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Abstract
For any programming language that supports macros and
has multiple implementations (each with di�erent AST def-
initions), there is a common problem: how to make macros
that operate on ASTs portable among di�erent compiler imple-
mentations?

Implementing portable macros is especially important for
statically typed languages like Scala, as IDE vendors usually
have di�erent implementations of the language in order to
support rich IDE features. Unportable macros compromise
IDE features and degrade programming experience.
We describe two approaches to the portability problem

based on two di�erent views on macros: (1) the tree-based
approach, which views macros as operations on abstract syn-
tax trees, solves the problem by de�ning standard abstract
syntax trees; (2) the syntax-based approach, which views
macros as operations on abstract syntax, solves the problem
by de�ning standard abstract syntax. We show that the la�er
has signi�cant practical advantages, especially in support-
ing semantic macros that use type information of ASTs to
transform user code.

Based on the idea, we implemented a new macro system,
Gestalt, for the experimental Scala compiler, Do�y. �e new
implementation solves several long-standing problems of the
current Scala macro system and demonstrates advantages
over alternative approaches. Our solution has been adopted
in the o�cial new Scala macro system.
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1 Introduction
Scala has experimental support for macros since version
2.10 (Burmako 2013). �e introduction of macros gives more
power to programmers, but also brings more troubles to
them. �e most noticeable problem is that IDEs for Scala
have suboptimal support for macros.

�is can be illustrated by the following example. Suppose
we have de�ned an annotation macro @className that adds
a method className to any given class. �e code below will
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be compiled by the standard Scala compiler without any
problem:

@className class Expr

val exp = new Expr

println(exp.className)

�e code above can be compiled without problem by the
standard Scala compiler, because during compilation, it will
run the macro className to transform class Expr to the fol-
lowing:

class Expr { def className = "Expr" }

However, when the programmer is writing the code in a
popular IDE like IntelliJ IDEA, it will report an error saying
that Expr does not have a �eld named className. What a
poor programming experience!
Currently, macro annotations in Scala are de�ned is de-

�ned in a way that binds tightly to the ASTs (abstract syntax
trees) of the standard Scala compiler, an IDE like Intellij with
its own language implementation is unable to expand the
macro due to the mismatch in AST format. �us the original
code fails to type check in the IDE.

Since Scala is a statically typed language, many Scala pro-
grammers rely heavily on IDEs for real-time and interactive
type checking. When certain Scala features are unsupported
by an IDE, the programming experience is signi�cantly de-
graded.
We believe that this user experience problem reveals a

more fundamental problem of how to implement portable
macros. While languages are usually standardized, ASTs are
not, and as a result many other macro systems may face the
same problem that Scala does.
In this paper we describe two di�erent approaches to

implement portable macros, namely the tree-based approach
and the syntax-based approach.
�e tree-based approach views macros as operations on

abstract syntax trees. It de�nes standard abstract syntax trees,
against which macros are de�ned. During macro expansion,
compiler ASTs are converted to the standard ASTs as input
to macros. A�er expansion, the expanded standard ASTs are
then converted back to compiler ASTs.
�e syntax-based approach views macros as operations

on the abstract syntax of the language. Instead of de�ning
standard abstract syntax trees, the syntax-based approach
de�nes standard abstract syntax, which is represented by
abstract methods to construct and inspect the abstract syn-
tax. We call the abstract methods constructors and extractors
respectively. Macros are de�ned in terms of these abstract
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constructors and extractors. Each compiler has its own im-
plementation of the standard constructors and extractors.
During macro expansion, a concrete implementation of con-
structors and extractors is provided to macros to actually
manipulate the abstract syntax on top of the compiler ASTs.
No conversions of ASTs happen during macro expansion.
�e syntax-based approach makes it easy to access at-

tributes of trees, such as types and symbols, which are es-
sential for macros that transform user code based on type
information of ASTs.

Concretely, our contributions are as follows:
• We identi�ed two di�erent approaches to implement

portable macros. As far as we know, the syntax-based
approach is new for Scala and it’s our original con-
tribution. We also share some design principles of
extractors and constructors.

