, 22)

= e (@0) - Doy (10) - 1, 0f — g1 +32) >
vy EY 2 (W):
vi+vheY*1 (W)

pyl,z1( ) pyz,z2 (ul)* : F(ﬂlvvi -y + y2)>
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where (a) follows from the polarization compatibility of W and from the fact that
1

—— . (b) fol-

F(U1>Ué—y2) ( )

lows from the fact that the mapping y — F(t1,y) is a group homomorphism from

(H3* (D), +) to (T,-). Therefore, for every vf,vy € Y* (W), we have:

F(ty,vh — y2) € T which implies that F(dy,v) — y2)* =

= Doy - (W) - F(i, 0] — v7).
Hence, py .- w- (1) = F(i1,v7 — oY) - By .- w-(@1). We conclude that W~ is
polarization compatible. O

Lemma 6.21. If W : G1 x Go — Z is polarization compatible then W is also
polarization compatible.

Proof. Let Uy,Us, Vi, Vo, X1, X9, Y1,Yo, Z1, Z> be as in Remark 6.1. Let £/ : D — T
be the pseudo-quadratic function of Definition 6.7.
Let (Gig,v) € D(W™). There exists 2T = (21, 29,u1,v1) € Z* such that iy €
z

X* (W) and v € AY* (W+). We have:

~xt
e Since Gy € X (W), there exists vo € Y (W) such that Doy o+ (U2) # 0.
From (6.17) we have

ﬁv1+v2721 (aé) 'ﬁvz,ZQ (ﬁQ — aé)eﬂw(ﬁ’z,ul)'

Pug, o+ (U2) = |Ghla(ur, 21, 22, v1, v2)

uheG

Since Py, .+ w+(G2) # 0, there must exist @5 € Gy such that Py, 4, 2, (U5) # 0
and Py, ., (g — iih) # 0. Therefore, @y € X~ (W) and (dg — dfy) € X (W).

e Since v € AY* (W), there exist v}, v € Y* (W) such that v = v} — v}.
Now Lemma 6.17 implies that v; + v € Y*1(W), v, € Y?2(W), vy + v} €
Y* (W) and v§ € Y*(W). Therefore, v = (v1 + v}) — (v1 + v§) € AY* (W)
and v = vy — vy € AY?Z(W).

We conclude that

(i, v) € X (W) x AY* (W) = D* (W) c D(W) € D
and
(fiy — tih,v) € X (W) x AY? (W) = D®(W) c D(W) C D.

Now since D is a pseudo-quadratic domain, we have (g, v) = ("&’2—1— (G —1b), v) eD.
We conclude that D(W™) C D.

Now let (i1, 27) € XZ(W™), where 2T = (21, 20, u1,v1) € ZF. For every vh, vl €
Y= (W), we have vy 4+ v € Y(W), vh € Y2(W), vy + v € Y(W) and ol €
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Y*(W) from Lemma 6.17. Therefore,

ﬁvé7z+7W+ (ﬁQ)
- Z ﬁv1+vé7zl (ﬁé) ) ﬁ”’szZ (ﬁ2 B aé)@i?ﬂ(ﬂ,gmﬁ
|G1|a(ut, 21, 22, v1, v5)

uheGy

ej277<'&/2 ,u1>

(a) Z ﬁv1+vé,z1 (a/2) : ﬁvé,zz (ﬂQ - fLIQ)

Gqla(uy, 21, 29, v1, V4
LG : | 1| ( 1, <1, %2, V1, 2)
a,eX " (W),
ap—aheX 2 (W)

(b) Z ﬁv1+v§’,21 () F' (@, vy — v3) 'ﬁvg,zQ (g — ) F(ti — a5, v — v5)

. eI2m(d5,u1)
\G1] - Py, 21,20, v5 (U] 21, 22, 01, 05)

ﬁéEGy
agexzi(zW),
fa—ah,eX 2 (W)

J TR Ao ol
(c) Z |G Py +vl 21 (UQ) Polf 2o (U2 UQ) F(QIQ + Uy — a/2’ 'Ué _ 7Jé/) . ej2ﬂ'<ﬁ/2,u1>
1

e |- Py |20, 20,1, v5 (U121, 22, 01, 05)

= F(ii,vh —v3)

uheG

ﬁvl+vé/,2:1 (ﬁé) ) ]3%’722 (g — ﬁé)

Gl - Puy|zy, 20,01 v, (w21, 22, 01, v5)

j2m (71,27u1>

= F(a27 ’Ué - Ug)ﬁ'ug,z"‘,W"' (a2)7

where (a) follows from the fact that py, 4. ., (45) = 0 if 45 ¢ X* (W), and
Dupzp (2 — U5) = 0 if (G2 — 1)) ¢ X*(W). (b) follows from the fact that W is
polarization compatible. (c) follows from the fact that F' is pseudo-quadratic and
the fact that U; is conditionally independent of Vo given (Z1, Z2,V)) (since the
polarization compatibility of W implies that I; is preserved for W by Lemma 6.9,
which implies that I(Uy; Va|Z1Z2V1) = 0). Therefore, for every vh, vl € v (W),
we have

ﬁvé,z+,W+ (ﬂQ) = F(ﬁ’?? UIZ - ’Ug) 'ﬁvé’,z*,VVJr (QZ)

We conclude that W™ is polarization compatible. ]

Lemma 6.10 follows from Lemmas 6.20 and 6.21.



Erasure Schemes Using
Generalized Polar Codes

The probability of error of polar codes for binary-input channels under successive
cancellation decoding was shown to be equal to o(2~V R [19], where N is the
blocklength. A more refined estimation of the probability of error, which explicitly
depends on the transmission rate R, was obtained by Hassani et al. [38]. They
showed that the probability of error under successive cancellation decoding of the

, e () towm '
polar code is equal to 2 , where N = 2" is the blocklength,

R is the transmission rate, I(W) is the capacity of the binary-input memoryless
symmetric (BMS) channel W, and Q is the well known Q-function'. They also
showed that the probability of error under MAP decoding has the same asymptotic
behavior. This does not show a good performance of polar codes in terms of the
probability of error because the decay is too slow in the blocklength. One attempt
to enhance the performance of polar codes was to apply list decoding with CRC
error detection [39].

Another possible way to enhance the performance of polar codes is through
decoding with erasure; it is sometimes desirable to allow the receiver not to decide
which message was transmitted, especially when there is a feedback from the receiver
to the transmitter: If a confusing string of symbols was received (in the sense that
there is a high probability of a decoding error to occur, no matter which message
the receiver chooses as the decoded message), the receiver can ask the transmitter
to resend the message, in the hope that the received string will not be confusing in
the next transmission.

There are two types of error when we allow decoding with erasure:

e If the receiver decides on the transmitted message and makes an error, we say
that an undetected error occurs.

e If the receiver does not decide, we say that an erasure occurs.

'Q(z) = P[X > x|, where X is a Gaussian random variable of mean 0 and variance 1.

173
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In general, there is a trade-off between the probability of undetected error py and
the erasure probability pe;: pue can be made smaller at the expense of a higher pe;.
The trade-off between these parameters was first studied by Forney [40].

In this chapter?, we study the tradeoff between these parameters for general-
ized polar® (GP) codes, which are a family of codes that contains, among others,
the standard polar codes of Arikan [2] and Reed-Muller codes*. In Section 7.1, we
provide the preliminaries of this chapter: We provide a formal definition of erasure
schemes, GP codes, and successive cancellation decoders with erasure. In Section
7.2, we study the erasure schemes that are based on GP Codes: We compute the
zero-undetected-error capacity of GP codes under the low-complexity successive can-
cellation decoder with erasure, and we derive an estimate of the erasure probability
of GP codes for rates that are below the zero-undetected-error capacity.

7.1 Preliminaries

7.1.1 Useful Notations

For every 0 < ¢,¢ < 1, define the following:
ec=1—¢
o cxe = e e
e m(e) = min{e,€}.

For every x € F} and every Z C [N] = {1,..., N}, we write 27 € F% to denote
the subvector containing the components of z whose indices appear in Z.

7.1.2 Erasure Schemes

Let W : Fo — ) be a binary-input channel. A coding scheme with erasure is a
4-tuple C = (M, N, f, g) where M is the set of messages, N is the blocklength of the
code, f: M — Fév is the encoder mapping, and g : YV — M U {e} is the decoder
mapping, where e ¢ M represents erasure.

The scheme is used as follows:

e The transmitter chooses a message M uniformly in M and computes XV =
(X17"'7XN) = f(M)

e The transmitter sends X1, ..., Xy through N independent copies of the chan-
nel W, i.e., he uses the channel N times. The rate R of the coding scheme is
log, |M|

the amount of information that is sent per channel use: R = i

e The receiver obtains Y7,. .., Yy and computes M = g(YN) = g(V1,..., V).

2The material of this chapter is based on [41].

3See Section 7.1.5 for the definition of generalized polar codes.

4The invention of polar codes brought back attention to Reed-Muller codes because of their
similarity. It was recently shown that Reed-Muller codes achieve the capacity of binary erasure
channels under MAP decoding [42].
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o If M =e, we say that an erasure has occurred. Thus, the erasure probability
of the scheme is pe,(W,C) = P{M = e}).

o If M # e and M # M, we say that an undetected error has occured. There-
fore, the undetected error probability of the scheme is pye(W,C) = P({M ¢

{ea M}})

In practice, it is desirable to maximize the rate R while minimizing the erasure
probability pe, (W, C), the undetected-error probability pye(W,C), the blocklength N,
as well as the computational complexity of both the encoder and the decoder. The
trade-off between all these performance parameters is one of the important problems
in information theory. In this chapter we are interested in studying the trade-off
between these parameters asymptotically in N under the following assumptions:

(i) A BMS channel W is used.

(ii) Only GP codes are considered.

5

(iii) Only successive cancellation decoders with erasure® are considered.

7.1.3 Binary-Input Memoryless Symmetric Channels

We encountered binary-input memoryless symmetric (BMS) channels in Definition
1.2. In this chapter, we will adopt a more general definition.

BMS channels generalize binary symmetric channels (BSC). One can think of a
BMS channel as “a combination of BSCs”: Let BSC(e1), ...,BSC(¢) be a collection
of [ binary symmetric channels of crossover probabilities €, ..., ¢ respectively. Let
P1,-..,p be a probability distribution over [I] := {1,...,l} and consider the binary-
input channel W which operates as follows: During each use of the channel W, one of
the channels BSC(ey), ..., BSC(¢) is chosen with probability p1,. .., p; respectively.
The bit at the input of W is transmitted to the receiver through the chosen BSC.
Moreover, we assume that the receiver knows which BSC was used in each channel
use of W. Formally, the channel W : Fy — [I] x F2 can be defined as follows:

Wiyl = {208 e =y (7.1)
Pi- € ifz #y.

We denote this channel W as

l
W =Y p;-BSC(e).

i=1

Definition 7.1. A channel W is said to be binary-input memoryless symmetric

(BMS) if there exist 0 < €1,..., < 1 and a probability distribution {pi,...,pi}

over [l] ={1,...,1l} such that W is equivalent (in the sense of Definition 3.6) to the
!

channel Zpi -BSC(€;). In this case, we write
i=1
l
W= Zpi -BSC(¢;), (7.2)

=1
5See Section 7.1.6 for the definition of successive cancellation decoders with erasure.
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and we say that this is a BSC-decomposition of W .

Note that one can define general BMS channels by considering infinite collections
of BSCs. The binary-input additive white Gaussian noise channels are examples of
general BMS channels with continuous output alphabet. For the sake of simplicity,
we will only consider in this chapter BMS channels with finite output alphabets.
However, all the main results of this chapter are also valid for general BMS channels.

Another remark that is worth mentioning is that there are infinitely many BSC-
decompositions of a given BMS channel W. The reason for this is twofold:

(i) We can decompose or unite BSC-components having the same crossover prob-
ability by decomposing or adding their fractions (i.e., the p; parameters) re-
spectively.

(ii) For every € > 0, we have BSC(e) = BSC(€). Therefore, we can change the
crossover probability of any BSC component to its complement.

This motivates the following definition:

l
Definition 7.2. If ¢; < % for all 1 < i < I, we say that W = Zpi - BSC(¢)
=1
is a natural BSC-decomposition of W. Note that any BSC-decomposition can be
naturalized as follows:

l l
W = Zpi -BSC(¢;) = Zp,- -BSC (m(ez))
=1

i=1
If0§61<...<el§%cmdpi>0f0rall1§i§l, we say that W =

l
Zp,- -BSC(¢;) is the canonical BSC-decomposition of W. It can be shown that the
=1
canonical BSC-decomposition of W is unique.

Example 7.1. For every 0 < e < 1, the binary erasure channel BEC(e) is BMS.

Moreover, for 0 < e < 1, its canonical BSC-decomposition is

BEC() = (1 — €) - BSC(0) + ¢ - BSC (;) .

!
Definition 7.3. Let W = Zpi -BSC(€;). For every 0 <e <
i=1
w(e) of BSC(e) in W as follows:

< 2, define the fraction

l
=D 0 Lm(ey=a)
i=1
pw (€) is well defined because it does not depend on the BSC- decomposztzon of W.

€., szpZ BSC(e) Zp] BSC(¢€}) then sz ]l{m(eZ )=} = Zp] ]l{m(€ )=}

=1 i=1 J=1
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As we will see later, the parameter py (0) will play an important role in our
analysis. We introduce another parameter which is also of interest for our study:

Definition 7.4. Let W be a BMS channel. We define the best imperfect component
of W, denoted enic (W), as follows:

0 PFIW) =1,
epic(W) = min € if I(W) < 1.
€€]0,5]:
pw (€)>0
0 if I(W) =1,
= min m(e;) f I(W) < 1.

pi>0, 0<e; <1

7.1.4 D, Decoders for BMS Channels

Definition 7.5. Let W = Zé:l pi - BSC(e;) and let 0 < t < 5. Define the decoder
D;: [l] xFa — {0,1,e} of W as follows:

& Zf€1 < t,
Di(i,z) =< 1®x ife; >1—t,
e otherwise.

Remark 7.1. D; decoders are desirable because no other decoder with erasure can
provide a strictly better trade-off between pye and pe, for the code of blocklength 1
and rate 1. Moreover, D, decoders are very easy to implement: We compute the

log-likelihood ratio LLR(y) = log % (where X and Y are the input and output

of W respectively) and then compare with T = log %

0 if LLR(y) < —T,
Di(y) =1 if LLR(y) > T,
e otherwise.
7.1.5 Generalized Polar Codes

Definition 7.6. A code f : M — FY is said to be a generalized polar (GP) code
of parameters (n,r,Z,b) if it satisfies the following:

e N=2" M=F} andb e FY .

e ZC[N]={1,...,N} and |Z| = .

11
e=lh i)

and U € Fév 1s such that w7 = u and uze = b.

o f(u)=F®".a, where

n is called the number of polarization steps of the GP code. We denote the code f
as GP(n,r,Z,b). Moreover, ifb=0 € Fév_r, we write GP(n,r, 7).
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Example 7.2. Here are two examples of GP codes:

e Standard polar codes of Arikan: Take T to be the set of indices of the r synthetic
channels having the lowest Bhattacharyya parameters, and take b to be the
vector of frozen bits.

e Reed-Muller codes: Take I to be the set of indices of the r columns of F®"
having the largest number of ones, and take b =0 & Fév_r.

7.1.6 Successive Cancellation Decoder with Erasure of GP codes

Because of the recursive construction of F®", one can implement the encoder of any
GP code in O(N log N) time exactly like polar codes.

On the other hand, for any given GP(n,r,Z,b) code, there are various decoders
that can be considered. One attractive choice is what we call successive cancellation
decoder with erasure (SCE) which operates similarly like the successive cancellation

decoder of polar codes, but instead of applying the ML decoder for each bit w;,

we apply a Dy, decoder for some 0 < t; < % The reason why SCE decoders are

desirable is because they have low computational complexity.

Definition 7.7. For everyi € T let 0 < t; < 3 and let t = (t;);ez € [0,3]F. The
Dy successive cancellation decoder with erasure (denoted SCE -Dy or simply D;) for
a GP(n,r,Z,b) code operates as follows:

e For each i € I, compute U; by applying the Dy, decoder. The bits are suc-
cessively decoded exactly in the same order as in the successive cancellation
decoder of polar codes.

o [fu; =e for any i € I, stop decoding immediately and declare erasure.
o Ifu; # e for every i € I, the output is 4 = (U;)iez-

Two remarks are worth mentioning here:

e The computational complexity of any SCE decoder is O(N log N).

e If t; =0 for every ¢ € Z, we get a zero-undetected-error scheme.

7.2 Erasure Schemes Using GP Codes

Definition 7.8. Let W : Fo — Y be a BMS channel and define

ISTW) = > W)= Y Wyl (7.3)
ey: ey:
W (yih)=0 W {yl0)=0

It can be easily shown that I$T (W) = py (0).

The following theorem, which is the main result of this chapter, shows that
IEP(W) is the zero-undetected-error capacity of GP codes for W under SCE de-
coders.

Theorem 7.1. Let W be a fired BMS channel. We have the following:
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o For every R < IS}P(W), every b < % and every n large enough, there exists
a GP code of blocklength N = 2™ and of rate at least R for which the low-
complezxity Dy-SCE decoder (which induces a zero-undetected-error scheme)
has an erasure probability of order 9-27",

o For every a > 0, every B > %, every n large enough, and every GP code
of rate IST(W) < R < I(W) and blocklength N = 2", if per < 1 — a then
Due > 22" In other words, the undetected error probability cannot be made

140
better than 2~N2""" unless the erasure probability is of order 1 — o(1).
In order to prove Theorem 7.1, we need a few lemmas and propositions. The
next proposition shows the first point of the theorem. In fact, it provides a better
estimate for the erasure probability:

Proposition 7.1. Let W : Fy — Y be a BMS channel. For every R < IFY (W),
there exists a GP code of blocklength N = 2™ and of rate at least R for which the low-
complexity Do-SCE decoder (which induces a zero-undetected-error scheme) has an

%+Q—1<I€PR<W)>4+D(\/E)

erasure probability of order 272
x}) is the standard Q-function.

, where Q(z) = P({N(0,1) >

Proof. Define W' : Fy — Fo U {e} as follows:

(> W) ity ==,
yeY:
W (y|z91)=0
W(if|lz)=q > W) ify =e,
yeY:
W (y|lz®1)>0
k0 otherwise.

In other words, for each x € Fy we contract all the output symbols of W for
which we can decide without error that the input was x to one output symbol of
W' that we also denote by z. Moreover, we contract all the remaining uncontracted
symbols to the erasure symbol e.

Let e = 1 — I§P(W). One can easily check that W’ = BEC(¢) < W. Now for
every R < I§¥ (W) = 1—e = I(W'), there exists a polar code for W' of rate at least
R and whose probability of error under successive cancellation decoder is equal to

3 (gt ) W retvm
2 (see [38]). One can use the same code for W and apply the

Dy- SCE decoder. This induces a zero-undetected-error scheme.

It can be easily seen that the erasure probability for the Dg- SCE decoder of
the GP code for W is of the same order as the error probability of the successive
cancellation decoder of the polar code for W'. O

In order to prove the second point of Theorem 7.1, we will need the analysis
tools of polarization theory. Let us first recall the basic notations and definitions.
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Let W : Fo — Y be a binary-input channel. We define the two channels
W= :Fy —YxYand Wt :Fy — Y x Y x Fy as follows:

1
W= (g1, y2lur) = 5 D Wyaur @ ug) W (yalus), (7.4)
ug €Fo
1
W (y1, ya, ur|ug) = W (yilur ® ug) W (y2uz). (7.5)
For every s = (s1,...,5,) € {—,+}", we define W* recursively as

We = (W) .. )%,
Proposition 7.2. If W is BMS, then W~ and W are BMS as well. More precisely,
1
if W= Zpi -BSC(e;), then
i=1
l l
w- = Z Z pip;j - BSC(e; * €5), (7.6)

and

l l
— €;€5 L= €€
—Z;Z;pzp] (ez*ej) BSC <€z*€j>+(el*ej) BSC <EZ*€]>>. (7.7)

Proof. We use Equations (7.1), (7.4) and (7.5) and we apply the fact that BSC(e)
BSC(€) for every € € [0,1].

Ol

Proposition 7.2 can be used to derive the effect of polarization on I§* (W) and
epic(W) :

Corollary 7.1. I§¥ (W) = IFY(W)? and IST (W) = 2I§F (W) — IFF(W)2.
Proof. Let W = Z§:1 pi - BSC(€;) be a BSC-decomposition of W. Using the equa-
tions of Proposition 7.2, one can see that:

)
if a

a

(0)2 = I§P(W)?2, where (a) follows from the fact

° Ig’P(W_) = pw- bw
) = nd only if m(e;) = m(e;) = 0.

(0
that m(e; * € 0
b
o ISPWH) = pyrs(0) € 2p0 (0) — pu (0)2 = 2IGF (W) — IGP (W)?, where (b)
follows from the fact that

m<6i€j>:0 < m(g) =0or m(e) =0,

€; %€
and

m (“J) =0 < m(e)=0orm(e) =0.

€; % €
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Corollary 7.2. We have:

2epic(W) - enic(W) if pw (0) =0,
ebic (W) otherwise.

evic(W™) = {
6bic(I/V)2
EbiC(W)Q + (1 - Gbic(W))Q'

Proof. Tt I(W) =1 (i.e., epic(W) = 0), then I(W~) = I[(W™) = 1 which implies
that epic(W ™) = epic(W™) = 0. This shows the corollary for I(W) = 1.

6bic(VVJr) =

l
Assume now that I(W) < 1 so that epic(W) > 0. Let W = Zpi -BSC(e;) be
i=1
the canonical BSC-decomposition of W.

Since 0 < €;,¢; < % for every 1 <i,j <1, it is easy to see that:

e 0<¢*e < % This means that the crossover probabilities appearing in (7.6)
do not need to be complemented.

o ¢;x¢c; = 0if and only if ¢; = ¢; = 0.

Now since the function € * € is increasing in both € and ¢’ (assuming 0 < ¢, ¢’ < %),
we conclude that

enic(W™) = 13}21 m(e; * €;)
m(egxe;)>0
_ 2€bic(W) . (1 — Gbic(W)) if pW(O) = ()7
ebic(W) otherwise.

We apply a similar reasoning on m (:’ij ) and m (ﬂ) We obtain:

ik j fi*Gj

. €€ €€ €€ ..
ebic(Wﬂ:mm{ L/ /R (e :1§z,j§l,ei>0,6j>0}
€ k€5 € XE€j €; %€
6bic(VV)2

Ebic(W)2 + (1 - Ebic(W))2 ‘
O

Proposition 7.3. Let W : Fo — ) be a BMS channel and let GP(n,r,Z,b) be a
generalized polar code of rate R = o and blocklength N = 2". If IS;P(W) < R<
I(W) then for every B > %, every o > 0 and every n large enough, there is no SCE

decoder which can make the undetected error probability lower than 2N unless it
makes the erasure probability at least 1 — .

Proof. Let (By)p>1 be iid. uniform random variables in {—,+}. Define the
channel-valued process (W), ),>0 as follows:

Wy =W,
W, = WP vn > 1.



182 Erasure Schemes Using Generalized Polar Codes

Let % < ' < 8 and let n be large enough so that we have § - 2*Nﬁ, > 2*Nﬁ,
where N = 2.

Corollary 7.1 shows that the process I§'F (W,,) is a martingale process. Therefore,
I(?P(Wn) converges almost surely. Moreover, one can show by standard polariza-
tion theory techniques that I§T(W,,) = pw, (0) converges almost surely to 0 or 1.
Furthermore, for every € > 0 we have:

Jim P({pw, (0) < e}) =1 —pw(0).

Therefore, as n becomes large, the fraction of indices s € {—, +}" such that pys(0) >
¢ is roughly at most I$F (W) = pw (0).

On the other hand, from Corollary 7.2, we can easily see that ep;c.(W ™) > epic (W)
and epie(WT) > epic(W)2. By applying the same analysis of [19], but to e instead
of the Bhattacharyya parameter, one can show that if (W) < 1, then the fraction
of indices s € {—, +}" such that epi.(W?*) > 9-27" goes to 1. Therefore, for n large
enough, if R > IFY (W) = pw(0), there exists at least one index s € {—, +}" whose
corresponding index in F®" appears in the generator matrix of the GP code and
which satisfies e (W*) > 2-2"" and pws(0) < §. Let i € [2"] be the index of the
column of F'®" corresponding to s and let 0 < t; < % be the threshold used for W?#
in an SCE —D; decoder. Let p£}2 and péi) be the erasure probability and undetected
error probability of the Dy, decoder applied to W# respectively. We have:

§ =2 pwie),

e>t;

and

PR = epws(e)= D € pws(e)
e<t; epic(W*)<e<t;

> > e@ic(W) - pws(e)

epic (W) <e<t;
= epic(W*) - (1 — pw(0) — p2)

>N (1 - % —p&‘)) . (7.8)

Therefore, if pé’) <1 — « then pSQ > % .9—N? > 9-N?  Hence pz(fg cannot be made
less than 27 unless ng is at least 1 — a. The proposition now follows from the
fact that the erasure probability and the undetected error probability of the whole

scheme are lower bounded by pg«) and p&? respectively. O

The proof of Theorem 7.1 now follows from Propositions 7.1 and 7.3.



Polar Codes for Arbitrary
Classical-Quantum Channels

The polarization phenomenon can be generalized to the setting where the input
of the channel is classical and the output is a quantum state. Wilde and Guha
constructed polar codes for binary-input classical-quantum channels' (cq-channel)
in [43]. They showed that using the same polarization transformation of Arikan
yields polarization of the synthetic cq-channels to almost useless and almost perfect
channels. Wilde and Guha proposed a quantum successive cancellation decoder and
showed that its probability of error decays faster than 2= ? for any f < % In [44],
Hirche et. al. constructed codes for binary-input classical-quantum multiple-access
channels? (cq-MAC) by combining the polarization results of [43] with the monotone
chain rule method of Arikan [22].

In this chapter3, we construct polar codes for arbitrary cq-channels and arbitrary
¢q-MACs by using arbitrary Abelian group operations on the input alphabets. The
polarization transformation that we use is similar to the one in [6]. Since we are
proving a quantum version of the results in [4] and [6], many ideas of these two papers
were adopted and adapted to the quantum setting. However, some inequalities that
were used in [4] and [6] do not have quantum analogues. Therefore, other inequalities
that serve the same purpose needed to be shown for cq-channels.

In Section 8.1, we provide a very brief introduction to quantum mechanics. For
a more detailed discussion of quantum mechanics, see [47, Chapter 2|. The main
purpose of Section 8.1 is to make this chapter accessible for readers who are not
familiar with quantum mechanics. Readers already familiar with quantum mechan-
ics may skip ahead to Section 8.1.4 where we describe the non-commutative union
bound. In Section 8.2, we define classical-quantum channels and explain some basic
results that we will use later. In Section 8.3, we describe the polarization process. In
Section 8.4, we show that we have a two-level polarization if the cq-channel has I,
as its input alphabet, where ¢ is a prime number. In Section 8.5, we prove multilevel
polarization for arbitrary cq-channels using an arbitrary Abelian group operation
on the input alphabet. We show that the synthetic cq-channels converge to deter-

'The definition of classical-quantum channels can be found in Section 8.2.
2The definition of classical-quantum multiple-access channels can be found in Section 8.7.
3The material of this chapter is based on [45, 46].
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ministic homomorphism channels that project their input onto a quotient group of
the input alphabet. We discuss the rate of polarization (i.e., how fast the synthetic
cq-channels polarize) in Section 8.6. We discuss the construction of polar codes in
Section 8.7. As in all polar coding schemes, the encoder can be implemented in
O(N log N) operations, where N is the blocklength of the polar code. We prove
that the probability of error of the quantum successive cancellation decoder decays
faster than 2=V for any 0 < %, but we do not have an efficient implementation
of the decoder. We discuss the polarization of arbitrary cq-MACs in Section 8.8.
We show that while cq-MAC-polar codes might not achieve the entire symmetric-
capacity region, they always achieve points on the dominant face. We show that
the entire symmetric-capacity region can be achieved by combining the cq-channel
polarization result either with the rate-splitting method of [8], or with the monotone
chain rule method of [22].

8.1 Introduction to Quantum Mechanics

From a pedagogical point of view, the conventional wisdom in writing an introduc-
tion to any field is to start by an informal discussion (in order to build an intuition
about the topic), and then provide a formal description of the subject. However,
we do not believe that this is the best approach to follow in the case of quantum
mechanics: The purpose of informal discussions is to explain the ideas of the sub-
ject in terms of concepts that the reader is already familiar with, whereas quantum
mechanics is fundamentally different than everything that we are used to in our
everyday life.

Any informal description of quantum mechanics is bound to use philosophical
statements and interpretations that are inaccurate (or at best misleading). In our
introduction to quantum mechanics, we will avoid using such interpretations and
try to be as philosophically neutral as possible.

8.1.1 Closed quantum systems

We start by providing the mathematical formalism describing closed quantum sys-

tems?.

The state space

We first describe the simplest quantum system: the quantum bit (qubit). Unlike
the classical bit, which can only be in one of two states (either 0 or 1), the qubit?
can be in an “arbitrary superposition of the states 0 and 1”. By superposition, we
mean a “linear combination of the states 0 and 1”. We represent the state of a qubit
as a unit complex vector [¢) of dimension 2. The states 0 and 1 are represented by

the vectors
0) = ) cc? and 1) = 0
—\0 S\l

1A closed quantum system is a physical system that does not interact with its environment.
5The polarization of one photon can be represented as a one-qubit system: The states 0 and 1
correspond to horizontal and vertical polarization, respectively.
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respectively. A general state of a one-qubit system can be represented by the complex
vector

) = (22) = aol0) + enl) € €2,

where ag,a; € C and |ag|? + |a1|? = 1. We can see that there are infinitely many
possible states for a qubit.

In a system of two qubits, the state is described by a unit complex vector of
dimension 4. The states 00, 01, 10 and 11 are represented by the vectors

|00) = eC 01) = eC |10) = eC* and [11) = € C?,

o O O
S O = O
O = O O
_= o O O

respectively. A general state of a two-qubits system can be represented by the
complex vector

)= | ot | = c00l00) + 01 01) + @10]10) + 1),
a1

where o0, 001, 10, 11 € C and |OéO()|2 + |()é01|2 -+ |0410|2 + |0411|2 =1.
In a system of n qubits, the state is described by a unit complex vector of
dimension 2™, which is a superposition of the states {]bl coobp) by, by €40, 1}}:

) = > app,lbr.. by) € C

(bl,...,bn)e{O,l}”

where oy, € C for every (by,...,b,) € {0,1}" and Z lap, ., | = 1.
(b1,..,bn)€{0,1}7

The state of a general closed quantum system A is determined by a unit vector
in a complex Hilbert space H 4 that is called the state space of the system A. For
example, the state space of a quantum system of n qubits is C2". In this thesis, we
only consider quantum systems whose state spaces are finite dimensional. Therefore,
we can assume without loss of generality that the state space is C?%, where d is the
dimension of the state space.

Remark 8.1. The unit vector that can represent the physical state is not unique: If
[V, |@) € Ha are two unit vectors satisfying ) = e%|¢) for some 6 € R, then |4)
and |¢) represent the same physical state. In other words, the “global” phase of the
unit vector is physically irrelevant.

If we want a one-to-one representation of the physical states, we have to consider
the projective Hilbert space® corresponding to the state space: The set of physical
states is in one-to-one correspondence with the rays of the projective Hilbert space.

5The projective Hilbert space corresponding to a Hilbert space H is the quotient of H \ {0} by
the equivalence relation = defined as v = w < I\ € C, v = Aw. The equivalence classes are called
rays.
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Notation 8.1. The inner product between the states |) and |¢) is denoted as
(¥[8).

This is called the bra-ket notation, which is widely used in quantum mechanics. The
first part (namely, (1|) is called the bra part of the braket. The second part (namely,
|@)) is called the ket part. This is why the state vectors are also called ket-vectors.
(| is called the bra-vector that is associated to the ket-vector [1)).

It is useful to think of a ket-vector |¢)) as a column matrix, and to interpret its
associated bra-vector (1| as the complex conjugate of the column matrix |¢). In this
case, the bra-ket (1|¢), which is the inner product between [¢)) and |¢), is exactly
the result of the matrix multiplication of the bra-vector (¢| with the ket-vector |¢),
ie., (Ylo) = ((¥]) - (I19))-

For example, if [1)), |¢) € C? are two ket-vectors in the state space of a one-qubit
System

\w=<§)=%m+mm€c2mm|@=(ﬁ)=mm+&m662

then
WW—@%aD@Q—%&+@m

Evolution in time

If a quantum system A is closed, then for every t¢1,t € R, there exists a unitary
operator Uy, 1, : Ha — Ha such that if |4y, ) and [¢,) are the states of the system
at time t; and to, respectively, then

W}tz) = Utl,t2‘wt1>'

In other words, the state of a closed quantum system evolves unitarily”.

Measurements

In contrast with the classical world, the state of a quantum system cannot be per-
fectly determined by observation and experiment. For example, let [¢)) = ap|0) +
a1|1) be the state of a one-qubit system, and assume that [¢)) is unknown. There
is no experiment that enables us to know exactly the state of the system. We
emphasize that this impossibility is not due to the ambiguity in the global phase®.

There is a set of measurements that are physically possible, but none of them
enables us to determine the state of the quantum system perfectly. In the following,
we describe the set of measurements that we can “perform on a closed quantum

system”?.

"The time evolution operator Ui, ,t, can be determined by the general Schrédinger equation.

8There is no experiment that enables us to find two complex numbers af, o) such that a{|0) +
o |1) = e??|4) for some 0 € R.

9By definition, a measurement is an interaction between the quantum system with a measuring
device M. This means that it is impossible to measure a closed quantum system without making
it open. By “performing a measurement on a closed quantum system A”, we mean that the
measurement is performed while the composite system AM is closed. We emphasize that the
measurement (at least in the presented formalism) is not a unitary evolution of the composite
system AM.
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Let A be a closed quantum system whose state space is H 4. A measurement of
the system A is a physical process that is applied on the system at the end of which
we obtain one of several possible outcomes'?.

A measurement is characterized by a collection of n orthogonal projections!

Py, ..., P, of Ha, which satisfy:

1

e Pp,..., P, are mutually orthogonal: P;P; = 0 for every 7,j # 0.

n
e P ...., P, add up to the identity: Z P; = I, where I is the identity mapping
i=1
on Hy.
m € {1,...,n} represents the different possible outcomes of the measurement.

If |¢) is the state of the quantum system before applying the measurement
{P1,..., P,}, then the measurement outcome will be equal to m € {1,...,n} with
probability!?

P({outcome = m}) = (| Pp|1)).

Furthermore, if the measurement outcome m occurs, then the post-measurement

state is equal to
1

([ Pmle))

For example, consider a one-qubit system, and consider the measurement { Py, P, },
where

Py =10)(0] = <é> (1 0)= ((1) 8) and P =|1)(1| = <(1)) (0 1) = (8 (1]>

Let [¢) = apl0) + a1|1) be the state of the qubit. A simple calculation shows
that if we measure the state |¢)) with the measurement { Py, P;}, then the outcome
0 (resp. 1) occurs with probability |ag|? (resp. |a1|?). Moreover, if the outcome 0
(resp. 1) occurs, then the post-measurement state is |0) (resp. |1)). This is why we
say that “{Pp, P;} measures the bit-value of the qubit”.

Bnli).

Composite quantum systems

If two quantum systems A and B have state spaces H4 and Hpg, respectively, then
the state space of the composite system AB is equal to the tensor product of the
individual state spaces:
Hap =Ha®Hp.
0For example, if we are measuring the bit-value of a qubit, we get one of two possible outcomes:
0 or 1.

1 An orthogonal projection on a Hilbert space # is a linear mapping P from H to itself which
satisfies the following:

e P is a projection: P?[+)) = P|¢) for every [¢) € H.
e P is self-adjoint: PT = P.

2The philosophical interpretation of the probabilitic nature of measurement is left to the reader.
We stick to the frequentist interpretation because it is exactly what is tested in practice: If there
is a large number of copies of the system, all of which are in the state |¢), and if we perform the
same measurement {Pi, ..., P,} on all of the copies, then the fraction of times we get the outcome
m will be very close to (| P |1)).
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For example, if A represents a system of ny qubits and B represents a system
of np qubits, then

Hap = Ha® Hp = C¥"* @ C?'"P = C¥"4x2"8 — c24"™2

which means that the composite system AB represents a system of n4 + np qubits,
as expected.

8.1.2 Open quantum systems

In Section 8.1.1, we described the quantum mechanics of closed systems, which are
too idealistic. Perhaps the only truly closed system is the whole universe. Assume
that we are only interested in a system A that is open. Let E be the system
describing the rest of the universe, i.e., I/ represents the environment of A.

The formalism of Section 8.1.1 does not help us in describing the quantum me-
chanics of the system A because it is open. Nevertheless, we can still use this
formalism to describe the quantum mechanics of the composite system AFE. Let
|) € Hap = Ha ® HE be the ket-vector that describes the state of AE.

Assume that we perform a measurement that acts only on the system A. This
measurement must be of the form {P, ® Ig,...,P, ® Ig}, where Py,..., P, are
orthogonal projections acting on H 4, and Ig is the identity operator on E. The
probability of getting the outcome m € {1,...,n} is equal to

P({outcome = m}) = (Y|P, ® Iplth) = Tr ((Pn ® Ip) ) (1))
= Tra Trp (Pm ® Ip) ) (¥]) = Tra (P Tre(je) (¥])),

where Try (resp. Trg) is the partial trace with respect to the system A (resp. E).
If we define

p=Trp(|[¥){]),

we get
P({outcome = m}) = Tra(Pyp) = Tr(Ppp).

This means that if we know p, then we can compute the probability distribution
of the outcome of any measurement that acts on A. p is called the density-matriz
that represents the state of the open system A. It is easy to see that if the outcome
of the measurement is m, then the post-measurement density matrix is equal to

PrpPr,

Tr(Pp)

We can also show that if |¢) is the state of the composite system AFE and if
|1)) was subjected to a unitary operator U ® Ig (i.e., it acts only on A), then the
resulting density matrix after the unitary evolution is UpUT. We conclude that if
we are only interested in the system A and if all the quantum operations that are
applied act only on A, then we do not need to know the state |¢) of the whole
system: We just need to know the density matrix of the system A. This motivates
us to represent the state of an open system by its density matrix.

Density matrices have the following properties:

e p is a positive semi-definite operator acting on H 4.

e The trace of p is equal to 1.
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8.1.3 POVM measurements

In practice, it is not easy to perfectly devise a measurement that only acts on
a desired system A. A general measurement cannot be described by a projective
measurement'3.

If we are not interested in specifying the post-measurement state, then one pos-
sible way to describe a general measurement is through the POVM formalism.

A POVM measurement is described by a collection of n operators {E1, ..., E,}
that satisfy:

e [/y,..., F, are positive semi-definite operators acting on H 4.

n
° Z FE; = I, where [ is the identity operator on H 4.
i=1
If a POVM measurement {E1, ..., E,} is applied on an open system of state p,
then the probability that the outcome m € {1,...,n} will occur is:

P({outcome = m}) = Tr(E,p).

We emphasize that the POVM formalism does not enable us to specify the post-
measurement state. This is because POVM measurements do not have unique phys-
ical implementations. Nevertheless, for every POVM measurement {Ej,..., E,},
there exists one implementation of it such that the post-measurement state corre-
sponding to the outcome m is 7@/7 \/Eim

Tr(Enp)

8.1.4 Non-Commutative Union Bound

Sen proved in [48] the following “non-commutative union bound”:

r

1= Te(I, ... Myplly .. TL) < 2, [ ) (1= Tr(Ip)), (8.1)
i=1
where IIy, ..., II, are projection operators. This inequality was used in [43] to upper

bound the probability of error of the quantum successive cancellation decoder of the
polar code constructed for a binary-input cq-channel. This was possible because the
measurements used in [43] are projective. In this chapter, the quantum successive
cancellation decoder that we propose uses general POVM measurement. Therefore,
we cannot use the inequality (8.1).

We provide a “non-commutative union bound” that is looser than (8.1) by a
multiplicative factor of /r, but it is more general so that it can be applied to
general POV Ms.

Lemma 8.1. Let IIy,... 1L, be r semi-definite positive operators satisfying 11} <
I,...II, <I. We have:

1= T (VI Tp /T VI <207 |7 (1= Te(Lp)).

i=1

13The measurement procedure that was described in Section 8.1.1 is called a projective measure-
ment.
MPOVM stands for Positive Operator-Valued Measure.
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Proof. See Appendix 8.9.1. Ol

8.2 Classical-Quantum Channels

A classical-quantum (cq) channel W : ¢ € G — p, € DM(k) takes a classical
input z € G and has a quantum output p, € DM (k), where DM (k) is the space
of density matrices of dimension k < oo. We assume that the input alphabet G is
finite but its size ¢ = |G| can be arbitrary.

8.2.1 Coding for a Classical-Quantum Channel

A coding scheme for a cq-channel W : z € G — p, € DM(k) is a 4-tuple
(M,N, f, D). M is the message set, N is the blocklength, f : M — XN is the
encoder and D is the (quantum) decoder. D = { Dy, }mer is a POVM measurement
that is indexed by M. Every operator D,, acts on (Ck)®N , which is the state-space
of the system describing N cg-channel outputs.

The coding scheme is implemented as follows:

e A random message M is uniformly chosen from M.

e The transmitter computes (X1,...,Xn) = f(M).

The transmitter sends X1,..., Xy to the receiver by using the cq-channel N
times.

The receiver observes the output system, which is in the state px, ®---®px,

The receiver applies the POVM measurement D = {D,, },nesm on the output
system. Let M € M be the measurement outcome.

The rate of the coding scheme is %. The probability of error is given by
P{M # M} =1 - ‘M‘ Z Tr pfl(m) ‘® pr(m))) )
meM

where f(m) = (fi(m),..., fn(m)).

8.2.2 Quantum-Information Theoretic Quantities

If the input to the cq-channel W : z € G — p, € DM(k) is uniformly distributed,
we can describe the state of the joint input-output system as the state pXB €

DM(q - k) defined as:
Z |z){z| ® pq.

xEG

A very important quantity associated with W is the symmetric Holevo informa-
tion I(W) defined as:

(W) ::I(X;B) H(X),+ H(B), - H(XB),
H(p®)+ H(p") — H(p™* ")
—H

) —
(Trp(p™?)) + H(Trx (p*")) — H(p*?),
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where H (o) is the von Neumann entropy of the density matrix o:
H(o) = —Tr(ology0).

It is easy to show that

w)=n (1 3 px> ~ 15 H(p).
q el q zeG

The quantity I(W) is the capacity for transmitting classical information over
the cq-channel W when the prior input distribution is restricted to be uniform in
G. We have 0 < I(W) < log, q.

Besides I(WW), we will need another parameter that measures the reliability of
the cq-channel W. For the binary-input case, the fidelity between the two output
states was used as a measure of reliability in [43]. In our case, we have ¢ output
states, so we will consider the average pairwise fidelity between them (similarly to
the average Bhattacharyya distance defined in [4]):

F(W) = # Z F(p$7px’)7

- q(q B 1) 2’ €G
z'v;éz/7

where F(p,0) = Tr \/péap% = ||[va/7l|,, and || A1 is the nuclear norm of the

matrix A:
|Alls = Tr VAT A.

Clearly, 0 < F(W) < 1. We adopt the convention F(W) :=0 if |G| = 1.

It was shown in [49] that P.(W) < (¢—1)F (W), where P.(W) is the probability
of error of the optimal decoder of W. This shows that if F/(1W) is small then P, (W) is
also small and so W is reliable. Intuitively, this is true because a small (/') means
that all the pairwise fidelities are small, which implies that all the output states
are easily distinguishable from each other, which in turn should allow a reliable
decoding.

The following proposition provides three inequalities that relate I(W) and F(W).

Proposition 8.1. We have:

(i) 10V) 2 1oga s

(ii) I(W) <logy(q/2) + /1 = F(W)>.

(iii) 1(W) < log, (1+ /@ = (1+ (4= DEW)P).

Proof. See Appendix 8.9.2. O

In the above proposition, the first inequality implies that if (W) is close to 0
then F(W) is close to 1. The same inequality also implies that if F(W) is close to
0 then I(WW) is close to logy g. The second inequality implies that if 7(W) is close
to logy ¢ then F'(W) is close to 0. The third inequality implies that if F'(1W) is close
to 1 then I(W) is close to 0.
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8.3 Polarization Process for Classical-Quantum Channels

Since any set can be endowed with an Abelian group operation, we may assume
that one such operation on G is fixed. We will denote this Abelian group operation
additively.

Let W : 2z € G — py, € DM(k) be a cq-channel. Define the cq-channels
W~ :iu € G— p,, € DM(k?) and W :ug € G — pf, € DM(k?* - q) as:

_ 1
Puy = — Z Puy+uy & Pusy)
q
u€G

and

1
p; == Z Pui+us @ Puy @ |ur)(ua].
u1€G

Moreover for every n > 0 and every s = (s1,...,8,) € {—,+}", define W* =

(. (W)= . )n,

Remark 8.2. W~ and W™ can be constructed as follows:

Two independent and uniform random variables Uy, Us are generated in G.

X1 =U; + Uy and X9 = Us are computed.

o X1 s sent through one copy of the cq-channel W. Let By be the quantum
system describing the output.

Xs is sent through another copy of the cq-channel W (independent from the one
that was used for Xy). Let By be the quantum system describing the output.

It can be easily seen that the cqg-channels Uy — By By and Uy —> B1BoUy simulate
W= and W respectively.

We have:

I(W™)+ I(W*) = I(Uy; BiBs) 4 1(Uz; BiBaUy) = I(Uy; B1Ba) + I(Us; By Bo|Uy)
= I(UlUQ; BlBg) = I(XlXQ; BlBg) = I(Xl; Bl) + I(XQ; BQ)
= 2I(W).

This shows that the total symmetric Holevo information is conserved. Moreover,
I(W+) = I(UQ; BlBQUl) Z I(UQ; Bg) = I(XQ; Bg) = I(W)

and
IW™)=2[(W) - I(W") < I(W).

Let us now study the reliability of the cq-channel and how it is affected after one
step of polarization. But first let us define the quantity Fy(W) for every d € G:

1
Fd(W) = - Z F(pmvp:r-i-d)-
q zeG
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Clearly, 0 < Fy(W) <1 and Fy(W) = 1. Note that

Define Fax(W) = max Fy(W). Clearly, F(W) < Frax(W) < (¢ — 1)F(W).
€G,
d£0

Proposition 8.2. For every d € G, we have:
o Fy(Wt) = Fy(W)2
o Fy(W) < Fy(W™) <2F(W)+ > FA(W)Fara(W).
A€G,

A0,
A#—d

Proof. See Appendix 8.9.3. O
Corollary 8.1. We have:

® Funax(W) = Finax(W)?.

* Frax(W) < Frnax(W7) < qFrmax(W).

o F(W+) < min {F(W), (q— 1)2F(W)2}.

o E(W) < (W) < g(g ~ DF(W)

Proof. First equation:
2

+\ +\ 2 _ _ 2
Frax(W )—ggngd(W )—ggng(W) = gé%ngd(W) = Frnax(W)".
d=£0 d=£0 d0

Second equation:

Frax(W) = max Fy(W) < max Fy(W™) = Frax(W™)

deq, deqd,
d£0 d£0
<max(2FW—|— FA(W)E W)
< o (2FaV) + Y FAW)Fasa (1)
d#£0 A€eG,
A0,
A#—d

S 2FmaX(W) + (q - 2)Fmax(W)2 S quax(W)-

First part of third equation:

1 1 1
deq, dea, dea,
d€¢0 dE;éO deséo
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Second part of third equation:

F(W+) S Fnlax(W+) — Fmax(W)2 S (q — 1)2F(W)2

First inequality of the fourth equation:

Second inequality of the fourth equation:

FW™) < Fuax(W7) < ¢Fmax(W) < q(g = 1) F(W).

The following lemma is very useful to prove polarization results.

Lemma 8.2. [6/ Let {B,}n>0 be a sequence of independent and uniformly dis-
tributed {—,+}-valued random variables. Suppose {I,}n>0 and {T,}n>0 are two
processes adapted to the process { By }n>0 satisfying:

(1) 0 <1, <logyq.

(2) {In}n>0 converges almost surely to a random variable 1.
(3) 0<T, <1.

(4) Tni1 = T2 when Bpy1 = +.

(5) There ezists a function f(€) (depending only on q) satisfying lin% f(e) =0 such
e—
that for all n, if T,, < € then I, > logy q — f(€).

(6) There exists a function g(e) (depending only on q) satisfying lin% g(e) =0 such
e—
that for all n, if T, > 1 — € then I, < g(e).

Then Ty = li_)In T, exists almost surely. Moreover, we have I, € {0,logyq} and
n e )
Too € {0,1} with probability 1.

8.4 Polarization for G =F,

In this section, we focus on the particular case where G' = IF, where ¢ is prime. The
main result of this section is the following theorem.

Theorem 8.1. Let W : z € F; — p, € DM(k) be a cq-channel with input in [F,.
For every 6 > 0, we have:

. 1
lim —
n—oo 2N

{s e {—,+1": 6 <I(W*) < logy q — 5}) ~0. (8.2)
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Moreover, for every 5 < %, we have:
1
logy ¢

I(W).
(8.3)

1 n
lim o {s e{—,+}": I(W?®) >logyq—0, F(IW?) < 92" H =

n—o0

Proof. Let { By, }n>0 be a sequence of independent and uniformly distributed {—, +}-
valued random variables. Define the cg-channel-valued process {W), },>0 as follows:

e Wo=W.
o W, = Wf_"l for every n > 1.

Let I, = I(W,) and T,, = Fpnax(W,). Let us check the conditions of Lemma 8.2.
Conditions (1) and (3) follow from the properties of I(WW) and Fiax(W). Condition

(4) is satisfied because of Corollary 8.1.

1 1
We have E(I,,11|W,,) = il(Wn_) + §I(WJ) = I(W,,). This shows that {I,,}»>0
is a bounded martingale and so it converges almost surely. This shows that condition
(2) is satisfied.

Condition (5) follows from the following inequality:

(a) q q

I(W) > 1 >1 ,
W) = o8 1 R ) = 2 T (g ) P V)

where (a) is from Proposition 8.1. By choosing f(€) = logy(1+ (¢ — 1)€), we can see
that condition (5) is satisfied.

In order to show condition (6), we need to prove that if Fl,.x(W) is close to 1
then I(W) is close to 0. Let d be such that Fy(W) = Fpax(W). We have:

L= FuW) =+ 3 (1= Plpaspesa)).

zeG

Therefore, for every z € G we have 1 — F(py, prta) < q¢(1 — F4(W)) and so

F(pzs paya) 21— q(1 = Fa(W)).
Assume that Fy(W) is high enough so that

1—q(1—F4(W)) > cos

T (8.4)

Now let z, 2" € G be such that « # 2’. Define A(py, p,r) = arccos F(py, pr) and
/ J—
let | =

mod ¢q. We have:

F(pz, par) = cos (A(P:vapxﬂd)) 2 cos (ZA Paidy Pr+(i+1)d ))
=0

= ( arccos F'(pz1ids p;n-‘,-(z—&—l)d))

(Zb) os (I - arccos (1 —q(1- Fd(W>))>

©

> cos | (g — 1) - arccos (1—(](1_Fd(W))>)a
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where (a) follows from the fact that A(py, p,) is a metric distance [47]. (a), (b) and
(c) are true because cos is a decreasing function on |0, g and we assumed Equation
(8.4). We deduce that

1

FW) = q(qg—1)

Z F(pz, par) > cos ((q—l)-arccos (1—q(1—Fd(W)))). (8.5)
z,2' €,
r#x’

By combining Equation (8.5) and inequality (iii) of Proposition 8.1, we get con-
dition (6) of Lemma 8.2. Therefore, all the conditions of Lemma 8.2 are satis-
fied. We conclude that {I(W,,)},>0 converges almost surely to a random variable
I, € {0,log, q}. This proves Equation (8.2).

