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Abstract: The incorporation of N,N′-dimethylethylenediamine into an expanded MOF-74 

framework has yielded a material (mmen-Mg2(dobpdc)) exhibiting “step-shaped” CO2 adsorption 

isotherms. The coordination of mmen at the Mg open metal center is essential for the unique 

cooperative adsorption mechanism elucidated for this material. Despite its importance for carbon 

capture, there is as yet no experimental structure determination available for the underlying metal–

organic framework Mg2(dobpdc). Our 25Mg solid-state NMR data unravel the local Mg 

environments in several Mg2(dobpdc) samples, unambiguously confirming the formation of five-

coordinate Mg centers in the activated material and six-coordinate Mg centers in the solvent- or 

diamine-loaded samples, such as mmen-Mg2(dobpdc). A fraction of Mg centers is local disordered 

due to the framework deformation accompanied by the guest distributions and dynamics. 
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Introduction 

Climate change arising from increasing atmospheric CO2 levels has become a global 

concern.1,2 Capturing CO2 from the flue gas of fossil fuel-fired power plants has therefore attracted 

considerable attention in recent years.3-6 Numerous materials have been developed for removal of 

CO2 from flue gas streams, including zeolites,7 metal–organic frameworks (MOFs),8 covalent 

organic frameworks,9 and many others.6 Particular attention has been paid to MOFs with 

coordinatively-unsaturated metal centers such as MOF-74, because they can exhibit a large CO2 

uptake and a high selectivity due to the strong interaction between metal and CO2.10-13 The recent 

incorporation of mmen (N,N′-dimethylethylenediamine) into an expanded MOF-74 framework 

yielded the material mmen-Mg2(dobpdc) (dobpdc4– = 4,4′-dioxido-3,3′-biphenyldicarboxylate) 

exhibiting “step-shaped” CO2 adsorption isotherms that facilitate temperature- or pressure-swing 

adsorption processes.14 The coordination of mmen at the Mg centers exposed on the surface of the 

MOF channels is essential for the proposed adsorption mechanism.14,15 Despite the importance of 

mmen-Mg2(dobpdc) as a carbon capture material, however, there is no experimentally determined 

structure for the underlying Mg2(dobpdc) MOF, owing to the lack of suitable single crystals and 

the poor resolution of powder diffraction data obtained thus far. Instead, the structure of 

Mg2(dobpdc) has been elucidated on the basis of the similarity between its powder X-ray 

diffraction (XRD) pattern and those of its more crystalline analogues, such as Mn2(dobpdc),14 or 

through density functional theory (DFT) calculations.15 It is noteworthy that even the structure of 

mmen-Mn2(dobpdc) solved from the low temperature single-crystal XRD data is inaccurate, e.g., 

yielding abnormally long (> 2 Å) N–H bonds. We are thus motivated to investigate experimentally 

the structures of the activated Mg2(dobpdc) and the solvent- or mmen-loaded samples utilizing 25Mg 
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solid-state NMR (SSNMR) spectroscopy, with the ultimate intent of discerning the local Mg 

environments after activation and guest inclusion. 

 

Figure 1. Space-filling models of calculated structures15 of the activated (a) and mmen-loaded 

Mg2(dobpdc) (mmen : Mg = 6 : 6) (b). Ball-and-stick models of the proposed five- (c) and six-

coordinate (d) Mg centers. 

Figure 1 illustrates calculated structures of the activated and mmen-loaded Mg2(dobpdc).15 

The framework of Mg2(dobpdc) consists of interconnecting helical chains of edge-shared MgO5 

units, forming one-dimensional honeycomb channels. These calculations suggest that the local Mg 

environment changes from five-coordinate in the activated sample to six-coordinate when loaded 

with guest molecules such as mmen. 25Mg SSNMR spectroscopy is capable of identifying these 

Mg coordination environments, because the interaction between the nuclear quadrupole moment 

of 25Mg (spin I = 5/2) and the local electric field gradient (EFG) is highly sensitive to the spatial 

arrangement of neighboring atoms around the 25Mg nucleus.16-27 Moreover, 25Mg SSNMR 

spectroscopy can probe the local disorder around Mg centers which are unavailable in diffraction-

a) b)
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based techniques such as XRD. A previous 25Mg SSNMR study examined several samples of Mg-