• We implemented a macro system for the experimen-
tal Scala compiler Do�y. It advances the state-of-
the-art of meta-programming in Scala in terms of
API friendliness, simplicity, portability, robustness
and hygiene. With signi�cant bene�ts over the tree-
based approach, the syntax-based approach has been
adopted in the new Scala macro system.

�e rest of the paper is organized as follows. We �rst in-
troduce the problem of AST heterogeneity (Section 2), then
discuss the tree-based approach and syntax-based approach
(Section 3, 4) respectively. Section 5 describes the imple-
mentation of a macro system Gestalt for Do�y. Section 6
reviews related work.

2 �e Problem: Heterogeneity of ASTs
“�eworld is the totality of facts, not of things.”

-Wi�genstein, Tractatus

Nearly all popular programming languages enjoy multiple
implementations. Usually di�erent implementations de�ne
di�erent sets of ASTs due to di�erent conceptualization of
the syntactical elements or di�erent problems at hand. In the
case of Scala, besides the standard compiler, IDEs like IntelliJ
have their own (partial) implementation of the language, in
order to support rich IDE features.
While programming languages are usually standardized,

ASTs are not, nor is it necessary. For an example of the
heterogeneity of ASTs, let’s look at the example of Scala
for-comprehension illustrated by the following code:

for (p <- ps) print(p)

for (p <- ps) yield f(p)

�e second line uses the keyword yield, while the �rst
line does not. �e �rst for expression is used when we don’t
care about the return value of the body. �e second one is
used when the return value of the body is expected.
Do�y, a prospective Scala compiler, uses two data struc-

tures to represent the two di�erent kinds of for:

case class For(ts: List[Tree], body: Tree)

case class ForYield(ts: List[Tree], body: Tree)

However, we could imagine another way to represent the
same syntax:

case class For(ts: List[Tree], body: Tree)

case class Yield(expr: Tree)

�e former representation de�nes two di�erent data struc-
tures for two kinds of for expressions, while the la�er de-
�nes one data structure for for expression, one for yield

expression. Both representations capture all the syntactic
information, thus both are valid. And it is impossible to tell
which is be�er, as they may serve di�erent purposes.

�e heterogeneity of ASTs is not a problem in itself. It only
becomes a problem when the language supports features
that enable programmers to manipulate ASTs, e.g., macros.
Typical operations on ASTs are (1) compose new trees; and
(2) inspect structures of trees. In such cases, there is an
important question to answer: which implementation are the
AST operations de�ned against?

�e response to the question above depends on one’s view
about what macros are. A natural view is that macros are op-
erations on ASTs. �is view leads to the tree-based approach.
A di�erent view is that macros are operations on abstract
syntax of the language, which leads to the syntax-based ap-
proach.

3 �e Tree-Based Approach
If macros are operations on ASTs, to make the operations
portable we just need to de�ne a standard set of ASTs. �en,
macros are de�ned in terms of the standard ASTs. Compiler
ASTs are converted back and forth to the standard ASTs
during macro expansion. �is is the basic idea of the tree-
based approach.

Let’s give the standard ASTs the type meta.Tree, the ASTs
of compiler X the type x.Tree, the whole process of macro ex-
pansion for the compiler X can be illustrated by the following
code:

type Macro = meta.Tree => meta.Tree

def toMeta: x.Tree => meta.Tree

def fromMeta: meta.Tree => x.Tree

def expand(macro: Macro, t: x.Tree) =

fromMeta (macro (toMeta t))

As the type Macro shows, macros are de�ned in terms of
the standard ASTs. During macro expansion, the compiler
executes toMeta to convert compiler ASTs to standard ASTs.
�en, the compiler executes macro to transform the standard
ASTs. Finally, the compiler executes fromMeta on the result-
ing ASTs to convert them back to compiler ASTs to continue
compilation.

