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Introduction

Problem description

Sensorized containers transmit level data to the server.

Level data is used for demand forecasting and tour planning
over a finite planning horizon.

Vehicles perform the resulting tours.

Solving this inventory routing problem involves

- deciding which containers to visit each day

- and optimizing the collection tours.
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Introduction

Daily tour structure

Figure 1: Basic vehicle tour
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Introduction

Information uncertainty

Information-wise, the problem is:

- stochastic due to uncertain demands with distributional information

- dynamic due to their periodic revelation

Thus, we can apply a rolling horizon approach:

1 solve the problem for the planning horizon

2 implement the first day decisions

3 roll over and solve for updated levels and forecasts

Solving the problem day by day in isolation leads to myopic decisions.
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Introduction

Related literature and contributions

Main approaches in the literature:

- stochastic programming, MDP (Pillac et al., 2013)

- approximate dynamic programming (Powell, 2011)

- robust optimization (Bertsimas and Sim, 2003, 2004)

- chance constraints (Gendreau et al., 2014)

Characteristics of our approach:

- unified approach with few distributional assumptions

- explicit modeling of undesirable events and recourse actions

- cost-oriented with priced risk

- applicable to rich real-world problems
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Capturing demand uncertainty

Demand forecasting

Sets

- K: set of vehicles

- T : set of days in the planning horizon

- P: set of containers p

Forecasting model

- stochastic non-stationary demand ρit for container i ∈ P on day t ∈ T :

ρit = E (ρit) + εit (1)

- combine εit in a vector:

ε =
(
ε11, . . . , ε1|T |, ε21, . . . , ε|P||T |

)
(2)

- let ε∼ Φ with var (ε) = K that can be simulated

- use any forecasting model that provides E(ρit) and Φ
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Capturing demand uncertainty

Inventory policy

Context

- Order-Up-to (OU) level policy (Bertazzi et al., 2002)

- Maximum Level (ML) policy (Archetti et al., 2011)

Discretized ML policy

- for tractable pre-processing of stochastic information

- Λit : inventory after collection of container i on day t

Discrete level 1

Discrete level 2

Discrete level 3

Figure 2: Discretized ML policy example
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Capturing demand uncertainty

Undesirable events

Container overflows

- σit = 1 for overflow of container i on day t, 0 otherwise

- entails an overflow cost

- recourse: emergency collection with a cost p

Route failures

- inability to complete a depot-to-dump or dump-to-dump trip S
- due to insufficient vehicle capacity

- recourse: detour to the nearest dump with a cost p
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Capturing demand uncertainty

Overflow probabilities

Overflow probability of container i on day t:

pDP
it = P (σit = 1 | Λim : m = max (0, g < t : ∃k ∈ K : yikg = 1)) (3)

where:

- yikg 1 if vehicle k visits container i on day g , 0 otherwise

For a discretized ML policy, expression (3) can be pre-computed
for ε∼ Φ with var (ε) = K using simulation.

The complexity is linear in the number of discrete levels.
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Capturing demand uncertainty

Route failure probabilities

Route failure probability of trip S performed by vehicle k :

pRF
S,k = P (ΓS > Ωk) (4)

where:

- ΓS collection quantity in trip S
- Ωk capacity of vehicle k

Can be partially pre-processed for any iid error terms εit .

Use simulation to derive an ECDF of the error of ΓS ,∀S,
the latter being sums of εit .

Use the ECDFs at runtime to approximate route failure probabilities.
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Optimization model
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Optimization model

Principal cost components, I

Routing cost

- daily deployment cost

- travel distance related cost

- travel, service and waiting time related cost
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Optimization model

Principal cost components, II

Expected overflow and emergency collection cost

∑
t∈T ∪T +

∑
i∈P

(
χ+ ζ − ζ

∑
k∈K

yikt

)
pDP
it (5)

where:

- χ overflow cost

- ζ emergency collection cost

Iliya Markov EPFL Framework for stochastic routing problems Sept 14, 2017 16 / 38



Optimization model

Principal cost components, III

Expected route failure cost

∑
t∈T \0

∑
k∈K

∑
S∈Skt

ψCSpRF
S,k (6)

where:

- Skt set ot trips performed by vehicle k on day t

- CS dump detour cost for trip S

- ψ route failure cost multiplier
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Optimization model

Objective function

Components:

- routing cost

- expected overflow and emergency collection cost

- expected route failure cost

- various deterministic cost components
(inventory holding, number of visits, workload balancing)

Overestimates the real cost:

- due to modeling simplifications

- for tractability reasons

- do-nothing vs. optimal reaction policy
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Optimization model

Deterministic constraints

accessibility restrictions

vehicle capacity and dump visits

time windows

maximum tour duration

periodicities and service choice

inventory tracking and container capacity

inventory policy definition

etc...
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Optimization model

Probabilistic constraints

Capture stochasticity in the constraints instead of the objective.