MOF-74, also known as Mg2(dobdc) (dobdc4− = 1,4-dioxido-2,5-benzenedicarboxylate), and 

revealed that the perfect ordering of local Mg environments only exists in water-rich samples, 

while a local disorder of Mg environments persists in the activated material and most of its guest-

loaded forms.28 

Herein we analyze 25Mg SSNMR data collected at a high magnetic field of 20.0 T, thereby 

exploring the local Mg environment in the activated Mg2(dobpdc) and the solvent- or mmen-loaded 

samples. The results confirm the formation of five-coordinate Mg centers after activation, as well 

as identify six-coordinate Mg centers in the guest-loaded samples. Under conditions of fast magic-

angle sample spinning, we further probed the nature of local disorder at Mg centers and concluded 

that the NMR-observed local disorder is due to the guest distributions and dynamics, as supported 

by DFT calculations and molecular dynamics (MD) simulations. 

Experimental and Theoretical Methods 

Sample Preparation. The 25MgO (99.2 atom %, purchased from Cortecnet) was dissolved 

in excess dilute nitric acid. The resulting 25Mg(NO3)2 solution was concentrated at 363 K and then 

crystallized in an ice bath. The precipitated crystals were purified by recrystallization. The DMF-

loaded 25Mg2(dobpdc) was synthesized exactly as described previously using the obtained 25Mg-

enriched 25Mg(NO3)2 crystals and then stored in DMF.29 The CH3OH-loaded 25Mg2(dobpdc) was 

prepared by soaking the DMF-loaded 25Mg2(dobpdc) in fresh methanol and then discarding the 

liquid, repeated three times. The activated 25Mg-enriched sample was prepared by evacuating the 

CH3OH-loaded sample under dynamic vacuum at 523 K for ~ 12 hours. The preparation of the 

mmen-25Mg2(dobpdc) involved adding mmen solution (in toluene) to the activated 25Mg2(dobpdc) in 
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an argon glove bag and filtering this mixture after 2 days. The mmen-25Mg2(dobpdc) was then 

heated under dynamic vacuum at 373 K for 4 hours to remove the residual toluene. The H2O-loaded 

25Mg2(dobpdc) was prepared by soaking the activated 25Mg2(dobpdc) in H2O for 12 hours and then 

collecting the solid. The activated and mmen-loaded 25Mg2(dobpdc) were packed into NMR rotors 

in a glove box. The preparation of natural abundance Mg2(dobpdc) samples was similar to that of 

the 25Mg-enriched samples but used natural abundance starting materials. 

Powder X-Ray Diffraction. Diffraction data were collected with 0.02° steps from 2° to 50° 

using a Bruker AXS D8 Advance diffractometer equipped with Cu−Kα radiation (λ = 1.5418 Å), 

a Göbel mirror, a Lynxeye linear position-sensitive director, and mounting the following optics: 

fixed divergence slit (0.6 mm), receiving slit (3 mm), and secondary beam Soller slits (2.5°). The 

generator was set at 40 kV and 40 mA. Powder XRD patterns (Figure S1) verify the purity and 

integrity of 25Mg2(dobpdc) samples. 

Solid-State NMR Spectroscopy. Static 25Mg SSNMR experiments were performed at 20.0 T 

(850 MHz for proton) on an Agilent VNMRS spectrometer at the Environmental Molecular 

Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), using a 4 mm MAS 

probe (double tuned to 1H/25Mg). Both 90°–τ–180° echo and quadrupolar Carr-Purcell-Meiboom-

Gill (QCPMG) experiments were performed.30,31 The spike separation in QCPMG experiments was 

1 kHz. A 25Mg 90° pulse of 6 μs was measured using saturated MgCl2(aq), corresponding to a 

selective 90° pulse of 2 μs for solid samples. A Double Frequency Sweep (DFS) sequence was 

integrated into both echo and QCPMG sequences to enhance the signal sensitivity.32 The DFS 

parameters were optimized using a 25Mg(HCOO)2· 2H2O sample. The recycle delays were between 