While this approach does solve the portability problem, it
has several drawbacks.
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(1) �ere is no simple way to get type information of trees.
Statically typed languages like Scala usually have type
information a�ached to ASTs, so macros can pro�t
from the type information when transforming user
code. Conversion of trees makes it di�cult to access
type information due to the disparity of ASTs and the
heterogeneity of data structure for types. Keeping
type information of trees in the round-trip conversion
is also an intricate engineering problem.

(2) Conversion incurs performance penalty. Imagine that
there is a macro that adds a �eld to any given class
de�nition. Now if there is a class of 500 LOC, by the
tree-based approach every node of the huge AST rep-
resenting the class has to be converted to meta.Tree

and converted back, despite the fact that only the root
of the huge AST is manipulated.

(3) It’s di�cult to keep meta-data of trees. Trees usually
carry meta-data with them, such as positions, types,
docs and other a�achments. Due to the disparity
of ASTs, to correctly carry all the meta-data in the
round-trip is not a trivial issue.

(4) Conversion incurs implementation cost. Not all syntac-
tic constructs are inspected or should be inspected in
macros. As the user code may contain any syntactical
construct of the language, the tree-based approach
has to de�ne data structures for all possible syntac-
tic constructs and handle them in the conversion, no
ma�er such syntactic constructs are ever inspected or
not in macros. Syntactic sugars pose a major problem
here, as it’s di�cult to reliably handle some complex
sugars, like for comprehensions in Scala.

4 �e Syntax-Based Approach
4.1 Introduction
As we see from the previous section, most problems of the
tree-based approach are caused by conversions between
ASTs. But what if we avoid the conversions at all?

�e key insight here is that macros are operations on ab-
stract syntax, instead of abstract syntax trees. �e abstract
syntax of a language captures the essence of the concrete
syntax by ignoring inessential details like new lines, spaces,
comma, braces, parentheses and etc. �e ASTs in di�erent
compilers are just di�erent representations of the abstract
syntax. �e abstract syntax of a language is basically deter-
mined by the language speci�cation. However, there could
be di�erences at the micro-level, which is the source of het-
erogeneity of ASTs as we have seen in the case of For/Yield
and ForYield/ForDo. If we can abstract away the di�erence
in micro-level abstract syntax and de�ne macros in terms of
the standard abstract syntax, then portability of macros will
not be an issue. �e view leads to the syntax-based approach.

�e syntax-based approach �xes a standard abstract syntax,
which are represented by abstract methods to construct and
inspect the abstract syntax. We call the abstract methods
constructors and extractors respectively. Macros are de�ned
in terms of these abstract constructors and extractors. �e
idea can be illustrated with the following code:

trait Toolbox {

type Tree

def Ident: IdentImpl

trait IdentImpl {

def apply(name: String): Tree

def unapply(tree: Tree): Option[String]

}

def Tuple: TupleImpl

trait TupleImpl {

def apply(args: List[TermTree]): TermTree

def unapply(tree: Tree): Option[List[TermTree]]

}

}

�e macro system de�nes a trait Toolbox which is com-
posed of abstract constructors and extractors. For simplicity,
we only show the constructor and extractor for identi�ers
and tuples. �e abstract methods apply and unapply capital-
ize on Scala language features to enable programmers to use
the name Ident as if it’s a data structure:

val id = Ident("x")

tree match {

case Ident(name) => ...

case _ => ...

}

In Scala, the �rst Identwill be translated to Ident.apply("x"),
while the second one will be translated to the method call
Ident.unapply(tree).

