ON HARDY AND CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

HOAI-MINH NGUYEN AND MARCO SQUASSINA

Abstract

We establish improved versions of the Hardy and Caffarelli-Kohn-Nirenberg inequalities by replacing the standard Dirichlet energy with some nonlocal nonconvex functionals which have been involved in estimates for the topological degree of continuous maps from a sphere into itself and characterizations of Sobolev spaces.

Contents

1.	Introduction	1
2.	Improved Hardy's inequality	6
3.	Improved Caffarelli-Kohn-Nirenberg's inequality	10
4. Results in bounded domains	18	
References	19	

1. Introduction

In many branches of mathematical physics, harmonic and stochastic analysis, the classical Hardy inequality plays a central role. It states that, if $1 \leq p<d$,

$$
\left(\frac{d-p}{p}\right)^{p} \int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{p}} d x \leq \int_{\mathbb{R}^{d}}|\nabla u|^{p} d x
$$

for every $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ with optimal constant which, contrary to the Sobolev inequality, is never attained. Another class of relevant inequalities is given by the so called Caffarelli-Kohn-Nirenberg inequalities $[14,15]$. Precisely, let $p \geq 1, q \geq 1, \tau>0,0<a \leq 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that

$$
\begin{gather*}
\frac{1}{\tau}+\frac{\gamma}{d}, \quad \frac{1}{p}+\frac{\alpha}{d}, \quad \frac{1}{q}+\frac{\beta}{d}>0 \tag{1.1}\\
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right)
\end{gather*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
0 \leq \alpha-\sigma
$$

and

$$
\alpha-\sigma \leq 1 \quad \text { if } \quad \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-1}{d} .
$$

Then, for every $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$,

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d}\right)} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

for some positive constant C independent of u. This inequality has been an object of a large amount of improvement and extensions to more general frameworks.

[^0]In the non-local case, it was shown in $[18,19]$ that there exists $C>0$, independent of $0<\delta<1$, such that

$$
\begin{equation*}
C \int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p \delta}} d x \leq J_{\delta}(u) \tag{1.2}
\end{equation*}
$$

for all $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, where

$$
J_{\delta}(u):=(1-\delta) \iint_{\mathbb{R}^{2 d}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+p \delta}} d x d y
$$

In light of the results of Bourgain, Brezis, and Mironescu [3, 4] and an refinement of Davila [17], it holds

$$
\lim _{\delta \searrow 0} J_{\delta}(u)=K_{d, p} \int_{\mathbb{R}^{d}}|\nabla u|^{p} d x, \quad \text { for } u \in W^{1, p}\left(\mathbb{R}^{d}\right), \quad K_{d, p}:=\frac{1}{p} \int_{\mathbb{S}^{d-1}}|\boldsymbol{e} \cdot \sigma|^{p} d \sigma
$$

for some $e \in \mathbb{S}^{d-1}$, being \mathbb{S}^{d-1} the unit sphere in \mathbb{R}^{d}. This allows to recover the classical Hardy inequality from (1.2) by letting $\delta \searrow 0$. Various problems related to J_{δ} are considered in $[7,9$, $10,12,33,34]$. The full range of Caffarelli-Kohn-Nirenberg inequalities and their variants were established in [30] (see [1] for partial results in the case $a=1$).

Set, for $p \geq 1, \Omega$ a measurable set of \mathbb{R}^{d}, and $u \in L_{\text {loc }}^{1}(\Omega)$,

$$
I_{\delta}(u, \Omega):=\int_{\{|u(x)-u(y)|>\delta\}} \int_{\Omega} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y
$$

In the case, $\Omega=\mathbb{R}^{d}$, we simply denote $I_{\delta}\left(u, \mathbb{R}^{d}\right)$ by $I_{\delta}(u)$. The quantity I_{δ} with $p=d$ has its roots in estimates for the topological degree of continuous maps from a sphere into itself in [5,22]. This also appears in characterizations of Sobolev spaces [$6,11,12,21,24]$ and related contexts [8,11,12,23,25,26,28,29]. It is known that (see [21, Theorem 2] and [12, Proposition 1]), for $p \geq 1$,

$$
\begin{equation*}
\lim _{\delta \searrow 0} I_{\delta}(u)=K_{d, p} \int_{\mathbb{R}^{d}}|\nabla u|^{p} d x, \quad \text { for } u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)^{1} \tag{1.3}
\end{equation*}
$$

and, for $p>1$,

$$
\begin{equation*}
I_{\delta}(u) \leq C_{d, p} \int_{\mathbb{R}^{d}}|\nabla u|^{p} d x, \quad \text { for } u \in W^{1, p}\left(\mathbb{R}^{d}\right) \tag{1.4}
\end{equation*}
$$

for some positive constant $C_{d, p}$ independent of u.
The aim of this paper is to get improved versions of the local Hardy and Caffarelli-KohnNirenberg type inequalities and their variants which involve nonlinear nonlocal nonconvex energies $I_{\delta}(u)$ and its related quantities. In what follows for $R>0, B_{R}$ denotes the open ball of \mathbb{R}^{d} centered at the origin of radius r. Our first main result concerning Hardy's inequality is:
Theorem 1.1 (Improved Hardy inequality). Let $d \geq 1, p \geq 1,0<r<R$, and $u \in L^{p}\left(\mathbb{R}^{d}\right)$. We have
i) if $1 \leq p<d$ and $\operatorname{supp} u \subset B_{R}$, then

$$
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C\left(I_{\delta}(u)+R^{d-p} \delta^{p}\right)
$$

[^1]ii) if $p>d$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{r}$, then
$$
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C\left(I_{\delta}(u)+r^{d-p} \delta^{p}\right)
$$
iii) if $p=d \geq 2$ and $\operatorname{supp} u \subset B_{R}$, then
$$
\int_{\mathbb{R}^{d} \backslash B_{r}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2 R /|x|)} d x \leq C\left(I_{\delta}(u)+\ln (2 R / r) \delta^{d}\right)
$$
iv) if $p=d \geq 2$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{r}$, then
$$
\int_{B_{R}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2|x| / r)} d x \leq C\left(I_{\delta}(u)+\ln (2 R / r) \delta^{d}\right)
$$
where C denotes a positive constant depending only on p and d.
In light of (1.3), by letting $\delta \rightarrow 0$, one obtains variants of i, $i i$, , iii), iv) of Theorem 1.1 where the RHS is replaced by $C \int_{\mathbb{R}^{d}}|\nabla u|^{p} d x$; see Proposition 1.1 for a more general version. By (1.3) and (1.4), Theorem 1.1 provides improvement of Hardy's inequalities in the case $p>1$.

We next discuss an improved version of Caffarelli-Kohn-Nirenberg in the case the exponent $a=1$. The more general case is considered in Theorem 3.1 (see also Proposition 3.1). Set, for $p \geq 1, \alpha \in \mathbb{R}$, and Ω a measurable subset of \mathbb{R}^{d},

$$
I_{\delta}(u, \Omega, \alpha):=\int_{\substack{\Omega \\\{|u(x)-u(y)|>\delta\}}} \frac{\delta^{p}|x|^{p \alpha}}{|x-y|^{d+p}} d x d y, \quad \text { for } u \in L_{\mathrm{loc}}^{1}(\Omega)
$$

If $\Omega=\mathbb{R}^{d}$, we simply denote $I_{\delta}\left(u, \mathbb{R}^{d}, \alpha\right)$ by $I_{\delta}(u, \alpha)$. We have
Theorem 1.2 (Improved Caffarelli-Kohn-Nirenberg's inequality for $a=1$). Let $d \geq 2,1<p<d$, $\tau>0,0<r<R$, and $u \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$. Assume that

$$
\frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-1}{d} \quad \text { and } \quad 0 \leq \alpha-\gamma \leq 1
$$

We have
i) if $d-p+p \alpha>0$ and $\operatorname{supp} u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leq C\left(I_{\delta}(u, \alpha)+R^{d-p+p \alpha} \delta^{p}\right)
$$

ii) if $d-p+p \alpha<0$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{r}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u(x)|^{\tau} d x\right)^{p / \tau} \leq C\left(I_{\delta}(u, \alpha)+r^{d-p+p \alpha} \delta^{p}\right)
$$

iii) if $d-p+p \alpha=0, \tau>1$, and $\operatorname{supp} u \subset B_{R}$, then

$$
\left(\int_{\mathbb{R}^{d} \backslash B_{r}} \frac{|x|^{\gamma \tau}|u(x)|^{\tau}}{\ln ^{\tau}(2 R /|x|)} d x\right)^{p / \tau} \leq C\left(I_{\delta}(u, \alpha)+\ln (2 R / r) \delta^{p}\right)
$$

iv) if $d-p+p \alpha=0, \tau>1$, and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{r}$, then

$$
\left(\int_{B_{R}} \frac{|x|^{\gamma \tau}|u(x)|^{\tau}}{\ln ^{\tau}(2|x| / r)} d x\right)^{p / \tau} \leq C\left(I_{\delta}(u, \alpha)+\ln (2 R / r) \delta^{p}\right)
$$

Here C denotes a positive constant independent of u, r, and R.