From Corollary 8.1 we can deduce that F(W~) < ¢?F(W) and F(W+) <
@?F(W)2. Therefore, we can apply the same techniques that were used to prove
[33, Theorem 3.5] in order to get Equation (8.3). O

Theorem 8.1 can be used to construct polar codes for any cqg-channel whose
input alphabet size is prime. The polar code construction, encoder and decoder
are similar to the one described in [43]. The main idea is to send information only
through synthetic cq-channels for which the symmetric Holevo information is close
to log, ¢ and for which the average pairwise fidelity is less than 2=V ’8, where N = 2"
is the blocklength of the polar code and f < % We send frozen symbols that are
known to the receiver through the remaining synthetic cq-channels. A quantum
successive cancellation decoder that is similar to the one in [43] is applied. The
probability of error can be shown to decay faster than 2~V ? for any 3 < % We
postpone the accurate description and the study of the polar code till Section 8.7
where we construct polar codes in the more general case where (G, +) is an arbitrary
Abelian group.

8.5 Polarization for Arbitrary (G, +)

In this section, (G,+) is an arbitrary Abelian group. For every cq-channel W :
x € G — py € DM(k) and for every subgroup H of G, define the cq-channel
W[H]|: D € G/H — pp € DM(k) as follows:

1
pD:ﬁsz

zeD

W[H] can be simulated as follows: If a coset D € G/H is chosen as input, a
random variable X is chosen uniformly from D and then sent through the cq-channel
w.

It is easy to see that if pXF = EZ lz)(z|X @ pP, then I(W[H]) = I(X mod

reG
H;B),.
The main result of this section is the following theorem.
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Theorem 8.2. Let W : 2z € G — p, € DM(k) be a cq-channel. For every § > 0,
we have:

1
lim on {s € {—,+}": JH; a subgroup of G,

|I(W*) — log, |G/ H,|| < 5,

[(W[H.]) — log, |G/ HL]|| < 5}‘ — 1.

Theorem 8.2 can be interpreted as follows: As the number of polarization steps
becomes large, the synthetic cq-channels polarize to homomorphism cq-channels
projecting their input onto a quotient group of GG. The inequality

‘I(WS[HS]) - 10g2 |G/HSH <9

means that from the output of W* one can determine with high probability the
coset of Hy to which the input belongs. The inequality

[I(W*) —log, |G/H,|| < 6

means that there is almost no other information about the input that can be deter-
mined from the output of W5,

In order to prove Theorem 8.2 we need several definitions and lemmas. Let
{Bn}n>0 be a sequence of independent and uniformly distributed {—,+ }-valued
random variables. Define the cq-channel-valued process {W,},>0 as follows:

e Wo=W.
o W, = Wf_"l for every n > 1.

Lemma 8.3. For every subgroup H of G, the process {I(W,[H])}n>0 is a sub-
martingale.

Proof. Tt is sufficient to show that I(W~[H])+ I[(WT[H]) > 21(W[H]). Let Uy, Us,
X1, X9, B; and B be as in Remark 8.2. We have:

(W~ [H]) + I(W*[H]) =

=1 U1 mod H; BlBg) + I(UQ mod H; BlBQUl)
> T

(

(Uy mod H; B1B3) + I(Us mod H; By B, U; mod H)
(U mod H,Us mod H; B1Bs)
(
(

X1 mod H, X2 mod H; BlBQ)
X, mod H, By) + I(Xy mod H; By) = 21(W|[H]).

I
1
I

O

Let M C H be two subgroups of G. For every coset D of H, let D/M = {C €
G/M : C C D} be the set of cosets of M which are subsets of D. Define the
cq-channel W[M|D]: C € D/M — pc € DM(k) as follows:

1
Pc—msz

zeC

WM)|D] can be simulated as follows: If a coset C' € D/M is chosen as input, a

random variable X is chosen uniformly from C' and then sent through the cq-channel
w.
Define the following;:
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o Ing(W) = I(W[M]) — [(W[H]).

FMIH (W) = max Fy(W).
® I'max (W) gé%f d( )
A¢M

The following lemma relates Iz (W) to {I(W[M|D]): D € G/H}.

Lemma 8.4. Iy (W ‘G/ Z I(W[M|D)).
DEG/H

1
Proof. Let p*B = = Z |z} (z|* @ pP. We have I(W[M]) = I(X mod M; B), and
el
I(W[M]) = I(X mod H; B),. Therefore,
Iy (W) = I(W[M)) — I(W[H]) = I(X mod M; B), — I(X mod M; B),
= I(X mod M, X mod H; B), — I(X mod H; B), = I(X mod M; B|X mod H),

1 a) 1
= ———I(X mod M;B|X mod H=D), = ——I(W[M|D)),

DeG/H

—

where (a) follows from the fact that conditioning on X mod H = D, the state of the

1
input-output system becomes DI Z |2)(z|* @ pP and so the mutual information

zeD
between X mod M and B becomes exactly I(W[M|D]). O

The following lemma relates F'(W[M|D]) to FH%L?(W)

Lemma 8.5. For every D € G/H, we have:

(1) FOvivID) < Cor A o).

(2) There exists e, > 0 depending only on q such that if M is mazimal in H (i.e.,

|H/M)| is prime) and if F, Iﬁ@f(W) >1— ¢, then

F(W[M|D]) > cos <|HI|_ZWIZW| arccos <1 - \/1 - (1 —q(1- Fé\é)fl(w))>2>> .

Proof. See Appendix 8.9.4. Ol

Lemma 8.6. For every two subgroups M C H of G where M is mazimal in H (i.e.,
|H/M]| is prime), the process {Injg(Wn)}n>0 conveTges almost surely to a random

variable I](\SITH € {0,log, |H/M]} and the process {meclX (Wh) In>0 converges almost

surely to a random variable F' M|H € {0,1}.

Proof. Let I, = Ipnyp(Wy) and T, = F%L?(Wn) We will show that I, and T,
satisfy the conditions of Lemma 8.2, where ¢ is replaced with ¢’ = |H/M|. Condi-
tions (1) and (3) are obviously satisfied. Condition (4) is also satisfied because of
Proposition 8.2.
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Since Iy g (Wn) = I(W,[M])—I(W,[H]) and since the processes {I(W,[M])}>0
and {I(W,[H])}n>0 are sub-martingales by Lemma 8.3, we conclude that {I,},>0

converges almost surely. Therefore, condition (2) is satisfied.

To see that condition (5) is satisfied, assume that F%L?(W) is close to zero, then

the first inequality of Lemma 8.5 implies that F(W[M|D]) is close to zero for every
D € G/H. The first inequality of Proposition 8.1 then shows that I(W[M|D]) is
close to logy ¢, for every D € G/H. Lemma 8.4 now implies that Iz (W) is close
to log, ¢’

To see that condition (6) is satisfied, assume that M (W) is close to 1, then
the second inequality of Lemma 8.5 implies that F'(W[M|D]) is close to 1 for every
D € G/H. The third inequality of Proposition 8.1 then shows that I(W[M|D]) is
close to zero, for every D € G/H. Lemma 8.4 now implies that Iy (W) is close to
Zero.

We conclude that {Iy;5(Wn)}n>0 converges almost surely to a random vari-

able taking values in {0,log, ¢'} = {0,logy |H/M|} and {F%L?(Wn)}nzo converges
almost surely to a random variable taking values in {0, 1}. O

1
Lemma 8.7. Let dy,....d, € G. If Fy,(W)>1— p (1 — cos %) forall1 <i<r,
then
Fy oqq, (W) > cos <Z arccos <1 —q(1- Fdl(W))>> .
i=1

Proof. We may assume without loss of generality that d; # 0,...,d, # 0 and
i—1
d:=dj+---+d, # 0. Define dj =0, and for every 2 <1i <r, let d;:Zdj.
j=1

1
For every 1 <1i <r, we have 1 — Fy, (W) = — Z (1 — F(pa, px+di)). Therefore,

xeG
for every z € G, we have 1 — F(py, poya;) < q(1 — Fg,(W)) and s0 F(pz, potd;) >
1—q(1— F4(W)). Therefore,

F(px, pm-‘rd)

(a) "
= F(perd; Potd,+d,) = €0S A(peyd,, Potdy+d,) = €OS (Z Alpeyar, px+d;+di)>
i=1

7 (b) T

= cos (Z arccos F(px+d;,px+d;+di)> > cos <Z arccos (1 —q(1- Fdl(W)))> ,
i=1 =1

where (a) follows from the fact that A(p', p”") = arccos F'(p/, p”) is a metric distance

[47]. (a) and (b) are true because cos is a decreasing function on [O, g} and we

1
assumed that Fy, (W) >1— — (1 — cos 21> for every 1 <i < r. We conclude that
q r

Fy(W) = (1] Z F(pg, prid) > cos <Z arccos (1 —q(1 - Fdl(W))>> :

zeG i=1
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Lemma 8.8. Let d € G be such that d # 0 and let H = (d) be the subgroup generated
by d. We have:

o [fFy;(W)< FH%L?(W) for every mazimal subgroup M of H.

1
o If FMlH(W) >1-—- <1 — oS 27T> for every maximal subgroup M of H, then
q

max
q

Fy(W) >cos | q-arccos [ 1—q | 1— min FI%L?(W)
M is a mazimal
subgroup of H

Proof. Let M be a maximal subgroup of H. Since H = (d), then we must have
d € H and d ¢ M. Therefore,
Fy(W) < max Fy (W) = FMIF(w).

d eH’ max
d'¢M
Now let My, ..., M, be the maximal subgroups of H = (d). For every 1 <1i <r,
let d; € H be such that d; ¢ M; and Fy, (W) = FHAQ)LH(W) It was shown in [6] that

r

d € (dy,...,d,), which means that there are Iy,...,I, € N such that d = » _lid;.
i=1

n lr)> for all

Moreover, lq,...,l. € N can be chosen so that [{ +---+ 1, <q.

1 s 1
Since Fy(W)>1——-(1—cos— | >1——(1-—cos
(W) = Q< 2Q> B q< 2(h +

™

1 <i <7, Lemma 8.7 implies that
Fa(W) = Fiyday+-ett,d, (W)

> cos (ilZ arccos (1 — q(l - Fdl(W)))>

i=1
(@)
> cos ((ll + -+ +1,)arccos (1 — q(l — min FdZ(W)))>

1<i<r

®) .
> cos <q - arccos (1 —q(1- min qu(W))>> ,

where (a) and (b) are true because cos is decreasing on [O, g} and because we

1
assumed that Fy, (W) >1— — (1 — cos ;) forall 1 <i<r. O
q q

Proposition 8.3. For every d € G, the process {Fy(W,)}n>0 converges almost
surely to a random wvariable Féoo) € {0,1}. Moreover, the random set {d € G :

Féoo) = 1} is almost surely a subgroup of G.

Proof. Let d € G be such that d # 0. Let H = (d) be the subgroup generated
by d. Lemma 8.6 shows that for every maximal subgroup M of H, the process

{FH%L?(W”)} converges almost surely to a random variable taking values in
n>0

{0,1}.

Take a sample of the process { Wy, }n>0 for which {F%L{J(Wn)} , converges to

n>

either 0 or 1 for every maximal subgroup M of H. We have:
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e If there exists a maximal subgroup M of H for which { I%L{{(Wn)} . con-
n>

verges to 0, then the first point of Lemma 8.8 implies that {F;(W),)}n>0 con-
verges to 0 as well.

o If { IﬁL{{(Wn)} - converges to 1 for all maximal subgroups M of H, then
n

the second point of Lemma 8.8 implies that {Fy(W,,)},>0 converges to 1 as
well.

We conclude that for every d € G, the process {Fj;(W,,) }n>0 converges almost surely
to a random variable F ) € {0,1}. (Note that for d = 0, we have Fy(W,,) =1 for
all n.)

Now take a sample of the process {W,,},>0 for which {Fy(W,)}n>0 converges
to either 0 or 1 for every d € G. If di,dy € G are such that {Fy, (W,)}n>0 and
{Fa,(Wp)}n>0 converge to 1, then Lemma 8.7 implies that {Fy, +4,(Wy)}n>0 con-
verges to 1 as well. We conclude that the set {d € G : {Fy(W},)}n>0 converges to 1}
is a subgroup of G. O

Corollary 8.2. For every ¢ > 0, we have

.1 n
nh_)rgo 27‘{5 € {—,+}": IH, a subgroup of G,

Fy(W) >1—¢€ for everyd € Hs, and Fy(W') < € for everyd ¢ Hs} =1

Lemma 8.9. For every § > 0, there exists € > 0 depending only on § and q such that
for every cq-channel W, if there exists a subgroup H of G satisfying Fq(W) > 1 —¢
for all d € H and Fy(W) < € for all d ¢ H, then |I(W) — log, |G/H|| < § and
}I(W[H]) — log, ]G/HH < 4.

Proof. If H = G, then I(W[G]) = 0 = log, |G/G| and so |[I(W[G]) — log, |G/G|| =
0 < 6. On the other hand since H = G, we have F3(W) > 1 — € for every d € G.

Therefore, F'(W — Z Fy(W) > 1 — €. The third inequality of Proposition

deG
d£0

8.1 now implies (W) < (5(51) for some function € — 5,(11) (€) (depending only on e and
q) which satisfies 151(1) 5((11)(6) =0.
Now assume that H # G. We have
Fwia) = roviE|G) € T pro gy < Fy(W) <
> q max qHéaGX d qe,

d¢H
where (a) follows from the first inequality of Lemma 8.5. The first inequality of
Proposition 8.1 implies that I(W[H]) > log, |G/H| — 6(2 (¢) for some function € —
5512)( ) (depending only on € and ¢) which satisfies hm 6 (2)(¢) =

On the other hand, we have FI%IH (W) = &nzgc Fd( ) > 1 — €. Assume that
€

max
d£0
€ < €q, where ¢, is given by Lemma 8.5. For every D € G/H, we have

F(W[{0}|D]) > cos <(|H| — 1) - arccos (1 = \/1 ~(1-4(1 Fél‘;ﬂH(W)))Q)) .
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This means that F(W[{0}|D]) is close to 1 as well. The third inequality of Propo-
sition 8.1 now implies that I(W[{0}|D]) < 5((]3)(6) for some function ¢ — 5(53) (€)

(depending only on e and ¢) which satisfies lin}) 5153) (e) = 0. We conclude that
e—
[(W) = I(W[H]) = I(W[{0}]) — I(W[H]) = Loyja (W)

@ 1 (
|G/H| D;G/HHWHOHD]) < o83),

where (a) follows from Lemma 8.4. We conclude that

|[1(W)~log, |G/H|| < [I(W)~I(W[H])|+|L(W[H])~log, |G/H|| < 63 (8)+61)(5).

If we define d4(€) = max {5((11)(6), 5((12)(6) + (5(53)(6)}, we get [I(W)—log, |G/H]|| <
84(e) and |I(W[H]) — log, |G/H|| < d4(€) in all cases. Moreover, lin(l) dq(€) = 0.
e—

This concludes the proof of the lemma. O

The proof of Theorem 8.2 now follows immediately from Corollary 8.2 and
Lemma 8.9.

8.6 Rate of Polarization

In order to derive the rate of polarization (i.e., how fast the synthetic cq-channels
polarize), we need the following two lemmas.

Lemma 8.10. For every subgroup H of G, we have:
o F(W™[H]) < [Hlq(q — |[H|)F(W[H]).
o F(WH[H]) < |H|(q — |H|)*F(W|[H])*.
Proof. See Appendix 8.9.5 O

Lemma 8.11. For any 0 < d <1 and any 0 < § < %, we have

lim —|{s € {—,+}": I(W*[H]) > log, [G/H| — 6. F(W*[H]) = 272" }| = .

n—oo0 2N

Proof. The lemma is trivial if H = G, so let us assume that H # G. Let Hy,..., H,
be a sequence of subgroups of G satisfying;:

e H=H,C...C H =G.

e H,;is maximal in H;;; for every 1 < i <.
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Let {W,, },>0 be the process defined in the previous section. Lemma 8.6 implies

that {IH1|H1'+1
{0,logy |Hi+1/H;|}. On the other hand, we have

(Wh)}n>0 converges almost surely to a random variable Igj}{iﬂ €

r—1
LW H]) = I(Wy[H]) = I(Wo[G]) = Y (I(Wa[H,]) — T(W,[Hit1]))
i=1

r—1
— ZIH”HM(WH).
=1

This shows that the process {I(W,[H])}n>0 converges almost surely to a random

)

variable [ l(qoo satisfying

II(LIOO) € {logom : m divides |G/H|}.

Due to the relations between the quantities (W) and F'(W) in Proposition 8.1,
we can see that {F(W),[H])},>0 converges to 0 whenever {I(W,[H])},>0 converges
to logy |G/H|, and there is a number fy > 0 such that liminf F'(W,[H]) > fo

n—oQ

whenever {I(W,[H])}n>0 converges to a number in {logym : m divides |G/H|}
other than log, |G/H|. Therefore, we can say that almost surely, we have:

lim F(W,[H]) =0 or hnrr_1>1£fF(Wn[H]) > fo.

n—00

Now from Lemma 8.10, we have F(W, [H]) < ¢*F(W,[H]) and F(W,F[H]) <
¢ F(Wy,[H])?. By applying exactly the same techniques that were used to prove [33,
Theorem 3.5] we get:

lim P({I(Wn[H]) > log, |G/ H| — 8, F(W,[H]) > 2—2"’3}) = 0.

n—oo

By examining the explicit expression of this probability we get the lemma. O

Theorem 8.3. The polarization of W, is almost surely fast:

1
lim — {s € {—,+}" : IH; subgroup of G,

n—oo 2N

[T(W*) ~ logy |G/ H.|| < &,|I(W*[H,]) — logy |G/H.|| < &, P(W*[H,]) < 272"} = 1,

1
for any 0 <6 <1 and any 0 < 3 < 3.

Proof. For every subgroup H of G, define:

Ey = {8 S {_7+}n : I(WS[H]) > 10g2 |G/H‘ — 67F(WS[H]) > 2_2671}7

B, = {s € {—,+}" :3H, subgroup of G,

[F(W*) ~log, |G/, | < 6, [T(W*[H.]) ~ logy |G/H|| < 5},
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and
By = {s € {—,+}" : 3H, subgroup of G,
[T(W") ~ logy |G/ | < 6, [I(W*[HL]) ~ logy |G/ H, || < o, FW*[H,]) < 27" }.

If s € B /( U EH> then s € Ep. Therefore,
H subgroup of G

B/ U Bu)ch,

H subgroup of G

and |FEq| > |Ey| — Z |Ef|. By Theorem 8.2 and Lemma 8.11 we have:
H subgroup of G

1 1
1> nlggo 2n|E2| > nll_l)TQlo on <|E1| g |EH\> 1-0=1
H subgroup of G

8.7 Polar Code Construction

Let W:x € G — p, € DM(k) be an arbitrary cq-channel.
Choose 0 <d<land 0< < f < %, and let n be an integer such that

0
2logy g’

I'm, _9Bn ]_
2v27\ /(g - 1)202-2"" < 272" and o Bnl > 1 -

where

E, = {s € {—,+}" : 3H, subgroup of G,
1) 1) 'n
[E(W) = log, |G/ H,|| < 5, [T(W[H,]) — logy |G/ H,|| < 5, FOV*[H,]) < 27" }.

Such an integer exists due to Theorem 8.3. For every s € {—,+}" choose a
subgroup Hy of GG as follows:

o If s ¢ E,, define Hy = G. We clearly have F(W*[H]) =0 < 9-27",

o If s € E,, choose a subgroup H, of G such that F(W?*[H;]) < 2_25,",
log, |G/ H,l| < % and |I(W*[H,]) — log, |G/Hs|| < g.

(W) -

Now for every s € {—,+}", let fs : G/Hs — G be a frozen mapping (in the sense
that the receiver knows fs) such that fs(a) mod Hy = a for all « € G/H;. We
call such mapping a section mapping of G/Hs. Let U® be a random coset chosen
uniformly in G/H, and let U® = f,(U®). Note that if the receiver can determine
U® mod H, = U® accurately, then he can also determine U* since he knows fs.

If H; # {0}, we have some freedom on the choice of the section mapping fs.
We will analyze the performance of polar codes averaged over all possible section
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mappings. Le., we assume that fs is chosen uniformly from the set of all possible
section mappings of G/Hs. We can easily see that the induced distributions of
{U* : s € {—,+}"} are independent and uniform in G. Note that for every
s € {—,+}", the receiver has to determine U® = U® mod H, in order to successfully
determine U*.

8.7.1 Encoder

We associate the set S,, :== {—, +}" with the strict total order < defined as (s1, ..., sp) <
(s}, ...,sp,) if and only if s; = —, s, = + for some i € {1,...,n} and s; = s, for all
1< h<n.

For every u = (u®)ses, € G, every 0 < n’ < n and every (s, s") € Sy X Sp_n,

define 55,”(u) € G recursively on 0 < n/ < n as follows:

o &i(u) =u®ifn’ =0and s € S,.

1

° &y 7)(u) = Ss(f/l’_)(u) + Eg}sll’Jr)(u) ifn'>0,¢ €S,y _1and s" €5, .
o Eé: +)(u) = Ss(fu’ﬂ(u) ifn >0,¢ €S,y _1and s" €85, _,.

For every s € Sy, we write £;(u) as £°(u) and £(u) as Es(u).

Let {Ws}ses, be aset of 2" independent copies of the cq-channel W. W should
not be confused with W*: W is a copy of the cq-channel W and W?* is a synthetic
cg-channel obtained from W as before.

Let (U%)ses, = (fs(U?®))ses, be the sequence of 2 independent random variables
that were defined before. For every 0 < n’ < n, s’ € S,y and s” € S,_,/, define
Us' = 5;,”((Us)s€5n). We have:

e U; =U"ifn’ =0and s € {— +}".

U Ul it > 0,5 € {4}V and 5" € {—, +} "

¢ U(Sslv_)
° U(Ss'; = US(,SN’JF) ifn >0, ¢ {—,+}"'_1 and s” € {—,+}"‘”/.

For every s € Sy, let U; = U?. It is easy to see that (Us)ses, are independent and
uniformly distributed in G.

For every s € .S, we send Ug through the cq-channel Ws. Let B be the system
describing the output of the cq-channel Wy, and let B = {B;}scs,. We can prove
by backward induction on n’ that for every s” € S,_,, the cq-channel U5 —
({BS} s has s’ as a prefix, {U;",}KS//) is equivalent to the cg-channel W5 for every 0 <
n' <n,s €8, and s” € S,_,y. In particular, the cq-channel U* — (B,{U"},<s)
is equivalent to the cq-channel W?# for every s € S,,.

Note that the encoding algorithm described above has a complexity of O(N log N),
where N = 2" is the blocklength of the polar code.

8.7.2 Quantum Successive Cancellation decoder

Before describing the decoder, let us fix a few useful notations.
For every s € S, define L, ={re S, : r<standUs; ={reS,: r> s}. For
every u = (u®)ses, € G, define the following:
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e For every S C S, let u® := (u®)ses-
e For every s € S, let us := E(u).

e Define pf = ® py. - This means that if U® = u® for every s € S, then the
SESn
receiver sees the state p? at the output.

It is easy to see that for every s € S,, we have W* : v* € G — psB”ugﬂs €
DM (k‘zn . q|£5‘), where
B,U*s Lo\ /. Lo|UFs
psug = Z pusu53®|u ><u ’
uﬁé €GELs
and
—B
pu57u£fs = ‘u | Z pu
uls cGUs
Moreover, we have W*[H,] : a° € G/Hs —» pg;{fﬁs € DM (k¥ - ¢l*+1), where
B,U%s B, ULS 1 _B Ls Lq UELs
ps us = |H | Z sus = |Ls| Z PaS,uﬁs ® ‘u ><u ?
UsEUs q uLseGELs
and )
_B B
Pas yts = ‘H | s Z Z Py, -
§ q useus yUs cGUs
Lemma 8.12. For everyu“s € G s, there exists a POVM{H& uLe e D U E G/HS}
such that the POVM {Hé’)%: s uf e G/HS} defined as
B.U*Fs _ Lo\ /. Lo UFs
(s as Z H(s ufs s ® ’u ><u ’
ulscGLs
satisfies
1 B,ULs BULs
-G ST (H(SW Pl ) < (|G/H,| — )F(WI[H,)).
@5 €G/H,
Proof. See Appendix 8.9.6. O
For every s € S,, and every u“s € G¥+, define the POVM { (s)uls us * u® € G}

as:
if u® = fs(u® mod Hy),

B
e _ ]'_‘[(s),uCS,uS mod H
(s),uls us — .
0 otherwise.

Now we are ready to describe the quantum successive cancellation decoder. We
will decode {U?®}scs, successively by respecting the order < on S,,. At the stage
s € Sp, we would have decoded U%s = (U"),«s and obtained an estimate 4% =

") p<s of it, so we apply the POVM {112, . . 4* € G} on the output system
(s),a%s u
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B = (Bs)ses, and we let @° be the measurement result. We assume that the
POVM measurement is designed so that if o? was the state of the B system before
the measurement, and if the output @® occurs, then the post-measurement state is

B B B
\/ ) aes 050 \/ T aes a0

Tr (HB . ASUB)
(s),0%s i
The whole procedure is equivalent to applying the POVM

{AD : u= (u)ses, € GS"}

defined as:
B _ /1B 1B B B
Au B H(sl):usl e H(si),uﬁsz‘ wsi H(sN),uﬁsN,uSN \/H(sN),uLSN,uSN e
B B
H(Si)»’uﬁsi :usi e ('31)7“517
where s1 < s9 < ... < sy are the N = 2" elements of S,, ordered according to

the order relation <.
It is easy to see that A, > 0 for every u € G, and Z A, =1.
u€GSn

8.7.3 Performance of Polar Codes

For every s € Sy, let Fs be the set of section mappings of G/Hs. We have:
Fo={f, €GO (i) € @ for all @ € G/H,} .

It is easy to see that |Fy| = | H,|/®/Hs]. Define

F o= H]:S.

SGSn
For every f = (fs)ses, € F and every @ = (4°)ses, € H (G/Hs), define

sESy
F@) = (fu(@)) g € G

The probability of error of the quantum successive cancellation decoder for a
particular choice of f = (fs)ses, € F = H Fs is given by:
SGSTL

Pe(f) = m > (1 - 1r (Aﬁa)pr(a)))

u€]lses, (G/Hs)
=E; (1 —Tr (Afw)f’fw))) ’

where U = (U®)4es, is uniformly distributed in H (G/Hy).
SES’n
The probability of error averaged over all the choices of f = (fs)ses, € F =

H F is:

SGSn
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Z ‘;,ZE (1= (Aranfion))

fE]:
=Epg ( —Tr (AB(U)pF( ))> =Epg (1-Tr (Agpg)) )

where F' = (Fs)ses, is uniformly distributed in F = H Fs, and U = (U®)ges, =
SGSn

FU) = (FS(US))SES . It is easy to see that {U® : s € S, } are independent and

uniformly distributed in G. We have:

=Epp (1= Tr (Ader))

—E, ( (\/H(sN)UCSN I Hgl)wlpg\/ngl)w...\/HiN),ULSN’USN))

(a) N
<Epy [2vN| Y (1 ~ Ty (Hii)vULSi’USip[?))
=1

1=

Youn Epp (i (1 T (Hf . Uﬂ)v)))
=1

—2VN Z; Epg ( —Ir (Hé),U‘s,UspED
SEOSn

99N Y Epp (1 —Tr (Hi),Uﬂs,USPED
€5

DovN > By (1= (1) e 5urF))

SESn

= 2\/N Z (1 - EUS,UZ:S TI‘ (Hi)7ULS’USEUS,Uu5‘US7U£5 (pg) >>

SESH

CENARDY <1 ~Egopes (Tr <H< e, 0P U‘S)) >

SESH

where (a) follows from the “non-commutative union bound” of Lemma 8.1. (b)
follows from the concavity of the square root. (c) follows from the fact that U® =

fs(~ ), which implies that U® mod Hy, = U® and U® = fs(U® mod Hy), which in

turn implies that H( \ULs s = Hg)’Uﬁs’Us mod H." (d) follows from the fact that

Tr (H( )U Lo o pU) depends only on U*® and U. (e) follows from the fact that for
every @° € G/H, and every u”s € G*+, we have:

Bys pets|irs=ais 2 ks () = VH| - gl Z Z Pl = Pix Jufs

useus yUs GGZ/IS
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On the other hand, we have:

B —B
Egs ves (Tr (H(s),Uﬂs,Uspﬁs,Uﬁa-))

L 1 B -B
~ |G/H,] 2 PN >, I (H<s>,uﬁs,aspas,u£s)

us€G/Hs ufscGEs
1 B,UEs B UEs
= |G/H,| Z Tr (H(s),as Ps,us ) '
useG/Hg

Therefore,

P22 Y (1 B (10878 )) )

SES’n

- 1 B,UEs B,UEs
fry 2\/ﬁ Z 1 - ’G/HS| Z TI“ (H(S),’ELS ps’ﬂs )

SESn s €G/H,

N [S(6/H - )EWH) <2VF [3 (g 122

SESn SESn

< 2x/2n\/ (q— 1)2n2-2"" < 27",

where (a) follows from Lemma 8.12.

The above upper bound was calculated on average over a random choice of the
frozen section mappings. Therefore, there is at least one choice of the frozen section
mappings for which the upper bound of the probability of error still holds.

It remains to study the rate of the constructed polar code. The rate at which we

TR 1 1
are communicating is R = on Z log, |G/Hs| = on Z logy |G/Hs|. On the
SE{*,J”}H’ SEEn
other hand, we have |I(W*) — log, |G/H,|| < g for all s € E,,. Now since we have
Z I(W?) =2"I(W), we conclude that:

56{774’}”

I(W) = 2% oI = Qin > I+ 21” > 1w

se{—,+}n" s€E, seES
1 SN 1.
<35 > (loga|G/HL| +5) + 57| E5 logs
sel,
1 6 5
R+ —|Ey|>+—" 1
< B+ onlEaly + 2logyq o2d

o 9
<R+-+-=R+90
<R+ 5 + 5 +o0,
where ES = {—,+}" \ E,.
To this end we have proven the following theorem which is the main result of
this chapter:
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Theorem 8.4. Let W : z € G — p, € DM(k) be an arbitrary cq-channel, where
the input alphabet is endowed with an Abelian group operation. For every 6 > 0
and every 0 < § < %, there exists a polar code of blocklength N = 2™ based on
the group operation which has a rate R > I[(W) — 6 and an encoder algorithm of
complexity O(N log N). Moreover, the probability of error of the quantum successive
cancellation decoder is less than 2=N”.

8.8 Polar Codes for Arbitrary Classical-Quantum MACs

An m-user classical-quantum multiples access channel (cq-MAC)
W:(z1,...,2m) € Gt X -+ X Gy — pay....n € DM(E)

takes classical inputs {z; € G; : 1 < i < m} from the m users and produces a
quantum output pz, . .. € DM(k). We assume that the input alphabets G; are
finite but their sizes ¢; = |G;| can be arbitrary.

The achievable rate-region is described by a collection of inequalities [50]:

VS C{1,...,m}, 0< Rs < I(Xg; B|Xse), = I(Xs; BXs¢),,
where Rg = ZR“ Xs = (Xi)ies, S¢ ={1,...,m}\ 5, and the mutual information

ieS
I(Xg;Y|Xse), is computed according to the following state:

m
b _ 3 (prxx») ® Iyl | o2

1€Gy, \i=1 1<i<m

for some independent probability distributions {Px,(x;) : z; € G;} on G; for 1 <
1 < m.

We are interested in the case where the probability distributions of Xi,..., X,
are uniform in Gj,..., Gy, respectively. We define the symmetric-capacity region

J(W) of W as
J(W)=1{(Ri,....,Rn) ER™: 0< Rg < Ig(W), VSC{l,...,m}},

where Ig(W) := I(Xg; BXg¢), is computed according to

1 .
R S i Nl E T

DeerdmC2a \i<icm

The set {(R1,...,Rp) € T(W): Ri+---+ Ry = I(W)} is called the dominant face
of J(W), where I(W) := I{1,...,m}|(W) = I(X1...X,,; B), is the symmetric
sum-capacity of W.

For every 1 <i < m, we fix an Abelian group operation on GG; and we denote it
additively. It is possible to construct cq-MAC codes which achieve the rates in the
region J (W) using one of the following two methods:
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e By using the monotone chain rule method of Arikan [22] and applying a po-
larization transformation using the Abelian group operation for each user.

e By using the rate-splitting method described in [8] and applying a polarization
transformation using the Abelian group operation for each user.

By using the cq-channel polarization results of this chapter and a similar analysis
as in [22], [8] and [44], we can show that both methods yield cq-MAC codes that
achieve the whole region J (W) for which the probability of error of the quantum
successive cancellation decoder decays faster than 2=V ? for any 3 < %, where N is
the blocklength of the code.

However, one may hesitate to call the codes obtained using these methods as
cq-MAC-polar codes because they are not based on the polarization of cq-MACs.
These methods are hybrid schemes which combine cq-channel polarization (not cq-
MAC polarization) with other techniques. Moreover, the code construction for these
methods is more complicated than cq-MAC-polar codes. In the rest of this section,
we describe how cq-MAC-polar codes are constructed.

We define the cq-MACs W~ and W™ as follows:

— . _ 2
W= (Ul,la L ,um71) eG X xGp — pu1,1,-~.,um,1 € DM(]C ),
+. + 2
W™ (ur2,. .. ume) € Gi X -+ X Gy, —> Pt oot € DM(k“q1 -+ Ggm),
where
_ 1
pul,l,...,umJ = E pu1,1+u1,27-~~7u7n,1+u7n,2 ® pu1,2»~~-7u7n,27
q1 - qm
u1,2€G1,
um,ZéG'rrL
and
+ 1
Putgytime — T Z Put 14u1 1 ttma+tm.2 @ Pur st @ ® |ui71><ui,l| .
q1 dm w1 1€G, 1<i<m
um,l.eGnL

Note that the cq-MAC W can be seen as a cq-channel with input in G := G %
-+ +XGp,. Moreover, W~ and W™ when seen as cq-channels can be obtained from the
cq-channel W by applying the polarization transformation which uses the Abelian
group operation of the product group G. Therefore, the cq-channel polarization
results of the previous sections can be applied to W. In particular, we have:

o [(W)+ I(WT) = 2I(W). This shows that the symmetric sum-capacity is
conserved by the polarization transformation and that for every n > 0, the

1
region on Z J(W?) contains points on the dominant face of J(W).

se{—,+}n
e For every subgroup H of G, we have (W~ [H]) + [(W~[H]) > 2I(W[H]) by
Lemma 8.3. Therefore, for every S C {1,...,m}, we have

Is(W™) + Is(WF) = (I(W™) = I(W™[Gs])) + (I(WT) — I(WT[Gs]))
< 2I(W) = 2I(W|[Gs]) = 2Is(W),
(8.6)
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where,
G = <H Gi> < | [0}
€S Jj¢S

Equation (8.6) shows that although the symmetric-sum capacity is conserved
by polarization, the highest achievable individual rates can decrease. In other
words, polarization can induce a loss in the symmetric-capacity region.

e Theorem 8.3 implies that

1 n
nlg]go on {s € {—,+}" : 3H, subgroup of G,

[I(W?) —logy |G/Hy|| < 6, |[I(W®[H,]) —logy |G/H,|| < 6, F(W*[H,]) < 2—2‘5"} =1.

In other words, as the number of polarization steps becomes large, the syn-
thetic cq-MACs become close to deterministic homomorphism cq-channels
which project the input (U7, ...,U;,) onto some quotient group G/Hj of the
product group G.

One can employ the properties of subgroups of product groups to show that the
polarized cq-MAC W¥ is an “easy” cq-MAC in a sense similar to the way easy MACs
were defined in Definition 4.6. This allows the construction of cq-MAC-polar codes
for which the probability of error of the quantum successive cancellation decoder
decays faster than 2=V for any 0 < 8 < %, where N = 2" is the blocklength of the
code. The region of rates that are achievable by cq-MAC-polar codes is given by:

jpol(W) — m 2% Z j(WS)

n>0 se{—,+}"

_ {(Rl, ... Rm) €R™: Rg < IP'(W), VS C {1,... ,m}},

where

(W) = lim L S Is(w).

The cq-MAC-polar codes can be compared to the two cq-MAC coding methods
that were described at the beginning of this section:

e The cq-MAC-polar codes have the advantage that the code construction is
simpler.

e The other two coding methods have the advantage that they always achieve
the whole symmetric-capacity region 7 (W), which may not be the case for
cq-MAC-polar codes in general.
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8.9 Appendix

8.9.1 Proof of Lemma 8.1

Let 11,1 = I. We have:

1—Tr(\/117«.--\/TT1p\/HT..-\/TTw)
_ (\/HH_lp Hr+1) Ty (\/Hr+1 L/ \/HTH)
= i:Tr (\/H,.+1 o 1o/ - \/H,.H) —Tr (\/HiJrl NIV \/ﬁ)

= ZT:Tr <\/HT+1 VAT (p - \/Eﬂ\/ﬁ) VI \/Hr+1)

(@) <

o e e
i=1

) <

< Zﬂ’p— VILipy/TL;
=1

RVAITIER \/Hm)

=3 |- Vv
i=1

1(222\/% (p— \/ﬁm\/ﬁi)

r (d) - .
— 27'% > V1= Te(Ip) % o %Z (1—Tr(ILp)) = QWJ > (1= Te(Lp)),

i=1 i=1 i=1

where (a) follows from the fact that \/I_T] >0foreveryi+1<j<r+1,
p — VIipVII; < |p— IpVIL| and the fact that if A < B and C' > 0, then
Tr(AC) < Tr(BC). (b) follows from the fact that 0 < |/IT; < I for every i +1 <
1 <r+1, }p — \/EP\/ITZ‘ > 0, and the fact that if A, B are two positive operators
with B < I, then Tr(AB) < Tr(AB) + Tr(A(I — B)) = Tr(A). (c) follows from

the fact that Hp — ﬁp\/)?Hl < 2\/Tr (,0 — ﬁp\/)?) for every positive operator
X < (see [51]). (d) follows from the concavity of the square root.

8.9.2 Proof of Proposition 8.1

In [52, Prop. 1], it was shown that for every 0 < s < 1, we have:

1+s
1 1
(W) > —=1log, T Px(z) - pI
(W) > ——log, Tr (Z x(x) - p )

zelG

By taking s = 1, we obtain:
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1) > o, |

2
S | =t 3 v

zeG

1 1
= —logy Tr ?Zﬂaf""j Z V P/ Pz’

z€G z,x'€q,
oA’

1 1
= —10g2 5 + ? Z Tr(\/ Px/ pz/)

z,2'€G,
x#x’
(a) 1 1 q
> —lo -+ — F(pz, pz =1lo )
z,2' €q,
rFx

where (a) follows from the fact that Tr(\/pzv/pz) < Tr(|/Pz/Pr|) = VPP |1 =
F(Pmﬂx')-

In order to prove the second inequality, define the cq-channel W:zelG—
pz € DM(k - ¢%) as follows:

~ 1

FBS1S: — pB g ST ) (|x><x,& ® |z (@' [%2 + |2/} (2% @ |x><:c|52)
x'€q,
'z

The two additional systems S; and Se can be interpreted as additional side
information about the input which is provided to the receiver. Note that if S1.59 are
traced out, we recover the cq-channel W.

1
Let pXB%5152 — = Z |2) (x| * @ pB5152. We have:
q
zeG

I(W) = I(X;B)ﬁ < I(X;BSng),; = I(X;Sng)ﬁ -I-I(X;B‘SlSQ)ﬁ
= H(X) — H(X|5152) + I(X;B\Sng),;

(2 logy(q) — 1+ Z I(X; B|S1 = 51,52 = s2)Ps, 5, (51, 52)

51,52€G

b
U logy(q/2) +

Z I(X; B|S1 = 51,52 = s2)
51,52€G,
S17£82

Z I(WSLSQ)?

51,52€G,
S17#82

1
q(q—1)

©, 1
—ng(q/2)+q(q_1)

where (a) follows from the fact that given {S1 = s1,5 = s2}, the conditional
probability distribution of X is uniform in {s1, s2}. (b) follows from the fact that
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the distribution of (S, S2) is uniform in the set
{(s1,52) € G X G: s1 # sa}.

(c) is true because conditioning pXB5152 on {S; = s5,52 = s2} and then tracing
1 1
out 5153 gives the state §\sl><31\X ® pE + 5\32)(32\)( ® pE which just represents

W, s, with uniform input, where Wy, 5, : © € {0,1} — pys,.5, € DM(k) is the
binary-input cq-channel defined as po s, s, = ps; and p1s; 5, = ps,- In other words,
the cg-channel Wy, , is obtained from W by restricting the input to {s1, s2}.

Now since Wy, s, is a binary-input cg-channel, we have from [43, Prop. 1] that

I(WS1,S2) < \/ 1- F(W81,S2)2 = \/1 - F(pslapsz)Q'

Therefore,

1
I(W) <logy(q/2) + ——— > V1= F(ps,,ps,)?
qlg—1)
s1,52€@,
51752

< logy(q/2) + V1= F(W)?,
where the last inequality follows from the concavity of the function ¢t — /1 — ¢2.
It remains to show the last inequality of Proposition 8.1. Define the following:

1
« P =25 ) ¥ @ P,
quG

o« AP = 3 ) al o B2,
zeG
decodes W with the lowest probability of error.

where {EP : x € G} is an optimal POVM that

We have:

1
o« X = Tip(pX) = 23 ) (e,
q zeG

1
o pP=Tex(pXP)==-> "ol
q:r:EG

From [47, Sec 9.2.3], we have
2 2
D (p P, 0" @p") +F (0P, p" @ p”)" <1, (8.7)

where D(p/, p”) = ||’ — p"||1 is the trace distance between p’ and p”. We have:
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F(p*, p% @ p" )ZH\/p)TB\//WH1
(Dx o pf)(leMx!X@ﬁB)

zeG zelG
Z ) (z* @/ BV p PP
zelG 1 acG
1 8.8
- Z F p:p ' P - ( - > ( )
mEG :rGG q
(@ 1 1
q z,x' €G (] z,2' €,
w;ﬁx’

- ;u +(g— )FW)),

where (a) follows from the concavity of the fidelity.
Now let P.(W) =1 — P.(W) be the probability of correct guess of the optimal
decoder {EZ : z € G}. We have:

ZTr (EBpS 1Z:Tr (Jz)(z|* ® EZpl) = Tr (AXEpXP) .
:EGG zeG
Therefore,
Tr(AXB(pXB_pX®pB)):P ( Z|x ]X®Efp3>
zeG

1@
= ——ZTrEBB P(W)—= >0,
:JcEG

where (a) follows from the fact that a random guess gives a probability of correct
guess %.
On the other hand, we know that D(p*X 5, pX@p?) = Jmax Tr(D(pXB—pXap?)).
Therefore, -
1 XB( XB_ X o By Y XB X . B
< — - = - < —
0 < P(W) i (A7 (p pt @p7)) < aax Tr(T(p p* @ p°))
=D (™7 0% @ p"),
(8.9)
where (b) follows from the fact that 0 < AXB < I.
By combining (8.7), (8.8) and (8.9), we get:

2
()= 1) + S+ @-nrmyP <1
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Thus,

1 1 2_1+\/q2—(1+(q—1)F(W))2
POV < T4 f1= 2 (4 - DFOV)? = : ,

which implies that

H(XIB) 2 ~ 1ot PAW) 2 oy —logs (141 — (1+ (g = DF(V)?).

where (a) follows from [53, Prop 4.3] and the operational interpretation of the condi-
tional min-entropy of a cq-state in terms of the guessing probability [54]. Therefore,

I(W)=I(X;B) = H(X) — H(X|B)

= logy ¢ — H(X|B) < log, (1 + \/q2 —(1+(q¢- 1)F(W))2> :

8.9.3 Proof of Proposition 8.2
Lemma 8.13. Let A and B be two positive semi-definite k x k matrices. We have'®:

TrvVA+ B<TrvVA+TrVB.

Proof. Let us first assume that A and B are invertible. Since the mapping C' — C~*
is monotonically decreasing [56], we have (A + B)~! < A~!. Moreover, since the
square root is operator monotone [56], we have (A + B)_% < A3 Similarly,
(A+ B)_% < B~z. Therefore,

TrVA+B=Tr ((A+B) : (A+B)‘%) =Tr (A- (A+B)‘%> +Tr (B-(A+B)—%)

Y (A.A—%) +Tr (B : B—%) =Tt VA +Tr VB,

where (a) follows from the fact that if C' < D and A > 0, then Tr(AC) < Tr(AD).
Now let A and B be two arbitrary positive semi-definite k& x k matrices. We
have:

Tr\/A+B:11n(1]Tr\/A+B+2eI§ 1ir%Tr\/A+d+Tr\/B+d:Tr\/Z—FTr\/E.
€—> €—>

O
Lemma 8.14. Let pi,...,pn and o1,...,0m, be n + m density matrices of the
same dimension. Let {p1,...,pn} and {q1,...,qm} be probability distributions on

{1,...,n} and {1,...,m} respectively. We have:

n m n m
FA> pipid qios | <D0 VmigiF(pis o).
i=1 j=1

i=1 j=1

5The proof of Lemma 8.13 is due to Martin Argerami who thankfully answered my question on

Math Stack Exchange. In an earlier version of this work, we used a weaker inequality Tr Z A; <
i=1

nZTr VA; which we proved using Weyl’s inequality [55] that relates the eigenvalues of A + B

i=1
with those of A and B.
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Proof. 1t is sufficient to show the lemma for the case where n = 1:

m N m . a m n ] m
p. Y aio | =Tr |p2 | Y gjoj | p2 < Z projp? = Z F(p,0;),
=1 et ot =1

where (a) follows from Lemma 8.13. O

Now we are ready to prove Proposition 8.2:

1
Fy(WT) = p > Fofpt)

zelG
= - Z Z Pui+z @ Pz & |U1> U1| Z Pus+a+d @ Prtd & |u1><u1|
zEG u1EG u €G
1 1
== Z F =0 )l @ puyia | @ pos | = D un)(ua] @ puytatd | @ pasa
’EEG q w1 €G q u1€G
1 1
= = Z F 6 ‘ul U1| & Puy+z, — Z |U1><’UJ1‘ &Q Puita+d | F (p;ta p:r-i-d)

mEG u1 €EG u1 €EG

g Z Z ’0“1+m’pu1+x+d) ’ F(praprrd)

:cEG uleG

= - ZFd pazaperd) Fd(W)2'
xEG

Fd(W_) = - ZF pxapx+d

xGG
1 1 1
- Z L Z Patuy @ Puyy — Z Prtdtus @ Pus
q zelG q u€G q us G

1
> — Z F(pztus @ Puys Prtdtus @ Puy)
z,u2€G

3 Z F(,O:E+u2a p:r;+d+u2) = Fd(W)7

z,u2€G

q

where (a) follows from the joint concavity of the fidelity.
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_ 1
& Z ( Pz+us @ Pusy — q Z p:p+d+u/2 & pu’2
eG ug€G ubeG
(a) 1
< - Z Z 2 (:036+u2 ® Pug s px+d+u’2 o2y pué)
q TEG ug,ubeG
1
= ? Z F (px+u2>px+d+u’2) - F (pu27pu’2)
x,ug,ubeG
1 1
=3 Z F(px+u27px+d+u2)+ﬁ Z F(puypuz,d)
q z,u2€G z,u2€G
1
+ qig Z F <p$+u27px+d+u'2> -F <Pu27pu’2>
x,u2,ub€G,
ubhFuz,
uhFuz—d
= 2Fd + ) Z Z pac’a px’+d+A) F (pu27 pUQ+A)
A€EG, 7' ueG
240
A#—d
=2F,(W)+ Y FA(W)Fza(W),
Aed,
A0,
At—d
where (a) follows from Lemma 8.14.
8.9.4 Proof of Lemma 8.5
F(WI[M|D])
1
= F(pc, pcr)
DDA 1), 2
CAC
|M]?
=TI A Pz Pz’
- 2 0 \C/\EC, :
C£C
(@) M|
< pxapa:
[H|(1H] = [M])VIC]- 1] CC%:)/M x;
c#£c! e
®) | M| M
< F(pz, prva) < F(pz, prtd)
EIHT - ) 2 P Pesd) < G ) 2 g 2P
deH, d¢M
d¢M
g M q-|M]| M|H
Fy(W (|H| — [M)FME W),
~ [H|(H| - [M]) |H| |M]) d;{ |H|(\H\ | M) e

d¢M
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where (a) follows from Lemma 8.14, and (b) follows from the fact that |C| = |C’| =
|M| and the fact that {30, C' € D/M: z€C, 2 € C' and C # C'} if and only if

xGD,x’—xGHandx’—x%M}.
Now let us show the second inequality of Lemma 8.5. Assume that M is maximal
in H and let d € H be such that d ¢ M and FX (W) = Fy(W). Since 1— Fy(W) =

- Z (1 = F(pg, pota)), we have F(py, prta) > 1 — q(1 — Fy(W)) = 1 —¢(1 —

aceG
FI%L?(W)) for every z € G.

For every C' € D/M, we have:

(a)
F(pc,payc) > 1= D(pc, parc) =1 — <|C’| > Pe i sz+d>

zeC
‘ Z pa?-f—d

zeC

| ZD vap:(:+d ‘C’ Z \/1 pa:>p:c+d)2

zeC zeC

>1- \/1 - (1 —q(1- F%T(W)))z,

where (a) follows from the fact that D(p',p") + F(p/,p") > 1 (see [47]). (here
D(p',p") = 3ll¢' — p"|1 is the trace distance between p’ and p”.) (b) follows from
the fact that D(p, p")2 + F(p, p")? < 1 (see [47)).

Now let C,C" € D/M be such that C' # C’. Since |H /M| is prime, we can write
C" =1ld+ C for some 0 <[ < |H/M|. We have:

> 1 OZ p2 = patally
2

zeC

@ =
F(pc, pcr) = F(pc, putc) = cos A(pc, pua+c) = cos (Z A(ﬁid—&-C’aP(i—f—l)d—l—C))
=0

-1
= cos (Z arccos F(piay o, P(i+1)d+0)>

=0

(g cos (l - arccos (1 - \/1 - (1 —q(1- Fxﬁf(W))f))
> cos (W arccos (1 - \/1 — (1 —q(1- Fé\l{l)f](W))>2>> ;

where (a) follows from the fact that A(p,p") = arceos F (,0 o ) is a metric [47].

Note that since cos is a decreasing function on 0 , (b) and (c) become true
. M|H
if we assume that 1 — \/1 — (1 - q(l — Fmax (W > coS <2 > In other

words, we can take
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We conclude that

1
crC

> cos (W arccos (1 — \/1 - (1 —q(1 - F%?(W))>2>> .

8.9.5 Proof of Lemma 8.10

Lemma 8.15. For every subgroup H of G, we have:
FS(W) < (¢ — |H|)F(W[H])

Proof.

