

hEART 2017 - 6^{th} Symposium of the European Association for Research in Transportation

Pedestrian multi-class speed-density relationship: evaluation of integrated and sequential approach

Marija Nikolić, Michel Bierlaire, Iliya Markov, Romain Bondo

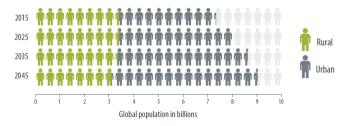
Haifa, September 12, 2017

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion


References

Urbanization

- 1950: **30%** of the population lives in cities
- 2014: 54% of the population lives in cities

Challenges

- Energy consumption, pollution, climate change
- Increased traffic and congestion

Source: UN World Urbanization Prospects: 2011 Revision

Pedestrian movements: Congestion

Motivation

- Modeling framework
- Application Two-stage approach Integrated approach
- Conclusion
- References

Research challenges

- Understand, describe and predict
- Optimization of current infrastructure and operations
- Efficient planning and management of future pedestrian facilities

Modeling framework

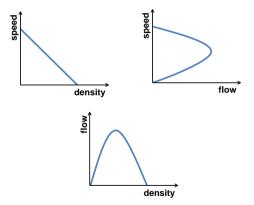
Application Two-stage

approach Integrated approach

Conclusion

References

Fundamentals


• Density k (ped/m²)

• Speed v (m/s)

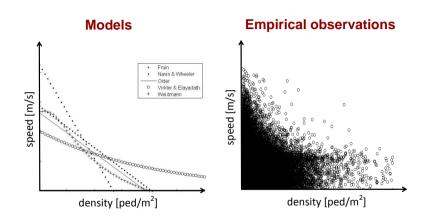
● Flow **q** (ped/m·s)

Quantities

Relationships

Daamen (2004), Duives et al. (2015)

Speed-density relationship


Motivation

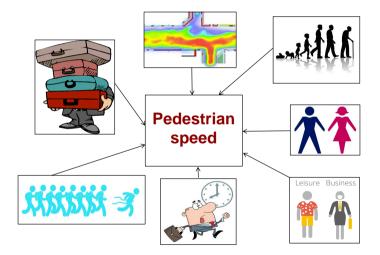
Modeling framework

Application Two-stage approach Integrated approach

Conclusior

References

Daamen (2004), Zhang (2012)


What affects the speed of pedestrians?

Motivation

Modeling framework

Application Two-stage approach

approach

Weidmann (1993), Daamen (2004)

Modeling framework

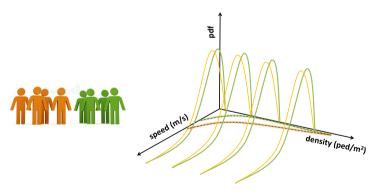
Application

Two-stage approach Integrated approach

Conclusion

References

Modeling framework


Objective: Accounting for pedestrian heterogeneity Approach: Probabilistic multi-class speed-density relationship

Modeling framework

- Application Two-stage approach Integrated approach
- Conclusion
- References

Assumptions

- Population is partitioned into classes
- The speed of pedestrians is a random variable
- The speed-density relationship varies across classes

Modeling framework

Application

Two-stage approach Integrated approach

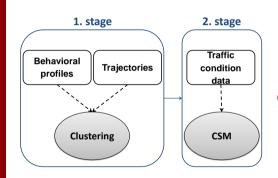
Conclusion

References

Model specifications

Probabilistic multi-class speed-density relationship

- Sequential (two-stage) approach
 - Population segmentation and movement behavior modeled sequentially


Integrated approach

• Population segmentation and movement behavior modeled simultaneously

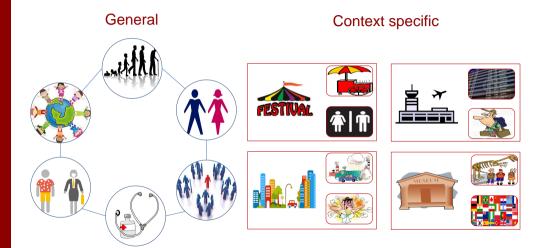
Modeling framework

- Application
- Two-stage approach Integrated approach
- Conclusion
- References

Sequential approach

Population segmentation: clustering

- Similarity measures: feature-based, shape-based
- Algorithm: K-means clustering

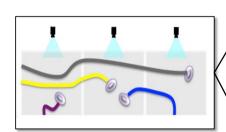

Class-specific model (CSM)

 Class-specific speed-density relationship: f_j(v_i|k_i, j; θ_j(k_i))

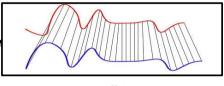
Feature-based clustering

Modeling framework

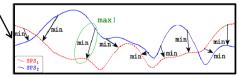
Two-stage approach Integrated approach



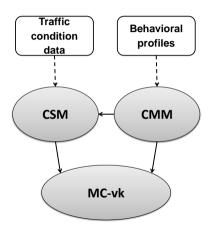
Shape-based clustering



Conclusior


Reference

Hausdorff distance



Integrated approach

Motivation

Modeling framework

- Application
- Two-stage approach Integrated approach
- Conclusior
- References

Population segmentation:

- Class membership model (CMM): Pr(j|X_i; β_j)
- Fitness function: $U_{i,j} = V_{i,j} + \varepsilon_{i,j} = CSC_j + \beta_j X_i + \varepsilon_{i,j}$

Class-specific model (CSM)

 Class-specific speed-density relationship: f_j(v_i|k_i, j; θ_j(k_i))

Multi-class speed-density (MC-vk)

$$\sum_{j=1}^{J} \underbrace{f_{j}(\mathbf{v}_{i}|k_{i},j;\theta_{j}(k_{i}))}_{\mathsf{CSM}} \underbrace{\mathsf{Pr}(j|X_{i};\beta_{j})}_{\mathsf{CMM}}$$

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

Application

Case study: Lausanne railway station

Motivation

Modeling framework

Application Two-stage

approach Integrated approach

Conclusion

References

Modeling framework

Application

Two-stage approach Integrated approach

Conclusior

References

Data sets

Pedestrian type Arriving Departing Transferring Non-passengers

Period Peak Walking pattern Time to departure Group

Off-peak Alone

16 / 33

OD distance

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

Two-stage approach

Clustering: Performance analysis

Motivation

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

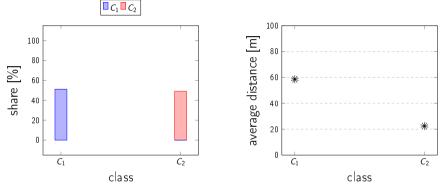
Clustering	R^2	СН	DI	DB	Score
	Feature-based				
Pedestrian type	433	1	3.23	5.83	443.06
Peak - Pedestrian type	515	58.1	3.77	1	578.33
OD distance	60.8	101	8.27	2.94	173 .01
Time spent	176	6.41	3.03	3.09	188.53
Shape-based					
DTW	1	52.2	42	69.3	164.5
HD	28.3	24.6	12.1	4.65	69.65

R²: R-squared, CH: Calinski-Harabasz, DI: Dunn index, DB: Davies-Bouldin

DTW: Dynamic time warping, HD: Hausdorff distance

Class profiling: OD distance

Motivation


Modeling framework

Application

Two-stage approach Integrated approach

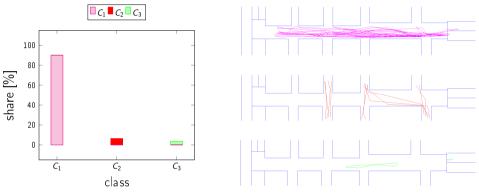
Conclusio

References

 C_1 : pedestrians walking longer distances C_2 : pedestrians walking shorter distances

Class profiling: HD

Motivation


Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

 C_1 : main stream C_2 : minor stream C_3 : incomplete trajectories

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

Class-specific model

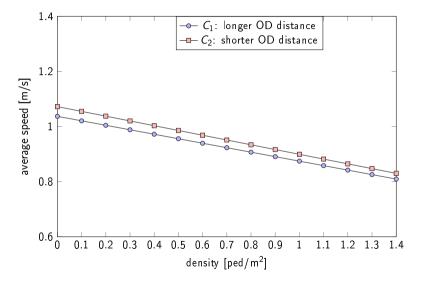
Rayleigh distribution

$$egin{aligned} f_j(m{v}_i|m{k}_i,j,\mu_j(m{k}_i)) &= rac{m{v}_i}{2\mu_j^2(m{k}_i)/\pi} \exp(-rac{m{v}_i^2}{4\mu_j^2(m{k}_i)/\pi}) \ \mu_j(m{k}_i) &= m{v}_{f,j} - \gamma_j m{k}_i \end{aligned}$$

Alternative specifications

- Weibull, Log-normal, Exponential
- Lower performance (BIC)

Class-specific behavior: OD distance


Modeling framework

Application

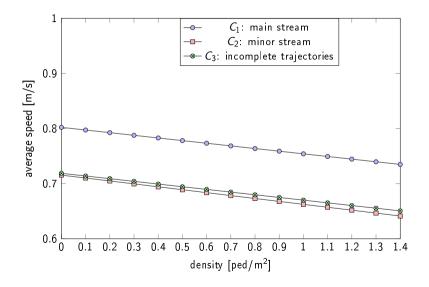
Two-stage approach Integrated approach

Conclusior

References

Class-specific behavior: HD

Motivation


Modeling framework

Application

Two-stage approach Integrated approach

Conclusior

References

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

Integrated approach

Modeling framework

Applicatio

Two-stage approach Integrated approach

Conclusion

References

MC-vk: Model specification

Two classes: class C_1 and class C_2

CMM: Logit model

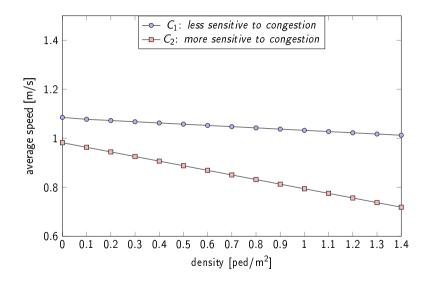
$$\Pr(j|X_i;\beta_j) = \frac{e^{V_{i,j}}}{\sum_{j=1}^2 e^{V_{i,j}}}$$