Remark 1.1. In contrast with Theorem 1.1, in Theorem 1.2, we assume that $1<p<d$. This assumption is required due to the use of Sobolev's inequality related to $I_{\delta}(u, \Omega, 0)$ (see Lemmas 3.1 and 3.2).

Remark 1.2. Using the theory of maximal functions with weights due to Muckenhoupt [20] (see also [16]), one can bound $I_{\delta}(u, \alpha)$ by $C \int_{\mathbb{R}^{d}}|x|^{p \alpha}|\nabla u|^{p} d x$ for $-1 / p<\alpha<1-1 / p$ and get an improvement of Caffarelli-Kohn-Nirenberg's inequality for $a=1$ via Theorem 1.2 and for $0<a<1$ and $0 \leq \alpha-\sigma \leq 1$ via Theorem 3.1 in Section 3. The details of this fact are given in Remark 3.3 (see also Remark 3.2 for a different approach covering a more general result).

We later prove a general version of Theorem 1.2 in Theorem 3.1, where $0<a \leq 1$, which implies Proposition 3.1 by interpolation. As a consequence of Theorem 3.1 (see also Remark 3.2) and Proposition 3.1, we have

Proposition 1.1. Let $p \geq 1, q \geq 1, \tau>0,0<a \leq 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that

$$
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right)
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
0 \leq \alpha-\sigma
$$

and

$$
\alpha-\sigma \leq 1 \quad \text { if } \quad \frac{1}{\tau}+\frac{\gamma}{d}=\frac{1}{p}+\frac{\alpha-1}{d}
$$

We have, for $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$,
A1) if $1 / \tau+\gamma / d>0$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

A2) if $1 / \tau+\gamma / d<0$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash\{0\}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

Assume in addition that $\alpha-\sigma \leq 1$ and $\tau>1$. We have
A3) if $1 / \tau+\gamma / d=0$ and $\operatorname{supp} u \subset B_{R}$ for some $R>0$, then

$$
\left(\int_{\mathbb{R}^{d}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2 R /|x|)}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

A4) if $1 / \tau+\gamma / d=0$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{r}$ for some $r>0$, then

$$
\left(\int_{\mathbb{R}^{d}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2|x| / r)}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

Here C denotes a positive constant independent of u, r, and R.
Assertion $A 1$) is a slight improvement of the classical Caffarelli-Kohn-Nirenberg. Indeed, in the classical setting, Assertion A1) is established under the additional assumptions

$$
1 / p+\alpha / d>0 \quad \text { and } \quad 1 / q+\beta / d>0
$$

as mentioned in (1.1) in the introduction. Assertion A2) with $a=1$ and $\tau=p$ was known (see, e.g., [18]). Concerning Assertion A3) with $a=1$, this was obtained for $d=2$ in [13] and [2] and,
for $d \geq 3$, this was established in [2]. Assertion A4) with $a=1$ might be known; however, we cannot find any references for it. To our knowledge, the remaining cases seem to be new.

Analogous versions in a bounded domain will be given in Section 4.
The ideas used in the proof of Theorems 1.1 and 1.2 , and their general version (Theorem 3.1) are as follows. On one hand, this is based on Poincare's and Sobolev inequalities related to $I_{\delta}(u, \Omega)$ (see Lemma 2.1 and Lemma 3.1). These inequalities have their roots in [25]. Using these inequalities, we derive the key estimate (see Lemma 3.2 and also Lemma 2.1), for an annulus D centered at the origin and for $\lambda>0$,

$$
\begin{equation*}
\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{\tau} d x\right)^{1 / \tau} \leq C\left(\lambda^{p-d} I_{\delta}(u, \lambda D)+\delta^{p}\right)^{a / p}\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{q} d x\right)^{(1-a) / q} \tag{1.5}
\end{equation*}
$$

for some positive constant C independent of u and λ. On the other hand, decomposing \mathbb{R}^{d} into annuli \mathscr{A}_{k} which are defined by

$$
\mathscr{A}_{k}:=\left\{x \in \mathbb{R}^{d}: 2^{k} \leq|x|<2^{k+1}\right\},
$$

and applying (1.5) to each \mathscr{A}_{k}, we obtain

$$
\left(f_{\mathscr{A}_{k}}\left|u-f_{\mathscr{A}_{k}} u\right|^{\tau} d x\right)^{1 / \tau} \leq C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k}\right)+\delta^{p}\right)^{a / p}\left(f_{\mathscr{A}_{k}}|u|^{q}\right)^{(1-a) / q}
$$

Similar idea was used in [14]. Using (1.5) again in the cases i) and $i i$), we can derive an appropriate estimate for

$$
2^{(\gamma \tau+d) k}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} .
$$

This is the novelty in comparison with the approach in [14]. Combining these two facts, one obtains the desired inequalities. The other cases follow similarly. Similar approach is used to establish Caffarelli-Kohn-Nirenberg's inequalities for fractional Sobolev spaces in [30].

We now make some comments on the magnetic Sobolev setting. If $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is locally bounded and $u: \mathbb{R}^{d} \rightarrow \mathbb{C}$, we set

$$
\Psi_{u}(x, y):=e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y), \quad x, y \in \mathbb{R}^{d} .
$$

The following diamagnetic inequality holds

$$
\left\|u (x) \left|-\left|u(y) \| \leq\left|\Psi_{u}(x, x)-\Psi_{u}(x, y)\right|, \quad \text { for a.e. } x, y \in \mathbb{R}^{d} .\right.\right.\right.
$$

In turn, by defining

$$
I_{\delta}^{A}(u, \alpha)=\int_{\substack{\mathbb{R}^{d} \\\left\{\left|\Psi_{u}(x, y)-\Psi_{u}(x, x)\right|>\delta\right\}}} \int_{\mathbb{R}^{d}} \frac{\delta^{p}|x|^{p \alpha}}{|x-y|^{d+p}} d x d y,
$$

we have, for $\alpha \in \mathbb{R}$,

$$
I_{\delta}(|u|, \alpha) \leq I_{\delta}^{A}(u, \alpha) \quad \text { for all } \delta>0
$$

Then, the assertions of Theorem 1.1 and 1.2 keep holding with $I_{\delta}^{A}(u, 0)$ (resp. $\left.I_{\delta}^{A}(u, \alpha)\right)$ on the right-hand side in place of $I_{\delta}(u)$ (resp. $I_{\delta}(u, \alpha)$). For the sake of completeness, we refer the reader to [27] for some recent results about new characterizations of classical magnetic Sobolev spaces in the terms of $I_{\delta}^{A}(u, 0)$ (see $[27,32,35]$ for the ones related to J_{δ}).

The paper is organized as follows.
In Section 2 we prove Theorem 1.1. In Section 3 we prove Theorem 3.1 and Proposition 3.1 which imply Theorem 1.2 and Proposition 1.1. In Section 4 we present versions of Theorems 1.1 and 3.1 in a bounded domain Ω.

2. Improved Hardy's inequality

We first recall that a straightforward variant of [25, Theorem 1] yields the following
Lemma 2.1. Let $d \geq 1, p \geq 1$ and set

$$
D:=\left\{x \in \mathbb{R}^{d}: r<|x|<R\right\} .
$$

Then

$$
f_{D}\left|u(x)-f_{D} u\right|^{p} d x \leq C_{r, R}\left(I_{\delta}(u, D)+\delta^{p}\right), \quad \text { for all } u \in L^{p}(D) .
$$

As a consequence, we have, for $\lambda>0$,

$$
\begin{equation*}
f_{\lambda D}\left|u(x)-f_{\lambda D} u\right|^{p} d x \leq C_{r, R}\left(\lambda^{p-d} I_{\delta}(u, \lambda D)+\delta^{p}\right), \quad \text { for all } u \in L^{p}(\lambda D), \tag{2.1}
\end{equation*}
$$

where $\lambda D:=\{\lambda x: x \in D\}$. Here $C_{r, R}$ denotes a positive constant independent of u, δ, and λ.
The following elementary inequality will be used several times in this paper.
Lemma 2.2. Let $\Lambda>1$ and $\tau>1$. There exists $C=C(\Lambda, \tau)>0$, depending only on Λ and τ such that, for all $1<c<\Lambda$,

$$
\begin{equation*}
(|a|+|b|)^{\tau} \leq c|a|^{\tau}+\frac{C}{(c-1)^{\tau-1}}|b|^{\tau}, \quad \text { for all } a, b \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