C,C'eG/H,
C£C
1 1 1
= F Pzs T~ Pz’
GG~ 1) | 2= (cr; 1 2, )
C£C
(a) 1 1

>

|G/H|(|G/H| - 1) [H|? Y D Flpwpw)

C,C'eG/H, ©<C,

c#C'  2'elC
1 1
Y Flpurprra) = —— S Fu(W
dq A 2 Tberpord) = o 2 FullW)
d¢H d¢H

1
> — |H|F£JS(W),

where (a) follows from the concavity of the fidelity and from the fact that |C| =
|C'| = [H]. O

Now we are ready to prove Lemma 8.10. The lemma is trivial for H = G.
Assume that H # G. We have:

Fv 1) = £v- (8161 € RIS = s av)

max

eC,
dgH
(b)
< |H| %%X{QFd(W)JF > FA(W)Fd+A(W)}
i i
A#—d

max

()
< H!<2Frfif(W) + (q—2)F£Jf(W)> = |H|gFHIS (W)

(d)
< [Hlq(q — [H|)F(W][H]),



222 Polar Codes for Arbitrary Classical-Quantum Channels

where (a) follows from Lemma 8.5. (b) follows from Proposition 8.2. (c) follows

from the fact that for every d,A € G, if d ¢ H then either A ¢ Hord+ A ¢ H,

and so FA(W)Egza(W) < Fﬂﬁ(W) (d) follows from Lemma 8.15.

On the other hand,

Fov i) = roveiaia) < S ERG0r < 1 i)

max

d¢H

max

(b) (¢)
= \H!gé%de(W)g = [H|FHSW)? < |H|(q - [H|)*F(W[H])*,
d¢H

where (a) follows from Lemma 8.5, (b) follows from Proposition 8.2 and (c) follows
from Lemma 8.15.

8.9.6 Proof of Lemma 8.12

It is sufficient to show the following simpler version:

Lemma 8.16. If W :z € G — py, € DM(k - 1) is a cq-channel such that

1 r
U= s pr,u ® ’u><u’U7
u=1

where pB, € DM(k) and {|u)V : 1 <wu <r} is an orthonormal basis of the Hilbert
space of dimension r, then for every 1 < u < r, there exists a POVM {ng X € G}
such that the POVM {112V . z € G} defined as

By — ZH @ |u)(ulY,

satisfies

1- 2 > Te (MPYpBY) < (q— DF(W).
zeG

Proof. For every 1 < u < r, define the cq-channel W, : 2 € G — p,, € DM(k).

The optimal decoder for W, satisfies P.(W,) < (¢ — 1)F(W,) [49]. Therefore, there
exists a POVM {Hﬁx € G} satisfying,

1_7ZTI Hu:cpuz (q_l)F(Wu)
ccGG

For every = € GG, define

by = ZH ® |u)(ulY.
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It is easy to see that {IIZV : 2 € G} is a valid POVM. We have:

1—fZTr (TIBY o
mEG
Ly ) - z(l—zﬂ )

rxeG u=1 u=1 xeG
1 q—l
S NRILUSELEL o oL NR
u=1 u=1lz2'€qG,
x#x’
—un Y F( WEAEIPITES SERTTL)
z,2' €,
x#z’
=(¢—1FW).






Conclusion of Part |

In this chapter, we summarize the main contributions of the first part of this thesis.
Furthermore, we briefly discuss some open problems and possible future directions
in polarization theory.

9.1 Ergodic Theory of Binary Operations

In Chapter 2, we developed an ergodic theory for binary operations. This theory
was applied in Chapter 3 to characterize the polarizing binary operations. The po-
tential applications of the ergodic theory of binary operations might extend beyond
polarization theory. The mathematical framework that is developed in chapter 2
is fairly general and might be useful to areas outside polarization and information
theory.

As we saw in Chapter 2, a uniformity-preserving operation is ergodic (resp.
irreducible, quasigroup operation) if and only if its right-inverse is ergodic (resp.
irreducible, quasigroup operation). A natural question to ask is whether the strong
ergodicity of a binary operation implies the strong ergodicity of its right-inverse.
This question remains an open problem.

9.2 Polarizing Binary Operations

In Chapter 3, we provided a complete characterization of polarizing binary opera-
tions. We showed that a binary operation is polarizing if and only if it is uniformity-
preserving and its right-inverse is strongly ergodic.

9.2.1 Structure of polarized channels

Let * be a polarizing binary operation on a finite set X', and let W be a channel with
input alphabet X. We showed in Chapter 3 that as the number n of polarization
steps becomes large, the synthetic channels (W*) c;_ ;3» polarize to channels that
project their input onto a stable partition of (X, /*). For every stable partition H

225
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of (X, /*), define

#3(W) = lim lim S {5 €{—,+1":

§—0n—o0 2N

|[E(W*) ~ logy [HI] < 6, [I(W*[H]) ~ logy [H]| < 6 }|.

It is not difficult to show that the limit in the above equation exists. The quan-
tity ## (W) represents the asymptotic fraction of polarized synthetic channels that
project their input onto H. Clearly,

> #n(W) =1.

H is a stable
partition of (X,/*)

One problem that remains open is to find a method! to compute #4 (W) for an
arbitrary channel W and an arbitrary stable partition #H of (X, /*).

9.2.2 General Arikan-Style constructions

The Arikan-style constructions that we considered in chapter 3 combine exactly two
channels in one polarization step. In the following, we explain more general Arikan-
style constructions that can combine more than two channels in one polarization
step.

An [-ary kernel on the set X is a mapping f : X! — X', For every 1 <i <1, we
denote the i component of f(u1,...,u) as fi(ui,...,u), ie.,

f(ula"wul) = (fl(ula"'7ul)7"'7fl(ula"'7ul))'

For every l-ary kernel f on X, every 1 <+ <[ and every channel W : X — ),
define the channel W@ : x —s Y x X1 as follows:

W(i)(yla"'7yl>u1?"'aui71|ui)
1
Z Wyl fi(ua,..,w)) x - x Wyl filu, ... w)).

- W
Wig 150 U EX
For every n > 1 and every s = (s1,...,8,) € {1,...,1}", define
W = (... (Wh)lsz) ),

An [-ary kernel f on X is said to be polarizing if it satisfies the following two
properties:

e Conservation property: For every channel W with input alphabet &', we have

l

"We seek a closed-form formula, or a low-complexity algorithm that can approximate #4, (W)
with arbitrary precision.
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e Polarization property: For every channel W with input alphabet X and every
6 > 0, we have

lim lln‘{s e{l,...,1[}": W¥is b-casy}| = 1.

It is easy to see that an [-ary kernel f satisfies the conservation property if and only
if f is a bijection.

The results of Chapter 3 can be seen as a characterization of the polarizing 2-
ary kernels of the form f,(u1,u2) = (u1 * uz,u2) for some binary operation % on X.
A characterization of polarizing linear kernels over finite fields is given in [57, 58].
Sufficient conditions for a non-linear kernel to be polarizing can be found in [59, 60].

One problem that remains open is to find a necessary and sufficient condition
that characterizes all the polarizing kernels. A generalization of the ergodic theory
of binary operations that we developed in Chapter 2 is likely to provide such a
characterization.

9.3 MAC Polarization Theory

In Chapter 4, we showed that a sequence of binary operations is MAC-polarizing if
and only if every operation in the sequence is uniformity-preserving and its right-
inverse is strongly ergodic.

9.3.1 Region of Achievable Rate-Vectors

Let W : &A1 x ... x X,;, — Y be an m-user MAC, and let (xj,...,*,,) be a MAC-
polarizing sequence of binary operations. It is easy to see that the region of rate-
vectors that are achievable by MAC-polar codes is given by

TPUW) = {R — (Ri,...,Rp) €R™ :

0 < R(S) < IP(W) forall Sc{l,... ,m}},

where R(S) := ZRk’ and IgOI(W) = nhﬁr{.lO 2% Z Is(W?) (See Section 4.1 for
kesS se{—,+}n
the definition of Ig(W?®)).
An open problem in MAC polarization theory is to find a method to compute
TP (W) for an arbitrary MAC W. In other words, we seek a method to compute

12°4(W) for every S C {1,...,m}. It is not difficult to show that

YWy = > #u(W) - logy [Ls(H).

His a
stable partition of
(X,/718 @rm)

(See Notation 2.5 for the definition of Lg(#).)
We conclude that in order to compute JP°(W), it is sufficient to solve the
problem described in Section 9.2.1.
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9.3.2 General Arikan-Style constructions

We can generalize the Arikan-style construction of Section 9.2.2 to multiple-access
channels: Let fi,..., fin be l-ary kernels on Aj,...,A,,, respectively. For every
1<k<mandevery 1 <i<1I let fi; be the ith component of f;, i.e.,

Te(up, .. upy) = (fk,l(uk,la cos U)o SR (Ug, >Uk,l))-

For every 1 <14 <[ and every MAC W : X} x --- x &, — V), define the MAC
W@ x - x Xy — Y x (X1 X -+ x X))t as follows:

W(Z) (y17 s Yl (uk,l)lfkgma ) (uk,i—l)lgkfm‘ul,i) CR) um,i)

1 . .
= W Z W(y1|f1,l(“1,17~~'7“1,1)7~~~7fm,1(um,17~--7um,l))

U g1 5oy I EXT

Uit 1seeesUm, 1 EXm

XX Wyl fra(uag, - uag)s s fnd (U o i)
For every n > 1 and every s = (s1,...,5,) € {1,...,1}", define
W = (... (W) ),

The sequence (f1, ..., f;) is said to be MAC-polarizing if it satisfies the following
two properties:

e Conservation property: For every m-user MAC W with input alphabets &7, .. .,

X, we have
!

e Polarization property: For every m-user MAC W with input alphabets A7, ...,
X, and every § > 0, we have

1
nh_)rglol—n‘{s e{l,...,1[}": W¥is b-casy}| = 1.

It is easy to see that the sequence (f1,..., fi,) satisfies the conservation property if
and only if f1,..., fi,, are bijections.

An open problem in MAC polarization theory is to find a necessary and sufficient
condition for a sequence of [-ary kernels to be MAC-polarizing.

9.4 Error Exponents

In Chapter 5, we showed that the exponent E, of a polarizing binary operation x
cannot exceed % We proved that if % is a quasigroup operation, then E, = % We
conjectured that E, < % if % is not a quasigroup operation. Finding a closed-form
formula for F, is an open problem.

If we wish to construct polar codes with an exponent that is strictly better than
%, we have to use Arikan-style constructions that are not based on binary operations.
Korada et. al. showed that it is possible to achieve exponents that exceed % by using
linear l-ary kernels [57].
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Presman et. al. showed that nonlinear kernels can achieve strictly better expo-
nents compared to all linear kernels [60]. A non-linear kernel is said to be excellent if
it outperforms all the linear kernels of the same size. One drawback of the excellent
kernels of [60] is that they have a large size (i.e., a large arity). Is it possible to find
excellent kernels of small size? Finding a necessary and sufficient condition for a
non-linear kernel to be excellent is an open problem.

9.5 Fourier Analysis of MAC Polarization

In Chapter 6, we characterized all the MACs W that do not lose any part of their
symmetric-capacity region by polarization (i.e., JP°/(W) = J(W)). The neces-
sary and sufficient condition that we provided is a single-letter characterization:
The mapping fW can be directly computed using the transition probabilities of
W. Moreover, since the number of pseudo-quadratic functions is finite, checking
whether fW is extendable to a pseudo-quadratic function can be accomplished in a
finite number of computations.

The characterization that we provided works in the setting where we use an
Abelian group operation on the input alphabet of each user. Generalizing the re-
sults of Chapter 6 to arbitrary MAC-polarizing sequences of binary operations re-
mains an open problem. Following a similar approach to that of Chapter 6 might
solve the problem in the case of non-Abelian groups because there is a notion of
discrete Fourier transforms on these groups. A completely different approach might
be needed to solve the problem in the general case of an arbitrary MAC-polarizing
sequence of binary operations.

9.6 Erasure Schemes Using Generalized Polar Codes

In Chapter 7, we studied the erasure schemes that use generalized polar (GP) codes.
We provided a closed-form formula for the zero-undetected-error capacity IS;P(W)
of GP codes for a given binary-input memoryless symmetric channel W under the
low-complexity successive cancellation decoder with erasure. We showed that for
every R < I§F(W), there exists a GP code of blocklength N and of rate at least
R where the undetected-error probability is zero and the erasure probability is less

1_e
than 27V> . Conversely, we showed that for any GP code of rate I§F (W) < R <
I(W) and blocklength N, the undetected-error probability cannot be made less than

lie
2-N2" ynless the erasure probability is close to 1.

The tradeoff that we obtained between the undetected-error probability and the
erasure probability for rates R > IOGP(W) is very sharp and does not depend on
the rate R. A more refined estimation of the tradeoff between p,. and pe,, which
explicitly depends on R, remains an open problem.

Another problem that remains open is to generalize the results of Chapter 7
to channels with arbitrary input alphabet, and Arikan-style constructions that are
based on arbitrary polarizing operations.
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9.7 Polar Codes for Arbitrary Classical-Quantum Channels

In Chapter 8, we showed that using an Arikan-style construction that is based on
an Abelian group operation yields multilevel polarization for arbitrary classical-
quantum channels (in a similar way as in the case of classical channels). This result
made it possible to construct polar codes for arbitrary cq-channels and arbitrary
cq-MACs.

One weakness of the results presented in Chapter 8 is that the proposed quantum
successive cancellation decoder does not seem to have an efficient implementation.
This was also the case for the polar codes that were constructed for binary-input
cq-channels [43]. Finding an efficient decoder for the polar codes remains an open
problem.

If we define cqg-polarizing binary operations as those that can polarize an arbi-
trary cq-channel to “easy” cq-channels (in a sense similar to Definitions 3.1 and 3.4),
then Chapter 8 shows that Abelian group operations are cq-polarizing. Therefore,
being an Abelian group operation is a sufficient condition to be cg-polarizing. On
the other hand, from the results of Chapter 3 we can deduce that being uniformity-
preserving and having a right-inverse that is strongly ergodic are necessary con-
ditions because classical channels are particular cq-channels. Finding a necessary
and sufficient condition for a binary operation to be cg-polarizing remains an open
problem. Trying to prove a quantum version of the results in Chapter 3 by using a
similar approach might not be successful because the proof of the sufficient condition
relies heavily on the entropy of the input conditioned on a particular output symbol,
and this does not have an analog in the case of cq-channels.

We also showed that ¢q-MAC polarization can induce a loss in the symmetric
capacity region. A necessary and sufficient condition for JP°(W) = J(W) in the
case of classical MACs was given in Chapter 6. Generalizing the results of Chapter
6 to cq-MACs is an open problem. Recall that the condition in Chapter 6 was
given in terms of the Fourier transform of the probability distribution of one input
conditioned on the output and on the other input. Since this conditional probability
does not have an analog in the case of cq-MACs, generalizing the results of Chapter
6 to cq-MACs might be challenging, and a completely different approach might be
needed.
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Characterizations of Various
Channel Orderings

In this chapter!, we provide several characterizations for various channel orderings.
In Section 10.1, we provide the preliminaries of this chapter. In Section 10.2, we
recall known properties of the output-degradedness ordering. In Section 10.3, we
introduce the input-degradedness ordering of communication channels. We show
that if W is input-degraded from another channel W’ then any decoder that is good
for W is also good for W’. We provide two characterizations for input-degradedness,
one of which is similar to the Blackwell-Sherman-Stein (BSS) theorem. In Section
10.4, we study the Shannon ordering of communication channels. We show that W’
contains W if and only if W is the skew-composition of W’ with a convex-product
channel. We use this fact to derive a characterization of the Shannon ordering that
is similar to the BSS theorem.

10.1 Preliminaries

10.1.1 Set-Theoretic Notations

For every integer n > 0, we denote the set {1,...,n} as [n].

The set of mappings from a set A to a set B is denoted as BA.

Let A be a subset of B. The indicator mapping 14 g : B — {0,1} of Ain B is
defined as:
1 ifz e A,

Tap(r)=T4ca =
B(@) e {O otherwise.
If the superset B is clear from the context, we write 14 to denote the indicator
mapping of A in B.

The power set of B is the set of subsets of B. Since every subset of B can be
identified with its indicator mapping, we denote the power set of B as 28 := {0, 1}B .

'The material of this chapter is based on [61, 62, 63, 64, 65, 66].

233
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10.1.2 Probability Measures

If A C 2™ is a collection of subsets of M, we denote the o-algebra that is generated
by A as o(A).

The set of probability measures on (M,Y) is denoted as P(M,X). If the o-
algebra ¥ is known from the context, we write P(M ) to denote the set of probability
measures.

If P e P(M,X) and {x} is a measurable singleton, we write P(x) to denote
P({}).

For every P, P» € P(M,Y), the total variation distance between P; and Py is
defined as:

[P1 = Poflrv = sup |[P1(A) — Py(A)].
Ae¥

The space P(M,3) is a complete metric space under the total variation distance.

10.1.3 Probabilities on Finite Sets

We always endow finite sets with their finest o-algebra, i.e., the power set. In this
case, every probability measure is completely determined by its value on singletons,
i.e., if P is a measure on a finite set X', then for every A C X', we have

P(A)=> P(x).

z€A

If X is a finite set, we denote the set of probability distributions on X as Ay.
Note that Ay is an (|X| — 1)-dimensional simplex in R¥.

10.1.4 Meta-Probability Measures

Let X be a finite set and let Ay be the set of probability measures on X. A meta-
probability measure on X is a probability measure on the Borel sets of Ay. It is
called a meta-probability measure because it is a probability measure on the space
of probability distributions on X.

We denote the set of meta-probability measures on X as MP(X). Clearly,
MP(X) =P(Ax).

A meta-probability measure MP on X is said to be balanced if it satisfies

/zmmmmzm,
Ax

where 7y is the uniform probability distributions on X.

A meta-probability measure MP on X is said to be finitely supported if there
exists a finite subset A of Ay such that MP(A) = 1. In this case, the support of
MP is defined as:

supp(MP) = {p € Ay : MP(p) > 0}.

We denote the set of all balanced meta-probability measures on X' as MPy(X).
The set of all balanced and finitely supported meta-probability measures on X is
denoted as MPy;(X).
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10.1.5 Convex-Extreme Points

Let X be a finite set. For every A C Ay, let co(A) be the convex hull of A. We
say that p € A is convex-extreme if it is an extreme pomt of co(A), ie for every

Piy...,Pn € co(A) and every Aj,..., A, > 0 satisfying Z)\ =1 and Z)\sz =p,

=1
we have p; = ... = p, = p. It is easy to see that if A is finite, then the convex-

extreme points of A coincide with the extreme points of co(A). We denote the set
of convex-extreme points of A as CE(A).

10.1.6 The Space of Channels from X to )

Let DMCy y be the set of all channels having X" as input alphabet and ) as output
alphabet.

If W € DMCy,y and V € DMCy z, we define the composition VoW € DMCy =
of W and V as follows:

(VoW)(z ZV zly)W(y|z), Ve e X, Vz € Z.
yey

It is easy to see that the mapping (W, V) — V o W from DMCy y x DMCy z to
DMCy z is continuous.
For every mapping f : X — ), define the deterministic channel Dy € DMCy y

as follows:
L ify = f(z),
D T) =
f<y‘) {0 otherwise.

It is easy to see that if f: X — Y and g: Y — Z, then Dyjo Dy = Dyo;.
For every two channels Wi € DMCy, y, and Wy € DMCly, y,, define the channel
product W1 @ Wo € DMCux, x x5, xy, of W1 and Wy as:

(W1 @ W) (y1, y2lw1, 22) = Wi(y1|z1) Wa(ya|z2).

W1 ®Ws arises when the transmitter has two channels Wy and W5 at his disposal and
he uses both of them at each channel use. Channel products were first introduced
by Shannon in [67].

10.2 Output-Degradedness and Output-Equivalence

Let W € DMCyxy and W € DMCy z be two channels having the same input
alphabet. We say that W' is output-degraded from W if there exists a channel
V € DMCy z such that W/ =V oW. W and W’ are said to be output-equivalent if
each one is output-degraded from the other. In the rest of this section, we describe
one way to check whether two given channels are output-equivalent.

Let Ay and Ay be the space of probability distributions on X and ) respectively.
Define Pjj, € Ay as

Py (y) |X|2Wyra: vy ey.

zeX
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This can be interpreted as the probability distribution of the output when the input
is uniformly distributed in X. The image of W is the set of output-symbols y € Y
having strictly positive probabilities:

Im(W) = {y €Y : Py(y) >0}

For every y € Im(W), define W, ! € Ay as follows:

W (y|x
W= U

W, L(x) can be interpreted as the posterior probability of x, given that the output
is y, and assuming a uniform prior distribution on the input. In other words, if X
is a random variable uniformly distributed in X and Y is the output of the channel

W when X is the input, then:
o Py (y) = Py(y) for every y € V.
o W, H(x) = Px)y(x|y) for every (z,y) € X x Im(W).
Let (z,y) € X x Y. If P3,(y) = Py(y) > 0, we have

PX7Y($,y)

Be) = 1A W)Pxiy (aly) = 1XIF ()W, @)

W(ylr) = Pyx(y|z) =
On the other hand, if Pj,(y) = 0, then we must have W (y|z) = 0. We conclude
that Py}, and the collection {W }yeIm w) uniquely determine W'

The Blackwell measure® (denoted MPy) of W is a probability distribution on
Ay having masses P}, (y) on W, ! for each y € Im(W):

MPw (B)= Y Pily), VB €B(Ax).
y€lm(W),
w,teB

Another way to express MPyy is as follows:

MPw = Y PR(y) oy,
y€Im(W)

where 5W 1 is a Dirac measure centered at W Le Ay.

MPyy can be interpreted as follows: After the receiver obtains the output of the
channel, he can compute the posterior probabilities of the input as the conditional
probability distribution of the input given the output symbol that he received. But
before receiving the output symbol, the receiver does not know what he we will
receive. He just has different probabilities for different possible output symbols.
Therefore, the posterior probability distribution that will be computed by the re-
ceiver is itself random, and so we need a meta-probability measure to describe it.
MPyy is exactly this meta-probability measure.

2In an earlier version of this work, I called MPy the posterior meta-probability distribution of
W. Maxim Raginsky thankfully brought to my attention the fact that MPyw is called Blackwell
measure.
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Since Im(W) is finite, the support of MPyy is finite and it consists of all points
in Ay having strictly positive mass:

supp(MPw) = {p € Ax : MPy (p) > 0}.
The rank of W is the size of the support of its Blackwell measure:
rank(W) = |supp(MPy)]|.

Notice that for every z € X', we have

/A ) dMPyw() = Y MPw()p)= Y Ph)W ()

pESupp(MPw) yEIm(W)
a) 1
= E —W E = T
| X |X \ |X]
y€lm(W) yey

where (a) follows from the fact that W (y|z) = 0 for every y ¢ Im(WW). Therefore,
we can write

/A dePW(p) = Tx, (101)

where 7y is the uniform probability distribution on X. This shows that MPyy is a
balanced meta-probability measure.

The following proposition characterizes the Blackwell measures of DMCs with
input alphabet X:

Proposition 10.1. [68] A meta-probability measure MP on X is the Blackwell
measure of some DMC with input alphabet X if and only if MP is balanced and
finitely supported.

Proof. This proposition is known [68], but we provide a proof for the sake of com-
pleteness.

The above discussion shows that if MP is the Blackwell measure of some channel
with input alphabet X, then it is balanced and finitely supported.

Now assume that MP is balanced and finitely supported, and let ) = supp(MP).
Define the channel W € DMCy y as W(p|z) = |X|MP(p)p(z) for every x € X and
every p € Y = supp(MP). For every x € X', we have:

YWl = > |X[p@)MP(p) = |X| [ p(z)-dMP(p) = [X|ra(z) = 1.
peEY pEsupp(MP) Ax

Therefore, W is a valid channel. For every p € ), we have

P W X|p()MP
% (p) mmzx (plz) = m;\ [p(2)MP(p)

= Zp (x)MP(p) = MP(p) > 0,
zeX

which implies that Im(W) = ). For every (z,p) € X x ) we have:

Wiplz) _ [XMP(p)p(x)

—1 = x).
"o ) = R ) - e P

p
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Therefore, W;l = p for every p € V. For every Borel subset B of Ay, we have:

MPw(B)= Y  Pylp)= >, 6  MP(p)=MP(B).
pEIm(W), pesupp(MP),
w, teB pEB
We conclude that MPy, = MP. O

In [69], equivalent representations for binary memoryless symmetric (BMS) chan-
nels (namely L, D and G densities) were provided. A necessary and sufficient condi-
tion for the output-degradation of a BMS channel W’ with respect to another BMS
channel W was given in [69] in terms of the |D|-densities of W and W’. It imme-
diately follows from this condition that two BMS channels are output-equivalent if
and only if they have the same |D|-densities. One can deduce from this that two
BMS channels (with finite output alphabets) are output-equivalent if and only if
they have the same Blackwell measure. The following proposition shows that this
is also true for channels with arbitrary (but finite) input and output alphabets:

Proposition 10.2. [68] Let X,Y and Z be three finite sets. Two channels W €
DMCy,y and W' € DMCy z are output-equivalent if and only if MPy, = MPyy.

Proof. This proposition is known [68], but we provide a proof in Appendix 10.5.1
for the sake of completeness. O

Corollary 10.1. If W € DMCyy and rank(W) > |Z|, then W is not output-
equivalent to any channel in DMCy z.

Proof. Since rank(W’) = |supp(MPy)| < |Z| for every W/ € DMCy z, it is im-
possible for W to be output-equivalent to any channel W’ in DMCy z. ]

Corollary 10.2. If|X| = 1, all channels with input alphabet X are output-equivalent.

10.3 Input-Degradedness and Input-Equivalence

Let X, X" and Y be three finite sets. Let W € DMCy y and W’ € DMCyry. We
say that W is input-degraded from W' if there exists a channel V' € DMCy x/ such
that W = W’ o V’'. The channels W and W' are said to be input-equivalent if each
one is input-degraded from the other.

Let W € DMCy y be a fixed channel with input alphabet X and output alphabet
Y. For every x € X, define W, € Ay as:

Wa(y) = W(ylz), Yy €.

Proposition 10.3. Let X', X and Y be three finite sets. W € DMCy y is input-
degraded from W' € DMCy y if and only if co{W, : = € X}) C co{{W,, : 2’ €
X'}.

Proof. Assume that W is input-degraded from W’. There exists V' € DMCy x/
such that W = W' o V'. For every x € X and y € ), we have:

Waly) = Wyle) = > Wyl )V'(@|x) = DY V'(@/|2)Wh(y).
z'eX’ x'eX’!
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Therefore, W, = Z V'(2!|2)W, which means that W, € co{W., : 2/ € X'}) for
e X’
every x € X, hence co{W, : = € X}) C co({W., : 2’ € &'}).
Conversely, assume that co{W, : = € X}) C co{W,, : 2/ € X'}) and let
z € X. Since W, € co({W/, : 2’ € X'}), there exists a set of numbers ag,» > 0

satisfying Z Qg = 1 such that W, = Z Qy oWy, Define V! '€ DMCy xr as

z’'eXx’ x'ex’
V(z'|z) = oy for every z € X and every 2’ € X’. We have W = W’ o V/ and so
W is input-degraded from W’. O

For every channel W € DMCy y, we define the input-equivalence characteristic
of W, or simply the characteristic of W, as CE(W) := CE{(W, : = € X'}). The
input-rank of W € DMCy y is the size of its characteristic: irank(WW) = | CE(W)].

Proposition 10.4. Let X', X and Y be three finite sets. W € DMCy y is input-
equivalent to W' € DMCyx» y if and only if CE(W) = CE(W').

Proof. Tt follows from Proposition 10.3 that W is input-equivalent to W’ if and
only if co{W, : = € X}) = co({W,, : 2’ € A’}), which happens if and only if
CE(W) = CE(co({W, : € X})) = CE(co({W,, : 2/ € &'})) = CE(W'). O

10.3.1 Operational Implication in Terms of Decoders

Let Y be a finite set. An (n, M)-decoder on ) is a mapping D : Y" — M, where
|IM| = M. The set M is the message set of D, n is the blocklength of D, M is the
size of D and % log, M| is the rate of D.

Let W € DMCy y be a channel with input alphabet & and output alphabet J,
and let D : Y™ — M be a decoder on Y. A mazimum-likelihood (ML) encoder for
D when it is used for W is any encoder £ : M — X" satisfying

Z HW(yi|gi(m)) > Z HW(yilxi), Vm € M, Vall € &A™,
yreyn: i=1 yreyn: i=1
D(yy)=m D(yy)=m

where (E1(m),...,E(m)) =E(m) € X"

It is easy to see that a maximum-likelihood encoder has the best probability of
error among all encoders (assuming that the decoder D is used). The probability of
error of D under ML-encoding for W is given by:

1 n
Pop(W)=1-—= )  max S TIwwilz) ¢
’M’ meM Ty e yreyn: i=1
n :
D(yt)=m

Proposition 10.5. Let X', X and Y be three finite sets. If W € DMCy.y is input-
degraded from W' € DMCyry, then P.p(W') < P.p(W) for every decoder D on ).
Moreover, if W and W' are input-equivalent, then Pop(W) = P.p(W') for every
decoder D on ).
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Proof. Assume that W € DMCy y is input-degraded from W’ € DMCyry. Let
V' € DMCy y be such that W =W’ o V',
Fix an (n, M) decoder D on ) and let M be its message set. We have:

1_pe,p<w>=|Ml| m}é{ )3 HW@il%)}

meM reyn: i=1
D(yl =m
1 ’I’L
= W {{163/%{” < Z W/(yi|xé)vl($;’$i)>}
yreyn: i=1 \zlex

D(y7)=m

P
L mX{ > ZH( (wlat)V <zm>)}
LZ

meM yreY": gtexm i=1
D(y7)=m
1 n
= — max HV/ Z|-rz) Z le(y’bhj;)
M| & arexn :
anexm = yreyn: i=1
D(yy')=m
1
S Hlax,n{ > HW' yil;) }_ = Pep(W).
meM 1 ex yreym: i=1
D(yy)=m

Therefore, P. p(W') < P.p(W).
If W and W’ are input-degraded from each other, then P. p(W') < P. p(W) and
P&'D(W) < Pe’D(W/), hence Pap(W/) = Pe,'D(W). L]

10.3.2 A Characterization of Input-Degradedness

Let W € DMCy y and let U be a finite set. For every p € Ay and every D €
DMCy 4, define

P.(p,W,D)= sup > p(u)E(x|u)W(ylx)D(uly).
EEDMCL{,X ueld,

reX,
yey
P.(p,W, D) can be interpreted as follows: Let U be a random variable in U
distributed as p. Assume that U was encoded using the random encoder E €
DMCy,x to get X € X. Send X through the channel W and let Y € ) be the
output. Apply the random decoder D € DMCy; on Y to get an estimate U of U.
We have: )
PHU = U} = > p(u)E(x|w)W (y|z) D(uly).
ueU,

TeX,
yey

Therefore, P.(p, W, D) is the optimal probability of successfully estimating U by the
fixed decoder D among all random encoders 2 € DMCy x. Note that the optimal
encoder can always be chosen to be deterministic.

The following theorem provides a characterization of input-degradedness that is
somewhat similar to the characterization of output-degradedness given in [70].
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Theorem 10.1. A channel W € DMCy y is input-degraded from another channel
W' € DMCyx»y if and only if P.(p,W,D) < P.(p, W', D) for every p € Ay, every
D € DMCy s and every finite set U.

Proof. Assume that W is input-degraded from WW’. There exists V/ € DMCy s such
that W = W’ o V’. For every finite set U, every p € Ay and every D € DMCyy,
we have:

P.p,W,D)= sup > p(u)E(x|u)W(ylz)D(uly)
EEDMCZ/AX ueld,
TeX,
yey
= sup p(u)E(z|u) W' (ylz")V'(2"z) | D(uly)
EGDMCMVX ’UEZZ/[, x/GZX’
reX,
yey
= sup p(u) V'(@'|2) E(x|u) | W (y|2") D(uly)
EGDMCM’X U,EZM, (a;
z'eX’,
yey
— s S @)V o B)& )W (yl) D(uly)
EEDMCM’X weld,
z'eX’,
yey
< sup > p(uw)E' (@ [u)W (yla) D(uly) = Pe(p, W', D).
E'€DMCy v ycgy.
r’'eX’,
yey

Conversely, assume that P.(p, W, D) < P.(p, W', D) for every p € Ay, every
D € DMCy s and every finite set U.

Let xy be any symbol that does belong to X and let Y = X U {xp}. For every
n > 1, define p,, € Ay as follows:

L) e
pn(u) = ’ 1‘ nt

if u = xg.

n+1

pn was chosen in such a way that M(ZO)) = |nﬂ for every x € X. This is going to be

useful later. Define the channel W € DMCy,y as follows:

_ )1
Wollu) =4 S~ w(yla) ifu= .
‘X| reX

Fix the encoder ¥ € DMCyy x as follows:

1 ifu=ux,
1
| X
0 otherwise.

E(gj|u) = if u = xg,
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For every D € DMCy 4, we have:

> pu(w)Wo(ylu)D(uly)

ueY,
yey
( > pal@)Wo(ylz) ($|Z/)> + > pal@o)Wo(ylzo) D (o|y)
reX, yey
yey
( > pul@)W (ylz)D > + > pol@o) o Z W (y|2)D(oly)
reX, yey a:EX
yey
( > palu W (y|z) D(uly) ) + Y pulx0) E(w|xo)W (y|z) D(woly)
uek, reX,
a:eX, yey
yey
- Z pn x‘u (y‘x)D(u‘y) < Pc(pn7VV7D) < Pc(pna W’,D)
u€el,
xe)(,
yey
= sup Y pa(wE' @ [u)W (yla') D(uly).
E'€DMCy xr oyy.
z’'eX’,
yey
Therefore,
n W El / W/ / D < 0
el 2 ( oole) = 3 B ol >) (uly) <
yEy
hence
/ / ! /
<
DB petin » Z pn(u (Wo (ylu) - ;E (' [u)W! (y|a )) D(uly) <0

or equivalently

. _ ! / < . .
pelax Eg;;mzu puw) (Wo(ylu) = (W' o E')(ylu) ) Dluly) < 0. (10.2)
ye)’7

Note that the sets DMCy s and DMCy x7 are compact and convex. On the

other hand, since the function Z pn () (Wg(y|u) —(W'o E’)(y]u))D(u]y) is affine
ueU,

yey
in both D € DMCyy and E" € DMCy; a7, it is continuous, concave in D and convex
in E’. Therefore, we can apply the minimax theorem [71] to exchange the max and
the min in Equation (10.2). We obtain:

"o E )D <
BB, e, 2o 7ol (Wolyl) = ("o E) (i)} Diuly) < 0
yey
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Therefore, there exists E], € DMCyy x+ such that

2 peliis, , 2 Pl )(Wolwlu) = (W' o E)(ylu) ) Duly)
yey

23 mapa () (Wolylu) — (W o Ey)(ylu)

yey

>3 o S palo) (Wolwl) = (W o E4) ()

yey ueL{
= 2 e} Y- (Wowl) = (W' o EL)ulu)) =0,
uel yey
where (a) follows from the fact that Z pn(u) (Wg(y]u) —(W'o E,’l)(y]u))D(u]y) is
ueU,
yey

maximized when D is chosen to be deterministic in such a way that for every y € ),
D(uyly) = 1 for some u, € U satisfying py(uy)(Wo(y|uy) — (W' o E})(yluy)) =
max {pn(u) (Wolylu) — (W' o E)(y|w)) } We conclude that

ue

> mascpy (u) (Wolylu) — (W' o E})(ylu)) = 0.
yey

Assume there exists y € ) and @ € U such that

(@) (Wo(yli) — (W' o E})(y])) < maxpa () (Wo(ylu) — (W o L) (ylu) ).

(S

In this case, we have

0= puw Y (Wolylw) = (W' o B;)(ylu)

ueU yey

=33 paw) (Wolylu) — (W' o L) (y]w))
yeY ueld

< ] max pa(u) (Wolylu) — (W' o By (ylu) ) =0,
yeY

which is a contradiction. Therefore, for every y € ) and every x € X', we have

pa(x) (W (ylz) — (W' o E,)(ylx)) = max py (u) (Wo(y|u) —(W'o EZ)(@/W))
= pn(z0) (Wolylzo) — (W' o E})(ylx0)),

which implies that

W (ylz) — (W o 1) (y]a)| = L0 iwo ylzo) — (W' o EL)(ylao)
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Since the space DMCyy y+ is compact, there exists a converging subsequence (E’ k>0
of (E])n>1. Let E’ be the limit of (E, )k>0 For every x € X and every y € y we
have:

W (yle) = (W o E')(ylz)| = lim [W(ylz) — (W o By, )(ylz)| < lim 14 _ 0,

k—o0 N

which means that W (y|z) = (W' o E')(y|z). Define V! € DMCy » as V'(2/|z) =
E'(2'|z) for every € X and every 2/ € X’. For every x € X and every y € ), we
have:

(W oV)(yle) = Y W'(yla)V'(«'|x)

z’'eXx’
= > Wyl ) E'(@/|z) = (W o E')(y|z) = W (y|e).
z’'eXx’
Therefore, W = W' o V/. We conclude that W is input-degraded from W’. ]

10.3.3 A Characterization in Terms of Randomized Games

A randomized game is a 5-tuple G = (Z, X, Y,1, W) such that X', and Z are finite
sets, [ is a mapping from Z x YV to R, and W € DMCy y. The mapping [ is called
the payoff function of the game G, and the channel W is called the randomizer of
G. During the game, a player sees a symbol z € Z and decides on a symbol x € X.
A random symbol y € ) is then randomly generated according to the conditional
probability distribution W (y|z) and the player gets the payoff I(z,y).

A strategy for the game G is a channel S € DMCz x. For every z € Z, the payoff
gained by the strategy S for z in the game G is given by:

5(2,9.0) = 3 S(al)W (yla)i(z, ).
reX,
yey

The payoff vector gained by the strategy S in the game G is given by:
$(5,0) = (8(2,5,9))., € RZ.
It is easy to see that for every a € [0,1] and every S, S2 € DMCz x, we have
$(aSy + (1 — )52, G) = a$(S1,G) + (1 — a)$(S2,G).
The achievable payoff region for the game G is given by:

$aen(G) = {%(5, G): Se DMCZ,X} C RZ.

Clearly, $,.1(G) is a convex subset of RZ. Moreover, since DMC z,x is compact and
since the mapping S — §(S, G) is a continuous mapping from DMCz x to R?, the
region $,,(G) is a compact subset of RZ.

The average payoff for the strategy S € DMCz x for the game G is given by:

$(5.9) = |Z|Z$zsg Z|Z| W (y|z)l(z, y).

z€EZ
:L"EX
yey
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The optimal average payoff for the game G is given by

$opt(G) = sup  $(5,G).

SeDMCz x

Note that we can always find an optimal strategy that is deterministic.
The following theorem provides a characterization of input-degradedness that is
similar to the famous Blackwell-Sherman-Stein theorem [11, 12, 13].

Theorem 10.2. Let X, X’ and Y be three finite sets. Let W & DMCy,y and
W' e DMCyr y. The following conditions are equivalent:

(a) W is input-degraded from W'.
(b) For every finite set Z and every payoff function | : Z x Y — R, we have

$ach(Zv Xa y7 la W) C $ach(27 X’,y, l, W,)-

(c) For every finite set Z and every payoff function | : Z x Y — R, we have

$Opt(Zv/Y7y7l7W) S $Opt(Z7X/7yvl7W/)‘

Proof. Assume that (a) is true. There exists V' € DMCy y such that W = W/o V",
Fix a finite set Z and a payoff function [ : Z x J — R. Define G = (Z, X, ), [, W)
and G' = (Z, X", V,1,W').

Fix ¥ = (v:).ez € $ach(G). There exists S € DMCz x such that (v.).cz =0 =
($(z, S,g))ZEZ. Let S’ =V'0 S. For every z € Z, we have:

$(2,9,G) = Y S'(@2)W (yla)(z,y)
z'eX’,
yey

= (ZV’ '|z)S >)W’<y|x>< )
r’eXx’!, \zeX
yey

= 3 Sl (X Wk)V' @) )iz)

zEX, ' eX!
yeyY

= > S(l2)W(yl2)l(z,y) = $(2, 5, 6).
zeX,
yey

Therefore, ¥ = OE(S’, G') € $aen(G’). Since this is true for every @ € $,,(G), we have
$ach(G) C $ach(G’). We conclude that (a) implies (b).

Now assume that (b) is true. Fix a finite set Z and a payoff function [ : Zx) —
R. Define G = (Z,X,Y,[,W) and G’ = (Z,X,V,[,W’'). We have $,.,(G) C
$ach(G"). Therefore,

1 ()
$0 g) = sup T= v, < sup - 0
() o171 2 T2 = (0

(v2)ze2€8acn( 2€Z (v})2e2€8acn(G
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where (k) follows from the fact that $,c,(G) C $acn(G’). This shows that (b) implies
(c).

Now assume that (c) is true. Fix a finite set U, p € Ay and D € DMCy .
Define the payoff function [ : U x Y — R as l(u,y) = |U|p(u)D(u|y). Define the
randomized games G = (U, X, Y, W,1) and ' = (U, X', Y, W', 1). We have:

P.(p,W,D)= sup > p(u)E(z|u)W(ylz)D(uly)
EGDMCLA){ ueld,
zeX,
yey

1
= sup — E(x|u)W (y|lz)l(u,y
b, 3 g EW iy

reX,
yey
= sup $(E,G)=98pt(G).
E€DMCy x

Similarly, we can show that P.(p, W, D) = $.,¢(G’). Since we assumed that (c)
is true, we have $opt(G) < $opt(G'). Therefore, for every finite set U, every p € Ay
and every D € DMCyy, we have P.(p, W,D) < P.(p, W', D). Theorem 10.1 now
implies that W is input-degraded from W', hence (c) implies (a). We conclude that
(a), (b) and (c) are equivalent. O

10.4 Shannon Ordering and Shannon Equivalence

Let X, X", Y and )’ be four finite sets. Let W € DMCyx y and W’ € DMCy yr.

We say that W’ contains W if there exist n pairs of channels (R;,T;)1<i<, and a

probability distribution o € Ay, such that R; € DMCy x+ and T; € DMCyy y for
n

every 1 <i<n,and W = Za(i)Ti oW'oR;, ie.,
i=1
n
Wyle) =S al) S Tily)W /) Ri(@ ).
=1 z’'eX’,
y' ey’
The channels W and W’ are said to be Shannon-equivalent if each one contains the
other.

A channel V' € DMCxyyr x7xy is said to be a convexr-product channel if it is
the convex combination of the products of channels in DMCy y+ with channels in
DMCyr y. More precisely, V€ DMCyxyr x7xy is a convex-product channel if there
exist n pairs of channels (R;, T;)1<i<n and a probability distribution o € Ay, such
that R; € DMCy x and T; € DMCyr y for every 1 < ¢ < n, and

n

V(' yle,y) =) a(dRi(@|2)Tiyly').

i=1
We denote the set of convex-product channels from X'x Y’ to X’ x) as CPCyxy x7xy-

Proposition 10.6. The space CPCyxyxyr x1xy 5 a compact and convexr subset of
DMCXX)/’,X’X)?-
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Proof. Define the set of product channels
PCXX)J’,X’X)J = {R@ T: Re DMC)(’X/, T e DMCy/’y}.

Clearly, CPCxxyr x7xy is the convex hull of PCxyxyr x7xy and so CPCyyxyr x7xy is
convex. Now since PCyyy x/xy can be seen as a subset of RYXY'*X'%Y it follows
from the Carathéodory theorem that every channel V' in CPCxxyr x7xy can be
written as a convex combination of at most

n=|XxY xX xY+1
product channels in PCyyyr x7xy. Define the mapping
f : A[n} X (DMCX7X/ X DMC)}/J})”’ — DMCXXJ)’,X’X))
as

f(Oé, (R, Ti)lgz‘gn) = Z a(i)R; @ T;.
i=1

Since Ap,;, DMCy x» and DMCyy y are compact, the space Ap, X (DMCyx xr
DMCyr y)™ is compact. Moreover, since f is continuous, it follows that

CPCXXJJ’,X’X)J = f(A[n} X (DMCX7X/ X DMC)}/Q})”)

is compact. O

Let X, X", X", Y, and }” be finite sets. For every V € CPCyxy x7xy and ev-
ery V' e DMCX/XyH’XNXy/, define the skew-composition V oy V' e DMCXXy//’)(//Xy
of V' with V as follows:

(Vo V)" yla,y") = > VI yla, o)V (@, o |2, y"), (10.3)
r'eX’,
yley/
for every 2”7 € X", y € Y, x € X and y” € )”. It may not be immediately clear
from (10.3) that V oy V' is a valid channel in DMC yxy» x»xy. In the following, we
show that V oy Ve DMCXX))”,X”X))-
Let n > 1, @ € Apy, (Ri,Ti)i1<i<n be such that R; € DMCy xr and T; €
DMCyr y for every 1 < i < n, and

VZ )R @ T

For every (z,y") € X x V", we have

Y Vo V" yley") = D Y VI e,y )V (@ e ")

x//E‘X‘N7 I//EX//,IIEX/,
yey yey y'e)’

= > > Z Ti(yly )V (2", |2, ")

z'ex! z'ex’, i=1

yeYy y'e)y’
= Z )Y D> R )Tl )V (2" 2y,
i=1 z'eX", x'eX’,

yey  y'ey’
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Hence,
n
S Vo V)@ yle,y”) =) o) Y > Ri@|n)V (2", ya,y")
mIIEXII’ =1 zex” m’EX/
yey y'ey
n n
=> a(i) Y Ri'lz)=> a(i)=1.
i=1 r’eXx’ i=1

Therefore, V o, V! € DMCyxxy» xvxy. Note that if V€ DMCyyyr xrxy and V ¢
CPCuxxyr x'xy, then the skew-composition of V'’ with V' as defined in Equation
(10.3) does not always yield a valid channel in DMCx xy» x5y .

Lemma 10.1. IfV € CPCXXy’,X’xy and V' € CPCX’XJ)”,X”XJ)’; then V oy V' e
CPCXXJ/”,X”X)J-

Proof. Let n > 1, a € Ay, (Ri, Ti)1<i<n be such that R; € DMCy x and T; €
DMCyr y for every 1 < i < n, and

VZ i)R; @ T;.

Let ' > 1, o/ € Apy, (R],T])lgjgn/ be such that R; € DMCxys x» and T} €

DMCy» yr for every 1 < j <n’, and

o ( R/ ®T’
Z

We have
(Vos V)@, yla,y”) = Y V(! yla, o)V (@, o/, y")
r'eX’,
y/eyl
- > Z )Ti(yly') > o’ G) R (2" |2 )Ty |y")
r’eXx’, i=1 j=1
y/eyl
=Y ali)a'() Y. Ril@' ) Ti(yly )Ry («"|e )Ty 1y")
i=1 j=1 2 EX,
yley/
=3 " a(i)d () (R} o Ri)(a"|)(T; o T)) (yly”).-
=1 j=1
Therefore, V oy Ve CPCXX))“,X”X))' ]

For every W’ € DMCyy and every V € CPCyyxyr x7xy, we define the skew-
composition V os W' € DMCy,y of W’ with V' as follows:

(Vos W(ylz) = Y V(& yla,y )W (y'|2)). (10.4)
’'eX’,
y/ey/
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Note that Equation (10.4) can be seen as a particular case of Equation (10.3) if we let
X" =Y" = {0} (i.e., a singleton) and we identify DMC y/ y» with DMC y/y» xrxyr.
The following lemma is trivial:

Lemma 10.2. Let W € DMCyx y and W' € DMCyxr yr. W' contains W if and only
if there exists V€ CPCxxyr x7xy such that W =V o, W',

10.4.1 A Characterization of the Shannon Ordering

A blind randomized in the middle (BRM) game is a 6-tuple G = (U, X, Y, V,[,W)
such that U, X,Y and V are finite sets, [ is a mapping from U x V to R, and
W € DMCy,y. The mapping [ is called the payoff function of the BRM game G,
and the channel W is called the randomizer of G. The BRM game consists of two
players that we call Alice and Bob. The BRM game takes place in two stages:

e Alice chooses a symbol u € U and writes her choice on a piece of paper. Bob
chooses two functions f: U — X and g : Y — V, and writes a description of
f and g on a piece of paper. At this stage, no player has knowledge of the
choice of the other player.

e Alice and Bob simultaneously reveal their papers. They compute z = f(u) €
X and then randomly generate a symbol y € ) according to the conditional
probability distribution W (y|z). Finally, v = ¢g(y) is computed and then Alice
pays® Bob an amount of money that is equal to I(u,v).

A strategy (for Bob) in the BRM game G is a 4-tuple S = (n, o, f, g) satisfying:

e n > 1 is a strictly positive integer.

a € A[n]

f = (fi)1<i<n € (XY)", where XY is the set of functions from U to X.

e g =(gi)1<i<n € V)™

We denote n and « as ng and ag respectively. For every 1 <1i < n = ng, we denote
fi and g; as f; ¢ and g; s respectively. The set of strategies is denoted as Sy x,y,v.
Bob implements the strategy S as follows: He randomly picks an index ¢ €
{1,...,ng} according to the distribution ag € Ap,), and then commits to the
choice (fi s, gi,s)-
For every u € U, the payoff gained by the strategy S for u in the BRM game G
is given by:

$(u,5.9) = 3 as(i) S Wylfis (w)i(u, gi5(1)).
i=1 yey

The payoff vector gained by the strategy S in the game G is given by:
$(5,6) = ($(u,5,G)), _,, € R

3Tf 1(u,v) < 0, then Bob pays Alice an amount of money that is equal to —I(u,v).

uel
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The achievable payoff region for the game G is given by:
$acn(9) = {§(5, G): Sc Su,X,y,v} C R¥.

The average payoff for the strategy S € Sy x,y,v in the game G is given by:

$(S,G) = W|Z$usg

ueU

é(S, G) is the expected gain of Bob assuming that Alice chooses u € U uniformly at
random.
The optimal average payoff for the game G is given by

$opt(G) = sup  $(S,G).

SeSu,x,y,v

For every strategy S € Sy x,y,v, we associate the convex-product channel Vg €
CPCuyxy,xxy defined as

ng
Vs = ZO‘S(i>Dfi,s @ Dgi,S'
=1

For every u € U, we have

$(u, S, Q) Zozs ZW (ylfis(w)l(w, gi,5(y))

yey
- Zas 3™ Dy, o wh) W (yle) Dy, o (vly)i(a,0)
reX,
ye%
veY
(10.5)
-y (Zas i)Dj, o (elu) Dy, (v y>> W (y])i(u, v)
TEX,
yey,
veY
- Z Vg(x,v\u,y)W(y\x)l(u,v)
TEX,
yeY,
veY

Lemma 10.3. For every V € CPCyxy xxy, there exists S € Sy xy,y such that
V =Vs.

Proof. Let n > 1, a € Ay, (Ri, Ti)1<i<n be such that R; € DMCy x and T; €
DMCy,y for every 1 <i < n, and

V= Z DR ®T;. (10.6)

Since every channel can be written as a convex combination of deterministic channels
[10], we can rewrite (10.6) as a convex combination of products of deterministic
channels. Therefore, there exists S € Sy x,y,y such that V = V. O



10.4. Shannon Ordering and Shannon Equivalence 251

Equation (10.5) and Lemma 10.3 imply that $,c,(G) is the image of CPCryxy xxv
by a linear function. Since CPCyxy xxy is convex and compact (Proposition 10.6),
$ach(G) is convex and compact as well.