Macros are de�ned in terms of the standard constructors
and extractors 1:

def plus(tb: Toolbox)(a: tb.Tree, b: tb.Tree):

tb.Tree =

{

import tb._

q"$a + $b"

}

�e macro plus transforms plus(2, 3) to 2 + 3. In the
body of plus, it uses quasiquotes instead of constructors and
extractors directly. �asiquotes are just a handy way to use
the toolbox. �e quasiquote is translated into to the equiv-
alent code: Infix(a, "+", b), where Infix is a constructor
for in�x expressions. �e de�nition is compiler-independent

1Scala programmers can write macros in a more friendly way, the code is
just for be�er illustration of the idea.
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as the macro is expressed in terms of the abstract construc-
tor Infix, it doesn’t bind to a particular compiler when the
macro is de�ned. In another word, the macros are de�ned in
terms of abstract syntax, instead of abstract syntax trees.
A compiler X provides its own implementation of the

constructors and extractors that construct or deconstruct
the standard abstract syntax on top of its own AST trees, as
the class XToolbox shows:

class XToolbox extends Toolbox {

type Tree = x.Tree

object Ident extends IdentImpl {

def apply(name: String): Tree = ???

def unapply(tree: Tree): Option[String] = ???

}

}

During macro expansion, a concrete implementation of
the constructors and extractors XToolbox is passed to the
macros for constructing and deconstructing abstract syntax
on compiler ASTs:

plus(new XToolbox)(a, b)

�e input tree to the macro and the resulting tree from the
macro are both compiler trees (x.Tree), thus no conversion
is required.

4.2 Why it works
But how we can be sure that de�ning a standard abstract syn-
tax is possible? �is is based on the following observations:

• Each set of ASTs correspond to one abstract syntax.
• Di�erent abstract syntaxes agree at macro-level.

As the name “abstract syntax trees” suggests, each set of
ASTs corresponds to one formulation of abstract syntax. Dif-
ferent abstract syntaxes may di�er at the micro-level. How-
ever, at the macro-level, di�erent abstract syntaxes agree on
what syntactic information they can provide. For example, in
the case of For\Yield and ForYield\ForDo, di�erent compil-
ers di�er at the micro-level about the abstract syntax for the
body of for-comprehensions. At the macro-level, if we take
for-comprehensions as a whole, no ma�er which abstract
syntax a compiler chooses, they can all provide equivalent
information about for-comprehensions: what are the enu-
merators, what’s the body, whether the body is an Yield,
and so on.
If we de�ne the constructors and extractors carefully to

capture macro-level abstract syntax (Section 4.3), we can
abstract away the micro-level di�erences in abstract syntax,
thus create a standard abstract syntax. Macros are expressed
in terms of the standard abstract syntax via abstract con-
structors and extractors, thus solves the portability problem.

4.3 Design of Constructors and Extractors
For the syntax-based approach to work, the constructors and
extractors have to be carefully designed. Here we introduce

some guiding design principles and discuss how they lead
to more portable constructors and extractors.

4.3.1 Prefer macro-structures over micro-structures
�is principle can be illustrated with for expressions in Scala.
Remember from section 2 that there are two equivalent ways
to represent for expressions: (1) use the pair ForYield and
ForDo; or (2) use the pair For and Yield.
Both representations capture the syntactic information,

but they make a di�erence for constructors. Imagine that we
have two abstract constructors For and Yield. For compilers
that also de�ne For and Yield, the implementation of the
two constructors is easy. However, if a compiler chooses the
representation ForDo/ForYield, how will it implement the
constructor Yield? While it’s still possible to do that, the
implementation must resort to some hack.

In contrast, if the macro system de�nes two abstract con-
structors ForDo and ForYield, there are no such problems. If
a compiler has the representation ForDo and ForYield, the
implementation is straight-forward. If a compiler has the
representation For and Yield, we can implement the two
constructors as follows:

def ForYield(enums: List[Tree], body: Tree): Tree =

x.For(enums, x.Yield(body))

def ForDo(enums: List[Tree], body: Tree): Tree =

x.For(enums, body)

In the code above x.For and x.Yield are the tree construc-
tors de�ned in the compiler.
In the design of Gestalt (Section 5) there are many such

cases. For example, in both the Scala 2.x compiler and the
Do�y compiler there’s a data structure named template. It’s
used to capture the syntactic similarities for the body of class,
object, trait and anonymous class de�nitions. As templates
are micro-structures, we don’t have templates in Gestalt.
Instead, we have constructors for Object, Trait, Class and
AnonymousClass separately which capture macro-structures
of the language syntax.