Proof. Since (2.2) is clear in the case $|b| \geq|a|$ and in the case $b=0$, by rescaling and considering $x=|a| /|b|$, it suffices to prove, for $C=C(\Lambda, \tau)$ large enough, that

$$
\begin{equation*}
(x+1)^{\tau} \leq c x^{\tau}+\frac{C}{(c-1)^{\tau-1}}, \quad \text { for all } x \geq 1 \tag{2.3}
\end{equation*}
$$

Set

$$
f(x)=(x+1)^{\tau}-c x^{\tau}-\frac{C}{(c-1)^{\tau-1}} \text { for } x>0 .
$$

We have

$$
f^{\prime}(x)=\tau(x+1)^{\tau-1}-c \tau x^{\tau-1} \quad \text { and } \quad f^{\prime}(x)=0 \text { if and only if } x=x_{0}:=\left(c^{\frac{1}{\tau-1}}-1\right)^{-1} .
$$

One can check that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} f(x)=-\infty, \quad \lim _{x \rightarrow 1} f(x)<0 \text { if } C=C(\Lambda, \tau) \text { is large enough. } \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x_{0}\right)=c x_{0}^{\tau-1}-\frac{C}{(c-1)^{\tau-1}} . \tag{2.5}
\end{equation*}
$$

If $c^{\frac{1}{\tau-1}}>2$ then $x_{0}<1$ and (2.3) follows from (2.4). Otherwise $1 \leq s:=c^{\frac{1}{\tau-1}} \leq 2$. By the mean value theorem, we have

$$
s^{\tau-1}-1 \leq(s-1) \max _{1 \leq t \leq 2}(\tau-1) t^{\tau-2} \text { for } 1 \leq s \leq 2
$$

We derive from (2.5) that, with $C=\Lambda\left[\max _{1 \leq t \leq 2}(\tau-1) t^{\tau-2}\right]^{\tau-1}$,

$$
f\left(x_{0}\right)<0 .
$$

The conclusion now follows from (2.4).

We are now ready to give
Proof of Theorem 1.1. Let $m, n \in \mathbb{Z}$ be such that

$$
2^{n-1} \leq R<2^{n} \quad \text { and } \quad 2^{m} \leq r<2^{m+1}
$$

It is clear that $n-m \geq 1$. By (2.1) of Lemma 2.1, we have, for all $k \in \mathbb{Z}$,

$$
f_{\mathscr{A}_{k}}\left|u(x)-f_{\mathscr{A}_{k}} u\right|^{p} d x \leq C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k}\right)+\delta^{p}\right) .
$$

Here and in what follows in this proof, C denotes a positive constant independent of k, u, and δ. This implies

$$
2^{-p k} \int_{\mathscr{A}_{k}}\left|u(x)-\int_{\mathscr{A}_{k}} u\right|^{p} d x \leq C\left(I_{\delta}\left(u, \mathscr{A}_{k}\right)+2^{(d-p) k} \delta^{p}\right) .
$$

It follows that

$$
\begin{equation*}
2^{-p k} \int_{\mathscr{A}_{k}}|u(x)|^{p} d x \leq C 2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p}+C\left(I_{\delta}\left(u, \mathscr{A}_{k}\right)+2^{(d-p) k} \delta^{p}\right) . \tag{2.6}
\end{equation*}
$$

- Step 1: Proof of i). Summing (2.6) with respect to k from $-\infty$ to n, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C \sum_{k=-\infty}^{n} 2^{(d-p) k}\left|f_{\mathscr{O}_{k}} u\right|^{p}+C I_{\delta}(u)+C 2^{(d-p) n} \delta^{p}, \tag{2.7}
\end{equation*}
$$

since $d>p$. We also have, by (2.1), for $k \in \mathbb{Z}$,

$$
\left|f_{\mathscr{A}_{k}} u-f_{\mathscr{A}_{k+1}} u\right| \leq C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{1 / p} .
$$

This implies

$$
\left|f_{\mathscr{A}_{k}} u\right| \leq\left|f_{\mathscr{A}_{k+1}} u\right|+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{1 / p}
$$

Applying Lemma 2.2, we have

$$
\left|f_{\mathscr{A}_{k}} u\right|^{p} \leq \frac{2^{d-p+1}}{1+2^{d-p}}\left|f_{\mathscr{A}_{k+1}} u\right|^{p}+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right) .
$$

It follows that, with $c=2 /\left(1+2^{d-p}\right)<1$,

$$
2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p} \leq c 2^{(d-p)(k+1)}\left|f_{\mathscr{A}_{k+1}} u\right|^{p}+C\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+2^{(d-p) k} \delta^{p}\right) .
$$

We derive that

$$
\begin{equation*}
\sum_{k=-\infty}^{n} 2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p} \leq C \sum_{k=-\infty}^{n} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+C 2^{(d-p) n} \delta^{p} \tag{2.8}
\end{equation*}
$$

A combination of (2.7) and (2.8) yields

$$
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{d}}{|x|^{d}} d x \leq C I_{\delta}(u)+C 2^{(d-p) n} \delta^{p} .
$$

The conclusion of i) follows.

- Step 2: Proof of $i i$). Summing (2.6) with respect to k from m to $+\infty$, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C \sum_{k=m}^{+\infty} 2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p}+C I_{\delta}(u)+C 2^{(d-p) m} \delta^{p}, \tag{2.9}
\end{equation*}
$$

since $p>d$. We also have, by (2.1), for $k \in \mathbb{Z}$,

$$
\left|f_{\mathscr{A}_{k}} u-f_{\mathscr{A}_{k+1}} u\right| \leq C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{1 / p}
$$

This implies that

$$
\left|f_{\mathscr{A}_{k+1}} u\right| \leq\left|f_{\mathscr{A}_{k}} u\right|+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{1 / p}
$$

Applying Lemma 2.2, we have

$$
\left|f_{\mathscr{A}_{k+1}} u\right|^{p} \leq \frac{1+2^{d-p}}{2^{d-p+1}}\left|f_{\mathscr{A}_{k}} u\right|^{p}+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right) .
$$

It follows that, with $c=\left(1+2^{d-p}\right) / 2<1$,

$$
2^{(d-p)(k+1)}\left|f_{\mathscr{A}_{k+1}} u\right|^{p} \leq c 2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p}+C\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+2^{(d-p) k} \delta^{p}\right) .
$$

We derive that

$$
\begin{equation*}
\sum_{k=m}^{+\infty} 2^{(d-p) k}\left|f_{\mathscr{A}_{k}} u\right|^{p} \leq C I_{\delta}(u)+C 2^{(d-p) m} \delta^{p} \tag{2.10}
\end{equation*}
$$

A combination of (2.9) and (2.10) yields

$$
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C I_{\delta}(u)+C 2^{(d-p) m} \delta^{p} .
$$

The conclusion of $i i$) follows.

- Step 3: Proof of $i i i)$. Let $\alpha>0$. Summing (2.6) with respect to k from m to n, we obtain

$$
\begin{equation*}
\int_{\left\{2^{m}<|x|<2^{n}\right\}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{\alpha+1}(2 R /|x|)} d x \leq C \sum_{k=m}^{n} \frac{1}{(n-k+1)^{\alpha+1}}\left|f_{\mathscr{A} \ell_{k}} u\right|^{d}+C I_{\delta}(u)+C(n-m) \delta^{d} . \tag{2.11}
\end{equation*}
$$

We also have, by (2.1), for $k \in \mathbb{Z}$,

$$
\begin{equation*}
\left|f_{\mathscr{A}_{k}} u\right| \leq\left|f_{\mathscr{A}_{k+1}} u\right|+C\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)^{1 / d}+\delta\right) \tag{2.12}
\end{equation*}
$$

By applying Lemma 2.2 with

$$
c=\frac{(n-k+1)^{\alpha}}{(n-k+1 / 2)^{\alpha}},
$$

it follows from (2.12) that, for $m \leq k \leq n$,

$$
\begin{align*}
\frac{1}{(n-k+1)^{\alpha}}\left|f_{\mathscr{A}_{k}} u\right|^{d} \leq & \frac{1}{(n-k+1 / 2)^{\alpha}}\left|f_{\mathscr{A}_{k+1}} u\right|^{d} \tag{2.13}\\
& +C(n-k+1)^{d-1-\alpha}\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{d}\right) .
\end{align*}
$$

We have, $m \leq k \leq n$,

$$
\begin{equation*}
\frac{1}{(n-k+1)^{\alpha}}-\frac{1}{(n-k+3 / 2)^{\alpha}} \sim \frac{1}{(n-k+1)^{\alpha+1}} . \tag{2.14}
\end{equation*}
$$

Taking $\alpha=d-1$ and combining (2.13) and (2.14) yield

$$
\begin{equation*}
\sum_{k=m}^{n} \frac{1}{(n-k+1)^{d}}\left|f_{\mathscr{A}_{k}} u\right|^{d} \leq C I_{\delta}(u)+C(n-m) \delta^{d} \tag{2.15}
\end{equation*}
$$

From (2.11) and (2.15), we obtain

$$
\int_{\left\{|x|>2^{m}\right\}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2 R /|x|)} d x \leq C I_{\delta}(u)+C(n-m) \delta^{d} .
$$

This implies the conclusion of $i i i$).