Let U and V be two finite sets and let [ : & x V — R be a payoff function. We
say that [ is normalized and positive if l(u,v) > 0 for every u € U and every v € V,

and
Z l(u,v) = 1.

ueH,
vey

In other words, [ is normalized and positive if [ € Ayxy.
The following theorem provides a characterization of the Shannon ordering of
communication channels that is similar to the BSS theorem.

Theorem 10.3. Let X, X', and Y’ be four finite sets. Let W € DMCyx y and
W' e DMCur yr. The following conditions are equivalent:

(a) W' contains W.

(b) For every two finite sets U and V, and every payoff function I : U x V — R,
we have

$ach(u7 X7y7 V7 la W) C $ach(u7 Xla y/’ V7 l7 W/)

(c) For every two finite sets U and V, and every payoff function l : U x V — R,
we have

$0pt(u; X7y7 V7 la W) S $0pt(ua Xla y,a Vv l7 W/)

(d) For every two finite sets U and V, and every normalized and positive payoff
function | € Ayxy, we have

$ach(ua X’ya Vv la W) - $ach(ua X,a yla V? l, W,)

(e) For every two finite sets U and V, and every normalized and positive payoff
function | € Ayxy, we have

$Opt(u7 X7y7 V7 la W) S $Opt(u7 Xla y/’ V7 l7 W/)

Proof. Assume that (a) is true. Lemma 10.2 implies that there exists a convex-
product channel V'€ CPCyyy x7xy such that W =V o, W'. Let U and V be two
finite sets, and let [ : U x V — R be a payoff function. Define G = (U, X, Y, V,[,W)
and G’ = (U, X", YV, V, [,W").

Fix ¢ € $,04(9). There exists S € Sy x,y,y such that

U = §(S, g) - ($(u7 S’ g))

uel’
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From equation (10.5) we have:

$(u,8,G) = Y Vs(a, vlu, y) W (ylz)l(u, v)
TEX,

yey,
veY

= Z Vs(w,v|u,y)< Z V(x’,y|x,y’)W’(y'\x’)>l(u,v)

TEX, r'eX’,
yey, y'ey
veY

= Z (Z VS(x,v]u,y)V(:c',y|:E,y/)>W’(yl|$/)l(u,v)
r’eXx!, \zeX,
y'ey, yey
veY
= 3" (Vs o V(@ vluy YW (y/ |2 )1 (u, ).
z'eX’,
y'ey’,
veY
Lemma 10.1 implies that Vg oy V' € CPCyxyr x7xy and Lemma 10.3 implies that

there exists S” € Sy a7 37y such that Vg = Vg og V. Therefore,

8(u,5,9) = > Vrla!,olusy )W/l 0) © 8(u, 5'.9),
z'ex’,
yey,
veY
where (x) follows from Equation (10.5). This shows that o' = ($(u, S",G"))
$ach(G) C $acn(G’). Therefore, (a) implies (b).
Now assume that (b) is true. Let & and V be two finite sets, and let [ : U xV — R
be a payoff function. Define G = (U, X, Y, V,[,W) and G’ = (U, X", V', V,I,W'). We
have $,.,(G) C $aen(G’). Therefore,

weld’ hence

**)

$opt(g) = sup | Z sup | Z = opt

(”u)u€u€$ach(g ueY (’Uq,;)ueue$ach(g ueld

where (xx) follows from the fact that $,c,(G) C $acn(G’). This shows that (b) implies
(c). We can show similarly that (d) implies (e).

Trivially, (b) implies (d), and (c) implies (e).

Now assume that (e) is true. Fix a normalized and positive payoff function
l € Axxy, and define the BRM games

G=(X, X, ,V,,W) and G' = (X, X,V Y, l,W').

Fix a strategy S € Sy x,y,y satisfying ng = 1, fi g(x) = = for all z € X and
g1,5(y) =y for all y € Y. Clearly ag(1) =1, hence

$SQ Z$$SQ
’xeX
’ZZW?JUlS ) (2, 91,5(y) ZWy|x x,y).
reEX yey meX

yey



10.4. Shannon Ordering and Shannon Equivalence 253

Therefore
m Z;( W (yl)i(, ) = 8(5.9) < S (9) < $opn(F) ZSIE‘si?E,y,ﬁ(S"g’)
ye)ﬂ

= sup LZ
| =t

S/ESX,X’,JJ’
= sup Z Y Vs gl y )WY |2z, y)
: |X]
SES)(’X/Q;/ zEX /EX/
y'ey,
yey
= sup ’ Z Vs o W)(y\x) (z,9)
SIESX,X’,)/’ | zeX,
yey
(1) 1 '
= sup vl Z(V os W) (ylz)l(z,y),
VECPCXX)//,X’X)/ | | TEX,
yey

where (1) follows from Lemma 10.3. Therefore,

3 (Wlyle) — (V os W)(ylz))i(z,y) < 0.

reX,
yey

inf
VGCPCXXy/ ¥ xy |X|

Since this is true for every [ € Axxy, we have:
sup inf W (ylz) — (V os W) (y|z))l(z,y) < 0.
IeA Xy VECPCXX),/X/XJ,QC; ( s ) ’
yeyY
Moreover, since Ayxxy and CPCyyyr x7xy are compact (see Proposition 10.6), the
sup and the inf are attainable. Therefore, we can write:

min D> (Wylz) — (V os W) (yla))l(z,y) < 0. (10.7)

max
1€AX %y VECPCayyr 27y y

reX,
yey
Since the function Z (W (ylz) = (V os W) (y|x))l(z,y) is affine in both | € Axxy
TeX,
yey

and V € CPCyxyxyr x7xy, it is continuous, concave in [ and convex in V. On the other
hand, the sets Ayxxy and CPCxyyr x7xy are compact and convex (see Proposition
10.6). Therefore, we can apply the minimax theorem [71] to exchange the max and
the min in Equation (10.7). We obtain:
min max W (ylx) — (V og W)(y|z))i(z <0.
v max 37 (Wiyie)  (V o, W)(yla))i(r.9) <
’ TEX,
yey

Therefore, there exists V' € CPCxxy x7xy such that

0> max (W(ylz) = (V os W)(ylx)) U, y)
XY reX,

yey

() ma (W (ylz) = (V o, W)(yle),

yey
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where () follows from the fact that Z (W(ylz) — (V os W)(ylz))l(z, y) is maxi-

TEX,
yey

mized when we choose [ € Ay y in such a way that I(zg,y0) = 1 for any (x0,y0) €
X x Y satisfying

(W (yolzo) — (V o5s W')(yo|z0)) = max (Wylz) — (V os W)(ylz)).

)

yey

We conclude that for every (z,y) € X x ), we have
W (ylz) < (V os W)(ylz).

Now since Z W(ylz) = Z(VOS W) (y|z) for every x € X, we must have W (y|z) =

yey yey
(Vos W) (y|z) for every (z,y) € X x Y. Therefore, W =V o, W'. Lemma 10.2 now

implies that W’ contains W, hence (e) implies (a). We conclude that the conditions
(a), (b), (c), (d) and (e) are equivalent. O

10.5 Appendix

10.5.1 Proof of Proposition 10.2

For every A C Ay, let co(A) be the convex hull of A. We say that p € A is convez-
extreme if it is an extreme point of co(A), i.e., for every p1,...,p, € co(A) and every
n n

ALy -y Ay > 0 satisfying Z)\i =1 and Z)‘ipi =p,we have py =...=p, =p. It
is easy to see that if A islﬁ;lite, then theZ ci)nvex—extreme points of A coincide with
the extreme points of co(A). We denote the set of convex-extreme points of A as
CE(A).

Let W € DMCy y and W' € DMCy z be such that W’ is output-degraded from
W. There exists V'€ DMCy z such that W' =V oW. Let X be a random variable
uniformly distributed in X, let Y be the output of W when X is the input, and let
Z be the output of V' when Y is the input in such a way that X —Y — Z is a Markov
chain. Clearly, Py x(z|x) = W'(z|x) for every (z,2) € X x Z.

For every z € Z, we have:

Pii(2) = Pz(2) = > Py()Pyy(zly) = > V(ly)Piy(y). (10.8)
yey yelm(W)

Define V_l S DMCIm(W’)Jm(W) as

Syl — N Py (y)Pzy (2]y) _ V(zly) Py, (y)
V7 (yl2) = Pyiz(yl2) By (o) S V)R W)
y' €lm(W)

Note that for every (y,z) € Im(W) x Im(W'), we have V~1(y|z) = 0 if and only if
V(zly) = 0.
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For every (z,2) € X x Im(W'), we have:

W, N z) = Px|z(x ZPXY|Z (z,y]2) Z Pxyz(z,y|2)
yey yeY,
Py(y)>0
Z Pyz(yl2) Px|y,z(zly, 2) Z V= (yl2) Pyjy (zly) (10.9)
yelm(W) y€Im(W)
= > VW, (),
yeIm(W)

where (a) follows from the fact that X —Y — Z is a Markov chain.
Equation (10.9) shows that for every z € Im(W'), we have

wite co({VVy_1 :y € Im(W)}) = co(supp(MPy)).
Therefore,

co(supp(MPyy)) = co{W! 1 . 2 € Im(W’)}) C co(supp(MPy)). (10.10)

Now for every p € Ay, define
Vo:={yelm(W): W, ' =p}.
Similarly,
Z,={zeIm(W'): W/ =p}.

Let pegt € CE(supp(MPyy)) and let z € Im(W'). Equation (10.9) shows that if
z € Zp.,,, then V71(y|z) = 0 for every y € Im(W) \ V,.,,- Now since V=1(y|z) =
0 < V(zly) = 0 for every (y,z) € Im(W) x Im(W’), we deduce that if z € Z,_,
then V(z]y) = 0 for every y € Im(W) \ YV,,,,. Therefore,

MPy () = 3 P2 S S V() P y)

2€2p..4 2€2p,., yEIm(W)

(®)

=N N vewrrw< > Y VEPy®©)
ZEZpezt yEypext z€lm(W”) yeypezt

= Y PA) = MPw (pear),
yeypeact

(10.11)
where (a) follows from Equation (10.8), and (b) follows from the fact that for every
y € Im(W) \ V..., we have V(z|y) = 0.

Now assume that W and W' are output-equivalent. Equation (10.10) (applied
twice) implies that we must have co(supp(MPyy/)) = co(supp(MPyy)) which implies
that supp(MPy/) and supp(MPyy) have the same convex-extreme points. Now fix
a convex-extreme point peyr € CE(supp(MPy»)) = CE(supp(MPy)). Equation
(10.11) (applied twice) implies that MPy (pest) = MPy/(peat). By using Equation
(10.11) again we obtain:

DD VEwPyYw = Y. Y. VE PR (@),

Zezpezt yeypezt ZGIHI W’) yeypezt
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hence

> Y. V)P (y) =0.

Zelm(wl)\zpemt yeypezt

But Pj, (y) > 0 for every y € Y,.,,. Therefore, for every z € Im(W’) \ Z,.,, and
every y € Vp.,,,» we must have V(z|y) = 0 (which implies that V~1(y|z) = 0). We
conclude that for every z € Im(W') \ Z,_,,, we can rewrite Equations (10.8) and
(10.9) as:

Piu(z)= > V(zlyPiy),
yem(W)\Vp,,,
and
wit= Y vyl
yEm(W)\Vp,,,

We can now repeat the above argument but on supp(MPyy)\{pest } and supp(MPy7)\
{Pext} instead of supp(MPy ) and supp(MPyy/). We deduce that co(supp(MPyy) \
{Peat}) = co(supp(MPy~) \ {peat}) so supp(MPw) \ {pest} and supp(MPy) \
{Pext} have the same convex-extreme points. We can also prove that MPy (pL,;) =
MPyy(pegy) for every peyy € CE(supp(MPw /) \ {peat}) = CE(supp(MPw) \ {peat})-
Notice that any point of supp(MPyy) (respectively supp(MPyy+)) becomes convex-
extreme after removing a finite number of elements from supp(MPyy) (respectively
supp(MPyy/)). Therefore, after inductively applying the above argument a finite
number of times, we can deduce that supp(MPy ) = supp(MPy~) and MPy (p) =
MPyy(p) for every p € supp(MPyy) = supp(MPyy+), hence MPy = MPyy.

Now let W € DMCyxy and W' € DMCy z be any two channels satisfying
MPy = MPy~. We have supp(MPy) = supp(MPy/). Furthermore, for every
p € supp(MPyy) = supp(MPyy/), we have

> Piy(y) = MPw(p) = MPy(p) = > Pij(2).
yeVp 2EZ,

Define the channel V' € DMCy = as

1
2l
V(zly) = Lz_l if y € Im(W) and z € Z};,1,
MPyy (W, ) Y
0 otherwise.

A simple calculation shows that Z V(zly) = 1 for every y € Y, so V is a valid

zZEZ
channel.

Notice that for every (y, z) € Im(W) x Im(W"'), we have:

2€ 2y & WI=W & ye Yy
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Moreover, if z € Im(W’) and y € Yyr-1, we have MPyy/ (W, D = MPy (W.1h).
Therefore, we can rewrite V as:

P (2) :
——— — fzeIm(W)andy € V1,
h/l.[PW( / ]_) %4
Vizly)=q L if y ¢ Im(W),
|Z]
0 otherwise.

Let W' =VoW € DMCy z. For every z € Z\Im(W’), Equation (10.8) implies
that:

Piu(z)= Y V(zly) Pyl )_O_PW’()
yEIm(W)

where (a) follows from the fact that V(z|y) = 0 if y € Im(W) and z ¢ Im(W’).
On the other hand, for every z € Im(W’), Equation (10.8) implies that:

PO ’(Z) o
Pin(z)= > VCEWPyw) = pr(y)
yelm(W) YEY -1 #
Py (2) Py (2) -1
= P§ = —>——MPuy (W = P%(2).
MPyy( i= 1)ye; 1 w () MPyy ( = 1) w(W; ) W (2)
Wi~

Therefore, P§,(z) = P§,/(2) for every z € Z, which implies that Im(W") = Im(W’).
Now define V1 ¢ DMCry(wry,tm(w) as
Ve Py ()
> VEY)PR )

y'€Im(W)

Vi) =

Equation (10.9) implies that for every z € Im(W") = Im(W"'), we have:

W 1_ Z V-1 ;1 (@) Z Vﬁl(y AW, 1
yeIm(W) yGyW;71
S ovTilw S v glw = Wi
yeywéﬂ y€Im(W)

where (a) and (b) follow from the fact that for every (y,z) € Im(W) x Im(W"), we
have V~1(y|z) = 0 if and only if V(z|y) = 0.

We conclude that Pj,, = P, and for every z € Im(W") = Im(W’), we have
W=t = W!=1. Therefore, W' = W” =V o W and so W’ is output-degraded from
W. By exchanging the roles of W and W’ we get that W is also output-degraded
from W', hence W and W' are output-equivalent.






Topological Structures on
DMC Spaces

Let & and ) be two fixed finite sets. Every discrete memoryless channel (DMC)
with input alphabet X and output alphabet ) can be determined by its transition
probabilities. Since there are |X'| x |)| such probabilities, the space of all channels
from X to ) can be seen as a subset of RI¥IXIVI. Therefore, this space can be
naturally endowed with the Euclidean metric, or any other equivalent metric. A
generalization of this topology to infinite input and output alphabets was considered
in [72].

There are a few drawbacks for this approach. For example, consider the case
where X = ) =y := {0, 1}. The binary symmetric channels BSC(¢) and BSC(1—¢)
have non-zero Euclidean distance if € # 5. On the other hand, BSC(e) and BSC(1—¢)
are completely equivalent from an operational point of view: Both channels have
exactly the same probability of error under optimal decoding for any fixed code.
Moreover, any sub-optimal decoder for one channel can be transformed to a sub-
optimal decoder for the other channel without changing the probability of error nor
the computational complexity. This is why it makes sense, from an information-
theoretic point of view, to identify output-equivalent channels and consider them as
one point in the space of “output-equivalent channels”.

The limitation of the Euclidean metric is clearer when we consider channels
with different output alphabets. For example, BSC (%) and BEC (1) are completely
equivalent but they do not have the same output alphabet, and so there is no way
to compare them with the Euclidean metric because they do not belong to the same
space.

The standard approach to solve this problem is to find a “canonical sufficient
statistic” and find a representation of each channel in terms of this sufficient statis-
tic. This makes it possible to compare channels with different output-alphabets.
One standard sufficient statistic that has been widely used for binary-input chan-
nels is the log-likelihood ratio. Each binary-input channel can be represented as a
density of log-likelihood ratios (called L-density in [69]). This representation makes
it possible to “topologize” the space of “output-equivalent binary-input channels”
by considering the topology of convergence in distribution [69]. A similar approach
can be adopted for non-binary-input channels (see [73] and [74]). Another (equiv-

259
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alent) way to “topologize” the space of output-equivalent channels is by using the
Le Cam deficiency distance [75].

One drawback! of the current formulation of this topology is that it does not
allow us to see it as a “natural topology”. Consider a fixed output alphabet ) and
let us focus on the space of “equivalent channels” from X to )). Since this space is
the quotient of the space of channels from X to ), which is naturally topologized
by the Euclidean metric, it seems that the most natural topology on this space is
the quotient of the Euclidean topology by the output-equivalence relation. This
motivates us to consider a topology on the space of “output-equivalent channels”
with input alphabet X and arbitrary but finite output alphabet as natural if and only
if it induces the quotient topology on the subspaces of “output-equivalent channels”
from X to ) for any finite output alphabet ). A legitimate question to ask now is
whether the L-density topology is natural in this sense or not.

In this chapter?, we construct and study several topologies on the quotients of
the spaces of discrete memoryless channels by the output-equivalence, the input-
equivalence and the Shannon-equivalence relations.

In Section 11.1, we provide a brief summary of the basic concepts and theorems
in general topology. In Section 11.2, we introduce the measure-theoretic notations
that we use in this chapter. In Section 11.3, We define and study the space of
channels from X to ).

In Section 11.4, we define and study the space of output-equivalent channels with
input alphabet X and output alphabet ). In Section 11.5, we introduce the space
of output-equivalent channels with fixed input alphabet X and arbitrary but finite
output alphabet. We investigate the properties of general natural topologies, and we
study the finest natural topology. We introduce the noisiness metric on the space of
output-equivalent channels, and we show that its induced topology, which we call the
noisiness topology, is natural. We also study the topologies that are inherited from
the space of meta-probability measures by identifying output-equivalent channels
with their Blackwell measures. We show that the weak-+ topology (which is the
standard generalization of the L-density topology to non-binary-input channels) is
exactly the same as the noisiness topology. Furthermore, we show that the Borel
o-algebra is the same for all Hausdorff natural topologies.

In Section 11.6, we define and study the space of input-equivalent channels with
fixed input and output alphabets. In Section 11.7, we introduce the space of input-
equivalent channels with fixed output alphabet ) and arbitrary but finite input
alphabet. A topology on this space is said to be natural if it induces the quotient
topology on the subspaces of input-equivalent channels with fixed input alphabet.
We investigate the properties of general natural topologies, and we study the finest
natural topology. We introduce the similarity metric on the space of input-equivalent
channels, and we show that the topology induced by this metric is natural.

In Section 11.8, we define and study the space of Shannon-equivalent channels
with fixed input and output alphabets. In Section 11.9, we introduce the space of
Shannon-equivalent channels with arbitrary but finite input and output alphabets.
A topology on this space is said to be natural if it induces the quotient topology on
the subspaces of Shannon-equivalent channels with fixed input and output alphabets.

'The mentioned drawback is secondary, and it is relevant only for conceptual purposes.
2The material of this chapter is based on [61, 62, 63, 64, 65, 66].
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We investigate the properties of general natural topologies, and we study the finest
natural topology. We introduce the BRM metric on the space of Shannon-equivalent
channels, and we show that the topology induced by this metric is natural.

11.1 Introduction to General Topology

In this section, we recall basic definitions and well known theorems in general topol-
ogy. The reader who is already familiar with the basic concepts of topology may skip
this section and refer to it later if necessary. Proofs of all non-referenced facts can
be found in any standard textbook on general topology (e.g., [76]). Definitions and
theorems that may not be widely known can be found in Sections 11.1.10, 11.1.14
and 11.1.15.

11.1.1 Set-Theoretic Notations

A collection A C 28 of subsets of B is said to be finer than another collection
A’ 2B if A/ C A. If this is the case, we also say that A’ is coarser than A.
Let (A;)ier be a collection of arbitrary sets indexed by I. The disjoint union of

(A;)ier is defined as H A; = U(A, x{i}). For every i € I, the i"-canonical injection

il il
is the mapping ¢; : 4; — HAj defined as ¢;(x;) = (z;,7). If no confusions can
Jjel

arise, we can identify A; with A; x {i¢} through the canonical injection. Therefore,
we can see A; as a subset of H Aj for every ¢ € I.
el

A relation R on a set T ijs a subset of T x T'. For every x,y € T', we write xRy
to denote (x,y) € R.

A relation is said to be reflexive if x Rx for every x € T. It is symmetric if xRy
implies yRx for every x,y € T. It is anti-symmetric if xRy and yRx imply z = y
for every x,y € T. It is transitive if Ry and yRz imply xRz for every z,y,z € T.

An order relation is a relation that is reflexive, anti-symmetric and transitive.
An equivalence relation is a relation that is reflexive, symmetric and transitive.

Let R be an equivalence relation on 7. For every = € T, the set & = {y € T :
xRy} is the R-equivalence class of x. The collection of R-equivalence classes, which
we denote as T/ R, forms a partition of T', and it is called the quotient space of T by
R. The mapping Projp : T'— T/R defined as Projgp(x) = & for every x € T is the
projection mapping onto T/ R.

11.1.2 Topological Spaces

A topological space is a pair (T,U), where U C 27 is a collection of subsets of T
satisfying:

egpgclUUand T e€lU.
e The intersection of a finite collection of members of U is also a member of U.

e The union of an arbitrary collection of members of U is also a member of U.
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If (T,U) is a topological space, we say that U is a topology on T.

The power set 27 of T is clearly a topology. It is called the discrete topology on
T.

If A is a an arbitrary collection of subsets of T', we can construct a topology on
T starting from A as follows:

N V.
AcvcaT,
V is a topology on T'
This is the coarsest topology on 1" that contains A. It is called the topology on T
generated by A.
Let (T,U) be a topological space. The subsets of T' that are members of U are
called the open sets of T. Complements of open sets are called closed sets. We can
easily see that the closed sets satisfy the following:

e ¢ and T are closed.
e The union of a finite collection of closed sets is closed.
e The intersection of an arbitrary collection of closed sets is closed.

Let A be an arbitrary subset of T. The closure cl(A) of A is the smallest closed
set containing A:
dd)= (] F

ACFCT,
F' is closed

The interior A° of A is the largest open subset of A:

2= w
UCA,
U is open

If AC T and cl(A) =T, we say that A is dense in T'.

(T,U) is said to be separable if there exists a countable subset of 7" that is dense
inT.

A subset O of T' is said to be a neighborhood of x € T if there exists an open set
U € U such that z € U C O.

A neighborhood basis of x € T is a collection O of neighborhoods of x such that
for every neighborhood O of x, there exists O’ € O such that O’ C O.

We say that (T,U) is first-countable if every point x € T has a countable neigh-
borhood basis.

A collection of open sets B C U is said to be a base for the topology U if every
open set U € U can be written as the union of elements of B.

We say that (T,U) is a second-countable space if the topology U has a countable
base.

It is a well known fact that every second-countable space is first-countable and
separable.

We say that a sequence (xy,)n>0 of elements of T' converges to x € T' if for every
neighborhood O of z, there exists ng > 0 such that for every n > ng, we have
xn € O. We say that z is a limit of the sequence (2, ),>0. Note that the limit does
not need to be unique if there is no constraint on the topology.
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11.1.3 Separation Axioms

(T,U) is said to be a Tj-space if for every z,y € T, there exists an open set U € U
such that x € U and y ¢ U. It is easy to see that (T,U) is T} if and only if all
singletons are closed.

(T,U) is said to be a Hausdorff space (or Ta-space) if for every =,y € T, there
exist two open sets U,V € Y such that c c U,y € Vand UNV = g.

If (T,U) is Hausdorff, then the limit of every converging sequence is unique.

(T',U) is said to be regular if for every x € T and every closed set F' not containing
x, there exist two open sets U,V € U such that r e U, FCV and UNV = g.

(T,U) is said to be normal if for every two disjoint closed sets A and B, there
exist two open sets U,V € U such that ACU, BCV and UNV =g.

If (T,U) is normal, disjoint closed sets can be separated by disjoint closed neigh-
borhoods. I.e., for every two disjoint closed sets A and B, there exist two open sets
U,U" € U and two closed sets K, K’ such that A C U c K, B c U' ¢ K’ and
KNK' =g¢.

(T,U) is said to be a Tj-space if it is both T} and regular.

(T,U) is said to be a Ty-space if it is both 77 and normal.

It is easy to see that Ty = T3 = 15 = T7.

11.1.4 Relativization

If (T,U) is a topological space and A is an arbitrary subset of 7', then A inherits a
topology Uy from (T',U) as follows:

Ur={ANTU: UelUl.

It is easy to check that U, is a topology on A.

If (T,U) is first-countable (respectively second-countable, or Hausdorff), then
(A,Uy,) is first-countable (respectively second-countable, or Hausdorff).

If (T,U) is normal and A is closed, then (A,U4) is normal.

The union of a countable number of separable subspaces is separable.

11.1.5 Continuous Mappings

Let (T,U) and (S,V) be two topological spaces. A mapping f : T — S is said to be
continuous if for every V € V, we have f~1(V) € U.

f:T — Sis an open mapping if f(U) € V whenever U e Y. f:T — Sis a
closed mapping if f(F') is closed in S whenever F' is closed in T

A bijection f : T — S is a homeomorphism if both f and f~! are continuous. In
this case, for every A C T, A € Y if and only if f(A) € V. This means that (T,U) and
(S, V) have the same topological structure and share the same topological properties.

11.1.6 Compact and Sequentially Compact Spaces

(T,U) is a compact space if every open cover of T admits a finite sub-cover. Le., if
(Ui)ier is a collection of open sets such that T' = U U, then there exists n > 0 and
el

n
i1,...,in € I such that T' = U Ui;.
j=1
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If (T,U) is compact, then every closed subset of T' is compact (with respect to
the inherited topology).

If f: T — Sis a continuous mapping from a compact space (T,U) to an arbitrary
topological space (S,V), then f(7T) is compact.

If A is a compact subset of a Hausdorff topological space, then A is closed.

(T,U) is said to be locally compact if every point has at least one compact
neighborhood. A compact space is automatically locally compact.

If (T,U) is Hausdorff and locally compact, then for every point x € T" and every
neighborhood O of z, O contains a compact neighborhood of x.

A compact Hausdorff space is always normal.

(T,U) is a o-compact space if it is the union of a countable collection of compact
subspaces.

(T,U) is countably compact if every countable open cover of T' admits a finite
sub-cover. This is a weaker condition compared to compactness.

(T, U) is said to be sequentially compact if every sequence in T has a converging
subsequence. In general, compactness does not imply sequential compactness nor
the other way around.

11.1.7 Connected Spaces

(T,U) is a connected space if it satisfies one of the following equivalent conditions:
e I' cannot be written as the union of two disjoint non-empty open sets.
e T' cannot be written as the union of two disjoint non-empty closed sets.
e The only subsets of T" that are both open and closed are ¢ and T'.

e Every continuous mapping from 7" to {0, 1} is constant, where {0, 1} is endowed
with the discrete topology.

(T,U) is path-connected if every two points of T' can be joined by a continuous
path. Le., for every x,y € T, there exists a continuous mapping f : [0,1] — T such
that f(0) =z and f(1) =y, where [0, 1] is endowed with the well known Euclidean
topology?.

A path-connected space is connected but the converse is not true in general.

A subset A of T is said to be connected (respectively path-connected) if (A4,U,)
is connected (respectively path-connected).

If (A;)ier is a collection of connected (respectively path-connected) subsets of T
such that m A; # ¢, then U A; is connected (respectively path-connected).

i€l iel

11.1.8 Product of Topological Spaces

Let {(T3,U;) }ier be a collection of topological spaces indexed by I. Let T' = Hﬂ

el
be the product of this collection. For every j € I, the j"-canonical projection is the
mapping Proj; : T — Tj defined as Proj; ((xl)lel) = zj.

3See Section 11.1.11 for the definition of the Euclidean metric and its induced topology
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The product topology U = ®L{i on 7' is the coarsest topology that makes all
i€l
the canonical projections continuous. It can be shown that U is generated by the
collection of sets of the form H U;, where U; € U; for all i € I, and U; # T; for only
el

finitely many ¢ € 1.

The product of T3 (respectively, Hausdorff, regular, T3, compact, connected, or
path-connected) spaces is 71 (respectively, Hausdorff, regular, T3, compact, con-
nected, or path-connected).

11.1.9 Disjoint Union

Let {(T;,U;) }ier be a collection of topological spaces indexed by I. Let T' = HE
el
be the disjoint union of this collection. The disjoint union topology U = @L{i on
el

T is the finest topology which makes all the canonical injections continuous. It can
be shown that U € U if and only if U NT; € U; for every i € I.

A mapping f: T — S from (T,U) to a topological space (S,V) is continuous if
and only if it is continuous on 7T; for every i € I.

The disjoint union of T (respectively Hausdorff) spaces is T} (respectively Haus-
dorff). The disjoint union of two or more non-empty spaces is always disconnected.

Products are distributive with respect to the disjoint union, i.e., if (S,V) is a

topological space then S x (H TZ> = H (S xT;) and V® <@ Z/l¢> = EB (Y aol;).

i€l 1€l i€l il

11.1.10 Quotient Topology

Let (T,U) be a topological space and let R be an equivalence relation on 7. The
quotient topology on T'/R is the finest topology that makes the projection mapping
Projp continuous. It is given by

U/R = {ﬁ CT/R: Projp}(U) e u} .

Lemma 11.1. Let f : T — S be a continuous mapping from (T,U) to (S,V). If
f(x) = f(a) for every x,2' € T satisfying xRx’, then we can define a transcendent
mapping f : T/R — S such that f(z) = f(2) for any 2’ € . f is well defined on
T/R . Moreover, f is a continuous mapping from (T/R,U/R) to (S, V).

If (T',U) is compact (respectively, connected, or path-connected), then (7'/R,U/R)
is compact (respectively, connected, or path-connected).

T/R is said to be upper semi-continuous if for every & € T'//R and every open
set U € U satisfying & C U, there exists an open set V € U such that £ C V C U,
and V' can be written as the union of members of 7'/ R.

The following Lemma characterizes upper semi-continuous quotient spaces:

Lemma 11.2. [76] T/R is upper semi-continuous if and only if Projp is a closed
mapping.
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The following theorem is very useful to prove many topological properties for
the quotient space:

Theorem 11.1. [76] Let (T,U) be a topological space, and let R be an equivalence
relation on T such that T'/R is upper semi-continuous and I is a compact sub-
set of T for every & € T/R. If (T,U) is Hausdorff (respectively, regular, locally
compact, or second-countable) then (T'/R,U/R) is Hausdorff (respectively, regular,
locally compact, or second-countable).

11.1.11 Metric Spaces

A metric space is a pair (M, d), where d : M x M — R* satisfies:
e d(z,y) =0 if and only if x = y for every z,y € M.
e Symmetry: d(z,y) = d(y, z) for every z,y € M.
e Triangle inequality: d(z,z) < d(x,y) + d(y, z) for every z,y,z € M.

If (M,d) is a metric space, we say that d is a metric (or distance) on M.
For every x € M and every € > 0, we define the open ball of center x and radius
€ as:

Be(x) ={y e M : d(x,y) < €}.

The metric topology Uy on M induced by d is the coarsest topology on M which
makes d a continuous mapping from M x M to RT. It is generated by all the open
balls.

The metric topology is always T and first-countable. Moreover, (M,Uy) is
separable if and only if it is second-countable.

Since every metric space is Hausdorff, we can see that every subset of a compact
metric space is closed if and only if it is compact.

Every o-compact metric space is second-countable.

For metric spaces, compactness and sequential compactness are equivalent.

A function f : M} — My from a metric space (M7, d;) to a metric space (Ma, d2)
is said to be uniformly continuous if for every € > 0, there exists § > 0 such that for
every x,z’ € My satisfying d;(z,z") < § we have da(f(x), f(2')) < e.

If f: My — My is a continuous mapping from a compact metric space (M, d;)
to an arbitrary metric space (Ma,ds), then f is uniformly continuous.

A topological space (T',U) is said to be metrizable if there exists a metric d on
T such that U is the metric topology on T induced by d.

The disjoint union of metrizable spaces is always metrizable.

The following theorem shows that all separable metrizable spaces are character-
ized topologically:

Theorem 11.2. [76] A topological space (T,U) is metrizable and separable if and
only if it is Hausdorff, reqular and second countable.

The Euclidean metric on R™ is defined as d(z,y) =

Z(:pl — )%, where z =

i=1

(7i)1<i<n and y = (Yi)1<i<n-
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R™ is second countable. Moreover, a subset of R™ is compact if and only if it is
bounded and closed.

11.1.12 Complete Metric Spaces

A sequence (xy,)n>0 is said to be a Cauchy sequence in (M,d) if for every € > 0,
there exists ng > 0 such that for every ni,no > ng we have d(x,,, zy,) < €.
Every converging sequence is Cauchy, but the converse is not true in general.
A metric space is said to be complete if every Cauchy sequence converges in it.
A closed subset of a complete space is always complete.
A complete subspace of an arbitrary metric space is always closed.
Every compact metric space is complete, but the converse is not true in general.
For every metric space (M,d), there exists a superspace (M,d) containing M
such that:

e (M,d) is complete.
e M is dense in (M, d).
o d(x,y) = d(x,y) for every z,y € M.

The space (M, d) is said to be a completion of (M, d).

11.1.13 Polish and Baire Spaces

A topological space (T,U) that is both separable and completely metrizable (i.e.,
has a metrization that is complete) is called a Polish space.

A topological space is said to be a Baire space if the intersection of countably
many dense open subsets is dense. The following facts can be found in [77]:

e Every completely metrizable space is Baire.
e Every compact Hausdorff space is Baire.

e Every open subset of a Baire space is Baire.

11.1.14 Sequential Spaces

Sequential spaces were introduced by Franklin [78] to answer the following question:
Assume we know all the converging sequences of a topological space. Is this enough
to uniquely determine the topology of the space? Sequential spaces are the most
general category of spaces for which converging sequences suffice to determine the
topology.

Let (T,U) be a topological space. A subset U C T is said to be sequentially open
if for every sequence (x,,),>0 that converges to a point of U lies eventually in U, i.e.,
there exists ng > 0 such that z,, € U for every n > ng. Clearly, every open subset
of T is sequentially open, but the converse is not true in general.

A topological space (T,U) is said to be sequential if every sequentially open
subset of T is open.
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A mapping f : T — S from a sequential topological space (T,U) to an arbitrary
topological space (S,V) is continuous if and only if for every sequence (zy,)n>0 in T’
that converges to x € T', the sequence (f(zy))n>0 converges to f(z) in (S,V) [78].

The following facts were shown in [78]:

e Every first-countable space is sequential. Therefore, every metrizable space is
sequential.

e The quotient of a sequential space is sequential.

e All closed and open subsets of a sequential space are sequential.

e Every countably compact sequential Hausdorff space is sequentially compact.

e A topological space is sequential if and only if it is the quotient of a metric
space.

11.1.15 Compactly Generated Spaces

A topological space (T,U) is compactly generated if it is Hausdorff and for every
subset I of T', F' is closed if and only if F'N K is closed for every compact subset
K of T. Equivalently, (T,U) is compactly generated if it is Hausdorff and for every
subset U of T', U is open in T if and only if U N K is open in K for every compact
subset K of T

The following facts can be found in [79]:

e All locally compact Hausdorff spaces are compactly generated.

e All first-countable Hausdorff spaces are compactly generated. Therefore, every
metrizable space is compactly generated.

e A Hausdorff quotient of a compactly generated space is compactly generated.

o If (T,U) is compactly generated and (S,V) is Hausdorff locally compact, then
(T x S,U ®V) is compactly generated.

11.1.16 The Hausdorff Metric

Let (M,d) be a metric space. Let (M) be the set of compact subsets of M. The
Hausdorff metric on IC(M) is defined as:

dp(Ky, Ko9) —max{ sup d(z1, K2), sup d(:cg,Kl)}

r1€K1 T2€K>2

=max<4 sup inf d(zy,z9), sup inf d(xg,21) .
z1eK; T2€K2 za€Ko T1€K1

11.2 Measure-Theoretic Notations

In this section, we introduce the measure-theoretic notations that we are using. We
assume that the reader is familiar with the basic definitions and theorems of measure
theory.
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11.2.1 Probabilities on Finite Sets

If X is a finite set, we denote the set of probability distributions on X as Ay. Note
that Ay is an (|X'| — 1)-dimensional simplex in R*. We always endow Ay with the
total-variation distance and its induced topology. For every p1,p2 € Ay, we have:

1 1
lp1 — p2llrv = 3 ;Y Ip1(z) — p2(z)| = §||p1 — p2l|1-
€T

Note that the total-variation topology on Ay is the same as the one inherited from
the Euclidean topology of RY by relativisation. Since Ay is a closed and bounded
subset of RY, it is compact.

11.2.2 Borel Sets and the Support of a Measure

Let (T,U) be a Hausdorff topological space. The Borel o-algebra of (T,U) is the
o-algebra generated by U. We denote the Borel o-algebra of (T, U) as B(T,U). If the
topology U is known from the context, we write B(T) to denote the Borel o-algebra.
The sets in B(T') are called the Borel sets of T

The support of a probability measure P € P(T,B(T)) is the set of all points
x € T for which every neighborhood has a strictly positive measure:

supp(P) = {x € T': P(O) > 0 for every neighborhood O of z}.
If P is a probability measure on a Polish space, then P(T \ supp(P)) = 0.

11.2.3 Convergence of Probability Measures and the weak-+ Topology

We have many notions of convergence of probability measures. If the measurable
space does not have a topological structure, we have two notions of convergence:

o The total-variation convergence: We say that a sequence (P, ),>0 of probability
measures in P(M,Y) converges in total-variation to P € P(M,X) if and only
if lim Hpn — PHTV = 0.

n—oQ

e The strong convergence: We say that a sequence (Py,)p>0 in P(M, X) strongly
converges to P € P(M,%) if and only if lim P,(A) = P(A) for every A € ¥.
n—oo

Clearly, total-variation convergence implies strong convergence. The converse is
not true in general. However, if we are working in the Borel g-algebra of a Polish
space T" and (P,,)n>0 strongly converges to a finitely supported probability measure
P, then

[P = Pllrv
= sup |P,(B) - P(B)|
BeB(T)
< o | P, (B \ supp(P)) — P(B\supp(P))| + Y |Pulx) - P(@!)

zesupp(P)

= s (1B )+ T 1A - P

BeB(T) zesupp(P)
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hence,

|Py = Pllry < |Po(T \supp(P))| + > |Pu(z) — P(2)]
xe€supp(P)
= [Pa(T\supp(P)) = P(T\supp(P))| + 3 |Pa(e) = P(a)| =50,
x€supp(P)

which implies that (P,),>0 also converges to P in total-variation. Therefore, in
a Polish space, total-variation convergence and strong convergence to finitely sup-
ported probability measures are equivalent.

Let (T,U) be a Hausdorff topological space. We say that a sequence (P,)n>0
of probability measures in P (T, B(T)) weakly- converges to P € P(T,B(T)) if and
only if for every bounded and continuous function f from T to R, we have

lim [ f-dP, :/f-dP.
T T

n—o0

Note that many authors call this notion “weak convergence” rather than weak-x
convergence. We will refrain from using the term “weak convergence” in order to
be consistent with the functional analysis notation.

The weak-+ topology on P(T,B(T)) is the coarsest topology which makes the
mappings

P — f-dP
Ax

continuous over P(T,B(T)), for every bounded and continuous function f from T
to R.

11.2.4 Metrization of the Weak-+ Topology

If (T,U) is a Polish space (i.e., separable and completely metrizable), then the weak-
* topology on P(T,B(T)) is also Polish [80]. There are many known metrizations
for the weak-x topology. One metrization that is particularly convenient for us is
the Wasserstein metric.

The 15-Wasserstein distance on P(T, B(T)) is defined as

Wi(P,P) = inf / d(z, 2" - dvy(z,x'),
P = it [ it i)

where T'(P, P’) is the collection of all probability measures on T x T' with marginals
P and P’ on the first and second factors respectively, and d is a metric on T that
induces the topology U. T'(P, P’) is also called the set of couplings of P and P’.

If d is bounded and (7', d) is separable and complete, then W; metrizes the weak-x
topology [80]. If (T,U) is compact, then (P(T'), W) is also compact [80].

If D= sup d(z,2) is the diameter of (T,d), then Wi (P, P') < D||P — P'||rv

z,x' €T

[80]. In other words, the Wasserstein metric is controlled by total-variation.
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11.3 The Space of Channels from X to Y

Let DMCy y be the set of all channels having X" as input alphabet and ) as output
alphabet.
For every W, W' € DMCy y, define the distance between W and W' as follows:

1
Ay (W, W) = 5 ma 3™ I/ (yl) — Wylo)]
yey

It is easy to check the following properties of dy y:
e 0 <dyy(WWwW' <1
e dyy:DMCyyx DMCyy — RT is a metric distance on DMCy y.

Throughout this chapter, we always associate the space DMCy y with the metric
distance dy y and the metric topology Ty y induced by it.

For every x € X, the mapping y — W (y|z) is a probability distributions on ).
Therefore, every channel W can be seen as a collection of probability distributions
on ), and the collection is indexed by z € X. This allows us to identify the space
DMCy y with (Ay)Y = H Ay, where Ay is the set of probability distributions

reX
on Y. It is easy to see that the topology given by the metric dy y on DMCy y is

the same as the product topology on (Ay)?, which is also the same as the topology
inherited from the Euclidean topology of RY*Y by relativization.

It is known that Ay is a closed and bounded subset of RY. Therefore, Ay is
compact, which implies that (Ay)? is compact. We conclude that the metric space
DMCyxy = (Ay)? is compact. Moreover, since Ay a convex subset of RY, it is
path-connected, hence DMCy y = (Ay)? is path-connected as well.

If W € DMCy,y and V € DMCy z, we define the composition VoW € DMCy =
of W and V as follows:

(VoW)(zlx) =) V(zly)W(ylz), Vo€ X, Vz € Z.
yey
It is easy to see that the mapping (W,V) — V o W from DMCy y x DMCy z to
DMCy z is continuous.

For every mapping f : X — ), define the deterministic channel Dy € DMCy y
as follows:

L ify = f(z),
0 otherwise.

Dy(ylz) = {

It is easy to see that if f : X — Y and g: Y — Z, then Dyo Dy = Dyoy.

11.4 Space of Output-Equivalent Channels from X to )

11.41 The DMC()‘(’?y Space

Let X and Y be two finite sets. Define the relation RE{,))y on DMCy y as follows:

VIWV,W' € DMCy y, WRE\??J,W’ & W is output-equivalent to W',
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It is easy to see that RE\?)y is an equivalence relation on DMCy y. Rg?)y is called

the output-equivalence relation on DMCy y.

Definition 11.1. The space of output-equivalent channels with input alphabet X
and output alphabet ) is the quotient of the space of channels from X to Y by the
output-equivalence relation:

DMCY), = DMCx,y /R,
We define the topology 7;\(70%, on DMCEg?y as the quotient topology TX,)?/R(A?y

Unless we explicitly state otherwise, we always associate DMCE‘?)y with the quo-

tient topology 7;50%, .

For every W € DMCy y, let W e DMCE\%, be the Rgg?y—equivalence class con-
taining W.

Lemma 11.3. The projection mapping Proj : DMCxy — DMCS?)y defined as

Proj(W) = W is continuous and closed.
Proof. See Appendix 11.10.1. O

Corollary 11.1. For every W € DMCy y, W is a compact subset of DMCy y.

Proof. Since DMCy y is compact, then DMng)y = DMCyxy /Rg?)y is compact as
well.

Let Proj : DMCyy — DMCE,?)y be as in Lemma 11.3. Since Proj is closed

and since {W} is closed in DMCpy.y, {W} = Proj({W}) is closed in DMCg?)y.
Therefore, W = Proj ' ({W}) is closed in DMCy y because Proj is continuous.
Now since DMCy y is compact, W is compact as well. O

Theorem 11.3. DMCE,?)J, is a compact, path-connected and metrizable space.

Proof. Since DMCy y is compact and path-connected, DMCg?y = DMCyy /Rg?)y
is compact and path-connected as well.
Since the projection map Proj of Lemma 11.3 is closed, Lemma 11.2 implies that

the quotient space DMCg?)y = DMCyy/ Rfvo)y is upper semi-continuous. On the

other hand, Corollary 11.1 shows that all the members of DMCE,??), are compact in
DMCy y. Therefore, the conditions of Theorem 11.1 are satisfied.

Since DMCy y is a metric space, it is Hausdorff and regular. Moreover, since it
can be seen as a subspace of RI¥IWI it is also second-countable. By Theorem 11.1
we get that DMCS??y =DMCy,y / Rg??y is Hausdorff, regular and second-countable,
and from Theorem 11.2 we conclude that DMCES,)y is separable and metrizable. [
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11.4.2 Canonical Embedding and Canonical Identification

Let X, Y1 and Vs be three finite sets such that |V;| < |)2|. We will show that there is

a canonical embedding from DMC(/-,?)),1 to DMCE?)))Q. In other words, there exists an

explicitly constructable compact subset A of DMCY,, such that A is homeomorphic
X V2

to DMCE\?)%. A and the homeomorphism depend only on X', Y1 and )» (this is why
we say that they are canonical). Moreover, we can show that A depends only on

V1|, X and Ys.

Lemma 11.4. For every W € DMCy y, and every injection f from Y1 to Yo, W
is output-equivalent to Dy o W.

Proof. Clearly DyoW is output-degraded from W. Now let f’ be any mapping from
Yo to Y1 such that f'(f(y1)) = y1 for every y; € V1. We have W = (DproDy)oW =
Dyro(DyoW), and so W is also output-degraded from Dy o W. O

Corollary 11.2. For every W,W' € DMCyx y, and every two injections f,g from
Y1 to Vo, we have:

WRY, W' & (DyoW)RY), (DyoW').

Proof. Since W is output-equivalent to Dy o W and W' is output-equivalent to
DgoW’, then W is output-equivalent to W if and only if DyoW is output-equivalent
to Dgo W'. O

For every W € DMCy,y,, we denote the Rg?)yl—equivalence class of W as W,
and for every W € DMCy y,, we denote the RE{?)%—equivalence class of W as W.

Proposition 11.1. Let f : Y1 — Yo be any fized injection from Y1 to Vo. Define
the mapping F : Dl\/ICE\[_,))y1 — DMCE\?)J,2 as F(W) = Dy o W' = Projy(Dy o W),

where W' € W and Proj, : DMCy y, — DMCE\?)),2 15 the projection onto the Rg?)yg'
equivalence classes. We have:

o I is well defined, i.e., Projy(Dy o W') does not depend on W' e w.

e [ is a homeomorphism from DMCS?)y1 to F(DMC(;?)yl ).

e [ does not depend on f, i.e., F depends only on X,Y1 and Yo, hence it is
canonical.

° F(DMCS??M) depends only on |M1], X and Vs.

o For every W € W and every W" € F(W), W' is output-equivalent to W".

Proof. Corollary 11.2 implies that Proj,(Dy o W) = Projy(Dy o W’) if and only if
WRg?’)yl W’. Therefore, Projy(Dy o W’) does not depend on W' € W, hence F is
well defined. Corollary 11.2 also shows that Projy(Ds o W’) does not depend on the
particular choice of the injection f, hence it is canonical (i.e., it depends only on

X, y1 and yg)
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On the other hand, the mapping W — Dy o W is a continuous mapping from
DMCyy, to DMCyy,, and Proj, is continuous. Therefore, the mapping W —

(0)

Projy(Dy o W) is a continuous mapping from DMCy y, to DMC}’y, . Now since

Projy (D¢ o W) depends only on the Rg??yl -equivalence class W of W, Lemma 11.1
implies that F' is continuous. Moreover, we can see from Corollary 11.2 that F' is
an injection.

For every closed subset B of DMCE\,)y , B is compact since DMC( ) y, Is compact,
hence F(B) is compact because F' is continuous. This implies that F' (B) is closed in

DMCY )y since DMC( ) , is Hausdorff (as it is metrizable). Therefore, I is a closed

mapping.
Now since F' is an injection that is both continuous and closed, we can deduce

that F' is a homeomorphism from DMCS?)y to F(DMC(O) ) C DMCS‘,)),2

We would like now to show that F (DMC( o) ) depends only on ||, X and
Y. Let Y] be a finite set such that || = |)71| For every W € DMCy yy, let

W € DMCY),, be the RY),
Let g : Yi — Y1 be a fixed bijection from yl to V1 and let f/ = f o g. Define

F: DMC(O) v = DMCY )372 as F'(W) = Df/ oW’ = Projy(Dy o W), where W’ €

W. As above F' is well defined, and it is a homeomorphism from DMC;)y,

-equivalence class of W.

F/(DMCY),, ). We want to show that F'(DMCY)), ) = F(DMCY)), ). For every
We DMC%,, let W' € W. We have

F'(W) = Projy(DyroW') = Projy(Dyo(DyoW")) = F (Do W’) € F(DMCY), ).
Since this is true for every W & DMC(X)y,, we deduce that F’(DMCE?)y,) C
F (DMC(O) ) By exchanging the roles of ) and )| and using the fact that f =
flog™", we get F(DMCES)JJ ) C F/( DMCE,()y, ). We conclude that F(DMC()‘;’)J,1 )=
F/(DMCE{,))J}, ), which means that F(DMCE,??),1 ) depends only on V1|, X and )».

Finally, for every W' € W and every W” € F(W) = D?gﬁ/’ , W is output-
equivalent to Dy o W’ and Dy o W’ is output-equivalent to W’ (by Lemma 11.4),
hence W is output-equivalent to W”. O

Corollary 11.3. If |Vi| = [)a|, there exists a canonical homeomorphism from
DMCS?)J,1 to DMCE,?)J,2 depending only on X,V and Vs.

Proof. Let f be a bijection from Y; to )». Define the mapping F : DMCg()y —
Dl\/ICE\f?y2 as F(W) = DW’ = Projy(Dy o W), where W' € W and Proj, :
DMCy y, — DMCg?)y is the projection onto the Rg?)y -equivalence classes.

Also, define the mapping F” : DMC(Oy — DMCE\',)y1 as F'(V) = DJ:?V’ =
Projy(Dg-10V"), where V' € V and Proj; : DMCyx y, — DMCE\?’)J,1 is the projection

onto the Rgg)yl—equivalence classes.
Proposition 11.1 shows that ' and I’ are well defined.
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For every W € DMCy y,, we have:

W p(D;ow) Y Do (Do W) =W,

F'(F(W))
where (a) follows from the fact that W € W and (b) follows from the fact that
DyoW € DyoW.

We can similarly show that F(F'(V)) =V for every V € DMC(O) Therefore,
both F and F’ are bijections. Proposition 11.1 now implies that F i 1s a homeomor-

phism from DMCS? y, to F ( DMC()?)),1 ) = DMCS?)),2. Moreover, F' depends only on

X, V1 and Y. O

Corollary 11.3 allows us to identify DMCEy)y with DMC(O) whenever |Y;| =
Vs|. In the rest of this chapter, we identify DMCY. with DMC(O) through the
Xy X,[n]

canonical identification, where n = |)| and [n] = {1,...,n}.
Moreover, for every 1 < n < m, Proposition 11.1 allows us to identify DMCS)[H]
with the canonical subspace of DMC(O)[ ] that is homeomorphic to DMCEY)[ - In the

)

rest of this chapter, we consider that DMCE,()[ ] is a compact subspace of DMCE,? ]

(0)

Intuitively, DMC'Y, . has a “lower dimension” compared to DMC, (] So one

X,[n]
expects that the interior of DMC(O)M in (DMC( )[ P ’7:,\8 [)m]) is empty if m > n. The
following proposition shows that this intuition is accurate.