4.3.2 Design both for syntax and semantics
�e design of constructors and extractors is mostly driven by
the syntax of the programming language under study. But
syntax is not the only concern. For example, syntactically we
could represent f(1) in the Scala code f(1) = 3 as a function
call. �e representation can be justi�ed as it captures all
syntactic information of the code. Indeed, that’s what the
Do�y compiler does.
But doing so in constructors and extractors harms porta-

bility. It’s quite reasonable to imagine that there might be
compilers that represent the code more semantically with
a special AST tree Update. Now without a proper construc-
tor for Update, it’s di�cult to correctly represent the code
f(1) = 3 in terms of constructors for the particular compiler.
In the design of Gestalt (Section 5), we de�ne di�erent

trees for pa�erns for the same reason: syntactically pa�erns
4



Two Approaches to Portable Macros Technical Report, July, 2017, EPFL

are similar to some other trees, but semantically they are
di�erent. Providing special constructors for them be�er
abstracts compiler di�erences and protects the macro system
from potential changes of compiler ASTs.
Programming languages tend to reuse the same syntax

for di�erent language features to reduce complexity of the
language and make the language easier to learn. In such
cases, design of constructors and extractors purely based on
syntax is a trap. It’s important to design for both syntax and
semantics.

4.3.3 Have fewer constructors and extractors
Each abstract constructor and extractor is an assumption on
the compiler ASTs about how they represent the abstract
syntax. Minimizing the number of constructors and extrac-
tors certainly boosts portability. �ere are several ways to
minimize the assumptions: (1) don’t provide extractors for
syntactic sugars that are di�cult to implement; (2) don’t pro-
vide constructors for deprecated language features; (3) don’t
provide extractors if there are arguments against its usage.
Note that the restrictions are only on macro de�nitions. In
the user code where macros are used, programmers may still
use these language features.

In Gestalt (Section 5), we make a lot of such decisions:
(1) No extractors for for expressions and some other

syntactic sugars (Section 4.4).
(2) No constructors or extractors for deprecated Scala

features, like existential types and early initializers
for traits.

(3) No extractors for type trees, annotations, pa�erns, etc.
�e last decision relies on our assumptions about macro

usage. �e syntax-based approach enables us to make such
assumptions safely while still retain the possibility to pro-
vide the API when a use case emerges without breaking
compatibility.

4.4 Syntactic Sugars
Syntactic sugars complicate the picture. When does desug-
aring happen is a compiler implementation detail that’s usu-
ally not covered by language speci�cations. Some compilers
desugar before macro expansion, some a�er macro expan-
sion, and some desugarings are irreversible. For example,
for is a syntactic sugar in Scala, the Scala 2.x compiler desug-
ars it before macro expansion, while Do�y desugars it a�er
macro expansion 2, and it’s notoriously di�cult to reverse
the desugaring. �is means that a macro that inspects the
structure of for expressions may have di�erent semantics
under di�erent compilers, which is unacceptable.
�e desugaring problem is indeed intriguing. However,

it’s not a particular problem with the syntax-based approach,
the tree-based approach also faces exactly the same problem.

2Strictly speaking, Do�y desugars ‘for’ a�er the expansion of annotation
macros, but before the expansion of def macros.

A practical solution is to disallow inspecting structures of
complex syntactic sugars, as it’s impossible to guarantee
stable semantics of macros across compilers.

4.5 Advantages
�e syntax-based approach has the following advantages:

(1) Type Information. It’s easy to access to the type in-
formation as the trees are not converted, it’s straight-
forward to de�ne APIs to get the type information
associated with the trees.

(2) Meta-data. No conversion of ASTs is required, keep-
ing positions, documentations and other a�achments
on trees is no longer a problem for macro expansion.

(3) Performance. Now thewhole AST conversion is avoided,
there’s only necessary cost for AST nodes that are
actually manipulated by speci�c macros.