- Step 4 Proof of $i v$). Let $\alpha>0$. Summing (2.6) with respect to k from m to n, we obtain

$$
\begin{equation*}
\int_{\left\{2^{m}<|x|<2^{n}\right\}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{\alpha+1}(2|x| / R)} d x \leq C \sum_{k=m}^{n} \frac{1}{(k-m+1)^{\alpha+1}}\left|f_{\mathscr{d}_{k}} u\right|^{d}+C I_{\delta}(u)+C \delta^{d} . \tag{2.16}
\end{equation*}
$$

We have, by (2.1), for $k \in \mathbb{Z}$,

$$
\begin{equation*}
\left|f_{\mathscr{A}_{k+1}} u\right| \leq\left|f_{\mathscr{A}_{k}} u\right|+C\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)^{1 / d}+\delta\right) . \tag{2.17}
\end{equation*}
$$

By applying Lemma 2.2 with

$$
c=\frac{(n-k+1)^{\alpha}}{(n-k+1 / 2)^{\alpha}},
$$

it follows from (2.17) that, for $m \leq k+1 \leq n$,

$$
\begin{align*}
\frac{1}{(k-m+1)^{\alpha}}\left|f_{\mathscr{A}_{k+1}} u\right|^{d} & \leq \frac{1}{(k-m+1 / 2)^{\alpha}}\left|f_{\mathscr{A}_{k}} u\right|^{d} \tag{2.18}\\
& +C(k-m+1)^{d-1-\alpha}\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{d}\right) .
\end{align*}
$$

We have, $m \leq k+1 \leq n$,

$$
\begin{equation*}
\frac{1}{(k-m+1)^{\alpha}}-\frac{1}{(k-m+3 / 2)^{\alpha}} \sim \frac{1}{(k-m+1)^{\alpha+1}} . \tag{2.19}
\end{equation*}
$$

Taking $\alpha=d-1$ and combining (2.18) and (2.19) yield

$$
\begin{equation*}
\sum_{k=m}^{n} \frac{1}{(k-m+1)^{d}}\left|f_{\mathscr{A} k} u\right|^{d} \leq C I_{\delta}(u)+C(n-m) \delta^{d} . \tag{2.20}
\end{equation*}
$$

From (2.16) and (2.20), we obtain

$$
\int_{\left\{2^{m}<|x|<2^{n}\right\}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2|x| / R)} d x \leq C I_{\delta}(u)+C(n-m) \delta^{d} .
$$

This implies the conclusion of $i v$).
The proof is complete.

3. Improved Caffarelli-Kohn-Nirenberg's inequality

In the proof of Theorem 1.2, we use the following result
Lemma 3.1. Let $1<p<d, \Omega$ be a smooth bounded open subset of \mathbb{R}^{d}, and $v \in L^{p}(\Omega)$. We have

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq C_{\Omega}\left(I_{\delta}(u)^{1 / p}+\|u\|_{L^{p}}+\delta\right),
$$

where $p^{*}:=d p /(d-p)$ denotes the Sobolev exponent of p.
Proof. For $\tau>0$, let us set

$$
\Omega_{\tau}:=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}(x, \Omega)<\tau\right\} .
$$

Since Ω is smooth, by [12, Lemma 17], there exists $\tau>0$ small enough and an extension U of u in Ω_{τ} such that

$$
\begin{equation*}
I_{\delta}\left(U, \Omega_{\tau}\right) \leq C I_{\delta}(u, \Omega) \quad \text { and } \quad\|U\|_{L^{p}\left(\Omega_{\tau}\right)} \leq C\|u\|_{L^{p}(\Omega)}, \tag{3.1}
\end{equation*}
$$

for $0<\delta<1$. Fix such a τ. Let $\varphi \in C^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\operatorname{supp} \varphi \subset \Omega_{2 \tau / 3}, \quad \varphi=1 \text { in } \Omega_{\tau / 3}, \quad 0 \leq \varphi \leq 1 \text { in } \mathbb{R}^{d} .
$$

Define $v=\varphi U$ in \mathbb{R}^{d}. We claim that

$$
\begin{equation*}
I_{2 \delta}(v) \leq C\left(I_{\delta}(u, \Omega)+\|u\|_{L^{p}(\Omega)}^{p}\right) \tag{3.2}
\end{equation*}
$$

Indeed, set

$$
f(x, y)=\frac{\delta^{p}}{|x-y|^{d+p}} \mathbb{1}_{\{|v(x)-v(y)|>2 \delta\}} .
$$

We estimate $I_{2 \delta}(v)$. We have

$$
\iint_{\Omega \times \mathbb{R}^{d}} f(x, y) d x d y \leq \iint_{\Omega_{\tau / 3} \times \Omega_{\tau / 3}} f(x, y) d x d y+\iint_{\substack{\Omega_{\tau} \times \mathbb{R}^{d} \\\{|x-y|>\tau / 4\}}} f(x, y) d x d y
$$

and, since $v=0$ in $\Omega_{\tau} \backslash \Omega_{2 \tau / 3}$,

$$
\begin{aligned}
& \iint_{\left(\mathbb{R}^{d} \backslash \Omega_{\tau}\right) \times \mathbb{R}^{d}} f(x, y) d x d y \leq \iint_{\left(\mathbb{R}^{d} \backslash \Omega_{\tau}\right) \times\left(\mathbb{R}^{d} \backslash \Omega_{\tau}\right)} f(x, y) d x d y+\iint_{\{|x-y|>\tau / 4\}} f(x, y) d x d y, \\
& \iint_{\left(\Omega_{\tau} \backslash \Omega\right) \times \mathbb{R}^{d}} f(x, y) d x d y \leq \iint_{\left(\Omega_{\tau} \backslash \Omega\right) \times\left(\Omega_{\tau} \backslash \Omega\right)} f(x, y) d x d y \\
& \quad+\iint_{\Omega_{\tau / 3} \times \Omega_{\tau / 3}} f(x, y) d x d y+\iint_{\{|x-y|>\tau / 4\}} f(x, y) d x d y .
\end{aligned}
$$

It is clear that, by (3.1),

$$
\begin{equation*}
\iint_{\Omega_{\tau / 3} \times \Omega_{\tau / 3}} f(x, y) d x d y \leq C I_{\delta}(u, \Omega), \tag{3.3}
\end{equation*}
$$

by the fact that $\varphi=0$ in $\mathbb{R}^{d} \backslash \Omega_{\tau}$,

$$
\begin{equation*}
\iint_{\left(\mathbb{R}^{d} \backslash \Omega_{\tau}\right) \times\left(\mathbb{R}^{d} \backslash \Omega_{\tau}\right)} f(x, y) d x d y=0 \tag{3.4}
\end{equation*}
$$

and, by a straightforward computation,

$$
\begin{equation*}
\iint_{\substack{\Omega_{\tau} \times \mathbb{R}^{d} \\\{|x-y|>\tau / 4\}}} f(x, y) d x d y \leq C \delta^{p} . \tag{3.5}
\end{equation*}
$$

We have, for $x, y \in \mathbb{R}^{d}$,

$$
v(x)-v(y)=\varphi(x)(U(x)-U(y))+U(y)(\varphi(x)-\varphi(y)) .
$$

It follows that if $|v(x)-v(y)|>2 \delta$ then either

$$
|U(x)-U(y)| \geq|\varphi(x)(U(x)-U(y))|>\delta
$$

or

$$
C|U(y)||x-y| \geq|U(y)(\varphi(x)-\varphi(y))|>\delta .
$$

We thus derive that

$$
\begin{align*}
\iint_{\left(\Omega_{\tau} \backslash \Omega\right) \times\left(\Omega_{\tau} \backslash \Omega\right)} f(x, y) d x d y & \leq\left.\int_{\left(\Omega_{\tau} \backslash \Omega\right)} \int_{\left(\Omega_{\tau} \backslash \Omega\right)} \frac{\delta^{p}}{|x-y(x)-U(y)|>\delta\}} 1\right|^{d+p} \tag{3.6}
\end{align*} x d y .
$$