Prop051t10n 11.2. If |X| > 2, then for every 1 < n < m, the interior of DMCS{)[H]
(DMC&,)[W],T(O) ) is empty.

X,[m]

Proof. See Appendix 11.10.2. O

11.5 Spaces of Output-Equivalent Channels

We would like to form the space of all output-equivalent channels having the same
input alphabet X. The previous section showed that if [Vi| = |)k|, there is a
canonical identification between DMC( ) " and DMCE\_,)y This shows that if we are
interested in output-equivalent channels it is sufficient to study the spaces DMCy ]

and DMC?

X.n] for every n > 1. Define the space

DMCy . = [ DMCy -
n>1

The subscript * indicates that the output alphabets of the considered channels are
arbitrary but finite.

We define the output-equivalence relation RE\?)* on DMCy , as follows:

VW, W’ € DMCy ., WRE\??*W’ & W is output-equivalent to W',
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Definition 11.2. The space of output-equivalent channels with input alphabet X is
the quotient of the space of channels with input alphabet X by the output-equivalence
relation:

DMCY, = DMCux.. /RY...

For every n > 1 and every W, W' € DMCy ), we have WRE??*W’ if and only if
WRg?)[n] W' by definition. Therefore, DMC x,n]/ Rg?)* can be canonically identified

with DMCy ) / RE\?)[ | = DMC()?)[ - But since we identified DMC();)?[H] to its image
(0)

through the canonical embedding in DMC X.fm for every m > n, we have to make
sure that these identifications are consistent with each other.
Remember that for every m > n > 1 and every W € DMCy |, we identified W

with Dy o W, where f is any injection from [n] to [m], W is the Rg?)[n]—equivalence

class of W and D?B/I/V is the Rg?)[m]—equivalence class of Dy o W. Since Dyo W is

output-equivalent to W (by Lemma 11.4), W is RE\?)*—equivalent to DyoW for every

W e DMCE\?)[ - We conclude that identifying DMCEY)[ ]

canonical embedding in DMCEY)M for every m > n > 1 is consistent with identifying

DMCy () /RY, to DMCY

to its image through the

for every n > 1. Hence, we can write

pMcy), = [ J pmcy, -
n>1

For any W,W’ € DMCy ., Proposition 10.2 shows that WRE?)*W' if and only
if MPy = MPyy/. Therefore, for every W e DMCS?)*, we can define the Blackwell

measure of W as MPy;, := MPyy for any W' € W. We also define the rank of W as
rank (W) = |supp(MP )|. Due to Proposition 10.2, we have

DMC(O) —{W e DMC(O) . rank(W) < n}.

A subset A of DMCE,??* is said to be rank-bounded if there exists n > 1 such that
AC DMC()?)W. A is rank-unbounded if it is not rank-bounded.

11.5.1 Natural Topologies on DMC();)?*

Since DMCE,?)* is the quotient of DMCy , and since DMCy . was not given any

topology, there is no “standard topology” on DMC()?)*.

However, there are many properties that one may require from any “reasonable”
topology on DMCE@?*. For example, one may require the continuity of all mappings
that are relevant to information theory such as capacity, mutual information, prob-
ability of error of any fixed code, optimal probability of error of a given rate and
blocklength, channel sums and products, etc ... The continuity of these mappings
under different topologies on DMCE,??* is studied in Chapter 12.

In this chapter, we focus on one particular requirement that we consider the

most basic property required from any “acceptable” topology on DMC( )
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Definition 11.3. A topology T on DMCE\?)* s said to be natural if it induces the
quotient topology T;\({O[)n] on DMCS?)M for every n > 1.

(0)

The reason why we consider such topology as natural is because DMC?, X.n }

subset of DMCE\?’)* and the quotient topology T)go[)n] is the “standard” and “most
(0)

natural” topology on DMC}, X’ Therefore, we do not want to induce any non-

standard topology on DMC )[ ] by relativization.
Before discussing any particular natural topology, we would like to discuss a few
properties that are common to all natural topologies.

Proposition 11.3. FEvery natural topology on DMC()?)*

path-connected.

s o-compact, separable and

Proof. Since DMCE{,)’)* is the countable union of compact and separable subspaces
(namely {DMCS)[ ]}n>1) DMC(O) is o-compact and separable.

(o) _ (0)
On the other hand, since Ol DMC, X = DMCX 1l # ¢ and since DMCX[ |
is path-connected for every n > 1, the union DMCE,?* U DMCY )[n] is path-

n>1
connected. OJ

Proposition 11.4. If |X| > 2 and T is a natural topology, every non-empty open
set is rank-unbounded.

Proof. Assume to the contrary that there exists a non-empty open set U € T such

that U C DMC(O)[ ] for some n > 1. UﬂDMC(O)[ ] is open in DMC(X)[ ] because

T is natural. On the other hand, U N pmcl cUC DMCE\‘;)M. Proposition

X, [n+1]
11.2 now implies that U N DMC(O)[n 41 =0 Therefore,
(o) (o)
U= UﬂDMCX[ | C UﬂDMCX[nH] @,
which is a contradiction. ]

Corollary 11.4. If |X| > 2 and T is a natural topology, then for every n > 1, the
interior of DMCE??M n (DMCS??*,T) is empty.

Proposition 11.5. If |X| > 2 and T is a Hausdorff natural topology, then the space
(DMCE?)*, T) is not a Baire space.

Proof. Fixn > 1. Since T is natural, DMCE@?M is a compact subset of (DMC(A??*, T).
But 7 is Hausdorff, so DMCE\??M is a closed subset of (DMCE??*,T). Therefore,
DMC(O \DMCX)[ | is open.

On the other hand, Corollary 11.4 shows that the interior of DMC(;?M in the
space (DMCES?*,T) is empty. Therefore, DMC \DMC 9 is dense in the space

X,[n]
(DMCY,, 7).



278 Topological Structures on DMC Spaces

Now since
N (DMC(;?* \ DMCS??[n]) =DMCYL\ | [ DMCE), | =,
n>1 n>1

and since DMCE{??*\DMCS?)[”] is open and dense in (DMCE,??*,’T) for every n > 1,

we conclude that (DMC()??*, T) is not a Baire space. O
Corollary 11.5. If |X| > 2, no natural topology on DMCg?)* can be completely
metrizable.

Proof. The corollary follows from Proposition 11.5 and the fact that every com-
pletely metrizable topology is both Hausdorff and Baire. O

Proposition 11.6. If |X| > 2 and T is a Hausdor{f natural topology, then the space
(DMC()?)*, T) is not locally compact anywhere, i.e., for every W e DMCS{,))*, there is
no compact neighborhood of W in (DMCE\?)*, 7).

Proof. Assume to the contrary that there exists a compact neighborhood K of w.
There exists an open set U such that WeUCcCK.

Since K is compact and Hausdorff, it is a Baire space. Moreover, since U is an
open subset of K, U is also a Baire space.

Fix n > 1. Since the interior of DMC()??[n] in (DMCS??*, T) is empty, the interior
of UN DMC()?)M in U is also empty. Therefore, U\ DMCS?)[H] is dense in U. On the
other hand, since 7 is natural, DMCES)M is compact which implies that it is closed
because T is Hausdorff. Therefore, U \ DMC()?)M is open in U. Now since

N (U \ DMC()??M) U\ [ UbMCcy,, | =o.

n>1 n>1

and since U \ DMCg?)[n] is open and dense in U for every n > 1, U is not Baire,

which is a contradiction. Therefore, there is no compact neighborhood of W in
(DMCY,. 7). 0

11.5.2 Strong Topology on DMCS??*
The first natural topology that we study is the strong topology 7;(2\3 , on DMCE\?’)*,
which is the finest natural topology.

Since the spaces {DMC X,[n] }n>1 are disjoint and since there is no a priori way to
(topologically) compare channels in DMC y p,,; with channels in DMC y /] for n # »/,
the “most natural” topology that we can define on DMCy . is the disjoint union
topology s x« = @Té\ﬂ[n]' Clearly, the space (DMCy ., 75 x ) is disconnected.

n>1
Moreover, T x « is metrizable because it is the disjoint union of metrizable spaces.
It is also o-compact because it is the union of countably many compact spaces.
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We added the subscript s to emphasize the fact that 7, x . is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.4. We define the strong topology 7;(33 . on DMCS?)* as the quotient
topology 7;X*/Rg§)*

We call open and closed sets in (DMCE,?)*,TS(;? .) as strongly open and strongly
closed sets respectively.

Let Proj : DMCx — DMCE,?)* be the projection onto the Rg?)*—equivalence
classes, and for every n > 1 let Proj, : DMCy ) — DMC?

&, [n]
onto the Rg()[ ] -equivalence classes. Due to the identifications that we made at the

beginning of Section 11.5, we have Proj(W) = Proj,, (W) for every W € DMCy ).
Therefore, for every U C DMCEYO)*, we have

be the projection

Proj~'(U) = [ Proj, " (UN DMC(O)[ )

n>1

& | I Proit( UmDMC(O)[ )| NDMC py € Ty, V> 1
n/>1

& Proj; ! (UNDMCY) ) € Tafp, Vi >1

g vnomeQ, e, v 1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.

We conclude that U C DMCE\?)* is strongly open in DMC(A??* if and only if
UNDMCY) (©)

X,[n] X [n]
DMC(O)M that is inherited from (DMCSK)*, 7;( ;3 .) is exactly T - Therefore, T Xk

is a natural topology. On the other hand if T is an arbltrary natural topology and
U €T, then UnN DMC( )[n] is open in DMC( )[ ] for every n > 1, s0 U € 7;)3* We

is open in DMCY, . for every n > 1. This shows that the topology on

conclude that T v s the finest natural topology.

(0)

We can also characterize the strongly closed subsets of DMC}’, in terms of the



280 Topological Structures on DMC Spaces

closed sets of the DMCS?)M spaces:

F is strongly closed in DMC()?)*
& DMCS?)* \F' is strongly open in DMC()??*

& (DMCY,\F) nDMCY), is open in DMCY), . o > 1
= DMCS?)[ }\ (F N DMCg()[ }> is open in DMC;)M, Yn > 1
& N DMC( %) is closed in DMC( %) Vn > 1.

X,[n] Xi[n]?

Since DMCE\?)M is metrizable for every n > 1, it is also normal. We can use this

fact to prove that the strong topology on DMCE?)* is normal:

Lemma 11.5. (DMCS?)*,TSEQ ,) is normal.

Proof. See Appendix 11.10.3. O

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.4. (DMCS?)*, ’7;(?@ ,) is a compactly generated, sequential and Ty space.

Proof. Since (DMCy «, Ts x «) is metrizable, it is sequential. Therefore, the space
(DMC()?)*, 7'(0) .), which is the quotient of a sequential space, is sequential.

Let us now show that DMCE?)* is Ty. Fix W € DMCE,?)*. For every n > 1,
{W}in DMCE,??M is either {W} or7 ¢ depending on whether V{/ € DMCE,??M or not.
Since DMC(O)[n] is metrizable, it is 77 and so singletons are closed in DMCS??[H]. We
conclude that in all cases, {W} nDMCY )[ ] is closed in DMC(O)[ ] for every n > 1.
Therefore, {W} is strongly closed in DMC( ) . This shows that (DMCE,? » 'T L) s

. On the other hand, Lemma 11.5 shows that (DMCE,?*,T9 X)) I8 normal. ThlS

means that (DMCE‘()*7 7'5(33 ,) is Ty, which implies that it is Hausdorff.
Now since (DMCy ., Ts x «) is metrizable, it is compactly generated. On the

other hand, the quotient space (DMCE?)*,TS((Q ,) was shown to be Hausdorff. We
conclude that (DMC(A? o T( X, ,) is compactly generated. Ol

Corollary 11.6. If |X| > 2, (DMCE\??*, T(?\37*) is not locally compact anywhere.

S

Proof. Since 7;(2 . is a natural Hausdorff topology, Proposition 11.6 implies that

7;(33 . 1s not locally compact anywhere. =

Although (DMCly «, 75 x ) is second-countable (because it is a o-compact metriz-

able space), the quotient space (DMCS?)*,TS(% ,) is not second-countable. In fact,
we will show later that (DMCE\‘,)*7 7;( )3 ) fails to be first-countable (and hence it is
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not metrizable). This is one manifestation of the strength of the topology 7;(2 . In

order to show that (DMCEE)*, 7;(?\3 ,) is not first-countable, we need to characterize

the converging sequences in (DMCS?)*, 7;(32 L)

A sequence (W,)p>1 in DMC()??* is said to be rank-bounded if rank(W,) is
bounded. (Wn)nzl is rank-unbounded if it is not bounded.

The following proposition shows that every rank-unbounded sequence does not
converge in (DMCE?)*, 7'5(32 L)

Proposition 11.7. A sequence (W, )0 converges in (DMCE‘?)*,ﬁ(f@*) if and only
if there exists m > 1 such that W, € DMCS?)[m] for every n > 0, and (Wn)nzo
converges in (DMCE,;))[m],T)gO) ).

,[m]

Proof. Assume that a sequence (Wn)nzo in DMCg??* is rank-unbounded. This can-
not happen unless |X| > 2. In order to show that (Wn)nzo does not converge,
it is sufficient to show that there exists a subsequence of (Wn)nzo which does not
converge.

Let (Wnk) k>0 be any subsequence of (Wn)nZO where the rank strictly increases,
i.e., rank(W,,) < rank(W,,,) for every 0 < k < k’. We will show that (W, k>0
does not converge.

Assume to the contrary that (Wnk)kZO converges to W € DMCE\??*. Define the
set

A={W,, : k>0}\ {W}.

For every m > 1, the set AN DMC(O)W contains finitely many points. This means

that AN DMCS?)[ | is a finite union of singletons (which are closed in DMC;)[m])

hence AN DMCE{,))M is closed in DMCEY)[ ] for every m > 1. Therefore A is closed
in (DMCY,, 7,%.,).

S,

Now define U = DMCS?)* \A. Since A is strongly closed, U is strongly open.
Moreover, U contains W, so U is a neighborhood of w. TherefoAre, there exists
ko > 0 such that W,,, € U for every k > ky. Now since the rank of (W), )x>0 strictly
increases, we can find k > ko such that rank(W,,) > rank(W). This means that
Wh, # W and so W,,, € A. Therefore, W,,, ¢ U which is a contradiction.

We conclude that every converging sequence in (DMCSE)*, 7;(?\2 ,) must be rank-
bounded.

Now let (Wn)nZO be a rank-bounded sequence in DMCE\?)*, i.e., there exists m > 1
such that W,, € DMC&?,)[m] for every n > 0. If (Wn)nzg converges in (DMCS??*, ’TS(?,()*)
then it converges in DMCS?)[m]

Conversely, let us assume that (W,,),>0 converges in (DMC(O

pMCY

since DMCE“:)M is strongly closed.

BT to W e
X’ Let O be any neighborhood of W in (DMC;)*, SX *) There exists

a strongly open set U such that W € U C O. Since U N DMC(X)M is open in

(DMCS()[ ],T(?[)m])7 there exists ng > 0 such that Wn ceUn DMC()?’)[m] for every
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n > ng. This implies that W,, € O for every n > ng. Therefore (Wn)nzo converges
to W in (DMCY, T.%.,). 0

Corollary 11.7. If |X| > 2, (DMCES)*JQ(()?*) is not first-countable anywhere, i.e.,
for every W e DMCS?)*, there is no countable neighborhood basis of wW.

Proof. Fix W € DMC(O)*
neighborhood basis {Oy},>1 in (DMCE,?*,’T ). For every n > 1, let U}, be a

and assume to the contrary that W admits a countable

n
strongly open set such that W € U/ C O,. Define U,, = ﬂ Ul. U, is strongly
i=1
open because it is the intersection of finitely many strongly open sets. Moreover,
U, C O,, for every n > m.

For every n > 1, Proposition 11.4 implies that U,, (which is non-empty and
)

strongly open) is rank-unbounded, so it cannot be contained in DMCS? ]’ Hence

there exists W, € U, such that W, ¢ DMCEY)[ E

Since W, ¢ DMC )[ | we have rank(W,) > n for every n > 1. Therefore,

(Wn)nzl is rank-unbounded. Proposition 11.7 implies that (Wn)nzl does not con-
verge in (DMCE\?)*, T(?\z L)

S,

Now let O be a neighborhood of W in (DMCg?)*,T(?\g ). Since {Op}n>1 is a

S
neighborhood basis for W, there exists ng > 1 such that O,, € O. For every
n > ng, we have W, € U,, C Op, C O. This means that (Wn)n21 converges to W in

(DMC()?)*, 7'(0) ,) which is a contradiction. Therefore, W does not admit a countable
neighborhood basis in (DMCg?)*, 7;(33 L) O

Compact Subspaces of (DMCS?*,T )

It is well known that a compact subset of R is compact if and only if it is closed
and bounded. The following proposition shows that a similar statement holds for

(DMCY,, 7).

Proposition 11.8. A subspace of (DMCES)*,ﬂ(fY)*) is compact if and only if it is
rank-bounded and strongly closed.

Proof. If |X| = 1, all channels are output-equivalent to each other and so DMC(O) =

DMCE\f)[u consists of a single point. Therefore, all subsets of DMC(X)* are rank-
bounded, compact and strongly closed.

Assume now that |[X| > 2. Let A be a subspace of (DMCE\?)*,’TS(})*) If Ais

rank-bounded and strongly closed, then there exists n > 1 such that A C DMC()?)M.

Since A is strongly closed, then A = AN DMCE,??M is closed in DMC&??M which is
compact. Therefore, A is compact.
Now let A be a compact subspace of (DMCE‘_,)*7 7'5(/\2 ). Since (DMCS?)*, 7;(?@*)
is Hausdorff, A is strongly closed. It remains to show that A is rank-bounded.
Assume to the contrary that A is rank-unbounded. We can construct a sequence

(Wy)nso0 in A where the rank is strictly increasing, i.e., rank(W,,) < rank(W,) for
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every 0 < n < n’. Since the rank of (Wn>n20 is strictly increasing, every subsequence
of (Wy)n>o is rank-unbounded. Proposition 11.7 implies that every subsequence of

(Wy)n>0 does not converge in (DMCE,? » T(O) .). On the other hand, we have:
e A is countably compact because it is compact.

e Since A is strongly closed and since (DMCE? o T *) is a sequential space, A
is sequential.

e A is Hausdorff because (DMCE{,))

7*’

7;(?3*) is Hausdorff.

Now since every countably compact sequential Hausdorff space is sequentially com-
pact [78], A must be sequentially compact. Therefore, (W,,),>0 has a converging sub-
sequence which is a contradiction. We conclude that A must be rank-bounded. [J

11.5.3 The Noisiness Metric on DMCS??*

Theorem 11.3 implies that DMCE,?)M is metrizable for every n > 1. One might

ask whether the spaces DMC(O)W are “simultaneously metrizable” in the sense that

we can define a metric d, on DMC( ) n] for every n > 1 in such a way that d,

is the restriction of d,4 for every n > 1. If this is the case, we can then define

a metric on DMC(/‘?* U DMC [ | as AW, W') = d,(W,W’) for any n > 1
n>1

satisfying W, W’ e DMC()??M. In this section we will show that such metrics can be

constructed.

Noisiness Metric on DMCE{,)?),

For every m > 1, let A, x be the space of probability distributions on [m] x X.
Let Y be a finite set and let W € DMCy y. For every p € Ap,cx, define
P.(p, W) as follows:

Pe(p,W)= _ sup > plu, 2)W (yla) D(uly). (11.1)
DeDMCy, 1) uelm],
zeX,
yey

P.(p,W) can be interpreted as follows: Let (U, X) be a pair of random variables
distributed according to p, send X through the channel W, and let Y be the output
of W in such a way that U — X —Y is a Markov chain. Let U be the estimate of
U obtained by applying a random decoder D € DMCy, ;. In this interpretation, p
can be seen as a random encoder. The probability of correctly guessing U by using
the decoder D is given by

> plu,2)W (y|z)D(uly).

u€lm],

reX,

yey
Therefore, P.(p, W) is the optimal probability of correctly guessing U from Y. Note
that we can take the supremum in (11.1) over only deterministic channels D €

DMCy [y,) because we can always choose an optimal decoder that is deterministic.
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It is well known that if W is output-degraded from W', then P.(p, W) < P.(p, W)
for every p € Ap,xx and every m > 1. It was shown in [70] that the converse is also
true. Therefore, W is output-equivalent to W' if and only if P.(p, W) = P.(p, W')
for every p € Ay, xx and every m > 1. This shows that the quantity P.(p, W)

depends only on the Rgg)y—equivalence class of W. Therefore, if W e DMCS?)J,, we
can define P.(p, W) := P.(p, W’) for any W' € W.
Define the noisiness distance d()?)y : DMC()?)y X DMCg?)y — RT as follows:

AV (W, W) = sup  [Pelp, W1) — Pu(p, W)|-

m>1,
PEA I x X

It is easy to see that 0 < dg?)y(Wl, Wg) < 1 for every Wiy, Ws € DMCS?)y. Moreover,
we have:

° d(o)

X,y(W, W) =0 for every W € DMC(A?)y.

o For every W1, Wy € DMCY)y,, if diy), (W1, Wa) = 0, then P.(p, W1) = Pu(p, W2)

for every p € A, xx and every m > 1, which implies that the channels in Wi
are output-equivalent to the channels in Wg, hence Wl = WQ.

. dg?,)y(Wh W) = dgv)y(Wm Wh) for every Wy, Ws € DMC(O)
e For every Wh, Wg, Ws € DMCE,??JJ, we have

49, (W, Wa) < dE, (Wi, Wa) + d9), (Wa, ).

This shows that d()?)y is a metric on DMC(O) d(o) is called the noisiness metric

because it compares the “noisiness” of W1 Wlth that of Wg If P.(p, Wl) is close to
P.(p, Wg) for every random encoder p, then W, and W5 have close “noisiness levels” .

A natural question to ask is whether the metric topology on DMCE\?)J, that is

induced by d()?)y is the same as the quotient topology T)gog, that we defined in Section
11.4.1. To answer this question, we need the following lemma.

Lemma 11.6. For every Wi,Ws € DMCy y, we have:
Ay (Wi, W) < doy p (W, Wa),

where Wi and Wy are the Rgé))y—equivalence classes of W1 and Ws respectively.
Proof. See Appendix 11.10.4. O

Proposition 11.9. (DMCE@?y,dg??y) and (DMCE@V)),,TA&?;,) are topologically equiva-
lent.

Proof. Consider the projection mapping Proj : DMCyy — DMCE\?))} defined as
Proj(W) = W, where W is the Rgg)y—equivalence class of W.
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Lemma 11.6 implies that Proj is a continuous mapping from (DMCyx y,dx y)
to (DMCY),, d$,). Now since Proj(W) = Proj(W’) whenever WR{,W’, Lemma
11.1 implies that the identity mapping d : DMCE\?)y — DMCES)y is continuous from

(DMCY,, 74%,) to (DMCY),,, dy),). We have:

e For every U C DMCY )y that is open in (DMC(X)y, dg?)y) U=id1(U) e 7}((0%,

because id is a continuous mapping from (DMCS? 3 Ty o) ) to (DMCE‘?)J,, d(o?y).

e For every U € 7:—&0%,, the set DMCX 'y \U is closed in (DMC;)y,T ) which
is compact. Therefore, DMCY X,y \U is a compact subset of (DMCg?)y, T)éog,).
Now since id is continuous from (DMCS?)y, T;\((O%,) to (DMCE\',)J)7 d(o) y), the set
DMCEYO,)J, \U = zd(DMCXy\U) is a compact subspace of (DMCE\,)y, (O) )
which is Hausdorff (because it is metric). This shows that DMCY X,y \U is

closed in (DMCS??y, dg??y), which implies that U is open in (DMCg??y, dg??y).

We conclude that U C DMC&?’)), is open in (DMC(;,)J,, dg?’)y) if and only if it is open
in (DMCY, T3%). O

Corollary 11.8. (DMCE,?)J,, d(o)y) 18 a compact path-connected metric space.

The reader might be wondering why we considered and studied the quotient
topology 7:\(,0%, while it is possible to explicitly define a metric on the space DMCE{,))y.

There are two reasons:

e The definition of dgg)y does not seem to be intuitive at the first sight and it

is not clear why one would adopt it as a standard metric on DMCY )y. Just
being a metric is not convincing enough. On the other hand, the existence
of a natural standard topology on DMCy y makes the quotient topology the
most natural starting point.

(0)

e If one wants to show that a mapping f : DMCy’y, — S is continuous from
(DMCS??y,d()??y) to a topological space (S,V), it is much easier to prove it

through the quotient topology T;‘(;O%, rather than proving it directly using the
(0)

metric d Xy Therefore, it is important to show the topological equivalence

between (DMng)y,d(o) ) and (DMC;)J,,T )-

It is worth mentlomng that in the proof of Proposition 11.9, the only topological
property of (DMC X,y 7'(0) ) that we used is its compactness. This means that we
do not need Lemma 11. 3 to prove Theorem 11.3. An alternative proof of Theo-
rem 11.3 would be to show the compactness and path—connectedness by inheriting
those properties from DMCy y, and then show that (DMC )?)y, ’T y) s topologically

equivalent to (DMCE‘?)J,, d(o)y) as in Proposition 11.9.

The main reason why we restricted ourselves to topological methods in Section
11.4.1 is because they might be useful if one wants to generalize our results to spaces
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of non-discrete channels. It might not be easy to find an explicit metric for those
spaces, or even worse, those spaces might fail to be metrizable. Therefore, one might
want to prove weaker topological properties such as being Hausdorff and /or regular.
In such cases, the methods of Section 11.4.1 might be useful.

Noisiness Metric on DMC()?)*

For every Wl, Wy € DMCS?)*, define the noisiness metric on DMCS?)* as follows:

d(o) (W, W) = d()?)[n}(W, W') where n > 1 satisfies W, W' € DMC(X)[ -

d(o) (W W’ ) is well defined because e )[ ](W W) does not depend on n > 1 as long
as W, W' e DMC(O)[ - We can also express d( ) as follows:

dy), (Wi, Wa) = sup | Pu(p, W1) — Pa(p, W)
peA[:n];X

It is easy to see that dg?)* is a metric on DMC()?)*. Let T)((Ol be the metric topology
on DMCE?)* that is induced by dg?)*. We call T)((O}k the noisiness topology on DMCS?)*.

Clearly, T/,éol is natural because the restriction of d()?)* on DMCY, s exactly

X,[n]

d  and the topology induced by dE\f)[ ] is T)SO[)”]. If |X| > 2, Proposition 11.6 and

X,[n]’
Corollary 11.5 imply that (DMCS?)*, d(o) .) is not complete nor locally compact.

Since 7;(33* is the finest natural topology, ’T(gg* is finer than 7:,((01 On the

S,

other hand, if |X| > 2, 7;&01 is metrizable and 7;(2 . is not (because it is not first-
countable). Therefore, if |X| > 2, the strong topology T v 18 strictly finer than
the noisiness topology 7'/—\(501

It is worth mentioning that Propositions 11.7 and 11.8 do not hold for the space
(DMCS\?)*, 7:’\(401) It is easy to find a rank-unbounded sequence {W,, },,>o which con-
verges in (DMCEV)*, 7;5 i) to a point W € DMC(O) The set {W, : n>0}U{W} is
clearly compact and rank-unbounded.

11.5.4 Topologies from Blackwell Measures

We saw at the beginning of Section 11.5 that for every W e DMC()?)*, a Blackwell
measure MP;, on Ay is defined. Moreover, Proposition 10.2 implies that W is

uniquely determined by MPy;,. Therefore, each Rg()*-equlvalence class in DMC(O)
can be identified with its Blackwell measure. On the other hand, Proposition 10 1
shows that the collection of Blackwell measures of the channels with input alphabet
X is the same as the collection of balanced and finitely supported meta-probability
measures on X

Therefore, the mapping W — MPy;, is a bijection from DMC()??* to MPpys(X).

We call this mapping the canonical bijection from DMCS?)* to MPyps(X). Similarly,
the inverse mapping is called the canonical bijection from MPys(X) to DMCE\?) .

,k
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Since Ay is a metric space, there are many standard ways to construct topologies
on MP(X). If we choose any of these standard topologies on MP(X) and then
relativize it to the subspace MPys(X), we can construct topologies on DMC()?)*
through the canonical bijection. 7

We saw in Section 11.2.3 that there are three topologies that can be constructed
on MP(X): The total-variation topology, the strong convergence topology, and the
weak-* topology. But since every measure in MPys(X) is a finitely supported mea-
sure, strong convergence and total-variation convergence are equivalent in MPy¢(X)
(see Section 11.2.3). Therefore, it is sufficient to study the total-variation topology
and the weak-x topology. We will start by studying the weak-* topology.

Weak-+ Topology

We first note that in the case of binary input channels, the weak-* topology is
equivalent to the topology induced by the convergence in distribution of D-densities
(or L-densities, or G-densities) that was defined in [69]. Note also that the weak-x
topology is equivalent to the topology that is induced by the Le Cam deficiency
distance [75].

Consider the topology on DMCS?)* that is obtained by transporting the weak-x
topology from MPys(X) to DMC()? , through the canonical bijection Fiay, ie., we

let U C DMCE\?)* be open if and only if F__1(U) is weakly-* open. We will call this

topology the weak-* topology on DMCS?)*.

In this section, we show that the weak-* topology is the same as the noisiness
topology 7')((01 We will show this using the Wasserstein metric.

Since Ay is complete and separable, the 1%-Wasserstein distance metrizes the
weak-* topology [80]. Therefore, in order to show that the weak-* topology and
the noisiness topology T)goi are the same, it is sufficient to show that the canonical
bijection Fean from (MPyr(X), W1) to (DMC()??*,dg??*) is a homeomorphism.

Note that since Ay is compact, the metric space (MP(X), W7) is compact as
well [80].

Lemma 11.7. For every W, W' € DMCE\?)*, we have
Y (W, W) < |X| - Wi (MPy;,, MPy,,).

Proof. See Appendix 11.10.5. O

Lemma 11.7 can also be expressed as follows: For every MP,MP’ € MPy;(X),
we have d, (Feun(MP), Fean(MP')) < |X| - Wi (MP,MP’). This shows that the
canonical bijection Fg,, is continuous. Therefore, the weak-+ topology is at least

as strong as T/,\(goi. It remains to show that F_.l is continuous. One approach to

prove the continuity of F._l is to find a lower bound of dg?)*(W, W) in terms of the
Wasserstein metric, but this is tedious. We will follow another approach in order to
show that the canonical bijection Fg,y is a homeomorphism. We need the following

proposition:
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Proposition 11.10. The weak-+ closure of MPys(X) is MPy(X).
Proof. See appendix 11.10.6. L

Theorem 11.5. The weak-* topology on DMCE\?)* is the same as the noisiness topol-
7—(0)
09y Ty -

Proof. Let (DMC&?L,&E@L) be a completion of (DMCE\??*,dEYO?*). Since MPy(X) is
the weak-* closure of MPy(X) (Proposition 11.10), we can extend the canonical
bijection Fean : MPps(X) — DMCS??* to a mapping F : MPy(X) — DMCS?L as
follows:

F(MP) = lim Fean(MP,,), (11.2)

where (MP,,),>0 is any sequence in MPy¢(X) that converges to MP € MPy(X),
and where the limit in (11.2) is taken inside DiMCg?)* In order to show that F is
well defined, we have to make sure that the limit in (11.2) exists and that it does
not depend on the sequence (MPy,),>0.

Since the sequence (MP,,),>¢ converges, it is a Cauchy sequence. Therefore,
for every € > 0 there exists ng > 0 such that for every ni,no > 1 we have

Wy(MP,,,,MP,,,) < By Lemma 11.7, we have

€
x|
Ay (Fean(MPy,), Fean(MPy,)) = d) (Fean(MPp,), Fean(MPy, )
< |X|- Wi(MP,,,,MP,,) < e.

Therefore, (Fean(MPy,))n>0 is a Cauchy sequence in (DMCE??*,ag??*) which is com-
plete, hence the limit in (11.2) exists. Now assume that (MP],),>( is another se-
quence in MPy¢(X) which converges to MP. We have:

lim %, (Fean(MPy), Fean(MP))) = lim ), (Fean(MPy,), Fean(MP),))

n—o0 n—oo

@
< lim |X|- Wy (MP,,, MP/,) ¥

n—o0

0,

where (a) follows from Lemma 11.7 and (b) follows from the fact that (MP,,),>0
and (MP/)),,>0 converge to the same point. Therefore, the sequences (Fean(MPy,))n>0
and (Fean(MP),))n>0 converge to the same point in DMCS??*. We conclude that F
is well defined.

Now fix MP, MP' € MPy(X) and let (MP,,),>0 and (MP},),>0 be two sequences

in MPys(X) that converge to MP and MP’ respectively. We have:

A, (FOMP), F(MP)) = ), ( lim Feun(MPy), lim Fean(MP,))

D im 4, (Fean (MP,,), Fean(MP),))

n—oo

= lim dY), (Fean(MPy,), Foan(MPY))

n—oo

(b) ¢
< lim |X|- Wi (MP,, MP") < |x| . W, (MP, MP"),

n—oo
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where (a) and (c) follow from the fact that metric distances are continuous, and
(b) follows from Lemma 11.7. Therefore, F' is continuous from (MPy(X), W;) to

(DMCEY)*,d(O) ). Moreover, since MPy(X) is weakly-* closed in MP(X) which
is compact, ./\/le(X ) is compact under the weak-* topology. Therefore for ev-
ery weakly- closed subset A of MPy(X), A is compact and so F(A) is com-

pact in (DMCE{?L,ES??Q which is Hausdorff. This implies that F(A) is closed in
(DMCEY)*,EEY)*) for every weakly-* closed subset A of MPy(X). Therefore, F is
both continuous and closed. In particular, F(M7Py(X)) is closed in (DMCSK)*, d( ) )
But F(MPy(X)) D F(MPys(X)) = Fean(MPys(X)) = DMCY,, and DMC()(?*
dense in (DMCg()*,a()??*). Therefore, we must have F(MPy(X)) = mﬁ?l We
conclude that F is a homeomorphism from (M7Py(X), W7) to (DMCES)*,EE,??*).
Now since F(MPyp(X)) = DMCES)*, the restriction of F' to MPys(X) is a

homeomorphism from (MPy;(X), W1) to (DMCE\,)*, d( ) .). But the restriction of F
to Mbe(X ) is nothing but Fi,,. We conclude that the canonical bijection is a

homeomorphism from (MPys(X), W) to (DMC()??*,dS??*). Therefore, the weak-x

(0)

topology on DMC,’, is the same as the noisiness topology 7:‘(,01. O

Since (MPy(X), W7) is homeomorphic to (DMC(X)*,d(O) ), we can interpret this

by saying that DMCEY?* is the space of all output-equivalent channels with input
alphabet X and arbitrary output alphabet (with arbitrary cardinality). Moreover,

since DMCSK)* is dense in (DMC(X)*,E(X)*) we can say that any channel with input
alphabet X' can be approximated in the noisiness/weak-* sense by a channel having
a finite output alphabet.

Total-Variation topology

The total-variation metric distance d(TO‘)/ y . On DMCS?)* is defined as
dgrox)/,x,*(W, W) = [[MPy;, — MPyi,, |7y

The total-variation topology 7}(?/) x4 18 the metric topology that is induced by
dgpo‘)/ v, On DMC(O) . We will refer to the open sets (respectively, closed sets, compact
sets, ...) of 7:”/ x,. as TV-open (respectively, TV-closed, TV-compact, ...). The
same notation is also used for open sets of MPyp(X), MPy(X) and MP(X) in the
total-variation topology.

Proposition 11.11. If |X| > 2 and n > 2, then DMCY )[ | @5 not TV-compact in
DMCY)

7*.

1 1
Proof. Let p,p’ € Ay be such that p # p’ and P + ip’ = my, where my is the

uniform distribution on X'. For every n > 1, define p,,p), € Ay as

1 1
pn=-p+|1—— |7,
n n
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and

/ 1/ 1
Pp=—p+|1-— )7
n n

1 1
Clearly, §pn + §p;1 = 7y for every n > 1.

Now let MP,, = %51,” + %(5% , where 4, and d,/ are Dirac measures centered at
pn and pl, respectively. Clearly, MP,, is balanced and finitely supported for every

n > 1. Let W,, = Fean(MP,,). We have
| supp(MPy;, )| = [ supp(MPy)| = [{pn, . }| = 2.

Therefore, W, € DMcgj)m c DMCS?)[m]

to see that dg")/;(*(Wm,an) = || MP,,, — MP,,, |7y = 1 for every no > ny > 1.

Therefore, no subsequence of (MP,,),>1 can converge. This means that DMC()?)M

for every n > 1 and every m > 2. It is easy

is not sequentially compact for any m > 2. Now since 7}2(‘)/) v is metrizable, we

conclude that DMC(O)

X.[n] is not compact for any n > 2. O

Corollary 11.9. If |X| > 2, then 7}((‘)/))( . 1s not a natural topology.

Proof. If TT(({/) X« Were natural, DMCS?)M would be compact, and this is not the
case. O

Since the noisiness topology is the same as the weak-x topology, ’T)Soi is coarser
than ’TT((‘)/) x5 On the other hand, since T)goi is natural and TT((‘)/) x,+ 18 not, T)goi is

strictly coarser than 7}((‘)) v When |[X] > 2.
Note that the sequence (MP,,),>1 in the proof of Proposition 11.11 converges in

the strong topology because of Proposition 11.7. Therefore, 7;(32 . is not finer than

7323,/\’,*'

Although 7}2?) x,« 18 not a natural topology itself, it has many properties of
natural topologies.

Proposition 11.12. If |X| > 2, every non-empty TV-open subset of DMCE{,))* is
rank-unbounded.

Proof. Let U be a non-empty TV-open set of DMCE@?*. Let W € U and let € > 0

be such that W’ € U whenever dg)‘)/x LW W) <e
Let p, p', (pn)n>1 and (p,)n>1 be as in Proposition 11.11. For every n > 1, define
MP,, € MP(X) as follows:

€

€ n
MP, = (1= =) MPy + <5 - > (6, +9y).

1=

Clearly, MP,, is balanced and finitely supported, so MP,, € MP;¢(X). Moreover,

€
A5 - (Fean(MP,), W) = NP, — MPy [y < < e
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Therefore, Fion(MP,) € U for every n > 1. On the other hand, supp(MP,) D
{pi,p, : 1 < i < n}, which means that |supp(MP,)| > 2n and so Feun(MP,,) ¢

DMC()?)M for every n > 1. We conclude that U is rank-unbounded. O
Corollary 11.10. If |X| > 2, the TV-interior of DMCS?)M n DMCS?)* is empty.
Note that the sequence (Fean(MPy))n>1 in the proof of Proposition 11.12 is

rank-unbounded and converges in total-variation to W. On the other hand, Propo-
sition 11.7 implies that (Fean(MPy,)),>1 does not converge in (DMCES)*, 7;(2 ). We

conclude that ’7}(;) X is not finer than ’7'8(?,()*

Although DMCE,?)M is not TV-compact if |X| > 2 and n > 2, it is TV-complete:

Proposition 11.13. For everyn > 1, DMC()?)M is T'V-complete in DMCSS)*.

Proof. Let MPy,,,(X) be the set of balanced meta-probability measures whose sup-
port is of size at most n:

MPpp(X) ={MP € MPy(X) : |supp(MP)| < n}.

Since (DMCE,??M, dgﬁ‘)f,X,*) is isometric to (MPp (X)), || ||7v), and since (MP(X), ||-
|l7v) is complete, it is sufficient to show that MPy ,(X) is TV-closed in MP(X).
Let MP be in the TV-closure of MP;,,,(X). Since we are working in a metric
space, there exists a sequence (MPy,)m>0 in MPy, ,(X) that TV-converges to MP.
Assume that MP ¢ MPy, ,(X). There exist pi,...,pny1 € Ax that are pairwise
different and which satisfy MP(p;) > 0 for every 1 < i < n+1. Since (MP,,);m>0 TV-
converges to MP, there exists mg > 0 such that MP,,, (p;) > 0 for every 1 < i < n+1.
This contradicts the fact MP,,, € MPy, ,(X). Therefore, MP € MP,,,(X) for every
MP in the TV-closure of MPy ,(X). This shows that MPy ,(X) is TV-closed.

Therefore, DMCE??[TL} is TV-complete in DMCS??*. 0
Proposition 11.14. If |X| > 2, (DMCEYO’)*J}(;)’X’*) is neither Baire nor locally
compact anywhere.

Proof. Since DMCE\?)M is TV-complete, it is TV-closed. Since it also has empty
TV-interior, the same techniques that were used for natural topologies in Section
11.5.1 can be applied for TT(?,)X e O

The above proposition shows that the space (DMCE\?)*, TT(%) y..) cannot be com-

pletely metrized. Note that since the space (DMCE\?’)*, dg?‘), X,*) is isometric to the
space (MPys(X),||-|[7v), and since (MP(X), ||-||7v) is complete, the completion of
(DMCE\?’*, dgf\)/,/\f,*) is isometric to the closure of MPyr(X) in (MP(X), || - ||rv). It
can be shown that the TV-closure of MPyr(X) in MP(X) is the set of all balanced
and countably supported meta-probability measures on X. Therefore, the com-
pletion of (DMCES’)*,drE,?‘)/’ X,*) can be thought of as the space of output-equivalent
channels from X to a countably infinite output alphabet. This allows us to say that
any channel with input alphabet A and a countable output alphabet can be approx-
imated in the total-variation sense by a channel having a finite output alphabet.



292 Topological Structures on DMC Spaces

11.5.5 The Natural Borel o-algebra on DMCY),

Let 7 be a Hausdorff natural topology on DMCE??* Since ’T v 1s the finest natural
topology, we have T C T(O) Therefore, B(T) C B(’T(?@ L)

S

On the other hand, for every U € T(X . and every n > 1, we have UQDMCE?)[ ] €

T)SO[)M. But 7 is a natural topology, so there must exist U, € T such that U, N
DMCY, . = UnDMCY )[ - Since Up € T, we have U, € B(T). Moreover, DMCE\?)M
is T-closed (because it is compact and 7 is Hausdorff). Therefore, DMC

X[l —
Xn €
B(T). This implies that U N DMC(O)[ 1 =Unn DMCEV)[ | € B(T), hence

U=JwnbMCP),) € BT).

n>1

Since this is true for every U € T x> We have ’T ‘v C B(T) which implies that
B(’T( )3 .) C B(T). We conclude that all Hausdorff natural topologies on DMC(O)

S
have the same o-algebra. This o-algebra deserves to be called the natural Borel

o-algebra on DMCE\?’)*.
Note that for every n > 1, the inclusion mapping i, : DMCE\,)[ | DMCE\?)

Sk

is continuous from (DMCEY)[n],’T(O[)n]) to (DMCg?)*,’E(g()*), hence it is measurable.

Therefore, for every B € B(’TS(/@ .), we have i, 1(B) = BN DMCSS)M € B(T)((O[)n]). In
the following, we show a converse for this statement.

Fix n > 1 and let U € 7'(0) . There exists U’ € 7;(32* such that U = U’ N

DMCEY)[ - Since U’ and DMC(X)[ | are respectively open and closed in the topology
7;( )3*, they are both in its Borel o-algebra. Therefore, U = U’ N DMCE,()[ | €

B(T()g ,) for every U € T(O[n] This means that T xn C [5(7'(3(7*) and B(ng) ) C

s s, J[n]

B(’];(Az*) for every n > 1.

Assume now that A C DMC(O)* satisfies A N DMCY?, . € B(T/,éo) ) for every

X,[n] i[n]
n > 1. This implies that AN DMC( eB (T( ) for every n > 1, hence

X
A=J@nbmMcy ) eBT9,).

X,[n]
n>1

We conclude that a subset A of DMCS?)* is in the natural Borel o-algebra if and

only if AN DMC(;;)[ | € B(T( [) ]) for every n > 1.

11.6 Space of Input-Equivalent Channels from X to )

11.6.1 The DMC()?J, Space

Let X and Y be two finite sets. Define the relation R( ) y on DMCy y as follows:

WREQJ,W/ & W is input-equivalent to W'.
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It is easy to see that Rgé)y is an equivalence relation on DMCy y. Rgé)y is called

the input-equivalence relation on DMCy y.

Definition 11.5. The space of input-equivalent channels with input alphabet X and
output alphabet Y is the quotient of the space of channels from X to Y by the input-
equivalence relation:

DMCY)y, = DMCx,y /RY;,.
We define the topology 7:,(;)3, on DMCng as the quotient topology Tny/RE\?,y'

Due to proposition 10.4, we can define the input-equivalence characteristic of
We DMCE‘Z:,)’y as CE(W) := CE(W) for any W’ € W. Define co(W) := co(CE(W)).
It is easy to see that co(W) = co({W. : x € X}) for any W' € W.

Let A and B be two sets. A coupling of A and B is a subset R of A x B such
that

{a€ A: Jbe B, (a,b) € R} = A,

and
{be B: Ja€ A, (a,b) € R} = B.

We denote the set of couplings of A and B as R(A, B).
We define the similarity distance on DMC%)y as follows:

d%)y(Wla Wo) = inf sup || P1 — Po||rv
’ ReR(co(W1),co(W2)) (P1,P2)ER
1 .
inf sup Z |P1(y) — Pa(y)|.

= 2 ReR(co(Wl),co(Wg)) (Pl’P2)eRy€y

Proposition 11.15. (DMCg?y,dE\?y) 1S @ metric space.

Proof. We will show that d%{y(Wl,WQ) = dH(co(Wl),co(Wg)), where dp is the
Hausdorff metric on IC(Ay) corresponding to the total-variation distance on Ay.
Define K1 = co(W) and Ky = co(Ws), and let R € R(K1, K3). For every (Py, Py) €
R, we have:
|1PL = Pollrv > inf [Py — Poflrv.
PjeK>

Therefore,
sup [P — Pflrv > sup inf P — Pyl|7v-
(P1,P)€ER Plek; PaEK2
Similarly,
sup HPI — PQHTV > sup jnf HP{ — PéHTV'
(P1,P)ER PyeK, PIek1
Hence,

sup [|[P1 — P2llry > max < sup inf |P| — P37y, sup inf |\P| — Pi|rv
(P1,P2)ER P{eK, P2€K2 PjeK, PIEKL

=dy (K1, K7).
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We conclude that

49 (W, We) =  inf P — Pollrv > di (K1, Ko).
xy (W1, Wa) R€R1(111(17K2)(P1?22I)>€R\| 1 — Bllry > d (K1, K»)

Let P, € K;. Since K> is compact, there exists ]52(P1) € K5 such that

P, — Py(P = inf [P, — P .
|Pr — Po(P1)||rv p§2K2H1 2|l Tv

Similarly, for every P, € Ko, there exists P (Py) € K; such that || P — P (Po) |7y =
Pin% |Py — Po||7y. Define the coupling Ry € R(K1, K2) as
1E€K1

Ry = {(Pl,pg(Pl)) : Pe Kl} U {(pl(P2)7P2) : Pye KQ}

We have:
AV (Wi, W) = inf sup ||PL—Pllrv < sup  |Pr— Py

RER(K1,K2) (P, Py)eR (P1,P2)€Ro

:max{ sup [P~ Bo(P)], sup || Py —151(P2)H} — (K, ),
PieKy PyeK>

We conclude that dﬁé)yy(Wl, Wa) = dp (K, Ko) = dH(CO(W1>,CO(W2)), hence dg?,y

is a metric. ]
Proposition 11.16. Let W,W’ € DMCE‘?’y be the R%{y—equivalence classes of
W, W' e DMCy,y, respectively. We have dEQy(W, W) < day(W, W").

Proof. Define Ry C co(W) x co(W’) as follows:
Ry = {(ZAxwx,ZA;UWg) ;D A =1 and Ay >0, vxeX}-
zeX TEX reX

Clearly, Ry is a coupling of co(W) and co(W’). For every (P1, P») € Ry, there exists
(Ae)ecx € [0,1]% such that > Ay =1, Pr = » AW, and P, = » AWV We

zeX reX reX
have:
Py — Py = ' (Z AxWx> — (Z AJJW;) = 1> AWy = W))
TEX TEX TV rek TV
< Al Wa = Willry < sup [We = Willzy = day (W, W),
X rzeX
Therefore,
Y, (W, W) = inf sup  ||[PL— Pallrv

ReR(co(W),co(W")) (Py,P2)ER

< sup ||P1— Bllry <dyy(W,W').

(P1,P2)ERg
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Theorem 11.6. The topology induced by d%)y on DMCS?J, is the same as the
quotient topology T)((Z)y Moreover, (DMCg?y, dg?y) is compact and path-connected.
Proof. Since (DMCy y,dy,y) is compact and path-connected, the quotient space

(DMCg{)y, ’T(z)y) is compact and path-connected.

Define the mapping Proj : DMCy y — DMCY. )y as Proj(W) = W, where W is
the Rg?’y—equivalence class of W. Proposition 11.16 implies that Proj is a continuous
mapping from (DMCy y,dxy) to (DMC%)’y,dE?’y). Since Proj(W) depends only
on W, Lemma 11.1 implies that the transcendent mapping of Proj defined on the
quotient space (DMCE\Z;)yy,T/g)y) is continuous. But the transcendent mapping of
Proj is nothing but the identity on DMCEQJJ. Therefore, the identity mapping id on
DMCE?W is a continuous mapping from (DMCS@%y,T)S%)J,) to (DMCS?’y,dSQy). For
every subset U of DMCE\?’J} we have:

o If U is openin (DMCE\?’y, dEQy), then U = id~!(U) is open in (DMCE@ 3 T V)

e If U is open in (DMCgé)y, 7'( ) ), then its complement U¢ is closed in the space
(DMC;{y,T)(;;)y) which is compact hence U€ is compact in (DMC%)J,, T(z) V)
This shows that U¢ = id(U°) is a compact subset of (DMCEY)y,d(Z%y). But
(DMCE\)y, EY))J) is a metric space, so U* is closed in (DMCE\,)y, (Z) y)- There-

fore, U is open in (DMCE&y,dggy).

We conclude that (DMCE,?y, T(z) y) and (DMCg()y,dg()y) have the same open sets.
Therefore, the topology induced by dEY) on DMC()
tient topology 7:\(,1)3, Now since (DMCSQ),,TX&) is compact and path-connected,

is the same as the quo-
(DMC%)),, dgé)y) is compact and path-connected as well. O

In the rest of this chapter, we always associate DMCE@y with the similarity

metric dgé)y and the quotient topology TA(;Z)J,

11.6.2 Canonical Embedding and Canonical Identification

Let X7, X and ) be three finite sets such that | X | < |X3|. We will show that there is

a canonical embedding from DMCg() y to DMCE\) - In other words, there exists an

explicitly constructable compact subset A of DMCg(;y such that A is homeomorphic

to DMC()Q - A and the homeomorphism depend only on &7, Xo and Y (this is why
we say that they are canonical). Moreover, we can show that A depends only on
|X1|, XQ and y

Lemma 11.8. For every W € DMCy, y and every surjection f from X to X1, W
is input-equivalent to W o Dy.
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Proof. Clearly W o Dy is input-degraded from W. Now let f’ be any mapping from
X1 to Xy such that f(f'(z1)) = 1 for every z; € 1. We have W = Wo(DsoDy) =
(WoDy)o Dy, and so W is also input-degraded from W o Dy. ]

Corollary 11.11. For every W,W’ € DMCy, y and every two surjections f, g from
Xy to Xy, we have:

WRSQQ,W’ s (Wo Df)Rgg,y(W’ o D,).