10 s and 20 s. Two-Pulse Phase-Modulated (TPPM) 1H decoupling scheme was used in static 25Mg 

SSNMR experiments.33 The 1H decoupling field strength is approximately 40 kHz. 
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Magic-angle spinning (MAS) 25Mg SSNMR experiments were performed at 20.0 T (850 

MHz for proton) on an Agilent VNMRS spectrometer at Radboud University, the Netherlands, 

using either a 1.6 mm MAS probe (double tuned to 1H/25Mg) or a 1.2 mm MAS probe (double tuned 

to 1H/25Mg). Rotor-synchronized 30°–τ–180° echo experiments were performed under 37.5 kHz 

MAS. A short flip angle of 30° was used to accelerate the relaxation of 25Mg. The refocusing pulse 

was still 180° for maximum signal. The 25Mg 90° pulse was found using saturated MgCl2(aq), 

corresponding to a RF field strength of 40 kHz. A Sideband-selective Double Frequency Sweep 

(ssDFS) sequence was integrated into the echo sequence to enhance the signal sensitivity.34,35 The 

ssDFS parameters were optimized using the DMF-loaded sample. A recycle delay of 0.3 s was 

used for all samples. Other delay times including 0.1, 0.5, 0.6, 1 and 10 s were used for selected 

samples to illustrate the effects of slow relaxation for the perfectly ordered Mg centers. 

25Mg chemical shifts were referenced to saturated MgCl2(aq) at 0 ppm. Simulations of 25Mg 

SSNMR spectra were performed using the dmfit program.36 A Czjzek distribution was used to 

simulate the line shape of disordered Mg.37,38 Magneium-25 SSNMR parameters were first adjusted 

by observations and then fine-tuned using the auto-fit function of the dmfit program. The errors 

were estimated by varying the optimum parameters until noticeable change was identified. 

 

Figure 2. Ball-and-stick models of clusters for DFT calculations: the five-coordinate (a) and six-

coordinate (b) Mg centers. 

a) b)
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Theoretical Calculations. Ab initio density functional theory (DFT) calculations were 

performed using the NorthWest computational Chemistry (NWChem, version 6.5) software 

package,39 which is developed at the EMSL in PNNL, running on the Cascade cluster in EMSL. 

Magneium-25 isotropic chemical shielding (siso), quadrupolar coupling constant (CQ), and 

asymmetry parameter (ηQ) were calculated at B3LYP/6-31+G* level using the GIAO method. The 

periodic structures of the activated and mmen-loaded Mg2(dobpdc) were taken from the literature 

(Figure S2), which in turn are calculated under periodic boundary conditions.15 The space group 

was set to P1 in their calculations, yielding 6 non-equivalent Mg sites instead of 1 in the proposed 

space group P3221. As a result, two mmen-loaded Mg2(dobpdc) structures were calculated: one 

with all 6 Mg sites covered by mmen and the other with only 1 Mg site (i.e., Mg3) covered by 

mmen. The model clusters used in NMR calculations were truncated from the above-mentioned 

periodic structures and terminated with H atoms, which contain three Mg centers and six half-

ligands (Figure 2). Calculated NMR parameters, including siso, VZZ, and ηQ, were directly read 

from NMChem output files. The CQ values were calculated using #$ = ('()**)/ℎ, where e is the 

electric charge and h is the Planck’s constant. Calculated siso values were converted to calculated 

chemical shift (diso) values using the following equation: diso = 613.2 − siso (in ppm), where 613.2 

ppm is the calculated siso value of Mg(H2O)6
2+ at B3LYP/6-31+G* level. The geometry of 

Mg(H2O)6
2+ was optimized at MP2/6-31+G* level prior to NMR calculations. The results are 

shown in Table S1. 

Molecular Dynamics (MD) simulations of the mmen-Mg2(dobpdc) were performed using 

LAMMPS molecular dynamics package (28 June 2014 version)40 on the Edison cluster of the 

Department of Energy National Energy Research Scientific Computing Center (NERSC). NPT 

simulations were run in a triclinic box with periodic boundary conditions and an anisotropic 
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Parrinello-Rahman barostat, using a timestep of 0.25 fs and a unit cell (taken from the structure in 

the literature15, mmen : Mg = 6 : 6) replicated 2 times in the a and b directions and 4 times in the 

c direction, corresponding to N = 3072 atoms. The simulations used the ReaxFF method introduced 

in 2001 by van Duin41 via the user supplied ReaxFF package.42 Force field parameters for N/C/O/H 

were taken from those parameterized for CuBTC43 and parameters for Mg from a set fit to MgH44 

systems. 