A straightforward computation yields

$$
\int_{\substack{\left(\Omega_{\tau} \backslash \Omega\right) \\\{|x-y|>C \delta /|U(y)|\}}} \int_{\substack{\left(\Omega_{\tau} \backslash \Omega\right)}} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y \leq \int_{\Omega_{\tau}} d y \int_{\{|x-y|>C \delta /|U(y)|\}} \frac{\delta^{p}}{|x-y|^{d+p}} d x=C \int_{\Omega_{\tau}}|U(y)|^{p} d y .
$$

Using (3.1), we deduce from (3.6) that

$$
\begin{equation*}
\iint_{\left(\Omega_{\tau} \backslash \Omega\right) \times\left(\Omega_{\tau} \backslash \Omega\right)} f(x, y) d x d y \leq C I_{\delta}(u, \Omega)+C\|u\|_{L^{p}(\Omega)}^{p} \tag{3.7}
\end{equation*}
$$

A combination of (3.3), (3.4), (3.5), and (3.7) yields Claim (3.2). By applying [25, Theorem 3] and using the fact $\operatorname{supp} v \subset \Omega_{\tau}$, we have

$$
\begin{equation*}
\|v\|_{L^{p^{*}}\left(\mathbb{R}^{d}\right)} \leq C I_{2 \delta}(v)^{1 / p}+C \delta . \tag{3.8}
\end{equation*}
$$

The conclusion now follows from Claim (3.2).
Remark 3.1. The assumption $p>1$ is required in (3.8).
As a consequence of Lemmas 2.1 and 3.1, we obtain
Corollary 3.1. Let $d \geq 2,1<p<d, 0<r<R$, and $\lambda>0$, and set

$$
\lambda D:=\left\{\lambda x \in \mathbb{R}^{d}: r<|x|<R\right\} .
$$

We have, for $1 \leq q \leq p^{*}$,

$$
\left(f_{\lambda D}\left|u(x)-f_{\lambda D} u\right|^{q} d x\right)^{1 / q} \leq C_{r, R}\left(\lambda^{p-d} I_{\delta}(u, \lambda D)+\delta^{p}\right)^{1 / p}, \quad \text { for } u \in L^{p}(\lambda D),
$$

where $C_{r, R}$ denotes a positive constant independent of u, δ, and λ.

Here is an application of Corollaries 3.1 which plays a crucial role in the proof of Theorem 3.1 below.

Lemma 3.2. Let $d \geq 1,1<p<d, q \geq 1, \tau>0$, and $0 \leq a \leq 1$ be such that

$$
\frac{1}{\tau} \geq a\left(\frac{1}{p}-\frac{1}{d}\right)+\frac{1-a}{q}
$$

Let $0<r<R$, and $\lambda>0$ and set

$$
\lambda D:=\left\{\lambda x \in \mathbb{R}^{d}: r<|x|<R\right\} .
$$

Then, for $u \in L^{1}(\lambda D)$,

$$
\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{\tau} d x\right)^{1 / \tau} \leq C\left(\lambda^{p-d} I_{\delta}(u, \lambda D)+\delta^{p}\right)^{a / p}\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{q} d x\right)^{(1-a) / q}
$$

for some positive constant C independent of u, λ, and δ.
Proof. Let $\tau, \sigma, t>0$, be such that

$$
\frac{1}{\tau} \geq \frac{a}{\sigma}+\frac{1-a}{t}
$$

We have, by a standard interpolation inequality, that

$$
\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{\tau} d x\right)^{1 / \tau} \leq\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{\sigma} d x\right)^{a / \sigma}\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{t} d x\right)^{(1-a) / t}
$$

Applying this inequality with $\sigma=p^{*}$ and $t=q$ and using Corollary 3.1, one obtains the conclusion.

We also have, see [31, Theorem on page 125 and the following remarks]
Lemma 3.3 (Nirenberg's interpolation inequality). Let $d \geq 1, p \geq 1, q \geq 1, \tau>0$, and $0 \leq a \leq 1$ be such that

$$
\frac{1}{\tau} \geq a\left(\frac{1}{p}-\frac{1}{d}\right)+\frac{1-a}{q}
$$

Let $0<r<R$, and $\lambda>0$ and set

$$
\lambda D:=\left\{\lambda x \in \mathbb{R}^{d}: r<|x|<R\right\}
$$

Then, for $u \in L^{1}(\lambda D)$,

$$
\left(f_{\lambda D}\left|u-f_{\lambda D} u\right|^{\tau} d x\right)^{1 / \tau} \leq C\|\nabla u\|_{L^{p}(\lambda D)}^{a} C\|u\|_{L^{q}(\lambda D)}^{1-a}
$$

for some positive constant C independent of u, λ, and δ.
We prove the following more general version of Theorem 1.2:
Theorem 3.1. Let $p \geq 1, q \geq 1, \tau>0,0<a \leq 1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right) \tag{3.9}
\end{equation*}
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
0 \leq \alpha-\sigma \leq 1
$$

Set, for $k \in \mathbb{Z}$,

$$
I_{\delta}(k, u):=\left\{\begin{array}{cl}
I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p} & \text { if } 1<p<d, \tag{3.10}\\
\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)}^{p} & \text { otherwise } .
\end{array}\right.
$$

We have, for $u \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$ and $m, n \in \mathbb{Z}$ with $m<n$,
i) if $1 / \tau+\gamma / d>0$ and $\operatorname{supp} u \subset B_{2^{n}}$, then

$$
\left(\int_{\mathbb{R}^{d} \backslash B_{2} m}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(\sum_{k=m-1}^{n} I_{\delta}(k, u)\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

ii) if $1 / \tau+\gamma / d<0$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{2^{m}}$, then

$$
\left(\int_{B_{2^{n}}}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(\sum_{k=m-1}^{n} I_{\delta}(k, u)\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

iii) if $1 / \tau+\gamma / d=0, \tau>1$, and $\operatorname{supp} u \subset B_{2^{n}}$, then

$$
\left(\int_{\mathbb{R}^{d} \backslash B_{2 m}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}\left(2^{n+1} /|x|\right)}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(\sum_{k=m-1}^{n} I_{\delta}(k, u)\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

iv) if $1 / \tau+\gamma / d=0, \tau>1$, and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash B_{2^{m}}$, then

$$
\left(\int_{B_{2^{n}}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}\left(2^{n+1} /|x|\right)}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(\sum_{k=m-1}^{n} I_{\delta}(k, u)\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)}
$$

Here C denotes a positive constant independent of u, δ, k, n, and m.
Proof. We only present the proof in the case $1<p<d$. The proof for the other case follows similarly, however instead of using Lemma 3.2, one applies Lemma 3.3. We now assume that $1<p<d$. Since $\alpha-\sigma \geq 0$, by Lemma 3.2, we have

$$
\begin{equation*}
\left(f_{\mathscr{A}_{k}}\left|u-f_{\mathscr{A}_{k}} u\right|^{\tau} d x\right)^{1 / \tau} \leq C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k}\right)+\delta^{p}\right)^{a / p}\left(f_{\mathscr{A}_{k}}|u|^{q}\right)^{(1-a) / q} \tag{3.11}
\end{equation*}
$$

Using (3.9), we derive from (3.11) that

$$
\begin{equation*}
\int_{\mathscr{A}_{k}}|x|^{\gamma \tau}|u|^{\tau} d x \leq C 2^{(\gamma \tau+d) k}\left|f_{\mathscr{A}_{k}} u\right|^{\tau}+C\left(I_{\delta}\left(u, \mathscr{A}_{k}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathscr{A}_{k}\right)}^{(1-a) \tau} \tag{3.12}
\end{equation*}
$$

- Step 1: Proof of i). Summing (3.12) with respect to k from m to n, we obtain

$$
\begin{align*}
\int_{\left\{|x|>2^{m}\right\}}|x|^{\gamma \tau}|u|^{\tau} d x & \leq C \sum_{k=m}^{n} 2^{(\gamma \tau+d) k}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} \tag{3.13}\\
& +\left.C \sum_{k=m}^{n}\left(I_{\delta}\left(u, \mathscr{A}_{k}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\| \| x\right|^{\beta} u \|_{L^{q}\left(\mathscr{A}_{k}\right)}^{(1-a)} .
\end{align*}
$$

By Lemma 3.2, we have

$$
\left|f_{\mathscr{A}_{k}} u\right| \leq\left|f_{\mathscr{A}_{k+1}} u\right|+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{a / p}\left(f_{\mathscr{A}_{k} \cup \mathscr{A}_{k+1}}|u|^{q}\right)^{\frac{1-a}{q}}
$$