Proof. Since W is input-equivalent to Wo Dy and W is input-equivalent to W’ o Dy,
then W is input-equivalent to W’ if and only if W o Dy is input-equivalent to
W'o D,. O

For every W € DMCy, y, we denote the REQ y-equivalence class of W as W,
and for every W € DMCly, y, we denote the Rgg y-equivalence class of W as w.

Proposition 11.17. Let X1, Xy and Y be three finite sets such that |X1| < |Xal.
Let f: Xo — X1 be any fized surjection from X to Xy. Define the mapping F :
DMCY) ), — DMCY) ), as F(W) = W' o Dy = Projy(W' o Dy), where W' € W and
Projy is the projection onto the Rg?’yZ-equivalence classes. We have:

o F is well defined, i.e., F(W) does not depend on W' € W.

e [ is a homeomorphism from DMC(Q’J} to F(DMC(QQ’),) C DMC(QJ}.

e F' does not depend on the surjection f. It depends only on X1, Xo and Y,
hence it is canonical.

o F(DMCSQ y) depends only on |X1|, Xa and ).
o For every W € W and every W € F(W), W' is input-equivalent to W".

Proof. Corollary 11.11 implies that Proj,(W o D¢) = Projy(W' o Dy) if and only if

WREQJ,W’ . Therefore, Proj,(W' o Dy) does not depend on W’ € W, hence F is
well defined. Corollary 11.11 also shows that Proj,(W’ o Dy) does not depend on
the particular choice of the surjection f, hence it is canonical (i.e., it depends only
on X1, Xy and )).

On the other hand, the mapping W — W o Dy is a continuous mapping from
DMCy,y to DMCy, y, and Proj, is continuous. Therefore, the mapping W —
Proj,(W o Dy) is a continuous mapping from DMCy, y to DMC%;),. Now since
Projy(W o Dy) depends only on the Rgzvy-equivalence class W of W, Lemma
11.1 implies that the transcendent mapping of W — Projy(W o Dy) that is de-

fined on DMC()Q y is continuous. Therefore, F' is a continuous mapping from

(DMC()Q s TJ(K?)/) to (DMC% s T)(é)y). Moreover, we can see from Corollary 11.11
that F' is an injection.

For every closed subset B of DMCSQ y» B 1s compact since DMCgQ y Is compact,
hence F'(B) is compact because F' is continuous. This implies that F'(B) is closed in
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DMC(A%), since DMCE\%), is Hausdorff (as it is metrizable). Therefore, F' is a closed

mapping.
Now since F' is an injection that is both continuous and closed, I’ is a homeo-
morphism from DMC(Z) X,y to F(DMC(Z) ) C DMC% y

We would like now to show that F' (DMCS& y) depends only on |X;|, X2 and

Y. Let X be a finite set such that |X;| = ]X’\ For every W € DMCy; y, let
W e DMngy be the R%i,y—equivalence class of W.
Let g : X1 — X be a fixed bijection from X; to X{ and let f' = go f. Define
F . DMC(;%’); — DMC%Q) as F'(W) = W' o Dy = Projy(W' o Dy), Where' W' e
W. As above, F' is well defined, and it is a homeomorphism from DMCE?, y to
13
’(DMC(l) ). We want to show that F’(DMCE‘%)}) = F(DMC(z) ). For every

RINY
W e DMC@, 3> let W' € W. We have

F'(W) = Projy(W'o Dp/) = Projy(W'o D)o Dy) = F (Wﬁg) e F(DMCY) ).

(4) / (4)
Since this is true for every W € DMCX, yy we deduce that F (DMCX{,)}) C
F(DMCEQ y)' By exchanging the roles of X; and A] and using the fact that f =
g tof!, we get F(DMCEQ y) C F’( DMCE,?, y)' We conclude that F(DMCEQ y) =
» 1 ]

F’(DMCEQ,J) ), which means that F(DMC()QJ,) depends only on ||, X2 and V.

Finally, for every W/ € W and every W” € F(W) = W/ oDy, W is input-
equivalent to W’ o Dy and W’ o Dy is input-equivalent to W’ (by Lemma 11.8),
hence W” is input-equivalent to W”. O

Corollary 11.12. If |X)| = |Ab|, there exists a canonical homeomorphism from
DMC(X) y to DMCg() y depending only on Xy, Xy and Y.

Proof. Let f be a bijection from Xy to Aj. Define the mapping F' : DMCE\,) y
DMC(i) as F(W) = W/’?Jvf)f = Projy(W’ o Dy), where W' € W and Proj, :
DMCy,y — DMCEY) y s the projection onto the R( ) y-equivalence classes.

Also, define the mapping F” : DMCEY) y = DMC&Y)  as F'(V) = V’fleq =
Projy(V'oDy-1), where V' € V and Proj; : DMCy, y — DMC( ) y is the projection
onto the RSQ y-equivalence classes.

Propositién 11.17 shows that F' and F’ are well defined.
For every W € DMCly;, y, we have:

(@)

FEW)Y PWoD) Y WoDy) oDyt =W,

where (a) follows from the fact that W € W and (b) follows from the fact that
WoD 1AS VV/C:_Z/) f-

We can similarly show that F(F'(V)) =V for every V € DMC( ) . Therefore,
both F' and F’ are bijections. Proposition 11.17 now implies that F 1s a homeomor-

phism from DMng’y to F(DMC(XEJ,) = DMCg(;y. Moreover, F' depends only on
X1, Xo and V. O
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Corollary 11.12 allows us to identify DMC&) v with DMCE )] through the canon-
ical homeomorphism, where n = |X| and [n] = {1,...,n}. Moreover, for every

1 < n < m, Proposition 11.17 allows us to identify DMCE )] y with the canoni-

cal subspace of DMCEz)} that is homeomorphic to DMCE )] - In the rest of this
(4)

chapter, we consider that DMCfn)],y is a compact subspace of DMC[m] -
(4)

[m],y
7’[7(71)] y) is empty if m > n. The

Intuitively, pMCY) So one

],y

expects that the interior of DMCEn)] in (DMCE;)L] Vs

following proposition shows that this intuition is accurate when || > 3.

has a “lower dimension” compared to DMC;’

Proposition 11.18. We have:

o If|V| =1, then pMCY) | = DMC( i) for every n > 1.
(.Y [,y
o If|Y| =2, then DMCY  — DMC f })

],y for everyn > 2.

o If || > 3, then for every 1 < n < m, the interior of DMCEQ] y n the space
(4) (1)
(DMCyry 3 Thml»

Proof. See Appendix 11.10.7. O

) is empty.

11.7 Spaces of Input-Equivalent Channels

The previous section showed that if we are interested in input-equivalent channels,
it is sufficient to study the spaces DMCy, 5 and DMCE;)} ¥y for every n > 1, where
[n] = {1,...,n}. Define the space

DMC, y = ]_[ DMCl, v,

n>1

where [] is the disjoint union symbol. The subscript * indicates that the input
alphabets of the considered channels are arbitrary but finite. We define the input-
(4)

equivalence relation R_%, on DMC, y as follows:

WRii)yW/ & W is input-equivalent to W'.

Definition 11.6. The space of input-equivalent channels with output alphabet Y is
the quotient of the space of channels with output alphabet ) by the input-equivalence
relation:

pMC®?

*Y DMC*J) /Ri?))

Clearly, DMC;, R can be canonically identified with DMC;, RY
(.Y /%y [n].Y /1Y

nl,y =
pMc®

],y Therefore, we can write

0 _ (i)
DMC}, = QIDMC[HW
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We define the input-rank of W e DMCS:)y as the size of its characteristic:
irank (W) = | CE(W)|. Due to Proposition 10.4, we have

DMCE:B]’)) —{We DMCE};)), . irank(W) < n}.

A subset A of DMCf)y is said to be rank-bounded if there exists n > 1 such that

(4)
AC DMC[n],y.

. (i)
11.7.1 Natural Topologies on DMC,,

As in Section 11.5.1, we can define natural topologies on the spaces of input-
equivalent channels:

Definition 11.7. A topology T on DMCii)y is said to be natural if it induces the
quotient topology T[T(:])y on DMCE:L)] y for everyn > 1.

Proposition 11.19. FEvery natural topology on DMCS)y 18 o-compact, separable
and path-connected.

Proof. We follow the same proof as in Proposition 11.3. O
Proposition 11.18 implies that if |[Y| = 1, then DMCii)J, = DMCny, and so the
only natural topology on DMCS)J, is ﬁii)y Similarly, if |Y| = 2, then DMCS)J; =

DMC&)y, and the only natural topology on DMC(i)y is 715)3;. In the rest of this

*7
section, we investigate the properties of natural topologies when || > 3.

Proposition 11.20. If |Y| > 3 and T is a natural topology, every non-empty open
set is rank-unbounded.

Proof. We follow the same proof as in Proposition 11.4. O

Corollary 11.13. If|Y| > 3 and T is a natural topology, then for every n > 1, the
interior of DMCE:L)],)) in (DMCS)y, T) is empty.

Proposition 11.21. If |Y| > 3 and T is a Hausdorff natural topology, then the
space (DMCS;)),, T) is not a Baire space.

Proof. We follow the same proof as in Proposition 11.5. O

Corollary 11.14. If |Y| > 3, no natural topology on DMCS?V can be completely
metrizable.

Proof. The corollary follows from Proposition 11.21 and the fact that every com-
pletely metrizable topology is both Hausdorff and Baire. O

Proposition 11.22. If |Y| > 3 and T is a Hausdorff natural topology, then the
space (DMCS{Z?V,T) is not locally compact anywhere, i.e., for every W € DMCS{%;,

there is mo compact neighborhood ofW n (DMCS;)J,,'T).

Proof. We follow the same proof as in Proposition 11.6. O
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(4)
11.7.2  Strong Topology on DMC_},

The first natural topology on DMCg)y that we study is the strong topology ’T .y on

DMCE‘Z)y, which is the finest natural topology.

Since the spaces {DMC[n},y}nzl are disjoint and since there is no a priori way to
(topologically) compare channels in DMCy, 5, with channels in DMCy, y for n # n/,
the “most natural” topology that we can define on DMC, y is the disjoint union
topology Tsxy = @T[n],y- Clearly, the space (DMC, y, Ts4,y) is disconnected.

n>1
Moreover, 7y .y is metrizable because it is the disjoint union of metrizable spaces.

It is also o-compact because it is the union of countably many compact spaces.

We added the subscript s to emphasize the fact that 7. y is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.8. We define the strong topology ’7;(1)3) on DMCii)y as the quotient
topology 7'5*3;/]%%,

We call open and closed sets in (DMCi)y,T( ) as strongly open and strongly
closed sets respectively.

Let Proj : DMC,y — DMCS)J, be the projection onto the Rii)y—equivalence

classes, and for every n > 1 let Proj, : DMCy, y — DMCY) . be the projection

[n],Y
onto the R[( )] y -equivalence classes. Due to the identifications that we made at the

beginning of Section 11.7, we have Proj(W) = Proj,,(W) for every W € DMCy, y.
Therefore, for every U C Dl\/ICf:)y7 we have

Proj—!( H Proj,, H(U N DMCE;)] )-
n>1

Hence,

Ue T(*y @ Proj ' (U) € Tsuy

S:g Proj~1(U) N DMCpy € Tnyy, Vn>1

& | I Proi, (U nDMC}), ) | ADMCyyyy € Ty, ¥ > 1
n/>1

< Proj, (UﬁDMCEZ) ) € Ty, Yn>1

g vnomef), e, vn>1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.
We conclude that U C DMCi)y is strongly open in DMCi)y if and only if U N

pMmct

i is open in DMCE)] for every n > 1. This shows that the topology on
pmc!!
[

i)
LY . .
)] that is inherited from (DMCSJ,, T( y) is exactly T[S])y. Therefore, 7;(;)’3;
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is a natural topology. On the other hand, if 7 is an arbitrary natural topology and

UGTthenUﬂDMCH)} E)]yforeveryn>1 SOUET) We

conclude that T ey 8 the finest natural topology.

is open in DMC

(4)

We can also characterize the strongly closed subsets of DMC_y, in terms of the

closed sets of the DMCE:L)] 3 spaces:

F'is strongly closed in DMCS)y
& DMC(i) \F' is strongly open in DMC(i)

<DMC kS \F) N DMC[@} y Is open in DMC[(;L) N Vn>1
)

]
) is open in DMC[(;)} Vn > 1

Vn > 1.

[n].Y

is closed in DMC( )

<~

(i (i
T DMC]y\<FﬁDMC
< [,y

FﬂDMq%

Since DMCE:Z)] y is metrizable for every n > 1, it is also normal. We can use this
(4)

fact to prove that the strong topology on DMC, ", is normal:

Lemma 11.9. (DMCS)),,’E(?),) is normal.

Proof. We follow the same proof as in Lemma 11.5. O

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.7. (DMC&Z;)),, TS(?),) is a compactly generated, sequential and Ty space.
Proof. We follow the same proof as in Theorem 11.4. O

Corollary 11.15. If || > 3, (DMCiz)vas(i),y) is not locally compact anywhere.

Proof. Since T Ly isa natural Hausdorff topology, Proposition 11.22 implies that
7;(* y is not locally compact anywhere. O

As in the case of the space of output-equivalent channels (Section 11.5.2), the

space (DMCi)y,’E,(*)y) fails to be first-countable (and hence it is not metrizable)

when |Y| > 3. This is one manifestation of the strength of the topology Ts(i)y. In

order to show that (DMCi)y, 7;(?3,) is not first-countable, we need to characterize

the converging sequences in (DMCS,)yv 7'8(1)3})
A sequence (Wi)n>1 in DMCL), is said to be rank-bounded if irank(W,) is
bounded. (Wn)nzl is rank-unbounded if it is not bounded.

The following proposition shows that every rank-unbounded sequence does not
converge in (DMCi )y, T(i)y).

S,
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Proposition 11.23. A sequence (W,)n>0 converges in (DMCS)J,,’];(?J,) if and only
if there exists m > 1 such that W,, € DMCEZ]J) for every n > 0, and (Wp,)n>0

converges in (DMC[(nZL] v 7—[7(73 v)-

Proof. We follow the same proof as in Proposition 11.7. O

Corollary 11.16. If |Y| > 3, (DMCiz)y, T(i),y) is mot first-countable anywhere, i.e.,

S,

for every W e DMCZ)J,, there is no countable neighborhood basis of W.

Proof. We follow the same proof as in Corollary 11.7. OJ

(@) ()
Compact Subspaces of (DMC,’),, 7))

It is well known that a compact subset of R is compact if and only if it is closed
and bounded. The following proposition shows that a similar statement holds for

(oMcY, 7).

Proposition 11.24. A subspace of (DMCii)y,’E(i)y) is compact if and only if it is
rank-bounded and strongly closed.

Proof. If |Y| =1, DMCS? = DMCEJ y consists of only one point, hence all subsets

of DMC(i)J, are rank-bounded, compact and strongly closed.

If Y] =2, DMCi)y = DMCE2] y and T ey = 7'[51)32, hence all subsets of DMC( 2

are rank-bounded. But DMCE2]) y is compact and Hausdorff. Therefore, a subset of
DMCE‘,)), is compact if and only if it is closed in 7'[;)), = 7'8(1)),

For |Y| > 3, we follow the same proof as in Proposition 11.8. O

11.7.3 The Similarity Metric on the Space of Input-Equivalent
Channels

We define the similarity metric on DMCS)J, as follows:

dg)y(Wl, Wg) = min R max ||P1 — PQHTV
’ ReR(co(W1),co(Wa)) (P1,12)ER

1
=— min max Z | P (y (y)].

2 ReR(co(Wr),co(W2)) (P1,P2) JeR £

Let 7;(‘ be the metric topology on DMCi)y that is induced by d( ) We call
7;(3), the similarity topology on DMC;)y.
Clearly, T(i)), is natural because the restriction of dgf)y on DMCE)] is exactly

EZ)] y» and the topology induced by d y is T y (Theorem 11.6).
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11.8 Space of Shannon-Equivalent Channels from X to Y

11.8.1 The DMC x,y space

Let X and ) be two finite sets. Define the relation R(Xs)y on DMCy y as follows:

WRE,?)yW’ & W is Shannon-equivalent to W'.

It is easy to see that R( ) is an equivalence relation on DMCy y. REY);)J is called

the Shannon-equivalence relatwn on DMCy y.

Definition 11.9. The space of Shannon-equivalent channels with input alphabet X
and output alphabet ) is the quotient of the space of channels from X to Y by the
Shannon-equivalence relation:

DMCY), = DMCy,y /RY),

We define the topology 7;\(?5%, on DMCE{??), as the quotient topology TX,)?/RS?,)y

Notation 11.1. Let (U, X, YV, V,[,W) be a BRM game. Since U, X,Y and V are
implicitly determined by I and W, we write Sopt (1, W) to denote Sopt (U, X, Y, V, 1, W)
for the sake of brevity.

Let W,W' € DMCyy. Theorem 10.3 shows that W' contains W if and only
if Sopt (1, W) < Sopt (I, W) for every | € Ayxy and every two finite sets U and V.
Therefore, WREé)yW’ if and only if Sopt (L, W) = Sopt (I, W) for every l € Ayxy and
every two finite sets U and V. This shows that $op (1, W) only depends on the R(s)
equivalence class of W. Therefore, if W e DMC(XS?),, we can define $0pt(l,W) =
$opt (1, W) for any W' € W.

Define the BRM metric dgj)y on DMCgi)y as follows:

d“) LWL, Wa) = sup  [Sope (1, W1) — Sope (1, W)

nm>1,
LEA ] x [m]

Proposition 11.25. Let Wy, W, € DMCSQJ, be the RS’)y—equivalence classes of
Wi, Wy € DMCy y, respectively. We have d(;?y(Wl, Wg) <dyy(Wi, Ws).
Proof. See Appendix 11.10.8. O

Theorem 11.8. The topology induced by dgﬁ)y on DMCS‘;)y 1s the same as the

quotient topology TAgsg,. Moreowver, (Dl\/[(]()‘;)y7 dgj)y) 1s compact and path-connected.

Proof. We use Proposition 11.25 and follow the same proof as in Theorem 11.6. [

Throughout this chapter, we always associate DMC(;)y with the BRM metric

d(;)y and the quotient topology T/rés%,.
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11.8.2 Canonical Embedding and Canonical Identification

Let X1, X2, Y1 and Vs be four finite sets such that |X;| < |X2] and [W1] < [Va]. W
will show that there is a canonical embedding from DMC( ) X, to DMC(X) 3, In

other words, there exists an explicitly constructable compact subset A of DMCg(Q) Wy

such that A is homeomorphic to DMC( ) X0 A and the homeomorphism depend
only on X, Xs, V1 and ) (this is why we say that they are canonical). Moreover,
we can show that A depends only on ||, |V1], X2 and Vs.

Lemma 11.10. For every W € DMCy, y,, every surjection f from Xa to X1, and
every injection g from Y1 to Vs, the channel W is Shannon-equivalent to DgoWoDy.

Proof. Clearly W contains Dy o W o Dy. Now let f’ be any mapping from X; to X
such that f(f'(z1)) = x;1 for every x1 € Xy, and let ¢’ be any mapping from )s to
V1 such that ¢'(g(y1)) = y1 for every y; € V1. We have

W:(Dg/ng)oWo(Dfon/):Dg/o(DgoWon)on/,

and so Dy oW o Dy also contains W. Therefore, W and D, o W o Dy are Shannon-
equivalent. O

Corollary 11.17. For every W,W' € DMCluy, y,, every two surjections f, f' from
Xo to Xy, and every two injections g,q" from Yy to Vo, we have:

WRY) W' & (DyoW oD)RS),, (Dy oW o Dp).

1

Proof. Since W is Shannon-equivalent to DgoW oDy and W' is Shannon-equivalent
to Dy o W' o Dy, then W is Shannon-equivalent to W’ if and only if Dy o W o Dy
is Shannon-equivalent to Dy o W' o Dy, O

For every W € DMCy, y,, we denote the RE\}? y,-equivalence class of W as W,
and for every W € DMCly, y,, we denote the Rg‘z y,~eéquivalence class of W as w.

Proposition 11.26. Let X1, X5, V1 and Yy be four finite sets such that |X;| < |As|
and V1| < |da|. Let f : Xo — X1 be any fized surjection from Xa to Xy, and
let g : Y1 — Yo be any fixed injection from Y1 to Yo. Define the mapping F :

DMCgﬁ)y — DMCE,?Q) y, a8 F(W) = D, o/I_/I\/’/on = Proj,(Dy o W' o Dy), where

W' eWw, Dy o W’ o Dy is the Rgv)y -equivalence class of Dy o W' o Dy, and Proj,
(s)

1s the projection onto the RX2 y, ~equivalence classes. We have:
e F is well defined, i.e., F(W) does not depend on W' € W.

e F' is a homeomorphism from Dl\/[(]g:_fl)y1 to F( Dl\/[CE(;l)y1 ) C DMCSQ) P, -

e [ does not depend on the surjection f nor on the injection g. It depends only
on X1, Xo, V1 and Ys, hence it is canonical.

F(DMCg;l)’yl) depends only on |X1|, | V1|, Xo and Ys.

For every W' € W and every W" € F(W), W’ is Shannon-equivalent to W".
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Proof. See Appendix 11.10.9. O

Corollary 11.18. If |X1| = |Xa2| and |Yi| = |V2|, there exists a canonical homeo-
morphism from DMCE\}? y, to DMCE\Z) y, depending only on X1, V1, Xo and Vs.

Proof. Let f be a bijection from X5 to A7, and let g be a bijection from ) to

YVs. Define the mapping F' : DMC(/,,:;)J,1 — Dl\/IC(;Q)y2 as F(W) = DgoW'o Dy =

Projy(Dgy o W' o Df),(v;rhere W' € W and Proj, : DMCy, y, — DMCS?Q)% is the
S

projection onto the R}, ,, -equivalence classes.
Also, define the mapping F’ : DMCE,‘;Q)’)& — Dl\/IC(;l)y1 as

F'(V)=D 1OV/ODf1—P1"0_]1( —10V'oDy),

where V/ € V and Proj; : DMCy, Vi DMC(XSE,M is the projection onto the jol)’yl—
equivalence classes.

Proposition 11.26 shows that F' and F are well defined.

For every W € DMCy;, y,, we have:

(a)

FEW) Y F(Dy o W o Dy) Y Proj,(Dy1 0 (Dyo W o Dy) o Dypr) = W,

where (a) follows from the fact that W € W and (b) follows from the fact that
DyoWoD; € DyoWoDy.

We can similarly show that F(F'(V)) =V for every V € DMC(S) y,- Therefore,
both F' and F” are bijections. Proposition 11.26 now implies that F 1s a homeomor-
phism from DMCES) 3, to F(DMC( ) ) DMCE,?Q) y,- Moreover, F' depends only

X1,
on X1, V1, Xy and V. O

Corollary 11.18 allows us to identify DMC() with DMC%Z]) (] through the
canonical homeomorphism, where n = |X|, m = DJ|, [n] = {1,..7. ,n} and [m] =
{1,...,m}. Moreover, for every 1 < n < n’ and 1 < m < m’/, Proposition 11.26
allows us to identify DMC®) | with the canonical subspace of DMC) that is

[n],[m [n],[m]

homeomorphic to DMC®) In the rest of this chapter, we consider that pMC)

[n],[m]" [n],[m]
is a compact subspace of DMC%NB] ]
Conjecture 11.1. For every 1 < n < m, the interior of DMC[ ])[ | n DMCE )] [m]
15 empty.

11.9 Space of Shannon-Equivalent Channels

The previous section showed that if we are interested in Shannon-equivalent chan-
nels, it is sufficient to study the spaces DMC, [, and DMC[(%) (m] for every n,m > 1.
Define the space

DMC, . = [ DMCyj ) -

n>1,
m>1
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The subscripts * indicate that the input and output alphabets of the considered

channels are arbitrary but finite. We define the Shannon-equivalence relation R( )
on DMC, , as follows:

WRS;?,ZW’ < W is Shannon-equivalent to W'.

Definition 11.10. The space of Shannon-equivalent channels is the quotient of the
space of channels by the Shannon-equivalence relation:

DMCY) = DMC, , /R,
Clearly, DMC\y) (1) / R* « can be canonically identified with DMCyy ) / R[n] m] =

DMC[(n]) (m] for every n,m > 1. Therefore, we can write

s) _ () )
pmel = J pmef) & U DMC{
n,m>1
Note that (a) follows from the fact that DMCETSL]) im] © DMC[(k]) k] (see Section 11.8.2),

where k = max{n,m}.
We define the Shannon-rank of W € DMCY) as:

srank(W) = min{n > 1: W € DMC[S]) [n]}

Clearly,

(s)
DMCp) ) =

A subset A of DMC&},Z is said to be rank-bounded if there exists n > 1 such that

ACDMCHH

={We DMCSl . srank(W) < n}.

11.9.1 Natural Topologies on DMCi‘fl

As in Section 11.5.1, we can define natural topologies on the space of Shannon-
equivalent channels:

Definition 11.11. A topology T on DMCSf)k is said to be natural if it induces the
quotient topology 7{7(3)[”1] on DMCEZ}) (m] for every n,m > 1.

Proposition 11.27. Every natural topology on DMCS:l is o-compact, separable and

path-connected.
Proof. We follow the same proof as in Proposition 11.3. O

Remark 11.1. [t is possible to show that if Conjecture 11.1 is true, then for every

natural topology T on DMCS}M we have:

e Fuvery open set is rank-unbounded.
e For every n > 1, the interior of DMCEZ])’M in (DMCSj}k,T) is empty.
e IfT is Hausdorff, then
— (DMCSJ;Z,T) s not a Baire space, hence no natural topology can be com-

pletely metrized.
- (DMCSL,T) is not locally compact anywhere.
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11.9.2 Strong Topology on DMCSl

Since the spaces {DMC[nHm]}n,le are disjoint and since there is no a priori way
to (topologically) compare channels in DMCjy) (,,) with channels in DMCy,,/) .1 for
(n,m) # (n/,m’), the “most natural” topology that we can define on DMC, , is the
disjoint union topology Ts .« = @ Tin),jm]- Clearly, the space (DMCi s, T x5)
n,m>1

is disconnected. Moreover, T . . is metrizable because it is the disjoint union of
metrizable spaces. It is also o-compact because it is the union of countably many
compact spaces.

We added the subscript s to emphasize the fact that 7, . is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.12. We define the strong topology 7;(?* on DMCSl as the quotient
topology 7'4,1**/]%5;9,)k

We call open and closed sets in (DMCisl,ﬁ(i)*) as strongly open and strongly
closed sets respectively.

Let Proj : DMC, « — DMCSl be the projection onto the Rgfl—equivalence classes,

and for every n,m > 1 let Proj, ,, : DMCy,; ;,) — DMC) be the projection

[n],[m]
onto the R[(;]) [m]—equivalence classes. Due to the identifications that we made at

the beginning of Section 11.9, we have Proj(W) = Proj,, (W) for every W €
DMCy,(m)- Therefore, for every U C DMCSL, we have

Proj ' (U) = [ ProjyL,(UnDMCE) ).

n,m>1
Hence,

UeT, Y Proj \(U) € Trnn

Ty

g Proj 1 (U) N DMCp i) € Tinl,fm), V,m =1

= ( H PrOjn,l,m,<UﬂDMCE;?]’[m/])> ﬁDMC[n],[m] € 7—[n],[’m]7 Yn,m >1

n/,m'>1

& Proj, L, (U NDMC)

[n],[m]

) € Ting,jm]> Vn,m > 1

9 ApMc®

[n],[m.

(s
) € Tl Yo 2 1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.

We conclude that U C DMCS,)F is strongly open in DMCS,{ if and only if U N

DMCEZ]) ] is open in DMCEZ]) ] for every m,m > 1. This shows that the topology on
DMC%Z]) (] that is inherited from (DMCS,)K, 7;(;?*) is exactly 7{7(3)[771]' Therefore, Ts(,i)*

is a natural topology. On the other hand, if 7 is an arbitrary natural topology and
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UeT,thenUnN DMCfn])[ | 1s open in DMC[(n]) im) for every n,m > 1,50 U € 7;(?*

We conclude that 7;,*7* is the finest natural topology.

We can also characterize the strongly closed subsets of DMCS)k in terms of the

closed sets of the DMCE ]) ] SPaces:

F'is strongly closed in DMCSl
& DMCY)\F is strongly open in DMCL)
(DMC&?F \F) N DMCfn])[ ] is open in DMC( 5)

[n],[m]’

Vn,m > 1

) is open in DMCEn])[ P Vn,m > 1

Vn,m > 1.

[n],[m]

=
& DMC(),\ (FnpuMcl)
=

FnN DMC[( ])[ ] is closed in DMCES])[ L

Lemma 11.11. For every subset U of DMCi‘?l, we have:

e U is strongly open if and only ifUﬁDMC[(Z}) (1] is open in DMCEZ] in] for every
n > 1.

e U is strongly closed if and only if U N DMCEZ]) [n] is closed in DMC[(S]) ] for
every n > 1.

Proof. If U is strongly open then U N DMC%Z]) (] is open in DMC[(H}) (m] for every
n,m > 1. This implies that U N DMCE })[ | is open in DMC[(n]) in] for every n > 1.
Conversely, assume that U N DMCE ])[n

Fix n,m > 1 and let & = max{n,m}. We have DMC!) . DMCE })[k] Since

| is open in DMCE )

1] for every n > 1.

[n],[m]
U NDMC}) ,; is open in DMC{) .. the set U N DMC[Y) = (U nDMCY) )N
DMCEZ]) (m] is open in DMCE ])[ - Therefore, U N DMCE ])[m] is open in DMCEn])[ |

for every n,m > 1, which implies that U is strongly open.

We can similarly show that U is strongly closed if and only if U N DMC[(:;}),[n] is

closed in DMC[(Z]) 7] for every n > 1. O

Since DMC% ]) ] is metrizable for every n > 1, it is also normal. We can use this

fact to prove that the strong topology on DMCS,)‘ is normal:

Lemma 11.12. (DMC&sl,ﬂ(i)*) 1s normal.

Proof. We follow the same proof as in Lemma 11.5. O

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.9. (DMCSL, ﬂ{i?*) is a compactly generated, sequential and Ty space.

Proof. We follow the same proof as in Theorem 11.4. O
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Remark 11.2. [t is possible to show that if Conjecture 11.1 is true, then we have:

(s)

o T« 15 not first-countable anywhere.

o A subset of DMCS,Z is compact in Ty .« if and only if it is rank-bounded and
strongly closed.

11.9.3 The BRM Metric on the Space of Shannon-Equivalent Channels

We define the BRM metric on DMCS,Z as follows:

d*iz(VAVla W2) = Sugl |$opt(l> Wl) - $opt(l7 W2)|
€A [y )

Let ﬂ(i) be the metric topology on DMCSl that is induced by dfksl We call 7;(‘1)
the BRM topology on DMC&?L
( (s)

Clearly, ’7;(‘1) is natural because the restriction of d*sl on DMC[n] (m]

dEZ]) or and the topology induced by d® s 7[7(3) (Theorem 11.8).

[n],[m] [m]

is exactly

11.10 Appendix

11.10.1 Proof of Lemma 11.3

We need the following lemma:

Lemma 11.13. The relation R(O)

x.y s closed in DMCyx y x DMCy y.

Proof. Define the mapping f : (DMCx y)? x (DMCy y)? — (DMCx y)* as:
fFW,W V.V =W,V oW W VoW).

f is continuous because channel composition is continuous.
Define the set A C (DMCy y)* as:

A={W,W,W W"): W,W eDMCyy}.
It is easy to see that A is a closed subset of (DMCy y)*. We have:
FUA) = {(W, W', V, V") € (DMC.5)?x (DMCyy)? : VoW’ =W, VoW = W'},
Since f is continuous and since A is a closed subset of (DMCyx y)*, f71(4) is a
closed subset of (DMCy y)? x (DMCy y)? which is compact. Therefore, f~1(A) is
compact.

Now define the mapping ¢ : (DMCy y)? x (DMCy y)? — (DMCy y)? as follows:

gW. W' V. V') = (W, W').
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Since g is continuous and since f~!(A) is compact, g(f~!(A)) is a compact subset
of DMC%(Q,. Now notice that

g(f7(A) = {(W, W) € (DMCxy)*: 3V, V' € DMCy,y, (W, W'V, V') € f71(A)}
(W, W) € (DMCxy)?: 3V, V' € DMCy.y, Vo W' =W, Vo W = W'}
(W,W') € (DMCy y)?: W is output—equivalent to W'}
(

= {(W,W') € (DMCxy)*: WRY,W'} = R

{
=
={

We conclude that Rg??y is compact, hence it is also closed because (DMCy y)? is a
metric space. ]

Now we are ready to prove Lemma 11.3:

Let Proj : DMCx y — DMC( ) be defined as Proj(W) = W. The continuity of
Proj follows from the definition of the quotient topology.

Now let A be a closed subset of DMCy y. We want to show that Proj(A) is
closed.

Since A is closed in DMCy y, the set DMCy y x A is closed in (DMCy y)?.

On the other hand, Rg?)y is closed in (DMCy y)? by Lemma 11.13. Therefore,

(DMCy,y xA) N Rg??y is closed in (DMCy y)? which is compact, hence the set

(DMCy,y xA)N R()??y is compact. We have:
(DMCy,y xA) N RY), = {(W,W') € (DMCx,y)® : WRYL,W' and W' € A},
Now define the mapping g : (DMCy y)? — DMCy y as
gW, W' =Ww.

Let Ag := g((DMCyx,y XA)HRE\?’)J,). Since g is continuous and since (DMCy y xA)N

Rg??y is compact, Ag is also compact. We have:
Ar={W €DMCyy: IW’ € A, WR W’} Proj~!(Proj(A)).

Since DMC y is a metric space and since Ap is compact, Proj~!(Proj(A)) = Ag
is closed in DMCy y. On the other hand, we have Proj ! (DMCE\?’)y\Proj(A)) =
DMCuxy \ Proj_l(Proj(A)) hence Proj~* (DMCS??y \ Proj(A)) is open in DMCly,y,
which implies that DMC \PrOJ( ) is open in DMCg??y. Therefore, Proj(A) is
closed in DMCS(’)y.

11.10.2 Proof of Proposition 11.2

let U be an arbitrary non-empty open subset of (DMC;)[ P T(O[) }) and let Proj be
(o)

the projection onto the R X.m) -equivalence classes. Proj~ 1(U) is open in the metric
space (DMCy ), dx ). Therefore, there exists W € DMCy ;) and € > 0 such
that Projfl(U ) contains the open ball of center W and radius e.
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We will show that there exists W’ € DMCy [, such that rank(W’) = m > n
and dy [, (W, W') < e. If rank(W) = m, take W' = W.

Assume that rank(W) < m. Let P, € Ay, Im(W) and {W, ' : y € Im(W)}
be as in Section 10.2.

Let {vy}yepm) be a collection of m vectors in RY such that:

° Z Py (y) - vy = 0.

yelm(W)

° Z vy = 0.

y€[m\Im(W)

e For every y € [m], Z vy(x) = 0.
zeX

e The vectors {vy},c[m) are pairwise different.

Such collection can always be found.
Let 0 < 4,0’ < 1 and define Py, € RIM as follows:

(1-=0)Py(y) ifyeIm(W),
Py (y) = 0
m — [ Im(W))]

otherwise.

Clearly, Py, € Apy, and Py, (y) > 0 for every y € [m]. Now for every y € [m],
define W;_l as follows:

Wwi-l — (1- 5)Wy_1 + dmx + vy ify € Im(W),
Tx + 0y otherwise,

where my € Ay is the uniform probability distribution on X. A simple calculation
shows that Z Py (y)Wéil = 7y, and for every y € [m] we have Z Wéil(m) = 1.
ye[m] reX

Notice that for y € Im(WW), since 0 < 0 < 1, (1 — 6)VVy_1 + Omy lies inside the
interior of the probability distribution simplex Ay. This means that for ¢’ small
enough, (1 — )W, ' 4 dmx 4 0'vy € Ay for every y € Im(W), and my + 0'vy € Ay
for every y ¢ Im(W). For every 0 < § < 1, choose ¢’ := §'(d) so that 0 < §’ < § and
W=t € Ay for every y € [m].

It is easy to see that for § small enough, Wél_l # Wé;l for every y1,y2 € [m]
satisfying y1 # y2. Define the channel W’ € DMCy ;) as follows:

W' (yle) = | X|P ()W~ (2).

Since P, (y) > 0 for every y € [m], we have supp(MPy») = {W,~' : y € [m]}.

Therefore, there exists dy > 0 such for every 0 < § < 8y, we have rank(W’) = m. On

the other hand, we have lim Py, = Py}, and lim W;fl =W, ! for every y € Tm(W).
0—0 6—0

Therefore, %gr(l) W' =W (where the limit is taken in (DMCy ], dx n])). This shows

that there exists W’ € DMCy [, such that rank(W') = m > n and dy ;) (W, W') <

€, which means that W' € Proj_l(f] ) and W' is not output-equivalent to any chan-
nel in DMCy ) (see Corollary 10.1). Therefore, Proj(W’) € U and Proj(W’') ¢
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DMCE?)[ ] because W’ is not output-equivalent to any channel in DMC x,[n]- This
shows that every non-empty open subset of DMC&,)[ ] is not contained in DMC()?)M.

We conclude that the interior of DMC( %)

P in DMCE\,)[m] is empty.

11.10.3 Proof of Lemma 11.5
Define DMC' )[0] = ¢, which is strongly closed in DMC(O)

Let A and B be two disjoint strongly closed subsets of DMCE{;) .- For every n > 0,

let A, = AN DMCEY)[ ] and B, = B ﬁDMC(O)[ - Since A and B are strongly closed

in DMCSK’) , A, and B, are closed in DMC(O)[ E Moreover, A, N B, C AN B = g.
Construct the sequences (Up)n>0, (U})n>0, (Kn)n>0 and (K,)n>0 recursively as

follows:
Uy = Uj = Ko = Kj = 0 C DMC{) .

Ky and By C Uo C K. Moreover, Uy and U/, are open in DMC(O)

closed in DMCE,()[O]7 and Ko N K{ = o.

Now let n > 1 and assume that we constructed (U;)o<i<n, (U])o<i<n, (Ki)o<i<n

and (K)o<i<n such that for every 0 < i < n, we have A; C U; C K; C DMCS()[ T
B, cU/ C K] C DMC© )[']’ U; and U] are open in DMC© )[']’ K; and K are closed
in DMC(?. . and K; N K] = ¢. Moreover, assume that K; C Uiy and K C U/,

X[
for every 0 <i <n — 1.

Let C, = A, UK,_1 and D,, = B, UK/,_. Since K,,_; and K| _, are closed

Since Ay = By = ¢, we have Ay C Uy C

v o Ko and Kj are

in DMC( )[ 1 and since DMC( )[ 1 is closed in DMC( )[ |, We can see that K,,_1
and K] _, are closed in DMC(O)[ E Therefore, C},, and D,, are closed in DMCS\?)M.

Moreover we have

CnND,= (A, UK, 1)N (B, UK} ;)
=(A,NB,)U((A,N K;_l) U(Kp—1NB,)U (Kn_l NK, )

2 (016 DN, ) (s ONCE, 5,

= (A1 NK],_)U (K, 1mBn,1)c(K 1 NK) 1)U(K NKL ) =9,

where (a) follows from the fact that A, N B, = K,,_1 N K| _; = ¢ and the fact that

K, € DMCY) | and K, < DMCY) .
Since DMCg()[ ] is normal (because it is metrizable), and since C,, and D,, are

closed disjoint subsets of DMCEY)[ ik there exist two sets U,, U], C DMCE\?)[ | that

are open in DMC(X)M and two sets K,,, K|, C DMC$)[ | that are closed in DMC$)[ |

such that C,, Cc U,, C K,, D, C U}, C K], and K,, N K| = ¢. Clearly, A, C U, C
K, C DMCY) . B, C U, C K}, C DMCE@H K,1 C U, and K!,_; C U,. This
concludes the recursive construction.

Now define U = U U, = U U, and U = U U = U U!. Since A, C U, for

n>0 n>1 n>0 n>1
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every n > 1, we have

A=AnDMCY, = An | |JDMCY

X, [n]
n>1
= U (anpmcy),)) = UA cJwm=u
n>1 n>1
Moreover, for every n > 1 we have
vnpmey, = | Jui | npmcy

i>1

2{Yuv | nomcy, = (inpmc),),

i>n >n

where (a) follows from the fact that U; C K; C Uj4q for every ¢ > 0, which means
that the sequence (U;);>1 is increasing.

For every i > n, we have DMCY | DMC( o)

&, [n] &, [4]
Ui; ﬁDMCg()[ ] is open in DMCY Therefore, UnDMCY

X,[n]" X,n] —

and Uj; is open in DMC;)[ L hence

- (U npmMcy), ])

>n

is open in DMCS\?)M. Since this is true for every n > 1, we conclude that U is strongly
open in DMC()?)*.
(0)

We can similarly show that B C U’ and that U’ is strongly open in DMC}/’, .
Finally, we have

vnu'={Ju. |n{UUn|= U @.nU,)

n>1 n'>1 n>1,n'>1
Y.l c |JE.NK,) =
n>1 n>1

where (a) follows from the fact that for every n > 1 and every n’ > 1, we have

U, N U;L/ C Umax{n,n’} nu’

max{n,n’}

because (Up)n>1 and (U},)n>1 are increasing. We conclude that (DMCE\?*,’T &) 18
normal.

11.10.4 Proof of Lemma 11.6

Let W1, Wy € DMCy y, and let Wl and Wg be the R( ) —equlvalence classes of W;
and Ws respectively.
Fix m > 1, p € Ay, xx and D € DMCy, p,,,). We have:
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> p(u, z)Wi(yla) D(uly)

u€lm],
rekX,
yey
= ( > plu, z)Wa(ylz)D UIy> > plu,x) - (Wa(ylz) — Wa(ylz)) - D(uly)
u€[ml], u€[m],
TEX, reX,
yeY yey
< ( sup Y p(uw)Wz(ylx)D/(UIy))
D’€DMCy; [ u€lm),
TeX,
yey
+ > plu,z) - (Wilylz) — Walylz)) - D(uly)
u€[m],
TeEX,
yeY
< P(p,Wo)+ > plux)- D (Wilyle) — Walyle)) - ( > D(u’ly))
u€lm], yeY: u'€[m)]
zeX Wi(ylz)>Wa(y|z)
= Pe(p,W2) + Z p(u, ) - ( Z (W (ylz) — W2(Z/|$))>
u€m], yeY:
T€X Wi (ylz)>Wa(y|z)

(a)
Pe(p,Wa) + > plu,x) - dx y(Wi, W) = Pe(p, Wa) + dx y (W1, W2),

uem),
reX

where (a) follows from the fact that

S (WMilyle) = Walyle) = 5> [Walylz) — Walylz)|
yeY: yey
Wi(yle)>Wa(ylx)
1
< 5 su PZ|W1 ylx) — Wa(y|z)|
e yey
= dx y(W1,Ws)
Therefore,
Po(p,W1)= sup > plu,2)Wi(ylz)D(uly)
DEDMny[m] u€lm,
TeX,
yey

Pe(p, Wa) + dx,y (W1, Wa).
Similarly, we can show that P.(p, Wa) < P.(p, W1) + dx (W1, W3), hence

|P(p, W1) — P(p, Wa)| < dxy(Wr, Wa).
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We conclude that

oW1, W) = sup  |Pe(p, 1) = Pelp, W2)
pEA[:n];X

= sup |Pu(p, W1) — Pe(p, Wa)|
m>1,
PEA [ xx

< dx,y(Wy, Wy).

11.10.5 Proof of Lemma 11.7

Let v € I'(MP;,, MP;,,) be a measure on Ay x Ay that couples MP;, and MPy;,

Let S = supp(MP;,) and S" = supp(MP;,) be the supports of W and W’
respectively. Since MP;, and MPy;,, are finitely supported, v is also finitely sup-
ported and its support is a subset of S x S’. Therefore, there exists a collection of
coefficients vy, ,y € [0, 1] such that

7= Z . O(p,p)

peS,
pIES/

where 4,y is a Dirac measure centered at (p,p’) € Ay x Ayx. Since MPy;, and
MPy;,, are the marginals of v on the first and the second factors respectively, we
have MPy;, Z oy for every p € S. Similarly, MPW, Z oy, for every
p'es’ peS
pes.
Let Y =S x S” and define the channels W, W’ € DMCy y as:
W(pvp/|l‘) = |X‘ap,p/ p(ﬂj‘),
and
W' (p.plz) = |X|apy -/ (x).
For every z € X, we have

Y. W) =1X Y apy ple) =X MPy(p) - ple)

(p,p")EY (p,p')ESXS’ peS

= || AXp(:C)-dMPw() I/'VIW|

Similarly, Z W' (p,p'|x) = 1. Therefore, W and W' are valid channels.

(p.p")€Y
For every (p,p’) € Y, we have

Z |X‘ p7p‘$ Zap,p p —Oépp
TEX zeX

Therefore, Im(W) = {(p,p’) € Y : oy, > 0}. For every (p,p’) € Im(W) and every
x € X, we have:

-1 Wip,p'lz)  |X|ap,y  plx)
Wor @) = P pp) = oy P

p,p
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hence W1 oy =D for every (p,p’) € Im(W), which shows that supp(MPy/) C S.
Slmllarly, we can show that

Im(W') = {(p,p)) €V : app >0},

supp(MPy) C S’, and for every (p,p’) € Y, P3.(p,p") = oy, and W;;,,l =7p.
For every p € S, we have:

MPyy (p) = Z Py (y) = Z Qp,p’ = Z app = MPy,(p) > 0.

yelm(W), p'es’, p'es’
y—1:p O‘p,p’>0

This shows that supp(MPy) = S = supp(MPy;,) and MPyy (p) = MPy;,(p) for every
p € S. Therefore, MPy, = MP;, and so W is output-equivalent to every channel
in W. Similarly, we can show that MPy» = MP;, and W’ is output-equivalent to
every channel in W',

Let W and W’ be the Rg??y—equivalence classes of W and W’ respectively. We
can write W = W and W’ = W’ because of the canonical identification of DMCS??y

with DMCS?)[ P where n = |)|. We have:

Y (W, W)

N ) 1
= APy W, W) < day(W, W) = Smmase S [W(p,plle) = W (p,p/)2)]
(p.p')€Y
1
= 5 max Z [1%lapy - pl(x) = [ Xy -p/(@)] = 51X max 3~ apy - |pe) = /(@)
S8
P eS/ g'es'
1 1
< §|X| Z Z apy - Ip(z) —p(2)] = §|X| Z Qp,p! Z Ip(x) —
zeX peS, pES, rEX
p'es’ p'es’
1
= 51X Y appllp—#l =11 Y appd(p.p) = || d(p,p') - dv(p,p),
AXxAX
peS, pES,
p/ES/ pIES/

where (a) follows from Lemma 11.6, and d(p,p’) = 3|lp — p/||1 is the total-variation
distance between p and p’. Therefore,

49 (W, W) < |x inf / d(p,p') - dy(p,p/
o ) <| \WGF(MPW’MPW/) AXxAX( ) - dy(p,p")

= |X|- Wi (MPy;,, MP ).

11.10.6 Proof of Proposition 11.10

If |X] = 1, Ay consists of a single probability distribution and MP(X) consists
of a single meta-probability measure which is balanced and finitely supported, so
MP(X) = MPy(X) = MPys(X).

Now assume that |X'| > 2. We start by showing that MPy(X) is weakly-* closed.
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For every x € X. Consider the mapping f, : Ay — R defined as f,(p) = p(z).
Clearly, f; is bounded and continuous. Therefore, the mapping

Fp: MP(X) =R

defined as

Fo(MP) = [ fovip = /A p(x) - AMP(p)

1
m}) is weakly-* closed.

}) This proves that MPy(X),

is continuous in the weak-* topology. Therefore, F ! ({

It is easy to see that MPy(X) = ﬂ F1 ({’i}‘
X
which is the finite intersection of vfeeakly—* closed sets, is weakly-* closed.

It remains to show that MPys(X) is weakly-+ dense in MPy(X). We will show
that for every € > 0 and every MP € MP,(X), there exists MP' € MPy;(X) such
that W1 (MP,MP’) < e.

Fix 0 < e < 1 and let MP € MP;(X) be any balanced meta-probability measure
on X, i.e., for every z € X we have

1
/A PBIPE) = o

Now fix x € X. By the definition of the Lebesgue integral, there exists a finite
partition {By;}i<i<k, of Ax and a sequence of positive numbers (by;)1<i<k, such
that for every 1 < i < k;, B, ; is a Borel set of Ay, b, ; < p(z) for every p € By,

and
kz
S b MP(B,) > ( /
i=1 A

By applying the same reasoning on the function 1 — p(x) > 0, we can find a finite
partition {Cy i }1<i<m, of Ay and a sequence of positive numbers (¢;;)1<i<m, such
that for every 1 <i < my, Cy; is a Borel set of Ay, ¢;; > p(z) for every p € Cy;

and .
Zcx,iMP(Cx,i) < </
i=1 A

Let d be the total-variation distance on Ay, i.e., d(p,p’) = %Hp —p/||l1. Since Ay
is compact, it can be covered by a finite number of open balls of radius ¢, i.e., there

€ 1 €

T 12X A 2

p(z)- dMP<p>)

X

€ —L—i- €
120X |x] 0 120x

p() -dMP<p>) n

X

h h

exist h points p),...,pj such that Ay = U Bz(pg) = U {p €Ay : d(p,p)) < i}
i=1 i=1

For every 1 < i < h, define the set

Di=B:p)\ | |J B:())
1<j<i

Clearly, the sets {D;}1<;<p are disjoint Borel sets that cover Ay. Let n = h x

H (kz -mg), and let Aj, ..., A, be the Borel sets obtained by intersecting the sets
zeX
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in the collections {D1, ..., Dy}, {Bz:i}i<i<k, and {Cy;}i<i<m, for every x € X. In
other words,

{A;: 1<i<n}

{Dﬂﬂ Byi, NCyj,): 1<i<h, and‘v’xe?(,1<ix<k:xand1<jf<mm}.
zeX

For every 1 < i < n, let l,; = by where ¢’ is the unique integer satisfying
1 < <kgyand A; C B, . Similarly, let ug; = ¢, ;» where " is the unique integer
satisfying 1 < " < k, and A; C Cyp . Clearly, I, ; < p(z) < uy; for every z € A;.
Moreover,

€
ZlmMP meMP 2i) m -
and
1 €
ZumMP ZcmMP i) \X|+12]X\'

For every 1 < i < n, choose p; € A; arbitrarily. Let j; be the unique integer
. €
such that A; C Dj,. Since D, C Be (p;i), we have d(p, pgl) < 1 for every p € A;.

Therefore, d(p, pi) < d(p, p},) + d(p},,pi) < % for every p € A;.

Define the mapping f : Ay — Ay as f(p) = p; for every p € A;. Clearly,
d(p, f(p)) < § for every p € Ax.

Now let MP; = fu(MP), where f4(MP) is the push-forward measure of MP by
the mapping f, i.e., MP;(B) = (fx(MP))(B) = MP(f~*(B)) for every Borel set B
of Ay. We have:

MP;(B) = Y MP(f'({p:})) = > MP(4;) = > o,

pi€B pi€EB pi€B

where a; = MP(A4;) for every 1 <i < n. Therefore, MP; is finitely supported and
supp(MPf) C {p; : 1 <i<n}.