Results and Discussion 

 

Figure 3. Experimental static 25Mg SSNMR spectra of natural abundance Mg2(dobpdc) samples. 

The recycle delays were between 10 and 20 s. 

Static 25Mg SSNMR spectra of natural abundance Mg2(dobpdc) samples were recorded first 

and shown in Figure 3. Acquisition of these 25Mg SSNMR data are challenging, owing to the 

relatively large quadrupole moment, small gyromagnetic ratio, and low natural abundance (10.0%) 
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of 25Mg. These unfavorable nuclear properties result in low sensitivity and broad resonances. This 

situation is exacerbated by 25Mg concentrations of only 0.21 25Mg per nm3 in Mg2(dobpdc) as 

compared for example to 5.3 for MgO. We addressed these problems by performing SSNMR 

experiments at high magnetic field19-28 and using the double frequency sweep (DFS) technique to 

enhance the sensitivity,34,45 though the quality of the echo spectra are still very poor. The 

Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) method has been extensively used to acquire 

the spectrum of insensitive quadrupolar nucleus.17-26,28,30,46-48 Using the QCPMG method, the overall 

signal intensity is allocated into sharp spikelets, gaining a boost in signal-to-noise (S/N) ratio at 

the expense of spectral resolution. The manifold of spikelets resembles the conventional powder 

pattern observed in the echo experiments. The static QCPMG spectra of the natural abundance 

Mg2(dobpdc) samples, strikingly, all look similar, inconsistent with the proposed (and calculated) 

large difference of the five-coordinate Mg in the activated sample compared to the six-coordinate 

Mg in the guest-loaded samples. However, it is known that the broad and weak NMR signals can 

become “invisible” when the spectral quality is poor, suggesting that an increase in signal (by 25Mg 

enrichment) would prove benefical.24,49 
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Figure 4. Experimental (black profile) and simulated (red profile) static 25Mg SSNMR spectra of 

various 25Mg2(dobpdc) samples. The recycle delays were between 10 and 20 s. The simulated 

spectrum is a summation of powder patterns of the perfectly ordered Mg centers (the blue profile) 

and the local disordered Mg centers (the purple profile). 

25Mg-enriched (99.2% 25Mg) Mg2(dobpdc) samples were then prepared, with their static 25Mg 

spectra (Figure 4) collected using the same SSNMR methods. After 25Mg-enrichment the quality 

of the echo spectra are sufficient and thus these spectra were selected for data interpretation. 

Although the S/N of the QCPMG spectra is higher, they do not exhibit many spectral features and 
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the baseline is also distorted due to the discard of the first half-echo of the fid.48 The spectrum of 

the DMF-loaded sample shows a second-order quadrupolar powder pattern typical of ordered 

systems, yet with powder pattern discontinuities that are considerably broadened. This broadening 

becomes more prominent in the spectra of the water- and mmen-loaded samples, yielding 

featureless and asymmetric powder patterns that are characteristic of Mg centers with significant 

local disorder. The spectra of three guest-loaded samples spread over a similar frequency range of 

approximately 20 to –30 kHz (Figure 4). The spectrum of the activated sample, however, looks 

quite different, exhibiting an even larger span of 40 to –60 kHz. The effect of chemical shift 

anisotropy (CSA) is negligible in all samples.  