Applying Lemma 2.2, we derive that

$$
\left|f_{\mathscr{A}_{k}} u\right|^{\tau} \leq \frac{2^{\gamma \tau+d+1}}{1+2^{\gamma \tau+d}}\left|f_{\mathscr{A}_{k+1}} u\right|^{\tau}+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{a \tau / p}\left(f_{\mathscr{A}_{k} \cup \mathscr{A}_{k+1}}|u|^{q}\right)^{\frac{(1-a) \tau}{q}}
$$

It follows that, with $c=2 /\left(1+2^{\gamma \tau+d}\right)<1$,

$$
\begin{aligned}
2^{(\gamma \tau+d) k}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} & \leq c 2^{(\gamma \tau+d)(k+1)}\left|f_{\mathscr{A}_{k+1}} u\right|^{\tau} \\
& \left.+C\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}(\mathscr{\mathscr { k }}}^{(1-a) \tau} \cup \mathscr{A}_{k+1}\right)
\end{aligned}
$$

This yields

$$
\begin{equation*}
\sum_{k=m}^{n} 2^{(\gamma \tau+d) k}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} \leq C \sum_{k=m}^{n}\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)}^{(1-a) \tau} . \tag{3.14}
\end{equation*}
$$

Combining (3.13) and (3.14) yields

$$
\begin{align*}
& \int_{\left\{|x|>2^{m}\right\}}|x|^{\gamma \tau}|u|^{\tau} d x \tag{3.15}\\
& \quad \leq C \sum_{k=m-1}^{n}\left(I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathscr{A}_{k} \cup \mathscr{A} \mathscr{A}_{k+1}\right)}^{(1-a)} .
\end{align*}
$$

Applying the inequality, for $s \geq 0, t \geq 0$ with $s+t \geq 1$, and for $x_{k} \geq 0$ and $y_{k} \geq 0$,

$$
\sum_{k=m}^{n} x_{k}^{s} y_{k}^{t} \leq C_{s, t}\left(\sum_{k=m}^{n} x_{k}\right)^{s}\left(\sum_{k=m}^{n} y_{k}\right)^{t}
$$

to $s=a \tau / p$ and $t=(1-a) \tau / q$, we obtain from (3.15) that

$$
\begin{equation*}
\int_{\left\{|x|>2^{m}\right\}}|x|^{\gamma \tau}|u|^{\tau} d x \leq C\left(\sum_{k=m}^{n} I_{\delta}(k, u)\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a) \tau} \tag{3.16}
\end{equation*}
$$

since $a / p+(1-a) / q \geq 1 / \tau$ thanks to the fact $\alpha-\sigma-1 \leq 0$.

- Step 2: Proof of $i i$). The proof is in the spirit of the proof of $i i)$ of Theorem 1.1. The details are left to the reader.
- Step 3: Proof of $i i i$). Fix $\xi>0$. Summing (3.12) with respect to k from m to n, we obtain

$$
\begin{align*}
& \int_{\left\{|x|>2^{m}\right\}} \frac{1}{\ln ^{1+\xi}(\tau /|x|)}|x|^{\gamma \tau}|u|^{\tau} d x \tag{3.17}\\
\leq & C \sum_{k=m}^{n} \frac{1}{(n-k+1)^{1+\xi}}\left|f_{\mathscr{A}_{k}} u\right|^{\tau}+C \sum_{k=m}^{n}\left(I_{\delta}\left(u, \mathscr{A}_{k}, \alpha\right)+2^{k(\alpha p+d-p)} \delta^{p}\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathscr{A}_{k}\right)}^{(1-a) \tau} .
\end{align*}
$$

By Lemma 3.2, we have

$$
\left|f_{\mathscr{A}_{k}} u\right| \leq\left|f_{\mathscr{A}_{k+1}} u\right|+C\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{a / p}\left(f_{\mathscr{A}_{k} \cup \mathscr{A}_{k+1}}|u|^{q}\right)^{\frac{1-a}{q}}
$$

Applying Lemma 2.2 with

$$
c=\frac{(n-k+1)^{\xi}}{(n-k+1 / 2)^{\xi}},
$$

we deduce that

$$
\begin{align*}
& \frac{1}{(n-k+1)^{\xi}}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} \leq \frac{1}{(n-k+1 / 2)^{\xi}}\left|f_{\mathscr{A}_{k+1}} u\right|^{\tau} \tag{3.18}\\
& \quad+C(n-k+1)^{\tau-1-\xi}\left(2^{-(d-p) k} I_{\delta}\left(u, \mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)+\delta^{p}\right)^{a \tau / p}\left(f_{\mathscr{A}_{k} \cup \mathscr{\mathscr { A } _ { k + 1 }}}|u|^{q}\right)^{\frac{(1-a) \tau}{q}} .
\end{align*}
$$

Recall that, for $k \leq n$ and $\xi>0$,

$$
\begin{equation*}
\frac{1}{(n-k+1)^{\xi}}-\frac{1}{(n-k+3 / 2)^{\xi}} \sim \frac{1}{(n-k+1)^{\xi+1}} . \tag{3.19}
\end{equation*}
$$

Taking $\xi=\tau-1$, we derive from (3.18) and (3.19) that

$$
\begin{equation*}
\sum_{k=m}^{n} 2^{(\gamma \tau+d) k} \frac{1}{(n-k+1)^{\tau}}\left|f_{\mathscr{A}_{k}} u\right|^{\tau} \leq \sum_{k=m}^{n} C\left(I_{\delta}(k, u)\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathscr{A}_{k} \cup \mathscr{A}_{k+1}\right)}^{(1-a) \tau} \tag{3.20}
\end{equation*}
$$

Combining (3.17) and (3.20), as in (3.16), we obtain

$$
\int_{\left\{|x|>2^{m}\right\}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}\left(2^{n+1} /|x|\right)}|u|^{\tau} d x \leq C\left(\sum_{k=m}^{n} I_{\delta}(k, u)\right)^{a \tau / p}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a) \tau} .
$$

- Step 4: Proof of $i v$). The proof is in the spirit of the proof of $i v$) of Theorem 1.1. The details are left to the reader.

The proof is complete.
Remark 3.2. For $p>1$, we have (see [21, Theorem 4])

$$
I_{\delta}(k, u) \leq C \int_{\mathscr{A}_{k} \cup \mathscr{\mathscr { A }}_{k+1}}|x|^{p \alpha}|\nabla u|^{p} d x \text { for } k \in \mathbb{Z}
$$

for some positive constant C independent of k and u. This implies

$$
\left(\sum_{k=m-1}^{n} I_{\delta}(k, u)\right)^{1 / p} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

From Theorem 3.1, one then obtains improvement of Caffarelli-Kohn-Nirenberg's inequality for the case $0 \leq \alpha-\sigma \leq 1$ and for $1<p<d$.

Using Theorem 3.1, we can derive that
Proposition 3.1. Let $p \geq 1, q \geq 1, \tau>0,0<a<1, \alpha, \beta, \gamma \in \mathbb{R}$ be such that

$$
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right)
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
\alpha-\sigma>1 \quad \text { and } \quad \frac{1}{\tau}+\frac{\gamma}{d} \neq \frac{1}{p}+\frac{\alpha-1}{d} .
$$

We have, for $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$,
i) if $1 / \tau+\gamma / d>0$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

ii) if $1 / \tau+\gamma / d<0$ and $\operatorname{supp} u \subset \mathbb{R}^{d} \backslash\{0\}$, then

$$
\left(\int_{\mathbb{R}^{d}}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{(1-a)},
$$

for some positive constant C independent of u.
Proof. The proof is in the spirit of the approach in [14] (see also [30]). Since

$$
\frac{1}{p}+\frac{\alpha-1}{d} \neq \frac{1}{q}+\frac{\beta}{d} .
$$

by scaling, one might assume that

$$
\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}=1 \quad \text { and } \quad\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}=1
$$

Let $0<a_{2}<1$ be such that

$$
\begin{equation*}
\left|a_{2}-a\right| \text { is small enough, } \tag{3.21}
\end{equation*}
$$

and set

$$
\frac{1}{\tau_{2}}=\frac{a_{2}}{p}+\frac{1-a_{2}}{q} \quad \text { and } \quad \gamma_{2}=a_{2}(\alpha-1)+\left(1-a_{2}\right) \beta
$$

We have

$$
\begin{equation*}
\frac{1}{\tau_{2}}+\frac{\gamma_{2}}{d}=a_{2}\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+\left(1-a_{2}\right)\left(\frac{1}{q}+\frac{\beta}{d}\right) . \tag{3.22}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right) \tag{3.23}
\end{equation*}
$$