(4) Engineering E�ort. Di�erent compilers of the lan-
guage only need to provide an implementation of the
standard extractors and constructors. No need to pro-
vide extractors for all syntactic structures, only for
extractors that are actually used in macros.

(5) Feature Control. We can restrict what constructors
or extractors to provide for macros authors, while
the tree-based approach has to de�ne data structures
for all possible syntactic constructs. For example, in
the context of Scala, we can prevent macro authors
from inspecting or constructing deprecated language
constructs like existential types or early initializers,
while in macro user’s code these deprecated features
can still be used freely.

(6) API Evolution. In contrast to the tree-based approach,
which has to de�ne all the data structures for all possi-
ble language constructs in the beginning, the syntax-
based approach prefers a conservative approach by
de�ning a minimum interface of extractors and con-
structors, and then grow the interface gradually when
concrete use cases emerge. �is results in be�er APIs
as it avoids the huge upfront design risk of the tree-
based approach.

(7) Boundary of Responsibility. �e syntax-based approach
enable us to draw a clear line of responsibility be-
tween compilers and the macro system. All contracts
with the compilers are clearly stated in the abstract
constructors and extractors. It makes it easy to re-
view the contracts and a�ribute responsibilities. In
the implementation, if some abstract constructors or
extractors are not implemented, there is going to be
typing error.

5 Gestalt: Portable Macros for Scala
Based on the syntax-based approach, we implemented a new
macro system for the experimental Scala compiler Do�y:
Gestalt. �e code is hosted on Github: h�ps://github.com/
liufengyun/gestalt .
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Gestalt has some signi�cant improvements over current
Scala macros. It solves or improves many problems of the
current Scala macro system, including portability, hygiene,
owner-chain management, incorrect nesting of trees, path-
dependent inconvenience, etc.
We �rst introduce the current Scala macro system and

its problems. �en we introduce Gestalt and discuss how it
solves the problems.

5.1 �e Current Scala Macro System
�e current Scala macro system supports two categories
of macros: annotation macros and def macros. Annotation
macros are usually used to transform de�nitions, e.g. add
�elds or methods to classes. A typical annotation macro
looks like the following:

class main extends StaticAnnotation {

def macroTransform(annottees: Any*): Any =

macro Main.impl

}

object Main {

def impl(c: Context)(annottees: c.Expr[Any]*):

c.Expr[Any] = {

import c.universe._

...

}

}

�e abridged code above de�nes an annotation macro
main, which can be used to transform the following code:

@main

object Test {

println("hello, world")

}

to the following:
object Test {

def main(args: Array[String]): Unit =

println("hello, world")

}

Annotation macros are expanded before type checking,
thus the trees provided to annotation macros are devoid of
type information. Sometimes, we say annotation macros are
syntactical, because they can only use syntactical informa-
tion of trees to transform user code.
Def macros are usually used to extends the semantics of

methods. A typical def macro looks like the following:
def assert(cond: Boolean) = macro assertImpl

def assertImpl(c: Context)(cond: c.Expr[Boolean])

: c.Expr[Unit] = ...

�e abridged code above de�nes the macro assert, which
can be used to produce friendly failure messages if the con-
dition is false. For example, when the code assert(1 == 2)

is executed, it produces the following output in the console,
which is impossible without macros: 1 is not equal to 2.

Def macros expand a�er the arguments are type checked,
thus they can bene�t from the type information of trees to
transform user code.

Def macros are widely used in Scala libraries like ScalaTest,
Async, Shapeless and etc. �e programming idioms enabled
by def macros form important extensions to the core Scala
language.

Despite the utility of the current Scala macro system, there
are several complaints about its usability. �e problems are
identi�ed in (Burmako 2017) and discussed in macrology2013.

5.1.1 Inconvenience with path-dependent universes
Macro authors have to import the universe in every macro
implementation:

def impl(c: Context)(annottees: c.Expr[Any]*):

c.Expr[Any] = {

import c.universe._

...