Maximum overflow probability, for a constant γDP ∈ (0, 1]:

pDP
it 6 γDP ∀t ∈ T , i ∈ P (7)

Maximum route failure probability, for a constant γRF ∈ (0, 1]:

pRF
S,k 6 γRF ∀t ∈ T , k ∈ K,S ∈ Skt (8)
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Optimization model

Applications

Stochastic demand problems

- vehicle routing

- waste collection inventory routing

- supermarket delivery routing

- fuel delivery routing

- home health care routing

- maritime inventory routing

Probability-based routing problems

- e.g. facility maintenance

- facility breakdown probability grows with number of days since last visit
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Methodology

Adaptive large neighborhood search

State-of-the-art meta-heuristic (Ropke and Pisinger, 2006a,b).

Rich operator pools:

- diversification vs. intensification

Admits intermediate infeasibilies.

Performance:

- competitive on benchmarks (Archetti et al., 2007)

- stable: 0-3% between best and worst over 10 runs

- fast: 10-15 min. per instance; operational speed
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Numerical experiments

Outline

1 Introduction

2 Capturing demand uncertainty

3 Optimization model

4 Methodology

5 Numerical experiments

6 Conclusion

Iliya Markov EPFL Framework for stochastic routing problems Sept 14, 2017 24 / 38



Numerical experiments

Waste collection case study

Waste collection IRP instances:

- 63 realistic instances from Geneva, Switzerland

- rich routing features

Compare probabilistic policies varying the:

- Emergency Collection Cost (ECC )

- Route Failure Cost Multiplier (RFCM)

Against buffer capacity deterministic policies varying the:

- Container Effective Capacity (CEC )

- Truck Effective Capacity (TEC )

Simulate undesirable events on final solution.
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Numerical experiments

Waste collection: Service area

Figure 3: Geneva service area
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Numerical experiments

Waste collection: Policy comparison

Figure 4: Routing cost and overflows for probabilistic and deterministic policies
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Numerical experiments

Waste collection: Rolling horizon

Static Deterministic IRP (SD-IRP):

- true demands; solve for planning horizon

Static Stochastic IRP (SS-IRP):

- forecast demands; solve for planning horizon

Dynamic and Stochastic IRP (DSIRP):

- forecast demands; rolling horizon approach over planning horizon

Hypothesize:

- z(SS-IRP) > z(DSIRP) > z(SD-IRP)
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Numerical experiments

Waste collection: Rolling horizon

Figure 5: Analysis of rolling horizon bounds
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The rolling horizon approach is beneficial.
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Numerical experiments

Waste collection: Impact of ECDFs

Numerical approximation vs. ECDFs for route failure probabilities:

- 100 bins: squared error of 10−6

- 1000 bins: squared error of 10−7

Figure 6: Runtimes of different configurations
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Numerical experiments

Waste collection: Objective overestimation

Figure 7: Objective function’s overestimation of the real cost
for ECC = 100 CHF, RFCM = 1
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Numerical experiments

Facility maintenance case study

Instances:

- 93 instances derived partially from real data

- rich routing features

Compare probabilistic policies varying the:

- Emergency Repair Cost (ERC )

- maximum breakdown probability (gamma)

Against deterministic policies varying the:

- minimum number of required visits (nu)

Simulate undesirable events on final solution.
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Numerical experiments

Facility maintenance: Policy comparison

Figure 8: Routing cost and breakdowns for probabilistic objective
vs. probabilistic constraints model
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Numerical experiments

Facility maintenance: Policy comparison

Figure 9: Probabilistic vs. deterministic policies

             (a) Breakdowns at 99th percentile
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Conclusion

Conclusions

Applicable to various rich practically relevant problems.

Explicit modeling of undesirable events, recourse actions, and costs.

Few distributional assumptions.

Negligible deviation of modeled from real cost.

Efficient and competitive solution methodology.

Tractability through the ability to pre-process.

Clear-cut superiority of stochastic (rolling horizon) approach.
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Conclusion

Future research

More tests on real-world benchmarks.

Additional rich routing features.

Additional stochastic parameters.

Online re-optimization.

Richer objective: modeling realism vs. tractability.

Column generation for lower bounds.
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Conclusion

Thank you
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Appendix

Figure 10: Container state probability tree
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