The line shape of the 25Mg SSNMR powder pattern is dominated by the interaction between 

the 25Mg quadrupole moment and the local electric field gradient (EFG). Two EFG parameters are 

typically reported to describe this interaction: the quadrupolar coupling constant CQ and the 

asymmetry parameter ηQ. The CQ value controls the width of the NMR pattern and is related to the 

spherical symmetry of the local ground-state electron distribution. A larger CQ value corresponds 

to a more distorted local Mg environment away from the perfect spherical symmetry. The ηQ value 

provides a measure of the axial symmetry of this distribution. The doubling of the activated 25Mg 

spectral width vis-à-vis those of the guest-loaded samples unambiguously indicates a lower 

spherical symmetry at Mg centers, consistent with a change from a six-coordinate geometry in the 

guest-loaded samples to a five-coordinate geometry in the activated sample. The powder pattern 

discontinuities associated with the activated sample appear to be typical of a second-order 

quadrupolar pattern, yet our spectral simulations suggest these features may also be associated 

with local disorder at Mg centers. In order to probe the nature of this disorder further, we employed 
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relaxation-edited NMR data acquisition as well as magic-angle spinning (MAS) for resolution 

enhancement. 

 

Figure 5. Experimental (black profile) and simulated (red profile) 37.5 kHz MAS solid echo 25Mg 

SSNMR spectra of various 25Mg2(dobpdc) samples. The recycle delay was 0.3 s. 

Interpretation of 25Mg SSNMR spectra are often challenging due to the narrow 25Mg 

chemical shift range for Mg oxyanion compounds (~ ± 20 ppm).22,23 Because the resolution of static 

SSNMR spectra is often insufficient to resolve multiple Mg sites,27 magic-angle spinning (MAS) 

techniques are employed to narrow the powder pattern width to about 1/3 to 1/4 of the static 

powder pattern width. The method requires, however, a high spinning rate to separate spinning 

sidebands from the center peak. The data in Figure 4 suggest that a spinning rate of greater than 
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30 kHz is desirable for MAS experiment of the activated Mg2(dobpdc), which we subsequently 

achieved using 1.6 mm or 1.2 mm rotors (37.5 kHz spinning rate). The resulting MAS 25Mg solid 

echo spectra for Mg2(dobpdc) samples at a short recycle delay of 0.3 s are shown in Figure 5. 

 The MAS spectra of the guest-loaded Mg2(dobpdc) samples exhibit almost identical line 

shapes, consisting of a narrow asymmetric pattern with a long tail on the low-frequency side. The 

spectrum of the activated sample shows a similar but significantly broader pattern, consistent with 

the change in the local spherical symmetry at Mg centers that was observed in the static SSNMR 

experiments. The observed MAS line shapes are typical of powder patterns for Mg centers with 

local disorder, i.e., the characteristic powder pattern discontinuities of ordered systems are not 

present. Such observations indicate that our Mg2(dobpdc) samples likely consist of Mg centers 

with both perfectly ordered and local disordered environments, and the spin-lattice relaxation of 

the Mg centers with local disorder must be more efficient than the perfectly ordered Mg centers. 

The spin-lattice relaxation of 25Mg in solids is usually governed by the strong quadrupolar coupling 

interaction between the nucleus and the local EFG, which can be effectively accelerated if the local 

EFG is fluctuated by the thermal motions within the MOF.50 The details of such motions and their 

consequence to the local disorder at Mg centers will be discussed later. Shortening the recycle 

delays under MAS, then, edits the spectra to favor the Mg centers with local disorder. On the basis 

of the trend of intensity change for both environments, we estimate that the MAS data shown in 

Figure 5 have less than 6% contribution from the ordered Mg environments if a simplified mono-

exponential spin-lattice relaxation behavior is used (Figure S3–S5). This relaxation-edited strategy 

affords a spectral simulation of the MAS data (Figure 5). 

The observed line shapes of MAS spectra can be simulated utilizing the Czjzek distribution 

of 25Mg EFG parameters.36-38 In this scheme, the distribution of EFG parameters is described by two 
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factors: d relates to the number of independent random components of the EFG tensor and CQ 

represents the average quadrupolar coupling. A random distribution has a d of 5 while a decreased 

value of d reflects local geometrical constraints. More details of the Czjzek distribution are shown 

in Supporting Information. Simulated MAS spectra are shown in Figure 5 and the d and CQ values 

for each sample are listed in Table 1. Using the parameters extracted from the MAS experiments, 

we are able to simulate static spectra as a summation of powder patterns of the local disordered 

Mg centers and the perfectly ordered Mg centers. These simulation results are shown in Figure 4 

and Table 1. It should be mentioned that the relative area between the two Mg local environments 

obtained in static experiments is only semi-quantitative: firstly, it is unclear if the 10–20 s recycle 

delays are sufficient for the spin-lattice relaxation of perfectly ordered Mg centers; secondly, it is 

assumed that the structures of local disordered Mg centers do not change under static and MAS 

conditions. 