}

�e verbosity above might be tolerable, but when a macro
author writes a macro helper, the Scala compiler produces a
typing error:

class Helper(u: Universe) {

def foo(n: Int): u.Tree = ...

}

val helper = new Helper(u)

val a: u.Tree = helper.foo(3) //error:type mismatch

�is is because the compiler fails to �gure out that the
type of the method call helper.foo(3) is the same as u.Tree.
�e following solution is proposed in (Burmako 2017), which
is an improvement, but still not user-friendly:

class Helper[T <: Universe](u: T) {

def foo(n: Int): T = ...

}

val a: u.Tree = new Helper[u.type](u).foo(3)

5.1.2 Problems with owner chains
In the Scala compiler, each de�nition introduces a new sym-
bol, and each symbol has an owner symbol. �e owners of a
symbol form a chain, the hierarchy of the owner chain must
correspond to the nesting hierarchy of the trees.

It is easy for macros to mess with the owner chain due to
restructuring of trees. Suppose there is a macro map, which
transforms the following code:

map(Some(5)) { x =>

val y = x * x

println(y)

}

to the following:
val x = 5

val y = x * x

3h�ps://github.com/scalamacros/macrology201
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println(y)

Amacro author might think that the macro map only needs
to combine the tree of val x =5 with the function body.
�at’s incorrect! It also needs to rewire the occurrence of x in
the function body to the newly de�ned x. Unfortunately, the
solution still crashes the compiler! �e problem is with the
de�nition of val y =x * x. In the original code, the owner
of the variable y is the anonymous method that de�nes the
function. However, in the macro expansion we forget to
change the owner of y to the owner of current context.

Owner chain problems cause hard to debug compiler crashes.
For macro authors, they need a lot of knowledge about the
particular compiler in order to use some hack to deal with
owner chain crashes. Burmako (2014) implemented a simple
macro for allocation-free option type for Scala. �e imple-
mentation has 89LOC in total, of which 30LOC are dedicated
to deal with owner chains 4. Needless to say the hacks used
in the code are not portable. For a macro author without
signi�cant knowledge about compiler internals, it would be
very di�cult to implement such a macro.

5.1.3 Invalid nesting of typed and untyped trees
Def macros in Scala accept typed trees as input, and produce
trees that might be partly typed, partly untyped. Gener-
ally, the compiler only supports limited nesting pa�erns of
typed and untyped trees. In particular, nesting of untyped
trees inside typed trees is problematic and is rejected. �is
discipline makes it much easier for the compiler to decide
whether to type check a tree or not. �is is because blind
re-type checking is expensive, and selective type checking
of sub-trees is hard to make work due to incomplete context
information.
However, current macro system allows programmers to

produce arbitrary pa�erns of nesting, which causes hard to
debug compiler crashes.
To alleviate the problem, the macro system introduces

APIs for macro authors to manually type check untyped
trees. It mitigates the problem, but macro writers need non-
trivial compiler knowledge in order to use the APIs. �e
usage of type checking facilities involves undocumented
conventions about compiler internals, which sacri�ces us-
ability and portability.

5.1.4 Hygiene of macros
Hygiene is a common problem in macros. Generally, hygiene
becomes a problem when a name either in user-program
or meta-program changes its originally intended meaning.
�ere are mainly three cases:

(1) Introduction of new names (i.e. de�nitions) in the
meta-program that cause names in user-program to
have a di�erent meaning than intended.

4To be fair, those lines can be reused as pointed out by the author.

(2) Use of names in the meta-program when mixed in
user-program has a di�erent meaning than intended.

(3) Restructuring of user-program that changes the in-
tended meaning of names.

�e second problem is the most common in Scala macros.
Macro authors are recommended to use fully-quali�ed names
to avoid the problem, but there’s no facility to enforce the
discipline.

5.1.5 Verbosity in syntax
As the following example shows, the current Scala macro
system requires the separation between macro declaration
and macro implementation, which is not user-friendly:

def assert(cond: Boolean) = macro assertImpl

def assertImpl(c: Context)(cond: c.Expr[Boolean])

: c.Expr[Unit] = ...