$$U_{i,j} = V_{i,j} + \varepsilon_{i,j} = CSC_j + \beta_j X_i + \varepsilon_{i,j}$$
$$V_{i,1} = CSC_1 + \beta_{DP,1}DP_i + \beta_{TP,1}TP_i + \beta_{NP,1}NP_i$$
$$V_{i,2} = \beta_{TTD,2}TTD_i + \beta_{PP,2}PP_i + \beta_{OD,2}OD_i$$

CSM: Rayleigh distribution

$$f_j(v_i|k_i, j, \mu_j(k_i)) = rac{v_i}{2\mu_j^2(k_i)/\pi} \exp(-rac{v_i^2}{4\mu_j^2(k_i)/\pi}) \ \mu_j(k_i) = v_{f,j} - \gamma_j k_i$$

Class-specific behavior



Modeling framework

Application Two-stage approach Integrated approach

Conclusior

References

Class profiling

TP

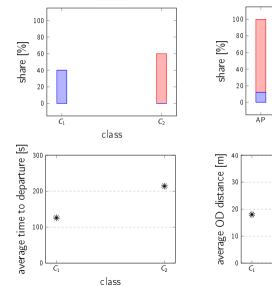
pedestrian type

class

NP

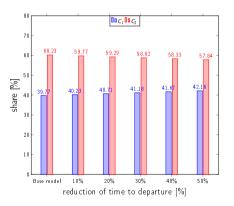
*

C,


DP

Two-stage approach Integrated approach

Conclusion


References

Scenario analysis: train timetable modification

- Motivation
- Modeling framework
- Application
- Two-stage approach Integrated approach
- Conclusion
- References

- Instrument for policy making and daily operations
- Impact of different scenarios on the movement behavior and LoS
- Augmentation by posterior analysis

Comparison of two-stage and integrated approach

Motivation

Modeling framework

Application Two-stage approach

Integrated approach

Conclusion

References

Cohesion: how closely related observations in a cluster are **Separation:** how distinct a cluster is from other clusters

Approach	Avg cohesion	Avg separation	Score
Integrated	0.242 (1)	0.258 (1.67)	2.67
Two-stage: HD	0.423 (1.75)	0.431 (1)	2.75
Two-stage: OD	0.242 (1)	0.243 (1.77)	2.77

Modeling framework

Application Two-stage approach Integrated approach

Conclusion

References

Conclusion

Modeling framework

Application Two-stage approach

Integrated approach

Conclusion

References

Main findings

- Probabilistic multi-class models for pedestrian movements
 - Account for population heterogeneity
 - Integrated and two-stage approach
 - Insightful, flexible and fairly general
- Two-stage approach
 - Shape-based clustering better suited to discover behavior of interest
 - Imprecise parameter estimates due to potentially small sample sizes
 - Segmentation may introduce errors in the second stage
- Integrated approach
 - Avoids measurement errors
 - Uses the behavior of interest to define segmentation
 - Suitable for forecasting analysis

Modeling framework

- Application Two-stage approach Integrated approach
- Conclusion

References

Future directions

- Additional criteria for the evaluation of the approaches
- Other feature-based and shape-based similarity measures
- Accounting for dynamics

Modeling framework

Application

Two-stage approach Integrated approach

Conclusion

References

Thank you

hEART 2017 - 6th Symposium of the European Association for Research in Transportation

Pedestrian multi-class speed-density relationship: evaluation of integrated and sequential approach

- marija.nikolic@epfl.ch

Modeling framework

Application Two-stage approach Integrated approach

Conclusion

References

References I

- Daamen, W. (2004). *Modelling passenger flows in public transport facilities*, PhD thesis, Delft University of Technology, Delft.
- Duives, D. C., Daamen, W. and Hoogendoorn, S. P. (2015). Quantification of the level of crowdedness for pedestrian movements, *Physica A: Statistical Mechanics and its Applications* **427**: 162–180.
- Weidmann, U. (1993). Transporttechnik der fussgänger, Technical Report Schriftenreihe des IVT Nr. 90, Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau, ETH Zürich. (In German).
- Zhang, J. (2012). Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries, PhD thesis, Forschungszentrum Jülich.