Table 1. Experimental 25Mg NMR Parameters. 

Sample Site d δiso (ppm) CQ (MHz) ηQ Area (%) 

DMF Disordered 3 2 4.8  23 

 Ordered  2 ± 2 5.6 ± 0.1 0.40 ± 0.05 77 

H2O Disordered 5 2 5.0  36 

 Ordered  2 ± 2 6.0 ± 0.1 0.50 ± 0.05 64 

CH3OH Disordered 5 2 4.9   

mmen Disordered 5 1 4.8  45 

 Ordered  1 ± 2 6.3 ± 0.1 0.60 ± 0.05 55 

Activated Disordered 5 9 9.7  22 

 Ordered  9 ± 3 8.5 ± 0.2 0.70 ± 0.10 78 
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The perfectly ordered Mg centers in the guest-loaded samples exhibit CQ values between 

5.6 and 6.3 MHz and ηQ values between 0.4 and 0.6, both of which are comparable to the parameters 

obtained for the perfectly ordered six-coordinate Mg site in the hydrated Mg2(dobdc).28 In contrast, 

a larger CQ value of 8.5 MHz is observed for the perfectly ordered Mg centers in the activated 

sample, consistent with the more spherically distorted five-coordinate Mg environment.18 This 

assignment is also confirmed by density functional theory (DFT) calculations which yield a CQ 

value of 10.4 MHz for the five-coordinate Mg centers in the activated sample and a CQ value 

between 4.9 and 8.8 MHz for the six-coordinate Mg centers in the mmen-loaded samples. The 

significantly higher experimental chemical shift (7–8 ppm) for the five-coordinate Mg centers 

agrees well with the increase of the calculated chemical shift (11 ppm) when going from the mmen-

loaded samples to the activated sample (Table S1). The average CQ value of local disordered Mg 

centers in the activated sample (9.7 MHz) is also significantly larger than those in the guest-loaded 

samples (4.8–5.0 MHz). In summary, the spectra of all the guest-loaded forms are similar as a 

result of 6-coordinate Mg while the spectrum of the activated form is distinct due to 5-coordinate 

Mg. 

The static and MAS 25Mg SSNMR data allow us to develop a more detailed understanding 

of the MOF structure. The perfectly ordered Mg centers exhibit a single second-order quadrupolar 

powder pattern for all Mg2(dobpdc) samples, suggesting they belong to the same crystallographic 

Mg site. However, a portion of Mg centers that belong to this crystallographic Mg site experience 

significant local disorder, yielding a distribution of quadrupolar coupling interactions and the 

featureless and asymmetric line shape. The average quadrupolar coupling of local disordered Mg 

centers, described by the CQ value shown in the Czjzek distribution, is close to the CQ value of the 

perfect ordered Mg centers. The observation of a single powder pattern for perfectly ordered Mg 
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centers agrees well with the proposed trigonal space group P3121 (No. 152) as its more crystalline 

analog Mn2(dobpdc). The DFT-calculated structures, however, have a space group of P1 (No. 1, a 

subgroup of P3121) with six crystallographically distinct Mg sites.15 The reduction of crystal 

symmetry results from the fact that there is no disorder allowed for both framework and guest 

molecules when conducting DFT calculations. The structure of the activated sample was also 

calculated as P1 for comparison purposes, yet its geometry is very close to the P3121 structure. The 

similarity between the experimental and calculated CQ values of both the activated sample (8.5 vs. 

10.4 MHz) and the mmen-loaded sample (6.3 vs. 7.4 MHz) indicates that the actual geometry of 

the Mg coordination sphere is close to the calculated geometry, which is a square pyramid for the 

activated sample and a distorted octahedron for the mmen-loaded sample. 