Since $a>0$ and $\alpha-\sigma>1$, it follows from (3.21) that

$$
\begin{equation*}
\frac{1}{\tau}-\frac{1}{\tau_{2}}=\left(a-a_{2}\right)\left(\frac{1}{p}-\frac{1}{q}\right)+\frac{a}{d}(\alpha-\sigma-1)>0 . \tag{3.24}
\end{equation*}
$$

We first choose a_{2} such that

$$
\begin{align*}
& a_{2}<a \quad \text { if } \quad \frac{1}{p}+\frac{\alpha-1}{d}<\frac{1}{q}+\frac{\beta}{d} \tag{3.25}\\
& a<a_{2} \quad \text { if } \quad \frac{1}{p}+\frac{\alpha-1}{d}>\frac{1}{q}+\frac{\beta}{d} \tag{3.26}
\end{align*}
$$

Using (3.21), (3.25) and (3.26), we derive from (3.22), and (3.23) that

$$
\begin{equation*}
\frac{1}{\tau}+\frac{\gamma}{d}<\frac{1}{\tau_{2}}+\frac{\gamma_{2}}{d} \quad \text { and } \quad\left(\frac{1}{\tau}+\frac{\gamma}{d}\right)\left(\frac{1}{\tau_{2}}+\frac{\gamma_{2}}{d}\right)>0 \tag{3.27}
\end{equation*}
$$

It follows from $(3.24),(3.27)$, and Hölder's inequality that

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d} \backslash B_{1}\right)} \leq C\left\||x|^{\gamma_{2}} u\right\|_{L^{\tau_{2}}\left(\mathbb{R}^{d}\right)} .
$$

Applying Theorem 3.1 (see also Remark 3.2), we have

$$
\left\||x|^{\gamma_{2}} u\right\|_{L^{\tau_{2}}\left(\mathbb{R}^{d}\right)} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a_{2}}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{\left(1-a_{2}\right)} \leq C
$$

which yields

$$
\begin{equation*}
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d} \backslash B_{1}\right)} \leq C . \tag{3.28}
\end{equation*}
$$

We next choose a_{2} such that

$$
\begin{align*}
& a<a_{2} \quad \text { if } \quad \frac{1}{p}+\frac{\alpha-1}{d}<\frac{1}{q}+\frac{\beta}{d} \tag{3.29}\\
& a_{2}<a \quad \text { if } \quad \frac{1}{p}+\frac{\alpha-1}{d}>\frac{1}{q}+\frac{\beta}{d} \tag{3.30}
\end{align*}
$$

Using (3.21), (3.29) and (3.30), we derive from (3.22), and (3.23) that

$$
\begin{equation*}
\frac{1}{\tau_{2}}+\frac{\gamma_{2}}{d}<\frac{1}{\tau}+\frac{\gamma}{d} \quad \text { and } \quad\left(\frac{1}{\tau}+\frac{\gamma}{d}\right)\left(\frac{1}{\tau_{2}}+\frac{\gamma_{2}}{d}\right)>0 \tag{3.31}
\end{equation*}
$$

It follows from $(3.24),(3.31)$, and Hölder's inequality that

$$
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(B_{1}\right)} \leq C\left\||x|^{\gamma_{2}} u\right\|_{L^{\tau_{2}}\left(\mathbb{R}^{d}\right)}
$$

Applying Theorem 3.1 (see also Remark 3.2), we have

$$
\left\||x|^{\gamma_{2}} u\right\|_{L^{\tau_{2}}\left(\mathbb{R}^{d}\right)} \leq C\left\||x|^{\alpha} \nabla u\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{a_{2}}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{\left(1-a_{2}\right)} \leq C
$$

which yields

$$
\begin{equation*}
\left\||x|^{\gamma} u\right\|_{L^{\tau}\left(\mathbb{R}^{d} \backslash B_{1}\right)} \leq C \tag{3.32}
\end{equation*}
$$

The conclusion now follows from (3.28) and (3.32).
Remark 3.3. Using the approach in the proof of [21, Theorem 2], one can prove that, for $p>1$,

$$
\begin{equation*}
I_{\delta}(u, \alpha) \leq C \int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}}|x|^{p \alpha}|\mathcal{M}(\sigma, \nabla u)(x)|^{p} d \sigma d x \tag{3.33}
\end{equation*}
$$

where

$$
\mathcal{M}(\sigma, \nabla u)(x):=\sup _{r>0} \frac{1}{r} \int_{0}^{r}|\nabla u(x+s \sigma) \cdot \sigma| d s
$$

We claim that, for $-1 / p<\alpha<1-1 / p$, it holds

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|x|^{p \alpha}|\mathcal{M}(\sigma, \nabla u)(x)|^{p} d \sigma d x \leq C \int_{\mathbb{R}^{d}}|x|^{p \alpha}|\nabla u(x) \cdot \sigma|^{p} d x, \quad \text { for all } \sigma \in \mathbb{S}^{d-1} \tag{3.34}
\end{equation*}
$$

for some positive constant C independent of σ and u. Then, combining (3.33) and (3.34) yields

$$
\begin{equation*}
I_{\delta}(u, \alpha) \leq C \int_{\mathbb{R}^{d}}|x|^{p \alpha}|\nabla u|^{p} d x \tag{3.35}
\end{equation*}
$$

as mentioned in Remark 1.2. For simplicity, we assume that $\sigma=e_{d}=(0, \cdots, 0,1) \in \mathbb{R}^{d}$ and prove (3.34). We have, for any bounded interval (a, b) and for any $x^{\prime} \in \mathbb{R}^{d-1}$

$$
\begin{equation*}
f_{a}^{b}\left(\left|x^{\prime}\right|+|s|\right)^{p \alpha} d s\left(f_{a}^{b}\left(\left|x^{\prime}\right|+|s|\right)^{-p \alpha /(p-1)} d s\right)^{p-1} \leq C \tag{3.36}
\end{equation*}
$$

for some positive constant C independent of (a, b) and x^{\prime} since $-1 / p<\alpha<1-1 / p$. Applying the theory of maximal functions with weights due to Muckenhoupt [20, Corollary 4] (see also [16,

Theorem 1]), which holds whenever the weight satisfies (3.36), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|x|^{p \alpha}\left|\mathcal{M}\left(e_{d}, \nabla u\right)(x)\right|^{p} d x & \leq C \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}}\left(\left|x^{\prime}\right|+\left|x_{d}\right|\right)^{p \alpha}\left|\mathcal{M}\left(e_{d}, \nabla u\right)\left(x^{\prime}, x_{d}\right)\right|^{p} d x_{d} d x^{\prime} \\
& \leq C \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}}\left(\left|x^{\prime}\right|+\left|x_{d}\right|\right)^{p \alpha}\left|\partial_{x_{d}} u\left(x^{\prime}, x_{d}\right)\right|^{p} d x_{d} d x^{\prime} \\
& \leq C \int_{\mathbb{R}^{d}}|x|^{p \alpha}|\nabla u|^{p} d x .
\end{aligned}
$$

The claim (3.34) is proved.

4. Results in bounded domains

In this section, we present some results in the spirit of Theorems 1.1 and 3.1 for a smooth bounded domain Ω. As a consequence of Theorem 1.1 and the extension argument in the proof of Lemma 3.1, we obtain

Proposition 4.1. Let $d \geq 1,1 \leq p \leq d, \Omega \Subset B_{R}$ a smooth open subset of \mathbb{R}^{d}, and $u \in L^{p}(\Omega)$. We have
i) if $1 \leq p<d$, then

$$
\int_{\Omega} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C_{\Omega}\left(I_{\delta}(u, \Omega)+\|u\|_{L^{p}(\Omega)}^{p}+\delta^{p}\right),
$$

ii) if $p>d$ and $\operatorname{supp} u \subset \bar{\Omega} \backslash B_{r}$, then

$$
\int_{\Omega} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq C_{\Omega}\left(I_{\delta}(u, \Omega)+\|u\|_{L^{p}(\Omega)}^{p}+r^{d-p} \delta^{p}\right),
$$

iii) if $p=d \geq 2$, then

$$
\int_{\Omega \backslash B_{r}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2 R /|x|)} d x \leq C_{\Omega}\left(I_{\delta}(u, \Omega)+\|u\|_{L^{p}(\Omega)}^{p}+\ln (2 R / r) \delta^{d}\right),
$$

iv) if $p=d \geq 2$ and $\operatorname{supp} u \subset \Omega \backslash B_{r}$, then

$$
\int_{\Omega \cap B_{R}} \frac{|u(x)|^{d}}{|x|^{d} \ln ^{d}(2|x| / r)} d x \leq C_{\Omega}\left(I_{\delta}(u, \Omega)+\|u\|_{L^{p}(\Omega)}^{p}+\ln (2 R / r) \delta^{d}\right),
$$