Moreover, MP ¢(p;) = o for every 1 < i < n.

Now define the mapping f« : Ay — AxxAy as fx(p) = (p, f(p)), and define the
measure 77 on Ay x Ay as the push-forward of MP by f, i.e., v4(B) = MP(f;'(B))
for every Borel set B of Ay x Ay. It is easy to see that the marginals of v; on the
first and second factors are MP and MP/ respectively. Therefore, v; is a coupling
between MP and MP/, hence

Wi (MP,MP;) = inf / d(p,p') - dv(p,p’
1( 7) seroie ) aias (p,p") - dy(p,p")
/ (@) ®) €
< d(p,p’) - dvy(p,p') = d(p, f(p)) - dMP(p) < 3
AXxAX AX

where (a) follows from the fact that vy is the push-forward of MP by f«(p) =
(p, f(p)). (b) follows from the fact that d(p, f(p)) < § for every p € Ax. Therefore,
MP ; well approximates MP and it is finitely supported. However, MP; may not be
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balanced, so more work needs to be done in order to find a balanced and finitely
supported meta-probability measure that well approximates MP.
For every z € X, we have:

(a)
/AX()dMP() /<f<>>< L AMP(p sz

Ax
(b) n €
> l; :MP(A

Zw |X| - 120x)

where (a) follows from the fact that MP is the push-forward of MP by f. (b)
follows from the fact that p; € A; and so p;(z) > ; , for every 1 <i < n. Similarly,
we have

€
dMP MP
IMCRC Zp’ Z“” <+ T

where (c) follows from the fact that p; € A; and so p;(z) < u;, for every 1 < i <mn.
We conclude that for every x € X', we have

€

male) =~ [ plo) - dPs(p)| <

where 7y is the uniform distribution on X'. Define p € Ay as:

p= / p-dMP(p).
Ax

For every xz € X, define

p,(CL') _ G(WX(x)e_p(x)) ‘I‘ﬁ(rx)
Clearly, Z p'(z) = 1. Moreover,
zeX
p/( ) _ 6(7TX('CC)6_ﬁ(‘T)) +p($)
@ O <”(x) — () - 12|€X|> 1 € 1 ¢
> — = — >0
- € x| 121x] 21X 121X — 7

Where (a) follows from the fact that |mx(x) — p(z)| < ﬁ

p’ € Ay. Now define the meta-probability measure MP’ as follows:

We conclude that

MP' = =5, + (1— 2) MPy,

where d,y is a Dirac measure centered at p'.
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For every = € X, we have

[ vt P = £+ (1= 5) [ pte) Py

x(@) =) + ¢ Ba) + (1= £) () = mx(a).

Therefore, MP’ is balanced and finitely supported. Moreover,

(a)
W1 (MP, MP') < Wy (MP, MP ) + Wi (MP, MP') < g +[IMP — MP' ||y

€

g o s

2 TV

€ € € € € €
R I I
_2+H6 My 6%y T2 7676 <€

where (a) follows from the fact that the 15/ Wasserstein metric is upper bounded by
the total-variation multiplied by the diameter of Ay (which is equal to 1 in our case)
[80]. We conclude that MPys(X) is dense in MPy(X) which is weakly-* closed.
Therefore, MPy(X) is the weak-* closure of MPy¢(X).

11.10.7 Proof of Proposition 11.18

If |Y| = 1, then Ay contains only one point and so | CE(W)| = 1 for every W €

DMC[n] y and every n > 1. Therefore, DMCE )] y = DMCEI]) y

If |Y| = 2, then Ay is a one dimensional segment. Therefore, there are at most
two convex-extreme points for any finite subset of Ay. This means that | CE(W)| <
2 for every W € DMCy,),y and every n > 2. Therefore, DMC%I)] y= DMCEQ), for
every n > 2.

Now assume that |Y| > 3. Let U be an arbitrary non-empty open subset of

for every n > 1.

(DMCM] s 7‘[( % ) and let Proj be the projection onto the RE )] ¥ -equivalence classes.

Proj '(U) is open in the metric space (DMCp,y; djpm D;). Let W € U and define
r = irank(W). Let Pp,..., P, € Ay be such that CE(W) = {P},..., P,}. Define
the channel W ¢ DMC[mLy as follows:

W) = {B(y) if1<i<r,
P.(y) ifr<i<m.
Clearly CE(W) = CE(W) and so W € W which implies that W € Proj~*(U). Since
Proj_l(f]) is open in the metric space (DMCy, y,djy),y), there exists € > 0 such
that Proj~'(U) contains the open ball of center W and radius .
We will show that there exists W' € DMCj,, y such that irank(W') = m > n
and dpy, y (W, W') < e. If r = irank(W) = m, take W' = W.
Assume that r = irank(W) < m. Since |Y| > 3, the dimension of Ay is at
least 2. Therefore, we can find P,y; € Ay such that |P, — Poyi|lry < € and
CE({Pi,...,Py1}) ={P1,...,Py1}. By repeating this procedure m — r times, we
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obtain P,y1,..., Py, € Ay such that ||P. — P||7y < € for every r + 1 < i < m, and
CE({Py,...,Pn}) ={Pi,..., Pn}. Define the channel W' € Ay, as:

W'(yli) = P;(y).

We have CE(W') = CE({Py,...,Pyn}) ={P1,..., Py}. Therefore, irank(W') = m.
Moreover,

d[ 1LY (W W) = max HW W HTV = +r1n§>§m ||P7~ — Pi”TV < €.

This means that W’ € Proj~*(U) and W’ is not input-equivalent to any channel
in DMCy,y (see Proposition 10.4). Therefore, Proj(W’) € U and Proj(W’) ¢

(i
DMCy

shows that every non-empty open subset of DMC;’

We conclude that the interior of DMCEz)] N

because W’ is not input-equivalent to any channel in DMCy,;,y. This

(1) (4)
[m],Y [n],Y"

in DMC[( )] is empty.

is not contained in DMC,"

11.10.8 Proof of Proposition 11.25

Fix n,m > 1 and let [ € A[n]x[m] Define G; = ([n], X, Y, [m],l,W1) and Gy =
([n], X, Y, [m],1,Wa). For every S € Sj) x,y,(m], We have:
5(5,G1)
1 .
= E $(U7S gl Z ZaS Z Wl y‘f’b (u7gz,S(y))
w€(n] ue[n =1 yey
1 Qs
= (n DD as(i) > Wa(y] fis(w)i(u, gis(y))
u€ln] =1 yey
1
+ Z Zas(i) Z <W1 (y] fis(u)) — Wa (y‘fi,S(u)))l(uagi,S(y))
u€ln] i=1 yey
<58(5,62)
+Z af;'l(i) Z Z (Wl (y\fz,s(u)) — Wy (y‘fz’s(u)))l(u, gi,s(y))
T s S ss )
(a) S i
<o+ Y B s 3 (Wi (0] o5 (w) — Wyl s(w) ).
i=1 u€ln

yey,
Wi (ylfi,s(w)>2Wa(ylfi,s(u))
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where (a) follows from the fact that I(u, g; s(y)) < 1 (because I € Apyjx[p))- There-
fore,

é(s,gl)s$592+za5 Z LS WA (s () — W (] fis(w)]

u€ln yEy

< 8(5,0) +ZO‘S ZM > Wa(yle) - Wayla)

=1 yey

— $(5,G2) +ZO‘S 3" day (Wi, Wa) = $(5.Ga) + dae.y (W1, Wa)

i—1 ueln]
<dxy(Wi, W)+ sup é(S/, Go) = dx y (W1, Wa) + 8opt(Ga).
SlGS[n],X,y,[m]

We conclude that

Sopt(G1) = sup (S, G1) < Sopt(Ga) + dvy (Wi, Wa),
S€Sn),x,¥,[m]

hence
$opt(g1) - $opt(g2) S dX,y(Wla W2)

We can show similarly that $opt(G2) — Sopt (G2) < dx y (Wi, Wa). Therefore,

|$0pt(la Wl) - $0pt(la W2)| = |$0pt(la Wl) - $0pt(la W2)|
— |$opt(g1) - $opt(g2)| < dx,y(Wl, WQ)

We conclude that

dY), (Wi, W) = Sup  [Sopi (1, W) = Sopu (1, 2) | < dey (W1, Wa).
LEA 1 fm)

11.10.9 Proof of Proposition 11.26

Corollary 11.17 implies that Proj,(Dy o W o Df) = Proj,(Dgy o W' o Dy) if and only
if WR(S) W', Therefore, Proj,(Dy 0 W'o Dy) does not depend on W’ € W, hence
Fis Well deﬁned Corollary 11.17 also shows that Projy(Dy o W' o D) does not
depend on the particular choice of the surjection f or the injection g, hence it is
canonical (i.e., it depends only on X7, X5, ); and }s).

On the other hand, the mapping W — Dy, o W o Dy is a continuous mapping
from DMCy, y, to DMCy, y,, and Proj, is continuous. Therefore, the mapping

W — Projy(Dgy o W o Dy) is a continuous mapping from DMCy, y, to DMC(;Q) -
Now since Projy(DgoW oDy) depends only on the R( ) y,~eéquivalence class W oof W,
Lemma 11.1 implies that the transcendent mapping of W — Projy(DgoWoDy) that

is defined on DMC(S) | is continuous Therefore, F' is a continuous mapping from

(DMC(XI) yl,T,Sf)yl) (DMC X, ygvsz y2) Moreover, we can see from Corollary
11.17 that F' is an injection.
For every closed subset B of DMCE,() Yy B is compact since DMC( ) Xy, is compact,

hence F(B) is compact because F' is continuous. This implies that F(B) is closed
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in DMCY) |, since DMCY) ., is Hausdorff (as it is metrizable). Therefore, F' is a
X2,)o X2,)2
closed mapping.
Now since F' is an injection that is both continuous and closed, F' is a homeo-

morphism from DMC(S) ¥y, to F(DMC( o ) C DMC(}?Q) Ve

We would like now to show that F(DMC( ) ) depends only on |X1|, V1], Xa
and ). Let X| and )| be two finite sets such that |X1| = |X]] and [W1| = |V]]. For

every W € DMCyy yr, let W e DMC@ be the RS )y’ equivalence class of W.

Let f': X1 — X| be a fixed bijectlon from X to A] and let f" = f'of. Also,
let ¢ : Vi — V1 be a fixed leeCtIOIl from yl to Yy and let ¢” = go ¢'. Define F’ :

DMC(S) y, — DMC(;) Vs as F/(W) = g 0] W/ o) Df” = PI‘OJQ( g OW ODf//) where
W' € W. As above, F' is well defined, and it is a homeomorphism from pMCY)

XV
(s) (s) (s)
to F'(DMCX{% ) We want to show that F'(DMCX{J}, ) = (DMCX1 y ) For
every W € DMCY)  let W’ € W. We have

X/ y/7
F/(W) = Pron(Dgu oW'o Df//) = PrOjQ(Dg o (Dg/ oW'o Df/) ] Df)
= F (Dy oWoDp) € F(DMCY) ), ).
Since this is true for every W ¢ DMCU )y” we deduce that F’(DMCE\) y') C
F( DMC(/Tél)’yl ). By exchanging the roles of (X1, V) and (X{,Y]) and using the fact
that f = f""'o f" and g = g" o ¢!, we get F(DMCY),, ) ¢ F/(DMCY) ). We

X))
conclude that F(DMCY/ . ) = F'(DMCY) ), ), which means that F(DMC(X) )
’ 1
depends only on X1, [J1], X2 and V.

Finally, for every W' € W and every W € F(W) = DyoW'o Dy, W" is
Shannon-equivalent to Dy o W’ o Dy and D, 0 W' o Dy is Shannon-equivalent to W’
(by Lemma 11.10), hence W” is Shannon-equivalent to W".







Continuity of Channel
Parameters and Operations

Let & and Y be two finite sets and let W be a fixed channel with input alphabet X
and output alphabet ). It is well known that the input-output mutual information is
continuous on the simplex of input probability distributions. Many other parameters
that depend on the input probability distribution were shown to be continuous on
the simplex in [28].

Polyanskiy studied in [81] the continuity of the Neyman-Pearson function for a
binary hypothesis test that arises in the analysis of channel codes. He showed that
for arbitrary input and output alphabets, this function is continuous in the input
distribution under the total-variation topology. He also showed that under some
regularity assumptions, this function is continuous in the weak-* topology.

If X and )Y are finite sets, the space of channels with input alphabet X and
output alphabet ) can naturally be endowed with the topology of the Euclidean
metric, or any other equivalent metric. It is well known that the channel capacity is
continuous in this topology. If X and ) are arbitrary, one can construct a topology
on the space of channels using the weak-*x topology on the output alphabet. It was
shown in [72] that the capacity is lower semi-continuous in this topology.

The continuity results that are mentioned in the previous paragraph do not take
into account the equivalence between channels. In [69], output-equivalent binary-
input channels were identified with their L-density (i.e., the density of log-likelihood
ratios). The space of output-equivalent binary-input channels was endowed with the
topology of convergence in distribution of L-densities. Since the symmetric-capacity
and the Bhattacharyya parameter can be written as an integral of a continuous func-
tion with respect to the L-density [69], it immediately follows that these parameters
are continuous in the L-density topology.

In this chapter!, we study the continuity of several channel parameters and
operations under the topologies that were defined in Chapter 11. In Section 12.1,
we introduce the preliminaries for this chapter. In Section 12.2, we introduce the
channel parameters and operations that we investigate in this chapter. In Section
12.3, we study the continuity of the channel parameters and operations on the

'The material of this chapter is based on [63, 64, 65, 66, 82, 83].
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spaces of output-equivalent channels. In Section 12.4, we study the continuity of
the channel parameters and operations on the spaces of input-equivalent channels.
In Section 12.5, we study the continuity of the channel parameters and operations
on the spaces of Shannon-equivalent channels.

12.1 Preliminaries

12.1.1 Topological Notations

A topological space (T,U) is said to be contractible? to xo € T if there exists a
continuous mapping H : T x [0,1] — T such that H(z,0) = z and H(z,1) = x¢ for
every x € T, where [0, 1] is endowed with the Euclidean topology. (T',U) is strongly
contractible to xg € T if we also have H(xg,t) = zo for every t € [0, 1].

Intuitively, T is contractible if it can be “continuously shrinked” to a single point
xg. If this “continuous shrinking” can be done without moving g, T is strongly
contractible.

The following lemma is useful to show the continuity of many functions.

Lemma 12.1. Let (S,V) and (T,U) be two compact topological spaces and let f :
S xT — R be a continuous function on S X T. For every s € S and every € > 0,
there exists a neighborhood Vi of s such that for every s’ € Vi, we have

sSup ’f(slvt) - f(57t)| <e
teT

Proof. See Appendix 12.6.1. O

12.1.2 Quotient Topology

Let (T,U) and (S, V) be two topological spaces and let R be an equivalence relation
on T. Consider the equivalence relation R’ on T x S defined as (z1,y1) R (z2,y2) if
and only if 1 Rz and y; = y2. A natural question to ask is whether the canonical
bijection between ((T'/R) x S, (U/R)® V) and ((T x S)/R', (U ®V)/R’) is a home-
omorphism. It turns out that this is not the case in general. The following theorem,
which is widely used in algebraic topology, provides a sufficient condition:

Theorem 12.1. [8/] If (S,V) is locally compact and Hausdorff, then the canoni-
cal bijection between ((T/R) x S,(U/R) @ V) and ((T x S)/R,(U @ V)/R') is a
homeomorphism.

Corollary 12.1. Let (T,U) and (S,V) be two topological spaces, and let Ry and
Rg be two equivalence relations on T and S respectively. Define the equivalence
relation R on T x S as (x1,y1)R(x2,y2) if and only if x1 Rpxo and y1 Rsys. If (S, V)
and (T/Rr,U/Rr) are locally compact and Hausdorff, then the canonical bijection
between ((T/Rr) x (S/Rs),U/Rr) ® (V/Rg)) and (T x S)/R,(U ® V)/R) is a
homeomorphism.

2Contractibility is a very strong notion of connectedness: Every contractible space is path-
connected and simply connected. Moreover, all its homotopy, homology and cohomology groups of
order > 1 are zero.
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Proof. We just need to apply Theorem 12.1 twice. Define the equivalence relation R/,
on T'x S as follows: (z1,y1) R (22,y2) if and only if 21 Rpxg and y; = ya. Since (S, V)
is locally compact and Hausdorff, Theorem 12.1 implies that the canonical bijection
from ((T/Rr) xS, (U/Rp)®@V) to (T x S)/Ry, (U®V)/R)) is a homeomorphism.
Let us identify these two spaces through the canonical bijection.

Now define the equivalence relation Ry on (T//Rr) x S as follows:

(21, 9y1)Rs(22,y2) if and only if 21 = &9 and y; Rgys.

Since (T'/Rp,U/Rr) is locally compact and Hausdorff, Theorem 12.1 implies that
the canonical bijection from ((T'/Rr) x (S/Rs), (U/Rr) ® (V/Rs)) to ((T/Rr) x
S)/Rs, ((U/Rr) @ V)/RY) is a homeomorphism.

Since we identified ((T/Rr) x S, (U/Rr) @ V) and ((T x S)/Rfp, (U ® V)/R)
through the canonical bijection (which is a homeomorphism), R can be seen as an
equivalence relation on ((T'xS) /R, (U®V)/RYy.). 1t is easy to see that the canonical
bijection from (((T x S)/R})/RYy, (U @ V)/R})/Rs) to (T x S)/R,(U @ V)/R)
is a homeomorphism. We conclude that the canonical bijection from ((T/Rr) X
(S/Rs),(U/Rr) @ (V/Rg)) to ((T x S)/R, (U ®V)/R) is a homeomorphism. [

12.1.3 Measure-Theoretic Notations
The push-forward probability measure

Let P be a probability measure on (M,Y), and let f : M — M’ be a measur-
able mapping from (M, X) to another measurable space (M’,¥'). The push-forward
probability measure of P by f is the probability measure f4P on (M’,¥') defined as
(fP)(A") = P(f~Y(A")) for every A’ € .

A measurable mapping g : M’ — R is integrable with respect to fyx P if and only
if g o f is integrable with respect to P. Moreover,

| a-aup= [ wop-ap

The mapping fx from P(M,3) to P(M’,¥') is continuous if these spaces are
endowed with the total-variation topology:

[ f4P — fuP'|l7v = sup |(faP)(A") — (foP")(4")]
Aley!

= sup [P(f(A) — (/1))
Aleyy

< sup [P(A) = P/(A)| < [P = P'l|zv.
Aex

Products of probability measures

We denote the product of two measurable spaces (Mp,%;) and (M, ¥9) as (M7 x
M3, % ® Xo). If P, € P(M;,%1) and Py € P(Ma,Y5), we denote the product of P;
and P2 as P1 X PQ.

If P(Mq,%1), P(Ma,¥s) and P(M; x My, 31 ® X9) are endowed with the total-
variation topology, then the mapping (P, P») — P; X P, is a continuous mapping
(see Appendix 12.6.2).
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Let A; and Ay be two subsets of P(Mp,31) and P(Ma, X9), respectively. We
define the tensor product of A; and A, as follows:

A1 @Ay ={Pix Po: PL €Ay, P € Ay} CP(My x My, %1 ® X).

12.1.4 Random Mappings

Let M and M’ be two arbitrary sets and let ¥/ be a o-algebra on M’. A random
mapping from M to (M’,¥') is a mapping R from M to P(M’,%'). For every x € M,
R(zx) can be interpreted as the probability distribution of the random output given
that the input is z.

Let X be a o-algebra on M. We say that R is a measurable random mapping
from (M,X) to (M',%) if the mapping Rp : M — R defined as Rp(z) = (R(z))(B)
is measurable for every B € Y.

Note that this definition of measurability is consistent with the measurability of
ordinary mappings: Let f be a mapping from M to M’ and let Dy : M — P(M', %)
be the random mapping defined as Dy(x) = dy(,) for every x € M, where 4, €
P(M',>) is a Dirac measure centered at f(x). We have:

Dy is measurable < (Dy)p is measurable, VB € ¥/
(Dy)s)"Y(B) € %, VB € B(R), VB € &'

O

Y (ppp)i({1)) en, VBeY

Y rYByes, VBey

& f is measurable,

where (a) and (b) follow from the fact that ((Dy)g)(z) is either 1 or 0 depending
on whether f(z) € B or not.

Let P be a probability measure on (M,Y) and let R be a measurable random
mapping from (M, Y) to (M',¥). The push-forward probability measure of P by R
is the probability measure Ry P on (M’',¥') defined as:

(R#P)(B) :/ Rp-dP, VB € .
M

Note that this definition is consistent with the push-forward of ordinary mappings:
If f and Dy are as above, then for every B € ¥, we have

(DeP)B) = [ (Dps-dP= [ (pon) - aP= [ 15-di7uP)= (GaP)B)

M M M

Proposition 12.1. Let R be a measurable random mapping from (M, %) to (M',%).
If g : M' — RT U {+o0} is a X'-measurable mapping, then the mapping v —
/ g(y)-d(R(z))(y) is a measurable mapping from (M,Y) to RTU{+o00}. Moreover,
M/

for every P € P(M,X), we have

[ aawerr= [ ([ sw-aww)w)ar.

Proof. See Appendix 12.6.3. O
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Corollary 12.2. If g : M' — R is bounded and '-measurable, then the mapping

= [ gy) - d(R(z))(y)
M

is bounded and Y-measurable. Moreover, for every P € P(M,3), we have

[ a-awerr=[ ([ ow-aww)m)are)

Proof. Write g = g* — g~ (where g* = max{g,0} and g~ = max{—g,0}), and use
the fact that every bounded measurable function is integrable over any probability
distribution. O

Lemma 12.2. For every measurable random mapping R from (M,X) to (M', %),
the push-forward mapping Ry is continuous from P(M,%) to P(M', %) under the
total-variation topology.

Proof. See Appendix 12.6.4. ]

Lemma 12.3. Let U be a Polish® topology on M, and let U’ be an arbitrary topology
on M'. Let R be a measurable random mapping from (M,B(M)) to (M’ ,B(M'")).
Moreover, assume that R is a continuous mapping from (M,U) to P(M',B(M"))
when the latter space is endowed with the weak-+ topology. Under these assumptions,
the push-forward mapping Ry is continuous from P(M,B(M)) to P(M',B(M'))
under the weak-x topology.

Proof. See Appendix 12.6.4. O

12.1.5 Meta-Probability Measures

Let X be a finite set. The following lemma is useful to show the continuity of
functions that are defined on the set MP(X) of meta-probability measures on X'.

Lemma 12.4. Let (S,V) be a compact topological space and let f: S x Ay — R be
a continuous function on S X Ax. The mapping F : S x MP(X) — R defined as

F(s,MP) = R f(s,p) - dAMP(p)

is continuous, where MP(X) is endowed with the weak-x topology.

Proof. See Appendix 12.6.5. O

Let f be a mapping from a finite set X’ to another finite set X’. f induces
a push-forward mapping fx taking probability distributions in Ay to probability
distributions in Ayr. fu is continuous because Ay and Ay are endowed with the
total-variation distance. fyx in turn induces another push-forward mapping taking
meta-probability measures in MP(X) to meta-probability measures in MP(X).

3This assumption can be dropped. We assumed that U/ is Polish just to avoid working with
Moore-Smith nets.
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We denote this mapping as fyx and we call it the meta-push-forward mapping in-
duced by f. Since fx is a continuous mapping from Ay to Ays, fu4 is a continuous
mapping from MP(X) to MP(X’) under both the weak-x and the total-variation
topologies.

Let X; and X5 be two finite sets. Let Mul : Ay, X Ax, = Ax, xx, be defined
as Mul(p1,p2) = p1 X p2. For every MP; € MP(X;) and MPy, € MP(Xs), we
define the tensor product of MP; and MPy as MPy ® MPy = Muly(MP; x MP») €
MP(Xl X Xg)

Note that since Ay,, Ax, and Ay, «x, are endowed with the total-variation
topology, Mul(pi, p2) = p1 X p2 is a continuous mapping from Ay, X Ay, to Ay, xx,-
Therefore, Muly is a continuous mapping from P(Ax, X Ax,) to P(Ax xa,) =
MP(X; x Xp) under both the weak-x and the total-variation topologies. On the
other hand, Appendices 12.6.2 and 12.6.6 imply that the mapping (MP;, MP3y) —
MP; x MPy from MP(X}) x MP(X2) to P(Ax, X Ayx,) is continuous under both
the weak-+ and the total-variation topologies. We conclude that the tensor product
is continuous under both these topologies.

12.2 Channel Parameters and Operations

12.2.1 Useful Parameters

Let Ay be the space of probability distributions on X. For every p € Ay and
every W € DMCy y, define I(p, W) as the mutual information /(X;Y’), where X is
distributed as p and Y is the output of W when X is the input. The capacity of W
is defined as C(W) = sup I(p, W).

PEAX

For every p € Ay, the error probability of the MAP decoder of W under prior p

is defined as:

P(p, W) = 1= 3 max{p(a)W (y]2)}.

yey

Clearly, 0 < P.(p, W) < 1.
For every W € DMCy y, define the Bhattacharyya parameter of W as:

W ST D VW)W ylag) if [X] > 2,

r1,x9€X, yey
w17£:v2

0 if [X] = 1.

Z(W) =

It is easy to see that 0 < Z(W) < 1.

As we saw in Proposition 5.1, we have %Z(W) < P(mx, W) < (|X]|=1)Z(W),
where my is the uniform distribution on X.

An (n, M)-encoder on the alphabet X is a mapping £ : M — X" such that
M| = M. The set M is the message set of £, n is the blocklength of £, M is the
size of €, and 1 log, M is the rate of €. We denote the size M of € as ||. Moreover,

for every x7 € A", we write 27 € £ if and only if there exists m € M such that
! = E(m).
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The error probability of the ML decoder for the encoder & when it is used for a
channel W € DMCy y is given by:

P.e(W)=1- % max {H W(yz'l&(m))}

T

1 n
b8 )

yreyn 1=1

where (£1(m),...,E,(m)) = E(m).
The optimal error probability of (n, M )-encoders for a channel W is given by:

Pepu(W) = min  Pee(W).
(n,M)-encoder

Let D : V" — M be a decoder on V. The probability of error of D under
ML-encoding for W is given by:

1
Pep(W)=1- Mm%:wz"exn { > HW (yili) }

yreyn: i=1
D(y1)=m

The following proposition shows that all the above parameters are continuous:
Proposition 12.2. We have:
o I : Ay xDMCyy — R* is continuous, concave in p, and convex in W.

e C':DMCyy — R is continuous and convex.

P.: Ay x DMCyy — [0,1] is continuous, concave in p and concave in W.
e Z:DMCyy — [0,1] is continuous.

e For every encoder & on X, P.g : DMCyy — [0,1] is continuous.

For every decoder D on'Y, P.p : DMCyxy — [0,1] is continuous.
e For every n,M > 0, the mapping P, v : DMCyx y — [0, 1] is continuous.

Proof. These facts are well known, especially the continuity of I, its concavity in
p, and its convexity in W [3]. Since C' is the supremum of a family of mappings
that are convex in W it is also convex in W. For a proof of the continuity of C,
see Appendix 12.6.7. The continuity of Z, P, P.¢ and P.p follows immediately
from their definitions. Moreover, since P, ,, »s is the minimum of a finite number of
continuous mappings, it is continuous. The concavity of P, in p and in W can also
be easily seen from the definition. O
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12.2.2 Channel Operations

If W € DMCyy and V € DMCy z, we define the composition V o W € DMCyx =
of W and V as follows:

(VoW)(z ZV zly)yW(ylx), Yo e X, Vz e Z.
yey

For every function f : X — ), define the deterministic channel Dy € DMCy y

as follows:
1 ify = f(z),
D T) =
f(y‘) {0 otherwise.

It is easy to see that if f: X — YV and g:Y — Z, then Dyjo Dy = Dgyoy.

For every two channels Wi € DMCy, y, and Wy € DMCly, y,, define the channel
sum Wy @ Wy € DMCXlL[Xz,)hL[))z of W1 and Wy as:
ifi=j,

a. Wi(ylz
(W1 @ Wa)(y,ilz, j) = (wl) )
0 otherwise.

W1 @& Ws arises when the transmitter has two channels W7 and W5 at his disposal
and he can use exactly one of them at each channel use. It is an easy exercise to
check that 26(W18W2) — 9C(W1) 4 9C(W2),

We define the channel product Wy @ Wa € DMCy, x x, v, xy, of Wi and W5 as:

(W1 @ Wa)(y1, y2lw1, 22) = Wi(y1|z1) Wa(ya|22).

W1 ® Ws arises when the transmitter has two channels W3 and W5 at his disposal
and he uses both of them at each channel use. It is an easy exercise to check
that C(W1 @ W) = C(W1) 4+ C(Ws), or equivalently 2¢(W1®W2) — oC(W1) . 9C(W2)
Channel sums and products were first introduced by Shannon in [67].

For every Wi € DMCx y,, Wo € DMCy y, and every 0 < o < 1, we define the
a-interpolation [aW7, (1 — a)Wa] € DMCy y, 11y, between W7 and W as:

)= {an(y\x) ifi=1,

[CEWL (1 - Q)W2]<y7i x (1 _ a)V[/é(y’g;) ifi = 2.

Channel interpolation arises when a channel behaves as Wy with probability o and
as Wy with probability 1 — a. The transmitter has no control on which behavior the
channel chooses, but on the other hand, the receiver knows which one was chosen.
Channel interpolations were used in [85] to construct interpolations between polar
codes and Reed-Muller codes.

Now fix a binary operation * on X. For every W € DMCy y, define W~ €
DMCy y2 and W € DMCX,yzxx as:

W= (y1, y2lur) = 5] > Wl ug)W (yalug),

]X
U EX
and

W+(y17y2,u1\u2) = W (y1|ur * ug)W (y2|uz).

1
X

These operations generalize Arikan’s polarization transformations [2].
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Proposition 12.3. We have:

o The mapping (W,V) =V oW from DMCy y x DMCy z to DMCy z is con-
tinuous.

® The mapping (Wi, Wa) — W1 @& Wa from DMCux, y, x DMCuy,y, to DMCyx, 12,3, 1]3n S
continuous.

o The mapping (W1, Wa) — W1 @ Wa from DMCly, y, x DMCu, y, to DMCx, xx, v x), S
continuous.

o The mapping (Wi, Wa, o) — [aWi, (1 — a)W3] from DMCy y, x DMCy y, x[0,1] to
DMCyx y, 11y, @8 conlinuous.

e For any binary operation x on X, the mapping W — W~ from DMCy y to
DMCy y2 is continuous.

e For any binary operation * on X, the mapping W — W from DMCy y to
DMCy y2y x is continuous.

Proof. The continuity immediately follows from the definitions. O

12.3 Continuity on the Spaces of Output-Equivalent
Channels

12.3.1 Continuity on DMC()??),

It is well known that with the exception of FP.p, all the parameters defined in

Section 12.2.1 depend only on the Rg??y-equivalence class of W. Therefore, we can

define those parameters for any W e DMC()?)y through the transcendent mapping

(defined in Lemma 11.1). The following proposition shows that those parameters

(0)

are continuous on DMC ;\? y
Proposition 12.4. We have:

o [: Ay x DMC()?)J; — R* is continuous and concave in p.

C: DMCE\?)J, — RT is continuous.

P, : Ay x DMCS?)), — [0, 1] is continuous and concave in p.

Z : DMCE\%, — [0,1] is continuous.

For every encoder € on X, P.¢ : DMng)y — [0,1] is continuous.

e For every n, M > 0, the mapping P : DMCS?)J; — [0, 1] is continuous.
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Proof. Since the corresponding parameters are continuous on DMCy y (Proposition
12.2), Lemma 11.1 implies that they are continuous on DMCgé)?y. The only cases
that need a special treatment are those of I and Z. We will only prove the continuity
of I since the proof of continuity of Z is similar.

Define the relation R on Ay x DMCy y as

(p1, W1)R(p2, W2) < p1 = pzand Wle?,)yW?

It is easy to see that I(p, W) depends only on the R-equivalence class of (p, W).
Since [ is continuous on Ay x DMCy y, Lemma 11.1 implies that the transcendent
mapping of I is continuous on (Ayx x DMCy y)/R. On the other hand, since Ay
is locally compact, Theorem 12.1 implies that (Ay x DMCy y)/R can be identified

with Ay x (DMCy,y /RE{;)y) = Ay X DMCE{;)JJ and the two spaces have the same
topology. Therefore, [ is continuous on Ay X DMCS?)y. O

With the exception of channel composition, all the channel operations that were
defined in Section 12.2.2 can also be “quotiented”. We just need to realize that
the output-equivalence class of the resulting channel depends only on the output-
equivalence classes of the channels that were used in the operation. Let us illustrate
this in the case of channel sums:

Let Wi, W] € DMCy, y, and Wy, W5 € DMCly, y, and assume that W is de-
graded from W] and Ws is degraded from Wj. There exists V; € DMCy, y, and
Vo € DMCy, y, such that Wi = Vi o W] and Wy = V5 0 Wy. It is easy to see that
Wy @ Wy = (Vi @ Vi) o (W] @ W3), which shows that Wi @ W is degraded from
W{ @ WJ. This was proved by Shannon in [10].

Therefore, if W; is output-equivalent to W{ and Wj is output-equivalent to
W, then Wy @ Wj is output-equivalent to W] @ W3. This allows us to define the

channel sum for every Wl € DMCE@BJ,1 and every Wy € DMCE\%)% as Wl OW, =

—_ T — (O) ~ . —_ T —
Wi @ W; € DMCy 1 v, 9, 11y, for any Wi € Wi and any W3 € W, where Wi & W3
is the Rg?l) Xy HJ{Q—equivalence class of W{ ® Wa. .

With the exception of channel composition, we can “quotient” all the channel
operations of Section 12.2.2 in a similar fashion. Moreover, we can show that they

are continuous:
Proposition 12.5. We have:

e The mapping (Wl,Wg) W, e W, from DMCS?I)Q,1 X DMCS?;M to DMC(PSBL[XQ,M 117 18

continuous.

o The mapping (W1, Ws) — W, @ Wy from DMCE‘?I),J,1 X DMCES;),Q to DMCEG)I)xXz,ylny 18

continuous.
o The mapping (Wi, Wa,a) — [aW1, (1 — a)Ws] from DMCE‘?’)),1 X DMC()?’)y2 x[0,1] to
DMCS?M 113> 18 continuous.

e For any binary operation * on X, the mapping W — W~ from DMCS?)y to

DMCE{;?W 18 continuous.
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e For any binary operation x on X, the mapping W — Wt from DMCEg)y to

DMC)

X% 18 continuous.

Proof. We only prove the continuity of the channel sum because the proof of conti-
nuity of the other operations is similar.

Let Proj : DMCux, 112,01 1132 — DMCE\Z)UXQ,M 113> be the projection onto the

RS?I)H X2 , HyQ—equivalence classes. Define the mapping f : DMCy, y, x DMCy, y, —
DMC as f(Wh, Ws) = Proj(Wy @ Wa). Clearly, f is continuous.

Xo, V1 [V
Now efine the equivalence relation R on DMCy, y, X DMCy, y, as:

Wi, W2)R(Wi,W3) & WiRY) ), Wi and WaRS) ,, W3,
X2,V

The discussion before the proposition shows that f(Wy, Ws) = Proj(Wy & Wa) de-
pends only on the R-equivalence class of (W71, Ws). Lemma 11.1 now shows that the
transcendent map of f defined on (DMCy, y, x DMCly, y,)/R is continuous.

Since (DMCy, 3, x DMCa,.y,)/R can be identified with DMCY) ), x DMCY) J, .
we can define f on DMC(O) L X DMC( o) X,.y, through this 1dent1ﬁcat10n Moreover,

since DMCy, y, and DMCSKQ) y, are locally compact and Hausdorff, Corollary 12.1
implies that the canonical bijection between (DMCy, y, X DMCy, y,)/R and the

space Dl\/ICE‘?l)J,1 X DMCE,?Q) y, 18 @ homeomorphism.
Now since the mapping f on DMCE{,? p, X DMCE@Q) y, 1s just the channel sum, we
conclude that the mapping (Wl,Wg) — Wy @ Wy from DMCS?I) p, X DMCE{;Q) ¥, to

DMC)

X110 1] is continuous. O

12.3.2 Continuity in the Strong Topology

The following lemma provides a way to check whether a mapping defined on the
space (DMCS? i, 7; x.+) is continuous:

)

Lemma 12.5. Let (S, V) be an arbitrary topological space. A mapping f : DMCE,?’* —

S is continuous on the space (DMCX*J' ) if and only if it is continuous on

(DMCX [n},T;\(,O[n]) for every n > 1.
Proof.

f is continuous on (DMCE,? » 7; x *)
s YV )ETX* YV ey
& [TH{V)NDMCY) e Ty yn>1, W eV
& f is continuous on (DMC;)[R], T(?[)n]) Vn > 1.

O]

Since the channel parameters I, C, P., Z, P.g and P, are defined on
DMCS?)M for every [ > 1 (see Section 12.3.1), they are also defined on DMCE{,))* =
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U DMCS?)[Z]. The following proposition shows that those parameters are continuous
>1
in the strong topology:

Proposition 12.6. Let Uy be the standard topology on Ayx. We have:

o [: Ay x DMCE?)* — RT is continuous on (Ay X DMCS?)*,Z/IX ® ’Ts(gz ,) and
concave in p.

C: DMCS?’)* — R is continuous on (DMCE@?*, 7;(7?37*)

P.: Ay x DMCS?’)* — [0, 1] is continuous on (Ax % DMCE\?’)*,UX ®'Ts(f;3’*) and
concave in p.

o 7: DMC()??* — [0, 1] is continuous on (DMCE??*,TS?&*).

S

® [or every encoder £ on X, P, ¢ : DMCS?)* — [0,1] 4s continuous on (DMCES)*,ﬂ(?@ -

o For every n, M > 0, the mapping Pepn s : DMCE?)* — [0, 1] is continuous on
(DMCY, 7.%.).

7*’ 57

Proof. The continuity of C, Z, P, ¢ and P, ;, )y immediately follows from Proposition
12.4 and Lemma 12.5. Since the proofs of continuity of I and Z are similar, we only
prove the continuity for 1.

Due to the distributivity of the product with respect to disjoint unions, we have

Ax x DMCyx . = [] (Ax x DMCy ),

n>1

and

Un @ Tox s =D (Un ® T ) -

n>1

Therefore, (Ax x DMCy ,Ux ® T x «) is the disjoint union of the spaces (Ax X
DMC){,[n])nzl- Moreover, I is continuous on Ay X DMCy [, for every n > 1. We
conclude that I is continuous on (Ax X DMCyx ., Ux @ Ts x ).

Define the relation R on Ay x DMCy . as follows: (p1, W1)R(p2, W2) if and
only if p; = po and WlRE\??*WQ. Since I(p, W) depends only on the R-equivalence
class of (p, W), Lemma 11.1 shows that the transcendent map of I is a continuous
mapping from ((AX x DMCyx 4)/R, (Ux ® 7'8,;(7*)/R) to RT. On the other hand,
since Ay is locally compact and Hausdorff, Theorem 12.1 implies that ((AX X
DMCy.)/R, Uz @ Ts.x.+)/R) can be identified with (Ay x (DMCyx,. /RY,), Ux @
(ﬁX*/RE\?)*)) = (Ax X DMCE\?,)*,L{X ®7;(f\3*) Therefore, I is continuous on (Ayx X

DMCY, Uy ® TLY.). O

It is also possible to extend the definition of all the channel operations that were
defined in Section 12.3.1 to DMCE\?)*. Moreover, it is possible to show that many
channel operations are continuous in the strong topology:
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Proposition 12.7. Assume that all output-equivalent channel spaces are endowed
with the strong topology. We have:

e The mapping (Wl,Wg) S W, W, from DMCSZ)’* X DMCS?Z)J,2 to DMC(;;)HX2 , 18
continuous.
e The mapping (Wl,Wz) — Wi @ Wy from DMCE,?I) . X DMCS?Q) y, to the space

(0) ' ~
DMCy/ v, . s continuous.

o The mapping (Wi, Wa, o) = [aW1, (1 — a)Wy] from DMCE@L X DMCE@?JJQ x[0,1] to

DMCE{,))* 18 continuous.

e For any binary operation x on X, the mapping W — W~ from DMCES)* to

DMCSYO)* 18 continuous.

e For any binary operation x on X, the mapping W — Wt from DMC(A?)* to

DMCg?)* is continuous.

Proof. We only prove the continuity of the channel interpolation because the proof
of the continuity of other operations is similar.

Let U be the standard topology on [0, 1]. Due to the distributivity of the product
with respect to disjoint unions, we have:

DMCy . x DMCyy, x[0,1] = J[(DMC ) x DMCyy, x[0,1]),

n>1

and
7;7.)(,* & TX7y2 QU = @ (TX,[n] (9] TX7)}2 ®Z/[) .

n>1
Therefore, the space DMCy « x DMCy y, %[0, 1] is the topological disjoint union
of the spaces (DMCy ;) x DMCx y, x[0,1])n>1-
For every n > 1, let Proj, be the projection onto the Rg?)[n]UyQ—equivalence

classes and let i, be the canonical injection from DMC /,3)[”] 11 to DMC ;\,? .
Define the mapping f : DMCy , x DMCy y, x[0,1] — DMCg?)* as

F(W1,Wa, @) = in(Proj, ([aWi, (1 — a)Wa])) = [aW1, (1 — a)Wa],

where n is the unique integer satisfying W1 € DMCy p,). W, and W, are the RS)[H]

and R()??yz—equivalence classes of W1 and Wy respectively.

Due to Proposition 12.3 and due to the continuity of Proj,, and ¢,, the mapping
[ is continuous on DMCy ) x DMCy y, x[0,1] for every n > 1. Therefore, f is
continuous on (DMCy ., x DMCx y, X[0,1], Ts x« ® Tx,y, @U).

Let R’ be the equivalence relation defined on DMCy . x DMCy y, as follows:
(W1, Wo)R'(W{,W}) if and only if WiRY), W{ and WoRY), W3. Also, define the
equivalence relation R on DMCy , x DMCy y, %[0, 1] as follows:

(W1, Wa, o) R(W{, W3, &) if and only if (Wi, Wa)R'(W{, W3) and o = «'.
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Since f(W1,Ws,a) depends only on the R-equivalence class of (Wi, Wa, ),
Lemma 11.1 implies that the transcendent mapping of f is continuous on the space
(DMCXV* X DMCXQ}Q X [0, 1])/R

Since [0, 1] is Hausdorff and locally compact, Theorem 12.1 implies that the
canonical bijection from the space (DMCy . x DMCy y, x[0,1])/R to the space
((DMCy,« x DMCyx y,)/R') x [0, 1]) is a homeomorphism. On the other hand, since

(DMCy , Ts,x,%) and DMCE‘,)y = DMCyx y, /RE{,))y2 are Hausdorff and locally com-
pact, Corollary 12.1 implies that the canonical bijection from DMC(O) X DMC(O)

to (DMCyx » x DMCy y,)/R' is a homeomorphism. We conclude that the Channel
interpolation is continuous on (DMCE,(?* X DMCg‘_,,)y2 %10, 1]77(;3,* ® TX,;, u). o

S,

Corollary 12.3. (DMCSK)*, 7;()3 .) s strongly contractible to every point in DMC( )

Proof. Fix Wy € DMCY,. Define the mapping H : DMCY/, x[0,1] —+ DMCY, as
H(W,a) = [aWp, (1 — a)W]. H is continuous by Proposition 12.7. We also have
H(W,0) =W and H(W,1) = W, for every W & DMCE,??*. Moreover, H(Wy, o) =
Wy for every 0 < a < 1. Therefore, (DMC()?)*,’E(%*) is strongly contractible to

every point in DMCS{,))*. O

The reader might be wondering why channel operations such as the channel

sum were not shown to be continuous on the whole space DMCESI)* X DMCS?Q) .

instead of the smaller space DMC(O) X DMC(O) . The reason is because we cannot
apply Corollary 12.1 to DMCy, . x DMCX2 X and DMC(O) X DMC( o) , since neither

DMCE\H)’* nor DMCE\&)’* is locally compact (under the strong topology).

One potential method to Show the contlnuity of the channel sum on the whole
space (DMC(O) x DMC}, O) 7' s ® T ,«) 18 as follows: Let R be the equiva-
lence relation on DMC;(1 « >< DMCX2 « deﬁned as (Wi, Wa)R(W{, W) if and only
it WiRY) W] and WoRY) W3, We can identify (DMCy, . x DMCy,.)/R with

DMCE\ﬁ)’* X DMCEY;* through the canonical bijection. Using Lemma 11.1, it is

easy to see that the mapping (Wl,Wg) — W, @ W is continuous from the space

(DMCY) , x DMCE) ., (To 2 ® Toe)/R) to (DMcg;?H o T(‘;gl [ 20)-

It Was shown in [79] that the topology (Tsx,+« @ Tsay)/R is homeomorphic
to /@(T

s

A s @ T '4,,.) through the canonical bijection, where H(7; Ay @ T Xz *)
the coarsest topology that is both compactly generated and finer than T Xy
7;(332* Therefore, the mapplng (Wl, Wg) — Wy @ W is continuous on the space

(DMCS?)* X DMCS?) (T X @ T X2 L) This means that if T(O) ® 79 g ]

0% s s
compactly generated, we will have T Ay s @ T Ay = /<c(7;( ;31 LT, ) and so the
channel sum will be contlnuous on (DMCS?) . X DMCE‘?Q) o 7'5(331 L@ X2 *) Note that

although 7;(321 , and 7; ,,+ are compactly generated, their product 7, 231 £ ® 7'(332 ‘

might not be compactly generated.
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12.3.3 Continuity in the Noisiness/Weak-* and the Total-Variation
Topologies

We need to express the channel parameters and operations in terms of the Blackwell
measures.

Channel Parameters

The following proposition shows that many channel parameters can be expressed as
an integral of a continuous function with respect to the Blackwell measure:

Proposition 12.8. If W ¢ DMCE,?)*, then:

e For every p € Ay, we have

o p(x)p' (x
I.W) = 1)~ 2] [ | 3 /@) 1og P ey ),
P Pt > pla)p(2)
where H(p) is the entropy of p. Note that we adopt the standard convention

) i
that()log% 0.

e For every p € Ay, we have

P.(p,W)=1-— X\/ max {p(x) x p'(x)} - dAMP;, (p").

o If|X]| > 2, we have

200 = iy X [ Va@l@) - ey o)
z,x'€X X

Y
rH#x’

e For every (n, M)-encoder £ on X, we have

I\ ’X|n n n
PeeW) =1=Tgr [, o sz wi) ¢ AP (p]),

where MP’V‘V is the product measure on A% obtained by multiplying MP 3, with
itself n times.

Proof. By choosing any representative channel W € W and replacing W (y|z) by
|X| Py (y) W, () in the definitions of the channel parameters, all the above formulas
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immediately follow. Let us show how this works for P.:

Pp. W) =P(p,w)Z1- % max{p(z) W (y|z)}
yelm(W)

=1- Y max{p(e)-|X]- PR (1) W, (@)}
yelm(W)

=1-|x| Z I;lax{p(w)Wy_l(fL’)} Py (y)

yEIm(W) ex
=112 [ masloe)p (@)} - NP )
- m/ max{p(x)p!(2)} - AMP (1),
where (a) is true because W (y|z) = 0 for y ¢ Im(W). O

Proposition 12.9. Let Uy be the standard topology on Ax. We have:

o [ : Ay x DMCE\?) — R* is continuous on (Ax X DMCES?*,UX ® Té\(goi) and

*
’
concave in p.

C: DMCES?* — R is continuous on (DMCE??*, T)Soi)

P.: Ay x DMC(O) — [0,1] is continuous on (Ax X DMCSY oUx ® T ) and
concave in p.

Z: DMC()?)* — [0, 1] is continuous on (DMC;)*,T L)

e For every encoder £ on X, Peg : DMCES?* — [0, 1] is continuous on (DMCS?L,T;?).

e For every n, M > 0, the mapping Pepn v : DMCE?)* — [0,1] is continuous on

(DMCY,, 7).

Proof. We associate the space MP(X') with the weak-* topology. Define the map-
ping
I: Ay x MP(X) = Rt

as follows:

T(p.MP) = H(p) — || /A Zp(x)p%x)log?% NP,
X\ zex & €z

Lemma 12.4 implies that I is continuous. On the other hand, Proposition 12.8 shows
that I(p, W) = 1(p, MPy;,). Therefore, I is continuous on (Ay XDMC()??*,Z/{X®T)£2).
We can prove the continuity of P, and Z similarly.

Now define the mapping C' : MP(X) — R as

C(MP) = sup I(p,MP).
PEA X
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Fix MP € MP(X) and let ¢ > 0. Since MP(X) is compact (under the weak-x
topology), Lemma 12.1 implies the existence of a weakly-* open neighborhood Uyrp
of MP such that |I(p, MP) — I(p, MP’)| < € for every MP’ € Uyip and every p € Ax.
Therefore, for every MP’ € Uyp and every p € Ay, we have

I(p,MP) < I(p, MP') + ¢ < C(MP') + ¢,

hence,

C(MP) = sup I(p, MP) < C(MP’) +e.

pEAx

Similarly, we can show that C(MP') < C(MP) + e. This shows that |C(MP’) —
C(MP)| < € for every MP' € Uyp. Therefore, C is continuous. But C(W) =

C(MPy;,), so C' is continuous on (DMCE\?)*,TAEOL).
Now let £ be an (n, M)-encoder on X. For every 0 < i < n, define the mapping
fi: A% x MP(X) — R backward-recursively as follows:

n
o fu(py, MP) = max {sz(iﬁz)}
e For every 0 < i < n, define

fi(pi, MP) = R fir1 (0™, MP) - dMP (p11).
X
Clearly, f, is continuous. Now let 0 <4 < n and assume that f;,1 is continuous.
If we let S = A% x MP(X), Lemma 12.4 implies that the mapping
F;: A% x MP(X) x MP(X) =R
defined as

F;(p}, MP,MP’) = /A fir1(pH, MP) - dMP’ (pi41)
X

is continuous. But f;(pi, MP) = F;(p%, MP, MP), so f; is also continuous. Therefore,

~ X"
fo is continuous. By noticing that P, g(W) =1 — il

fo(MPy;,), we conclude that

P, ¢ is continuous on (DMCE?) T)((Ol) Moreover, since P, j s is the minimum of a

R

finite family of continuous mappings, it is continuous. ]

It is worth mentioning that Proposition 12.6 can be shown from Proposition 12.9
because the noisiness topology is coarser than the strong topology.

Corollary 12.4. All the mappings in Proposition 12.9 are also continuous if we
replace the noisiness topology ’7:.‘((03{ with the total-variation topology ’7'T((‘7,) X

Proof. This is true because TT(%) v is finer than T/,éoi. O
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Channel Operations

In the following, we show that we can express the channel operations in terms of
Blackwell measures. We have all the tools to achieve this for the channel sum,
channel product and channel interpolation. In order to express the channel polar-
ization transformations in terms of the Blackwell measures, we need to introduce
new definitions.

Let X be a finite set and let * be a binary operation on a finite set X. We say
that * is uniformity-preserving if the mapping (a,b) — (axb, b) is a bijection from X2
to itself. For every a,b € X, we denote the unique element ¢ € X satisfying cxb = a
as ¢ = a/*b. Note that /* is a binary operation and it is uniformity-preserving. /*
is called the right-inverse of x. We saw in Chapter 3 that a binary operation is
polarizing if and only if it is uniformity-preserving and its right-inverse is strongly
ergodic.