 

Figure 6. The dobpdc4– linker viewed perpendicular (a) or parallel (b) to the channels. Schematic 

illustration of the channels of various Mg2(dobpdc) samples (c). The green circles represent the 

Mg2+ helix, while the bent solid lines represent the dobpdc4– linkers. The distortion degree of the 

MOF channels is exaggerated to illustrate the framework deformation. 

c)
mmen:Mg = 6:6mmen:Mg = 1:6Activated

C1
C1′

a) b)
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The flexibility of dobpdc4– linkers plays a critical role in the local disorder of Mg centers 

for various Mg2(dobpdc) samples. As Figure 6 shows, the dobpdc4– linker has an internal rotational 

degree of freedom along the C1–C1′ bond. As a result, the two rings of its biphenyl unit are 

typically not co-planar, inducing an apparent “bending” of the dobpdc4– linker if viewed along the 

channels. DFT calculations indicate the degree of “bending” varies in different Mg2(dobpdc) 

samples (e.g., the activated sample and the mmen-loaded samples with different mmen loading 

levels), inducing different distortion degrees for the channels (Figure 6c and S2).15 A recent paper 

also predicts the framework deformation for a MOF with the same topology but longer linkers 

(five benzene rings) induced by adsorbed Ar.51 The heterogeneous distribution of guest molecules 

can therefore yield a distribution of distortion degrees for different channels as well as the local 

disorder at Mg centers. Molecular dynamic (MD) simulations (Figure 7 and the movie in 

Supporting Information) reveal that the mmen molecules are moving within the MOF channels. 

The dynamic framework deformation associated with the diamine motions makes local Mg 

environments more disordered and generates a fluctuating local EFG around 25Mg nucleus, 

efficiently accelerating the spin-lattice relaxation of 25Mg. The motions of other guest molecules 

such as DMF, methanol, and H2O, should have similar consequences. Taken together, the MD and 

DFT calculations validate that such framework deformation can lead to large distributions in the 

25Mg NMR parameters (Table S2). 
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Figure 7. Snapshots of MD simulations for mmen-Mg2(dobpdc) (mmen : Mg = 6 : 6) as a function 

of evolution time. Green, grey, red, blue and white spheres represent Mg, C, O, N and H atoms, 

respectively. 

The DMF-loaded Mg2(dobpdc) was crystallized directly from the reaction mixture thus the 

distribution of DMF within the MOF channels is relatively homogenous, giving rise to the highest 

crystallinity, consistent with the observed small fraction of local disordered Mg centers. The 

activated form was prepared by heating the methanol-exchanged sample under dynamic vacuum. 

Disorder in the local Mg environment increases due to the non-uniform release of the methanol 

molecules that bind to the Mg sites, which causes the internal rotational degree of the dobpdc4– 

linker to vary from site to site during the activation process. In principle, the activation-induced 

disorder should eventually recover to the perfectly ordered state (i.e., global energy minimum). 

However, the reorganization of the local environment of a Mg center requires the simultaneous 

reformation of the local environments of many other Mg centers in this MOF. As a result these 

disordered regions are likely to stay at the local energy minima even after the activation process. 
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The fraction of Mg centers with local disorder increases significantly in the H2O- or mmen-loaded 

samples because they were prepared by soaking the activated form of Mg2(dobpdc) in H2O or 

mmen solution (in toluene). The distribution of H2O or mmen within the channels is therefore not 

as homogeneous as DMF, confirmed by the larger fraction of locally disordered Mg centers in the 

former samples. An extended 15N SSNMR study is currently underway in our laboratory to try to 

understand the relationship of mmen and other diamine adsorbate molecular dynamics to the 

framework deformation. 

Conclusions 

In the current work, 25Mg SSNMR spectra have uncovered the local Mg environments 

within variants of the MOF Mg2(dobpdc) and unambiguously probed the conversion between five-

coordinate Mg in the activated sample and six-coordinate Mg in the solvent- or diamine-loaded 

samples. Decent agreement between experiment and DFT calculations confirms the types of Mg 

coordination environments. NMR results also show that the local environments of a significant 

amount of Mg centers are disordered. MD and DFT calculations indicate the local disorder is due 

to the framework deformation accompanied by the guest distributions and dynamics.  
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