Here C_{Ω} denotes a positive constant depending only on p and Ω.
Using Theorem 1.2, we derive
Proposition 4.2. Let $d \geq 2,1<p<d, q \geq 1, \tau>0,0<a \leq 1, \alpha, \beta, \gamma \in \mathbb{R}, 0 \in \Omega \subset B_{R} a$ smooth bounded open subset of \mathbb{R}^{d}, and $u \in L^{p}(\Omega)$ be such that

$$
\frac{1}{\tau}+\frac{\gamma}{d}=a\left(\frac{1}{p}+\frac{\alpha-1}{d}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{d}\right)
$$

and, with $\gamma=a \sigma+(1-a) \beta$,

$$
0 \leq \alpha-\sigma \leq 1
$$

We have
i) if $1 / \tau+\gamma / d>0$, then

$$
\left(\int_{\Omega}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(I_{\delta}(u, \Omega, \alpha)+\|u\|_{L^{p}(\Omega)}^{p}+\delta^{p}\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}(\Omega)}^{(1-a)},
$$

ii) if $1 / \tau+\gamma / d<0$ and $\operatorname{supp} u \subset \Omega \backslash\{0\}$, then

$$
\left(\int_{\Omega}|x|^{\gamma \tau}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(I_{\delta}(u, \Omega, \alpha)+\|u\|_{L^{p}(\Omega)}^{p}+\delta^{p}\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}(\Omega)}^{(1-a)}
$$

iii) if $1 / \tau+\gamma / d=0$ and $\tau>1$, then

$$
\left(\int_{\Omega \backslash B_{r}} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2 R /|x|)}|u|^{\tau} d x\right)^{1 / \tau} \leq C\left(I_{\delta}(u, \Omega, \alpha)+\|u\|_{L^{p}(\Omega)}^{p}+\delta^{p} \ln (2 R / r)\right)^{a / p}\left\||x|^{\beta} u\right\|_{L^{q}(\Omega)}^{(1-a)}
$$

iv) if $1 / \tau+\gamma / d=0, \tau>1$, and $\operatorname{supp} u \subset \Omega \backslash B_{r}$, then

$$
\left(\int_{\Omega} \frac{|x|^{\gamma \tau}}{\ln ^{\tau}(2|x| / r)}|u|^{\tau} d x\right)^{1 / \tau} \leq\left. C\left(I_{\delta}(u, \Omega, \alpha)+\|u\|_{L^{p}(\Omega)}^{p}+\delta^{p} \ln (2 R / r)\right)^{a / p}\| \| x\right|^{\beta} u \|_{L^{q}(\Omega)}^{(1-a)}
$$

Here C denotes a positive constant independent of u and δ.
Proof. Let v be the extension of u in \mathbb{R}^{d} as in the proof of Lemma 3.1. As in the proof of Lemma 3.1, we have, since $0 \in \Omega$,

$$
I_{2 \delta}(v, \alpha) \leq C\left(I_{\delta}(u, \Omega, \alpha)+\|u\|_{L^{p}(\Omega)}\right)
$$

We also have, since $0 \in \Omega$,

$$
\left\||x|^{\beta} v\right\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C\left\||x|^{\beta} u\right\|_{L^{q}(\Omega)}
$$

The conclusion now follows from Theorem 3.1.

References

[1] B. Abdellaoui, R. Bentifour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications, J. Funct. Anal. 272 (2017), 3998-4029 2
[2] Adimurthi, N. Chaudhuri, M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proc. Amer. Math. Soc. 130 (2001), 489-505. 4, 5
[3] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday (eds. J. L. Menaldi, E. Rofman and A. Sulem), IOS Press, Amsterdam, 2001, 439-455. 2
[4] J. Bourgain, H. Brezis, P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s \uparrow 1$ and applications, J. Anal. Math. 87 (2002), 77-101. 2
[5] J. Bourgain, H. Brezis, H-M. Nguyen, A new estimate for the topological degree, C. R. Math. Acad. Sci. Paris 340 (2005), 787-791. 2
[6] J. Bourgain, H-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris 343 (2006), 75-80. 2
[7] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Russian Mathematical Surveys 57 (2002), 693-708. 2
[8] H. Brezis, H-M. Nguyen, On a new class of functions related to VMO, C. R. Acad. Sci. Paris 349 (2011), 157-160. 2
[9] H. Brezis, H-M. Nguyen, The BBM formula revisited, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), 515-533. 2
[10] H. Brezis, H-M. Nguyen, Two subtle convex nonlocal approximations of the BV-norm, Nonlinear Anal. 137 (2016), 222-245. 2
[11] H. Brezis, H-M. Nguyen, Non-convex, non-local functionals converging to the total variation, C. R. Acad. Sci. Paris 355 (2017), 24-27. 2
[12] H. Brezis, H-M. Nguyen, Non-local functionals related to the total variation and connections with Image Processing, Ann. PDE, to appear, http://arxiv.org/abs/1608. 08204 2, 10
[13] X. Cabré, Y. Martin, Existence versus instantaneous blowup for linear heat equations with singular potentials, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 973-978. 4
[14] L.A. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259-275. 1, 5, 16
[15] L.A. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. 1
[16] R. R. Coifman, C. Fefferman, Weighted norm inequalities for maximum functions and singular integrals, Studia Math. 51 (1974), 241-250. 4, 17
[17] J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519-527. 2
[18] R.L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255, (2008), 3407-3430. 2, 4
[19] V. Mazya, T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), 230-238. 2
[20] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. 4, 17
[21] H-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006), 689-720. 2, 15, 17
[22] H-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007), 367-395. 2
[23] H-M. Nguyen, Г-convergence and Sobolev norms, C. R. Acad. Sci. Paris 345 (2007), 679-684. 2
[24] H-M. Nguyen, Further characterizations of Sobolev spaces, J. Eur. Math. Soc. 10 (2008), 191-229. 2
[25] H-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations 41 (2011), 483-509. 2, 5, 6, 11
[26] H-M. Nguyen, Г-convergence, Sobolev norms, and BV functions, Duke Math. J. 157 (2011), 495-533. 2
[27] H-M. Nguyen, A. Pinamonti, M. Squassina, E. Vecchi, New characterization of magnetic Sobolev spaces, Adv. Nonlinear Anal., to appear, https://doi.org/10.1515/anona-2017-0239. 5
[28] H-M. Nguyen, M. Squassina, Logarithmic Sobolev inequality revisited, C. R. Math. Acad. Sci. Paris 355 (2017), 447-451. 2
[29] H-M. Nguyen, M. Squassina, Some remarks on rearrangement for nonlocal functionals, Nonlinear Anal. 162 (2017), 1-12. 2
[30] H-M. Nguyen, M. Squassina, Fractional Caffarelli-Kohn-Nirenberg inequalities, J. Funct. Anal. (2017), to appear, https://doi.org/10.1016/j.jfa.2017.07.007. 2, 5, 16
[31] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162. 12
[32] A. Pinamonti, M. Squassina, E. Vecchi, Magnetic BV functions and the Bourgain-Brezis-Mironescu formula, Adv. Calc. Var. (2017), to appear, https://doi.org/10.1515/acv-2017-0019. 5
[33] A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations 19 (2004), 229-255. 2
[34] A. Ponce, D. Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal. 154 (2017), 241-257. 2
[35] M. Squassina, B. Volzone, Bourgain-Brezis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris 354 (2016), 825-831. 5
(H.-M. Nguyen) Department of Mathematics

EPFL SB CAMA
Station 8 CH-1015 Lausanne, Switzerland
E-mail address: hoai-minh.nguyen@epfl.ch
(M. Squassina) Dipartimento di Matematica e Fisica

Università Cattolica del Sacro Cuore
Via dei Musei 41, I-25121 Brescia, Italy
E-mail address: marco.squassina@unicatt.it

[^0]: 2010 Mathematics Subject Classification. 46E35, 39B62, 49A50.
 Key words and phrases. Characterization of Sobolev spaces, Hardy and Caffarelli-Kohn-Nirenberg inequality.
 The second author is member of Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Part of this paper was written during a visit of M.S. in Lausanne in June 2017. The hosting institution is gratefully acknowledged.

[^1]: ${ }^{1}$ In the case $p>1$, one can take $u \in W^{1, p}\left(\mathbb{R}^{d}\right)$ in (1.3). Nevertheless, (1.3) does not hold for $u \in W^{1,1}\left(\mathbb{R}^{d}\right)$ in the case $p=1$. An example for this is due to Ponce presented in [21].