Binary operations that are not uniformity-preserving are not interesting for po-
larization theory because they do not preserve the symmetric capacity (see Remark
3.1). Therefore, we will only focus on polarization transformations that are based
on uniformity-preserving operations.

Let % be a fixed uniformity-preserving operation on X. Define the mapping
C™*: Ay x Ay — Ay as

(C™*(p1,p2))(w1) = Y pi(us * ug)pa(us).

U EX

The probability distribution C~*(p1,p2) can be interpreted as follows: Let X3
and Xo be two independent random variables in X that are distributed as p; and
p2 respectively, and let (Up,Us) be the random pair in X2 defined as (Uy,Us) =
(X1/* X9, X5), or equivalently (X1, Xo) = (Uy * Uz, Uz). C~*(p1,p2) is the proba-
bility distribution of Uj.

Clearly, C'~* is continuous. Therefore, the push-forward mapping C’;* is con-
tinuous from P(Ax x Ay) to P(Ax) = MP(X) under both the weak-* and the
total-variation topologies (see Section 12.1.5). For every MPy, MPy € MP(X), we
define the (—, *)-convolution of MP; and MPj as:

(MPl,MPQ)iﬁk = C;;’*(Mpl X MPQ) S MP(X)

Since the product of meta-probability measures is continuous under both the weak-
« and the total-variation topologies (Appendices 12.6.2 and 12.6.6), the (—,x%)-
convolution is also continuous under these topologies.

For every p1,p2 € Ay and every uy € supp(C~*(p1,p2)), define CT41*(py, po) €
Ay as

Ul % - p1(u1 * ug)pa(us)
N ) ()
The probability distribution C*“1*(py, p2) can be interpreted as follows: If X7, Xo,
Uy and Us are as above, CT¥1*(py, po) is the conditional probability distribution of
Us given Uy = uy.
Define the mapping C™* : Ay x Ay — P(Ax) = MP(X) as follows:

C+7*(p17p2) = Z (C™"(p1,p2))(u1) - 50*‘“1’*(171,]02)’
u1€supp(C~*(p1,p2))



12.3. Continuity on the Spaces of Output-Equivalent Channels 343

where d¢+.u1x(p, py) 18 @ Dirac measure centered at CHU1*(py, po).

If X1, Xo,U; and Uy are as above, C*(p1,ps) is the meta-probability measure
that describes the possible conditional probability distributions of Us that are seen
by someone having knowledge of U;. Clearly, C™* is a random mapping from
Ay x Ay to Ayx. In Appendix 12.6.8, we show that C™* is a measurable random
mapping. We also show in Appendix 12.6.8 that C™* is a continuous mapping from
Ay x Ay to MP(X) when the latter space is endowed with the weak-* topology.
Lemmas 12.2 and 12.3 now imply that the push-forward mapping C;’* is continuous
under both the weak-+ and the total-variation topologies.

For every MPy,MPy; € MP(X), we define the (4, *)-convolution of MP; and
MPs as:

(MPy, MP2)™* = " (MPy x MPy) € MP(X).

Since the product of meta-probability measures is continuous under both the weak-
« and the total-variation topologies (Appendices 12.6.2 and 12.6.6), the (+,x)-
convolution is also continuous under these topologies.

Proposition 12.10. We have:
e For every Wi e DMCg?l) , and Wo € DMC()SQ) .» we have:

1] ) | Xa] )
MP.:, = = MP:. o
WieWa |X1’+’X2’ W1+ |X1’+’X2’ W’

where MP;V1
tively MPs, ) by the canonical injection from Xy (respectively Xp) to Xy [ Xs.

(respectively MP;%) is the meta-push-forward of MPy, (respec-

e For every W, € DMCE?)’* and W € DMC()Z .» we have:

1

MPy. 77, = MPy. @ MPyp, .

e For every a € [0,1] and every Wi, Wy € DMCES?*, we have

MP[aWh(l—a)Wg] = aMPW1 + (1 - a)MPW2.

e For every uniformity-preserving binary operation x on X, and every W e
DMCE{,)*, we have
MPW* = (MPw,MPw)i’*
e For every uniformity-preserving binary operation x on X, and every W e
DMCS?)*, we have
MP

e = (MPy,, MPy, )b

Proof. See Appendix 12.6.9. O
Note that the polarization transformation formulas in Proposition 12.10 gener-
alize the formulas given by Raginsky in [86] for binary-input channels.

Proposition 12.11. Assume that all output-equivalent channel spaces are endowed
with the noisiness/weak-* or the total-variation topology. We have:
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e The mapping (Wl, W) — WieWo from DMCS\?,* X DMCS?;* to DMCS?BHXQ
15 continuous.

e The mapping (Wl, W) — W1@Ws from DMCE\?’* X DMC()SQ)’* to DMCE\Z)X)@*
15 continuous.

e The mapping (Wl,Wg, a) — [an, (1—a)W3] from DMCS??* X DMCS??* x[0, 1]
to DMCE\?’)* 18 continuous.

e For every uniformity-preserving binary operation x on X, the mapping W —
W from DMCS?)* to DMCS?)* 18 continuous.

o For every uniformity-preserving binary operation x on X, the mapping W —
W+ from DMCS?)* to DMCS?)* is continuous.

Proof. The proposition directly follows from Proposition 12.10 and the fact that
all the meta-probability measure operations that are involved in the formulas are
continuous under both the weak-+ and the total-variation topologies. O

Corollary 12.5. Both (DMCX*,T ) and (DMCE\?’)*,TT((‘))’X,*) are strongly con-

tractible to every point in DMCSK)*.

Proof. We can use the same proof of Corollary 12.3. O

12.4 Continuity on the Spaces of Input-Equivalent
Channels

12.4.1 Channel Parameters

Since input-degradedness is a particular case of the Shannon ordering [10], we
can easily see that if W and W' are input-equivalent, then C(W) = C(W’) and
P.nm(W) = P, (W) for every n > 1 and every M > 1. Therefore, for every

W e DMCS;)),, we can define C(W) := C(W') for any W' € W. We can define
P, M(W) similarly. Moreover, due to Proposition 10.5, we can also define Pe,p(W)
for any decoder D on the output alphabet ).

Proposition 12.12. Let X and Y be two finite sets. We have:
o C: DMCS? — RT is continuous on (DMCE?J,, T(l)y)
e For every n > 1 and every M > 1, the mapping Pep - DMCS?y — 10,1] is
continuous on (DMCX L T V)

o For every decoder D on Y, the mapping Pep : DMCS()y — [0, 1] is continuous

(DMCX % T )



12.4. Continuity on the Spaces of Input-Equivalent Channels 345

Proof. Since C': DMCyy — R™ is continuous, and since C'(WW) depends only on
the R{ equivalence class of W, Lemma 11.1 implies that C : DMCg?y — R* is

XY
continuous on (DMCE\Z{ L T ) We can show the continuity of P, , as and P, p on
(DMCg()y, T )y) similarly. O

The following lemma provides a way to check whether a mapping defined on
(DMC* Vs 7'( y) is continuous:

i)

Lemma 12.6. Let (S, V) be an arbitrary topological space. A mapping f : DMC( —

S is continuous on the space (DMCi)y,T(*)y) if and only if it is contmuous on

(omc? T

],y ' [n], y) for everyn > 1.

Proof. Same proof as Lemma 12.5. O

Proposition 12.13. Let ) be a finite set. We have:

o (: DMCS:) R* is continuous on (DMCEZ)J,, T(i)y).

S,

o For everyn > 1 and every M > 1, the mapping Pe, pr : DMCEf)y — [0, 1] is
~ (i) 49
continuous on (DMC_5,, T/ y,).

e For every decoder D on Y, the mapping Pep : DMCEf)y — [0, 1] is continuous

on (DMCY), 7).

Proof. The proposition follows from Proposition 12.12 and Lemma 12.6. 0

12.4.2 Channel Operations

Channel sums and products can be “quotiented” by the input-equivalence relation.
We just need to realize that the input-equivalence class of the resulting channel
depends only on the input-equivalence classes of the channels that were used in the
operation. Let us illustrate this in the case of channel sums:

Let Wi, W] € DMCly, y, and Wy, W4 € DMCl, y, and assume that Wj is input-
degraded from W{ and W is input-degraded from WJ. There exists V{ € DMCuy, x,
and V5 € DMCy, x, such that Wi = W{ o V{ and Wy = Wj o Vj. It is easy to see
that Wy @ Wy = (W] @ W3) o (V] ®Vy), which shows that W & W is input-degraded
from Wi & W3,

Therefore, if W7 is input-equivalent to W7 and W5 is input-equivalent to W3, then
W1 @& Ws is input-equivalent to W7 & WJ. This allows us to define the channel sum
for every W, € DMCY . and every W € DMCE\Z;;;V2 as Wi @ Wy = W?QST/Vé €

X1,
DMC(X)HXQ {1y, for any Wi € W, and any W3 € W, where W] @ WJ is the
RE\% 12631 11V -equivalence class of W & WJj. We can define the product on the
quotient spaces similarly.

Proposition 12.14. We have:
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e The mapping (W17 W) — Wy & Wo from DMC(Z) 0 X DMCE‘ZJ,2 to DMC(X1 1A 11 Vs 18

continuous.

o The mapping (W1, Ws) — W, @ Wy from DMCEQJ,1 X DMCEQJ,2 to DMCY) 18

X1 XX, V1 x V2
continuous.
Proof. Same proof as Proposition 12.5. O

Proposition 12.15. Assume that all spaces of input-equivalent channels are en-
dowed with the strong topology. We have:

e The mapping (Wl,WQ) — Wy & W, from DMCS,)y1 X DMCSQJ,2 to DMCY 18

. V1 [[ V2
continuous.
o The mapping (Wi, W3) — W1 @ Wy from DMC(*%,1 X DMCE‘? », to DMCS)yIXy2 18
continuous.
Proof. Same proof as Proposition 12.7. L

As in the case of output-equivalent channels?, the continuity of channel sums and
products on the Whole space (DMCi)y X DMCi )3,2, 7; ey ® T 2) can be Shown

by proving that T ey © T '+, 18 compactly generated. Note that although T e

and T(* y, are compactly generated, their product T ey @ T Vs might not be
compactly generated.

Proposition 12.16. Let ) and Yo be two finite sets. Let Wl S DMCS)J,1 and
Wy € DMCS)yQ. We have:

oW1 & Wa) = |J (1= Neérs(col1)) + Adas (co(172) ).
0<A<1

where 14 and ¢y are the push-forwards by the canonical injections from Y1 and
Vo to Y1 [[ Ve respectively. On the other hand,

co(Wy ® W) = co (co(Wl) ® CO(Wg)).

Proof. See Appendix 12.6.10. O

Proposition 12.17. Assume that all spaces of input-equivalent channels are en-
dowed with the similarity topology. We have:

e The mapping (Wl, W) — WiBW from Dl\/ICS;)y1 X DMCS;)y2 to Dl\/[Cf:)y1 11Ys
15 continuous.

o The mapping (Wi, W2) — Wi@Ws from DMC'), x DMCY), toDMCY,
18 continuous.

Proof. See Appendix 12.6.11. O

4See the discussion after Corollary 12.3.
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12.5 Continuity on the Space of Shannon-Equivalent
Channels
12.5.1 Channel parameters

For every W € DMC,. ., C(W) depends only on the Shannon-equivalence class of
W [10]. Therefore, for every W e DMCSl, we can define C(W) := C(W’) for any
W’ € W. We can define P.,, M(W) similarly.

Proposition 12.18. Let X and Y be two finite sets. We have:

o C: DMCS?)} — R is continuous on (DMC(;?y, 7;583,)

e For every n > 1 and every M > 1, the mapping Pepn nr - DMCE‘f)y — [0,1] is
continuous on (DMC(A}S)),, 7:’\({5%,).

Proof. Since C' : DMCyy — R* is continuous, and since C(W) depends only
on the R(;)y—equivalence class of W, Lemma 11.1 implies that C : DMC(;)y —
R* is continuous on (DMC(;)J,,T)SS;,). We can show the continuity of P, » on
(DMCS;?J,,T)S%,) similarly. O

The following lemma provides a way to check whether a mapping defined on
(DMCSJiZ, 7;(;?*) is continuous:

Lemma 12.7. Let (S,V) be an arbitrary topological space. A mapping f : DMC( )

S is continuous on (DMC&Sl,ﬁ(* «) if and only if it is continuous on the space
(DMC(S) 7'(5 ) for every n > 1.

Proof.

f is continuous on (DMCSL, ’TS(i)*) s (V) e 7'(* vy YV eV
& [HV)nDMC] e TS vn>1, v eV
< fis continuous on (DMC[( })[n], T[T(L])[n]), Vn > 1.

L]
Proposition 12.19. We have:
o O DMCSi — R is continuous on (DMCSL, Ts(i)*)

e For everyn > 1 and every M > 1, the mapping Pepn nr - DMC(S) — [0,1] s
continuous on (DMCSM)” ’7;(‘?*)

Proof. The proposition follows from Proposition 12.18 and Lemma 12.7. O
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12.5.2 Channel operations

Channel sums and products can be “quotiented” by the Shannon-equivalence rela-
tion. We just need to realize that the Shannon-equivalence class of the resulting
channel depends only on the Shannon-equivalence classes of the channels that were
used in the operation [10].

Proposition 12.20. We have:

e The mapping (Wl,Wg) — Wh & Ws from DMC%)J,1 X Dl\/IC(/,,;f;y2 to DMC(/.,;)H%J;1 115 18
continuous.

e The mapping (Wl,Wg) = W, @ W, from DMCSI)}),1 X DMC(;;% to DMC(;])xX%ylny 18
continuous.

Proof. Same proof as Proposition 12.5. OJ

Proposition 12.21. Assume that the space DMCS}k is endowed with the strong
topology. We have:

e The mapping (Wl,Wg) — Wy & Ws from DMCSl X DMCE,‘;Q) y, to DMCSl 18
continuous.

e The mapping (W, Wa) — Wy @ W from DMCSl X DMC(;Q)J,? to DMCSl is
continuous.

Proof. Same proof as Proposition 12.7. O

As in the case of the space of output-equivalent channels®, we can show the
continuity of channel sums and products on (DMCSf?k X DMCSi)k, 7'5(?* ® Ts(i)*) by
proving that ’7'5(‘::)* ® 7;(1)* is compactly generated. Note that although 7;(?* and
7'5(?* are compactly generated, their product 7;(1)* & 7;(?* might not be compactly
generated.

12.6 Appendix
12.6.1 Proof of Lemma 12.1

Fix € > 0 and let (s,t) € S x T. Since f is continuous, there exists a neighborhood
Os,¢ of (s,t) in S x T such that for every (s',t') € Osy, we have | f(s', 1) — f(s,t)] < §.
Moreover, since products of open sets form a base for the product topology, there
exists an open neighborhood V;; of s in (S,)V) and an open neighborhood Uy, of ¢
in T such that Vy; x Usy C Ogy.

Since (S,V) and (T,U) are compact, the product space is also compact. On the
other hand, we have U Vet x Usy =8 x T so {Vsy x U87t}(87t)65XT is an open

(s,t)eSxT

cover of S x T. Therefore, there exist s1,...,s, € S and ty,...,t, € T such that

n
U Viits X Ust; = S x T
=1

5See the discussion after Corollary 12.3.
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Now fix s € S and define V, = ﬂ Vs, ;- Since Vj is the intersection of finitely

1<i<n,
SEVs, t;

many open sets containing s, Vs is an open neighborhood of s in (S, V). Let s’ € V;

n
and t € T. Since UVsztz X Ug, 4, = S x T, there exists 1 < ¢ < n such that

=1
(s,t) € Vg, 1, X U, 1, C Os, 1, Since s € Vs, 4., we have Vy C Vg, 4, and so s’ € Vg, 4,.
Therefore, (s',t) € Vs, 1, X Us, +, C O, 1,, hence

(50 = Fs, 0] S 1T, 0) = Fsa ) | 4 | Fsint) = F(s.1) < 5+ 5 =

But this is true for every ¢t € T'. Therefore,

sup ‘f(5/7t) - f(S,t)| <e
teT

12.6.2 Continuity of the Product of Measures

For every subset A of M; x My and every x; € M, define A5' = {zy € My :
(x1,x2) € A}. Similarly, for every x5 € My, define AJ? = {z1 € M; : (z1,22) € A}.
Let Pl,Pll S P(Ml,Zl) and PQ,PQI S P(MQ, 22) We have:

HPI X P2 — Pll X PéHTV

= sup |(P1 x P2)(A) — (P] x P3)(A)]
AEX 1R

< swp_ {[(Prx Po)(A) = (P x P)(A)| + (P x P)(A) = (P x P3)(4)]}
AeX1®@32

= sup { ‘ P1 (A?) . dPQ(.’EQ) — / P{(Aala) . dPQ(CEQ)
Mo Mo

AEX1®¥2

T \ | Paagy apfe) - [ PR - apin)
M1 Ml

}

< suwp {/ [PLAT) — P3| aPas) + [ |P2<A§1>—P5<A§1>|~dP{<x1>}
AeX 1R Mo My

g/ ( sup |Pi(A1) —P{(AI)D dP2+/ ( sup |Pa(Asz) —Pg(AQ)O dP]
My \A1€3 My \A2€Xs
= ||PL = Plllzv + || P = P3|l 7v-

This shows that the product of measures is continuous under the total-variation
topology.

12.6.3 Proof of Proposition 12.1
Define the mapping G : M — RT U {400} as follows:
Ga) = [ o R@))
For every n > 0, define the mapping g, : M’ — R™ as follows:

guly) = 57 (27 x minfn, g(y)} |
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Clearly, for every y € M’ we have:
e gu(y) < g(y) for all n > 0.
¢ g,(y) < gnt1(y) for all n > 0.
o lim g.(y) = g(y).
Moreover, for every fixed n > 0, we have:
e g, is X-measurable.
e g, takes values in {2% :0<i< n2”}.

For every 0 < i <n2", let B;,, = {y € M’ : g,(y) = 5= }. Since g,, is X'-measurable,
we have B;, € ¥’ for every 0 < i < n2". Now for every n > 0, define the mapping
Gn: M — RU{+o0} as follows:

n2 .
Gala) = [ and(RE@)w) = [ (Z i1, <y>> d(R())(y)
=0
n2" . n2™ .
=Y 5 (R@)Bin) = Y 5 Ba, . (@),
=0 1=0

Since the random mapping R is measurable and since B;,, € ¥', the mapping Rp,,
is Y-measurable for every 0 < ¢ < n2". Therefore, G, is X-measurable for every
n > 0. Moreover, for every x € 3, we have:

lim Gu(o) = lim [ g.(0)dBE)W L [ swidRE@)6) = G,

n—oo n—oo M’

where (a) follows from the monotone convergence theorem. We conclude that G is
Y-measurable because it is the point-wise limit of Y-measurable functions. On the
other hand, we have

n2™ . n2"
n2™

= -dP
Z - / ®
n27l

=22n /( /M,an W) R0 ) 4P

) / M </ / (g 2%]13*" (;,)) dW(w))(y)) dP(z)

Therefore,

/ g-d(RyP) Y tim [ g, d(RgP) = lm | G ap ¥ / G- dP,

n—oo Wi

where (a) and (b) follow from the monotone convergence theorem.
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12.6.4 Continuity of the Push-Forward by a Random Mapping

Let R be a measurable random mapping from (M,Y) to (M',Y'). Let P, P, €
P(M,Y). Define the signed measure y = P; — P, and let {u™, 4~} be the Jordan
measure decomposition of . It is easy to see that ||Py — Py||py = pt (M) = p= (M).
For every B € ¥/, we have:

(Ry(P)(B) — (Ry(P2))(B) = /

M
ot -1 f
M M

RB-dPl—/ RB-dPF/ Rp-d(P, — Py)
M M

(a)
< |Rplloc - u" (M) < " (M) = | Pr = P2lzv,

where (a) follows from the fact that |Rp(x)| = [(R(x))(B)| < 1 for every x € M.
We can similarly show that

(R (P2))(B) = (B (P1))(B) < [|BBllec - 1~ (M) < |[P1 — Py
Therefore,

[By(P1) = By (Po)|lrv = sup [(Ru(P1))(B) — (Ru(P2))(B)| < |[P1 = Poflrv.

This shows that the push-forward mapping Ry from P(M,X) to P(M’',¥') is con-
tinuous under the total-variation topology. This concludes the proof of Lemma 12.2.

Now assume that U is a Polish topology on M and U’ is an arbitrary topology
on M’. Let R be measurable random mapping from (M,B(M)) to (M',B(M")).
Moreover, assume that R is a continuous mapping from (M,U) to P(M’',B(M'))
when the latter space is endowed with the weak-* topology. Let (P,)n,>0 be a
sequence of probability measures in P(M,B(M)) that weakly-* converges to P €
P(M,B(M)).

Let g : M’ — R be a bounded and continuous mapping. Define the mapping
G : M — R as follows:

G@) = [ 9w d(R@) W)

For every sequence (z,,)n>0 converging to x in M, the sequence (R(zy,))n>0 weakly-x*
converges to R(x) in P(M’', B(M')) because of the continuity of R. This implies that
the sequence (G(zy))n>0 converges to G(x). Since U is a Polish topology (hence
metrizable and sequential [78]), this shows that G is a bounded and continuous
mapping from (M,U) to R. Therefore, we have:

lim | g -d(ReP) 2 lim | G-ap, ¥ / G.dpY / g-d(RuP),
n—oo M’ n—oo M M M’

where (a) and (c) follow from Corollary 12.2; and (b) follows from the fact that

(Pp)n>0 weakly-* converges to P. This shows that (R4P,)n>0 weakly-* converges

to Ry P. Now since U is Polish, the weak-* topology on P (M, B(M)) is metrizable

[80], hence it is sequential [78]. This shows that the push-forward mapping Ry from

P(M,B(M)) to P(M',B(M')) is continuous under the weak-* topology.
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12.6.5 Proof of Lemma 12.4

For every s € S, define the mapping fs : Ay — R as fs(p) = f(s,p). Clearly fs is
continuous for every s € S. Therefore, the mapping Fs : MP(X) — R defined as

Fs(MP) = fs - dMP
Ax

is continuous in the weak-* topology of MP(X).
Fix € > 0 and let (s, MP) € S x MP(X). Since F; is continuous, there exists a
weakly-+ open neighborhood U yp of MP such that |Fs(MP') — Fs(MP)| < ; for

every MP’ ¢ Usmp. On the other hand, Lemma 12.1 implies the existence of an
open neighborhood V; of s in (S, V) such that for every s’ € V; we have

sup |f(s',p) — f(s,p)| <
pEAX

DO

Clearly Vi x Us mp is an open neighborhood of (s, MP) in S x MP(X). For every
(s, MP’) € Vi x Us mp, we have

‘F(SI,MP,) - F(SvMP)| < |F(8/7MP/) - F(SaMP/” + |F(37MP,) - F(SvMP)|

[ 06 - 16 ~dMP/<p>} T |E\(MP') — F,(MP)

(a)
<

N

<(/ ) = )] DIPG) ) +

where (a) follows from the fact that MP’ is a meta-probability measure and | f (s, p) —
f(s',p)| < % for every p € Ayx. We conclude that F' is continuous.

12.6.6 Weak-* Continuity of the Product of Meta-Probability
Measures

Let (MP1,,)n>0 and (MP3,,),>0 be two sequences that weakly-+ converge to MP;
and MPs in MP(X;) and MP(X3) respectively. Let f : Ay, x Ay, — R be a
continuous and bounded mapping. Define the mapping F : Ay, x MP(Xs2) as
follows:
Ax,

Fix e > 0. Since f(p1, p2) is continuous, Lemma 12.4 implies that F'is continuous.
Therefore, the mapping p; — F'(p1, MP3) is continuous on A y,, which implies that
it is also bounded because Ay, is compact. Therefore,

lim F(pl, MPQ)dMPLn(pl) = / F(pl, MPQ)dMPl(pl)

n—o0
Ax, Ax,

because (MP1 y,)n>0 weakly-* converges to MP1. This means that there exists ny > 0
such that for every n > nj, we have

<

/ F(p1, MP3)dMP o (p1) — / F(py, MP,)dMP; (p1)
Ax, Ax,

DN
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On the other hand, since F' is continuous and since MP(X3) is compact under
the weak-x topology [80], Lemma 12.1 implies the existence of a weakly-* open

neighborhood Upp, of MPy such that |F(py, MPY) — F(p1, MPs)| < % for every

MP'2 € Uwmp, and every p1 € Ay,. Moreover, since MPg, weakly-* converges to
MP», there exists no > 0 such that MPs,, € Unp, for every n > no.
Therefore, for every n > max{ni,ns}, we have

/% (/% f(pl,pz)dMPz,n(p2)> dMP1 ,,(p1) —/AXI (/% f(p1,p2)dMP2(p2)) dMP1 (p1)
/AX1 </Ax2 f(pl,Pz)dMPz,n(pz)) dMP1 ,,(p1) — ~/AX1 </Ax2 f(Pl,pg)dMPg(pQ)) dMP1 ,,(p1)

/AX1 </AX2 f(p17p2)dMP2(p2)> dMP1,(p1) — /AX1 (/AX2 f(p17p2)dMP2(p2)) dMP1 (p1)

/ (F(p1, MPs,,.) — F(pr, MP3)) dMP . (p1)
Ax,

<

Jr

_l’_

/ F(p1,MP2)dMPq ,,(p1) — F(p1,MP2)dMP(p1)
Ax, Ax,

e (a) € €
< / |F(p1,MPs,,) — F(p1, MP2)| dMP1 ,,(p1) + 3 < / 3 dMP1 ,,(p1) + 3=6
AXl AXl

where (a) follows from the fact MPy,, € Unp, for every n > ny. Therefore,

lim F-d(MPy,, x MPy,,)
n—oQ AXl XAX2
@ Jim F(p1, p2)dMPa o (p) | dMP1 . (p1)
n—o0 A?Cl AXQ

— / ( f(pl,Pz)dMP2(P2)> dMP1(p1)
Ax, Ax,

B / £-d(MP; x MPy),
AXIXAXQ

where (a) and (b) follow from Fubini’s theorem. We conclude that (MP;, X
MP3 ;,)n>0 weakly-* converges to (MP1 x MP3),,>0. Therefore the product of meta-
probability measures is weakly-* continuous.

12.6.7 Continuity of the Capacity

Since the mapping I is continuous, and since the space Ay x DMCy y is compact,
the mapping I is uniformly continuous, i.e., for every € > 0, there exists d(e) > 0
such that for every (p1, W1), (p2, W2) € Ax x DMCy y, if ||p1 —p2|1 == Z |p1(x) —

TEX
p2(x)| < 5(6) and d/y,y(Wl, Ws) < (5(6), then

|I(p1, W1) — I(pa2, Wa)| < €.
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Let Wi, Wy € DMCy y be such that dx y(Wi,Ws) < 6(e). For every p € Ay,
we have ||p —p|l1 = 0 < d(e) so we must have |I(p, W) — I(p, W2)| < e. Therefore,

I(p,Wy) < I(p,Ws) +e< sup I(p/,W3) +e=C(Ws)+e.
p'EAy

Therefore,

C(Wy) = sup I(p, W) < C(Wa) + e
pEAX

Similarly, we can show that C'(W3) < C(Wj) + e. This implies that |C(W;) —
C(W3)| < ¢, hence C' is continuous.

12.6.8 Measurability and Continuity of C*

Let us first show that the random mapping C™* is measurable. We need to show
that the mapping Cg’* : Ay X Ay — R is measurable for every B € B(Ay), where

CL (1, p2) = (CT*(p1,p2))(B), VYp1,pa € Ax.

For every u; € X, define the set

Auy = {(p1,p2) € Ax X Ax = (C77(p1,p2))(u1) > 0}

Clearly, Ay, is open in Ay x Ay (and so it is measurable). The mapping C41:*
is defined on A,, and it is clearly continuous. Therefore, for every B € B(Ay),
(CTu1*)~1(B) is measurable. We have:

CE ™ (p1,p2) = (CT*(p1,p2))(B) = > (C™7(p1,p2))(w1)

ur€supp(C " (p1,p2)),
C*’“l’*(phpz)EB

- Z (C™*(p1,p2))(u1)

ulEX,
(p17p2)EAu1 ’
CTu1*(py,p2)EB

< Z (€™ (p1,p2))(u1) - Ligtmmy-1(p) (p1,p2),

U1EX

where (a) follows from the fact that (py,ps) € (CT¥*)~Y(B) if and only if (p1,ps) €
Ay, and CTH¥*(p1,pe) € B. This shows that C’E’* is measurable for every B &
B(Ax). Therefore, Ct* is a measurable random mapping.

Let (p1,n,P2.n)n>0 be a converging sequence to (p1,p2) in Ay X Ay. Since C™*
is continuous, we have nli_)IEO(C_’*(an,pgm))(ul) = (C™*(p1,p2))(uy) for every u; €
X. Therefore, for every u; € supp(C~*(p1,p2)), there exists n,, > 0 such that
for every n > ny,, we have C7*(p1n,p2n) > 0. Let ng = max{n,, : u; €
supp(C~*(p1,p2))}. For every n > ng, we have

supp(C ™" (p1,p2)) C supp(C ™" (p1,n, P2,n))-
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Therefore, for every continuous and bounded mapping ¢ : Ay — R, we have

lim [ g-d(CT*(prnsp2n))

n—oo AX

= lim > g(CT"* (p1ms p2n)) - (C7* (P1ns P2an)) (u1)

n—oo
ul Esupp(C*v* (pl,n 7p2,n))

Y iy S g B pon) - (C (s pon)) ()

n—0o0
u1€supp(C~*(p1,p2))

®) > g(C T (p1,pa)) - (C* (p1,p2)) (w1)

w1 €supp(C~*(p1,p2))

= / g-d(CT*(p1,p2)),
Ax

where (b) follows from the continuity of g and C~*, and the continuity of CT¥1-*
on A, for every u; € X. (a) follows from the fact that:

lim > |9(CH 1 (p1 i, p2)) - (C7 (DL P2.n)) ()]

n—o0
w1 €supp(C~* (p1,n,02,n)),
u1¢supp(C~*(p1,p2))

< [lglloo lim_ > (C™"(P1ns P2in)) (w)

u1€supp(C~*(p1,n,02,n)),
u1¢supp(C™*(p1,p2))

= [lglloo Tim | 1 — > (C™"(p1n, P2,n)) (W)

n—o0
u1€supp(C~>*(p1,p2))

= [lglloc | 1 - Z (C™*(p1,p2))(u1) | =0.

u1€supp(C~*(p1,p2))

We conclude that the mapping C™* is a continuous mapping from Ay x Ay to
MP(X) when the latter space is endowed with the weak-* topology.

12.6.9 Proof of Proposition 12.10

Let Wl € DMCg?1)7* and Wo € DMCE?;*. Fix Wy € Wl and Wy € Wy and let Y and
Yo be the output alphabets of Wi and Wy respectively. We may assume without
loss of generality that Im(W7) = )4 and Im(Ws) = Vs.

Let y € V1. We have

1

Phrew, V) = 5y Z (W1 © Wa)(y|x)
| X1 [ A
zeX| [[ X
1 | X1
_ W- ) = 7})0 > 0.
|X1|—|—|X2’$§1 1(y| ) |X1|—|—|X2| W1(y)
For every x € X}, we have
_ Wi & W- T Wilylx _
(Wl@Wg)yl(m) _ ( 1 2)(y| ) _ 1(y| ) _ (Wl)y1($)~

(1M + X%DPy, (v)  XIPy, (y)
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On the other hand, for every x € X5, we have

1, (Mmewy)(ylr)
(W1 @ Wa)y () = ooy |X212>P6V1 W

Therefore (W7 @& Wg)y_l = gbl#(Wl)y_l, where ¢ is the canonical injection from X
to Xl I_[ XQ.
| Xa|
= —=—_P7 > 0 and
|X1| + |X2’ Wl(y)
(W1 WQ);1 = ¢2#(W2);1, where ¢9 is the canonical injection from X to X [ Xo.
For every B € B(Ax, ] ,), we have:

Similarly, for every y € ), we have P, o, (y)

MPWlEBWz (B)
= > Phew,)
yeV1 [ Vo,

(W169W2),;1€B

— ‘Xl| o &O
_< > |Xl|+|/,,(2|PW1(y)>+< > |X1|+|X2|PW2(y)>

ye, ISAZH
¢1#(W1);1€B ¢2#(W2)371€B
il - || _
- WMPM (1)1 (B)) + mMPWZ((d)Q#) '(B))
il ||
- m(¢l##MPW1)(3) + m(@##MPWQ)(B).

Therefore,

A1
MPy i = oy y MP 4 — 2y MPy
W = [ 3] T [

This shows the first formula of Proposition 12.10.
For every y = (y1,y2) € V1 X Va2, we have

1
Piew, (y) = > M(Wl @ Wa)(y1, y2lz1, 22)
(CELIQ)EXl X Xo

Wiy1le1) Wa(ya|z2)
) olwlwa) _ pe (1) pg (1) > 0.
|| Bey
I1€X2,
ToEX?

For every © = (z1,x2) € X1 X Xy, we have

_ (MeW)@le) _ Wilnlzr) — Walye|zs)
X1 X Xa| P o, () | X0 PG (1) | Xa| Py, (y2)
= (W), (1) - (W), (w2) = ((Wh),," x (Wa),,)) ().

(W1 @ Wa), ! (z)
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For every B € B(Ax, xx,), we have

MPw,ew, (B) = > Phiewm) = > Py, (y1) Py, (y2)
YyEYV1 X V2, YEV1 X V2,
(W1@Ws), 'eB W)y x(Wa)y, €B
= > Py, (y1) Py, (y2)
yEV1 X V2,

Mul((W1)y,"(Wa)y, )€B
= (MPw, x MPy,)(Mul™'(B)) = (Mulg(MPyw, x MPy,))(B)
= (NIPVV1 & MPWZ)(B).

Therefore,
MPW1®W2 = MPW1 X MPWQ'

This shows the second formula of Proposition 12.10.

Now let a € [0, 1] and Wi, W € DMCY,. Fix Wy € Wi and Wa € Wa and let Yy
and )5 be the output alphabets of Wi and Ws respectively. We may assume without
loss of generality that Im(W7) = Y1 and Im(Ws) = Vs, Let W = [aW7, (1 — o) Wa.
If @ =0, then W is output-equivalent to Wa and MPy, = MPy, = a MPy, +(1 —
a) MPy,. If @ = 1, then W is output-equivalent to W7 and MPy = MPy, =
aMPy, +(1 — a) MPyy,.

Assume now that 0 < o < 1. For every y € )1, we have:

[0} 1 ]' 10}
Py (y) = Ed E W(ylz) = 4] E a- Wi(ylr) = aPy, (y) > 0.
reX xeX

For every z € X, we have:

- W (ylz) aWi(y|z) 1
W, (z) = - = (W), (@),
Y [ XIP (y) | X|ePy, (y) Y

Similarly, for every y € Y, we have Py (y) = (1 — a)Py,(y) > 0 and I/Vy_1 =
(Wa), !. Therefore,
MPy = > Py(y) Sy
yeW [1D2

= | 2 P @) S | | 2 A= )P ®) O,
yeEN YyeY2

= alV[PV[/1 + (1 — a)MPWQ.

Therefore,

MP[avi/l,(l—a)Wg} = aMPy, + (1- a)MPW2.
This shows the third formula of Proposition 12.10.

Now let W e DMCg(()?* and let * be a uniformity-preserving binary operation on
X. Fix W € W and let ) be the output alphabet of W. We may assume without

loss of generality that Im(W) = ).
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Let Uy, Us be two independent random variables uniformly distributed in X'. Let
X1 =U;xUy and X9 = Us. Send X7 and X5 through two independent copies of W
and let Y7 and Y5 be the output respectively.

For every (y1,y2) € V2, we have

Py (y1,92) = Pri vy, (1, 92) = Pyi (Y1) Py (y2) = Py (y1) Py (y2) > 0.

For every u; € X, we have:

(W)t (1) = Py s (walyn,v2) = D Py i s (i, u2lyn, )

ug €EXo

= Z Px, xyv1,v, (u1 * ug, uz|ys, y2)
uz €EXo

= Z PX1|Y1(U1 *u2|yl)PXz\Y2(u2|y2)
ug EXo

- Z W (ur * ug)W,, Yug) = (C (Wy1 W, ))( 1)-
ug EXo

For every B € B(Ayx), we have
MPy—(B)= Y. Py (y = > Py, (y1) Py, (y2)
yey27 (y17y2)€y27

(W), 'eB C= (W, Wy, )eB

= (MPw x MPw)((C™*)"}(B))
= (C"(MPy x MPy))(B) = (MPw, MPy)~*(B).

Therefore,

MP;, = (MP;,, MP;,) "

We =
This shows the forth formula of Proposition 12.10.
For every (y1,y2,u1) € V2 x X, we have:

Py (y1,y2,u1) = Pyy v, 0, (Y1, 92, ¥1) = Py va (Y1, 92) Py va ve (v |91, 92)
= Py (1) Py (y2) - (C7* (W, 5 W, 1) (ua).

Therefore,

mWH) = | {y2)} xsupp(C (W, W, 1)
(y1,y2)€V?

For every (y1,y2,u1) € Im(W™), we have:

Py, vsva,vs (w1, u2ly1, y2)
Py v v, (waly1, y2)

 Px vy (un x ulyn) Py, (ualy2) Wt (un  u) Wyt (uz)

- (0= W, Wi ) o) T O W W) ()
= (O W) ().

y1

(W) o (W2) = Prypya va,0n (u2lys, y2, ur) =
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For every B € B(Ax), we have

MPyy - (B)
= > > Pl (y1) Py (y2) - (C7* (W, W) (w)
(y1,y2)€YV? u1 Esupp(C™ ( y17 1)7
Ot (Wy1 ,VVy2 )EB
= > Py Py () > (CTH (W, Wh) (wr)
(y1,y2)€EV? w1 Esupp(C~* Wzl,ngl),
ctur(wy Wy eB
= > PPy ) (CH (W, W, h)(B)
(y1,y2)€V?
= Y PPy ) (Cg (W, W,
(y1,y2)€Y?

=[G ) a0 X NP 2)
AXxAX

= (CL*(MPw x MPy))(B) = (MPy, MPy)™*(B).

Therefore,

MP ;. = (MPy,, MP;,)*

This shows the fifth and last formula of Proposition 12.10.

12.6.10 Proof of Proposition 12.16

Fix Wy € Wl and Wy € W, and let X} and X» be the input alphabets of W; and
Wy respectively.

For every x1 € X1, we have (W1 @ Wa)z, = ¢14(Wh)s,. Similarly, for every
x9 € Xy, we have (W1 ® Wa),, = ¢poyu(Wa)s,. Therefore,

(W1 ® W)
{ (W@ Ws),: z € X1HX2}>

CO({(Wl D Wz)ml T X € Xl} U {(W1 D Wz)mz X9 € XQ})
({15 W)azy © @1 € X1} U {2 (Wa)a, 1 @2 € A})

(1 =X colors W)z, + 21 € 1))+ Aco({B2(Wa)ay : 2 € o))

= CO

( (251# CcO {(Wl)xl DX € Xl})) + )\QSQ#(CO({(WQ):CQ L XTo € XQ})))
= ( ¢1# CO W1)) + )\(ﬁg#(CO(Wg)))

N1 (co(Wr)) + A@#(CO(WZ))).
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For every (x1,x2) € X1 x Xa, we have (W) ® Wg)(mm) = (W1)g, X (Wa)y,
Therefore,

CO(Wl & Wz)

co({(W1 @ W2)(4; 20) ¢ (71, 72) € X1 X Aa})
( (Wl (I/VQ)I2 : (.%'1,.%'2) S Xl X XQ})
(Wl z - T1E Xl} (024 {(Wg) X9 € XQ})

{
{
co({
co (co D1 € X)) ®co ({(Wa)g, ¢ 22 € XQ}))
co (CO Wi) ® co( Wg)) = co <CO(W1) ® CO(W2)>.

12.6.11 Proof of Proposition 12.17

Fix Wy, W] € Dl\/ICSi)y1 and Wo, Wy € DMCS)%. Let Ry € R(co(W1),co(W})) and
Ry € R(co(Ws),co(Ws)). Fix 0 < A < 1, (P1,P]) € Ry and (P, P)) € Ry. Let
P = (1 — )\)(ﬁl#Pl + A(ﬁQ#PQ and P = (1 — A)¢1#Pll + )\¢2#P2/, where ¢1# and
¢4 are the push-forwards by the canonical injections from Y; and Yo to Y1 [[ Do
respectively. We have:

1P = P'llzy = [ (1 = NrgPr + Aoy P2) — (1= N1 Pl + Aoy PS)[| 1,
< (1= V6P — b1y Plllay + NgaPs — a4 Pilrv
= (1= NP1 — P{|lzv + M| P2 — P|rv

<||P1 = Pllrv + [|P2 — P3| 7v.
(12.1)
Proposition 12.16 shows that

co(W, DO W) = U <(1 — )\)%#(CO(Wl)) + )\¢2#(C0(W2))>a

and

oW & TWo) = |J ((1=Ndrg(co(W])) + Aday(co(13))).
Define R C co(W; @ W) x co(W] & W) as follows:

R ={((1= Né14Pr + Mooy Ps,(1 = NPl + Aoy F3)

0<A<1,(P,P)e Ry, (PP e Rg}.
It is easy to see that R is a coupling of co(W; @& W) and co(W/ & Wé) We have:

(Wl @WQ,W{ @le) < sup [|[P—P|rv
(P,P")ER
(a) / /
< sup |[[PL—Pillrzv+ sup ||P2— Bylrv,
(P1,P))eR; (P2,P})ERy

(@)
d*,yl 1Y
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where (a) follows from (12.1). Since this is true for every Ry € R(co(Wr), co(W?))
and every Ry € R(co(W3),co(W3)), we conclude that

o

- — 2 —
*,J1 HyQ(Wl S Wa, Wl/ D W)

< inf A sup ||P1— Pf|lrv
R1€R(co(Wr),co(WY)) (P1,P])ERy

+ inf sup [P, — P3|y
R2eR(co(Wa),co(W3)) (P2,P3)ER:

= d%), (W1, W1) +d), (W, W}).

This shows that the mapping (Wl,Wg) — Wy & Wy from Dl\/ICf:;)y1 X Dl\/ICSi)y2 to
DMCS)J)1 11 is continuous in the similarity topology.
Fix again Ry € R(co(W1),co(W])) and Ry € R(co(W3),co(Wy)). Let Ar,...,

k
Ak > 0 be such that Z Ai = 1. Let (P171, P{,l)? R (Pl,k7 Pll,k) € R; and (PQJ, Pé,l)?
=1
k k

.o (Poj, Pyy) € Ry. Define P = AP x Py and P/ =Y MNP, x P, We
i=1 =1
have:

k k
P~ P'|lrv = H (Z AP x P2,z'> - <Z APl % PQ/,i)
=1 i=1

TV

-

< D Aill(Pri x Poi) = (Pry x Py )llrv

1 (12.2)

7

—

a

<

Il
R

N (1P = Pl + | Pe = Phillav )

K2
< sup [[Pr—Plrv+ sup [[P2— Pylrv,
(P1,P])eR: (P2,P))ER>
where (a) follows from Appendix 12.6.2. Proposition 12.16 shows that
co(W1 ® W) = co (CO(Wl) ® CO(WQ)),

and
co(W @ W/Q) =co (CO(W{) ® co(Wé)).

Define R C co(W; @ Wy) x co(W] @ W4) as follows:

k k k
R = { (Z/\ipl,iXP2,i7Z)\iP{,iXPé,i> tk>1 A, A 20, Z)‘izla

=1 =1 =1
(P1,1,P1”1),.,,,(p1 k,P{,k) € Ry,

(P2,17P2/,1)’ ) (PQ,kaPQ,,k) € RZ}
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It is easy to see that R is a coupling of CO(Wl ® W3) and co(Wl’ ® W/Q) We have:

0%y, (W @ W, W] @ W) < sup [P~ P'llgy
(P,P')eR
(a) , ,
< sup ||PL=Pillrv+ sup || — Blrv,
(P1,P])ERy (P2,P})ER>

where (a) follows from (12.2). Since this is true for every Ry € R(co(W1), co(W}))
and every Ry € R(co(W3),co(W3)), we conclude that

d»(:;)yl % Vs (W1 ®@ Wa, Wll & WIZ)

< inf ) sup ||P — P{||rv
R1€R(co(W1),co(W])) (P1,P])ER:

+ inf R sup ||P2— Pi|lrv
R2€R(co(W2),co(Wy)) (P2, Py)ER:

= dil,)yl (W17 Wll) + dil,)yQ(W% Wé)
This shows that the mapping (Wl,Wg) — W1 ® Wy from DMCS;)),1 X DMij’)y2 to

DMCS:))}1 113 is continuous in the similarity topology.



Conclusion of Part Il

In this chapter, we summarize the main contributions of the second part of this
thesis. Furthermore, we briefly discuss some open problems and possible future
directions in the channel ordering topic.

13.1 Characterization of Various Channel Orderings

In Chapter 10, we introduced the input-degradedness ordering of communication
channels, and provided several characterizations for this ordering. We showed that
if W is input-degraded from W', then any decoder that is good for W is also good
for W’. We also studied the Shannon ordering of communication channels, and pro-
vided a characterization of it that is similar to the Blackwell-Sherman-Stein (BSS)
theorem.

The output-degradedness ordering has been applied in network information the-
ory, e.g., in the context of broadcast channels [87, 88, 89]. It is not clear whether
input-degradedness can play a similar role for multiple-access channels.

As we explained in Chapter 10, the output-equivalence class of a channel can
be identified by its Blackwell measure [68]. Similarly, the input-equivalence class of
a channel can be identified by its input-equivalence characteristic (see Proposition
10.4). Finding a canonical representation® of the Shannon-equivalence class of a
channel remains an open problem.

13.2 Topological Structures on DMC Spaces

13.2.1 Spaces of Output-Equivalent Channels

The fact that the noisiness and weak-* topologies are the same gives us more freedom
in proving theorems. Statements that might be difficult to prove using the weak-x
formulation might be easier to prove using the noisiness formulation. For example,

!By canonical representation, we mean a mathematical object Sy that is computable from the
channel W, and which satisfies: Sy = Sy if and only if W is Shannon-equivalent to W’.
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the convergence of the polarization process is slightly easier to prove in the noisiness
formulation.

The strong topology is too strong to be adopted as the “standard natural topol-
ogy”. However, it can still be useful because it is relatively easy to work with as
it has a quotient formulation. Moreover, since it is finer than the noisiness/weak-x
topology, many statements that are true for the strong topology are also true for
coarser topologies, e.g., any sequence that converges in the strong topology also
converges in the noisiness/weak- one.

Although the total variation topology is not natural, it can still be useful because
it is finer than the noisiness/weak-* topology.

Many interesting questions remain open: Are all natural topologies Hausdorff?
Can we find more topological properties that are common for all natural topologies?
Is there a coarsest natural topology? Is there a natural topology that is coarser than
the noisiness/weak-* one?

Finding meaningful measures on DMCE,?)* might be challenging. One might be

tempted to require that the measure of DMCS?)M
(0)

dimensional” whereas DMC}’, is “infinite dimensional”. On the other hand, if

DMCS?’)M has a zero measure for every n > 1, the whole space DMCES?* will have
a zero measure because it is a countable union of these subspaces. Nevertheless,
statements such as “the property X is true for almost all channels” can still make
sense. One possible definition of null-sets is as follows: for every set A in the natural

Borel g-algebra, we say that A is a null-set if and only if there exists ng > 1 such that
P, (Proj;l(A nDMCY) )) = 0 for every n > ng, where Proj,, is the projection

X,[n]
onto the RES)M
DMCy ) = (A[n])X . Another possible definition, which is weaker, is to say that A

is a null-set if and only if lim P, (Projgl(A N DMCS?)M)) =0.
n—oo )

should be zero because it is “finite

-equivalence classes and P, is the uniform probability measure on

13.2.2 Spaces of Input-Equivalent Channels

Since 7;(23), is a natural topology, it is not completely metrizable because of Corol-

lary 11.14 (assuming that |)| > 3). Therefore, the metric space (DMCS)J,,dS)y) is
not complete. In contrast with the case of output-equivalence?, the completion of
(DMCS)J,7 dg)y) does not represent the space of all input-equivalent channels with
output ’alphébet Y and arbitrary input alphabet (with arbitrary cardinality). It is
possible to show that the completion of (DMCS,)y, dgf)y) represents all the channels
W : X — Y for which co(W) := co{W, : x € X'}) is closed in Ay. Therefore,
not every channel with output alphabet ) can be approximated (in the similarity
metric sense) by a channel with finite input alphabet.

Is it possible to find a metric d on DMCii)y whose induced topology is natural,

and such that the completion of (DMCf)y, d) represents the space of input-equivalent
channels with output alphabet ) and arbitrary input-alphabet (with arbitrary car-
dinality)?

2See the discussion after the proof of Theorem 11.5.
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Some of the questions of Section 13.2.1 can also be asked for the spaces of
input-equivalent channels: Are all natural topologies Hausdorff? Can we find more
topological properties that are common for all natural topologies? Is there a coarsest
natural topology? Is there a natural topology that is coarser than the similarity one?

13.2.3 Space of Shannon-Equivalent Channels

From Remark 11.1, we can see that if Conjecture 11.1 is true, then 7;(? is not
completely metrizable. A natural question to ask is: What does the completion of
(DMC,(,fl, d,(ksl) represent?

Some of the questions of Section 13.2.1 can also be asked for the space of
Shannon-equivalent channels: Are all natural topologies Hausdorff? Can we find
more topological properties that are common for all natural topologies? Is there a
coarsest natural topology? Is there a natural topology that is coarser than the BRM
one?

13.3 Continuity of Channel Parameters and Operations

In Chapter 12, we studied the continuity of many channel parameters and operations
under various topologies on the space of output-equivalent channels, the space of
input-equivalent channels, and the space of Shannon-equivalent channels. As we
mentioned in the introduction, the continuity of channel parameters and operations
might be helpful in the following two problems:

1. If a parameter (such as the optimal probability of error of a given code) is
difficult to compute for a channel W, one can approximate it by computing
the same parameter for a sequence of channels (W,,),>0 that converges to W
in some topology where the parameter is continuous.

2. The study of robustness of a communication system against the imperfect
specification of the channel.

Many continuity-related problems remain open:

e The continuity of the channel sum and the channel product on the whole
product space (DMCE\ﬁ) . X DMCX2 *,T Ay @ T s, .). As we mentioned in

Section 12.3.2, it is sufficient to prove that the product topology T X1, *®7' X
is compactly generated.

e The continuity of the channel parameters C, P, ,, pr and P p in the similarity
topology 7;(3),

e The continuity of the channel sum and the channel product on the whole prod-

uct space (DMC( D% DMCil)yz, 7; ey ® T(* 3,)- As we explamed in Sectlon

12.4.2, it is sufﬁment to prove that the product topology ’T o ® T wy, 1
compactly generated.

e The continuity of the channel parameters C' and P, »s in the BRM topology
T,
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e The continuity of the channel sum and the channel product on the whole prod-
uct space (DMCSfl X DMCS)H 7;(‘;)*®7'5(i)*) As we explained in Section 12.5.2,
it is sufficient to prove that the product topology Ts(i)* ® ’7;(?* is compactly
generated.

e The continuity of the channel sum and the channel product in the BRM topol-
ogy.
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