5.1.6 Portability and IDE experience
As explained in the introduction, the current Scala macro
system fails to handle portability of macros, which results
in poor IDE experience.

5.2 Gestalt: Introduction
Gestalt has some signi�cant improvements over current
Scala macros. It solves or mitigates the problems of the
current Scala macro system mentioned above:

(1) It completely removes the annoyances about path-
dependent universes.

(2) It frees macro authors from owner chain management
completely by handling it automatically.

(3) It rejects the nesting of untyped trees inside typed
trees by the type system.

(4) It improves hygiene by the type system, which only
accepts fully quali�ed names by default.

(5) It reduces the boilerplate to de�ne a macro
(6) It solves the portability problem based on the syntax-

based approach (Section 4).
�is is how to write a dummy macro in Gestalt:
import scala.gestalt.api._

object Test {

def plus(a: Int, b: Int): Int = meta {

q"$a + $b"

}

}

We follow the inline/meta proposal described in Burmako
(2017) to use the keyword meta as a marker to highlight the
semantic di�erence inside the meta block. We no longer
require programmers to separate macro declaration from
implementation. More importantly, programmers even don’t
need to know the existence of universes (or toolbox in our
case), which is pervasive in the current macro system.
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We reimplemented some complex macros like monadless
(Brasil 2017) and optionless (Burmako 2014) in Gestalt. Our
implementation is easier and more solid. For the example of
optionless, the implementation (Liu 2017) is 39LOC compared
to the original 89LOC. �ere is not a single line that handles
owner chains. �e macro is implemented in about 10 min-
utes and passes the original test set without a single change.
Given the existence of heavy hacks to deal with compiler
crashes, the original implementation would be very di�-
cult for programmers without signi�cant knowledge about
compiler internals.
In the following, we describe the design that enables

Gestalt to achieve the goals.

5.3 Gestalt: Design
�ecore design of Gestalt is centered around the trait Toolbox,
which de�nes abstract types, constructors, extractors, and
services that compilers should implement. �e following
code demonstrates the main design of Toolbox 5:

trait Toolbox extends Types with Symbols

with Denotations {

type Tree >: Null <: AnyRef

type TypeTree >: Null <: Tree

type TermTree >: Null <: Tree

type DefTree >: Null <: Tree

type PatTree >: Null <: Tree

type Ident <: TermTree with PatTree

val tpd: tpdImpl

trait tpdImpl {

type Tree >: Null <: AnyRef

}

def Ident: IdentImpl

trait IdentImpl {

def apply(name: String): Ident

def apply(symbol: Symbol): tpd.Tree

def unapply(tree: Tree): Option[String]

def unapply(tree: tpd.Tree): Option[Symbol]

}

}

�e trait Toolbox serves as a contract between the macro
system and compilers. It follows the philosophy of syntax-
based approach by de�ne abstract constructors and extrac-
tors for ASTs.

Scala is a typed language, the trees passed to a macro may
be already typechecked and hold type information. Macros
can pro�t the type information to transform the code. �at’s
the reason why inside the toolbox there are both the type
Tree and tpd.Tree. �is is signi�es the separation between
typed and untyped trees, we’ll explain this major design deci-
sion below (Section 5.3.4).

5For presentation purpose, the code is greatly simpli�ed.

Toolbox extends Types, Symbols and Denotations, which
enable macro authors to operate on semantic information of
ASTs. �e trait Types de�nes abstract types and operations
for types:

trait Types { this: Toolbox =>

type Type >: Null <: AnyRef

type TermRef <: Type

type TypeRef <: Type

type MethodType <: Type

def Type: TypeImpl

trait TypeImpl {

def =:=(tp1: Type, tp2: Type): Boolean

def <:<(tp1: Type, tp2: Type): Boolean

// ...

}

def MethodType: MethodTypeImpl

trait MethodTypeImpl {

def paramInfos(tp: MethodType): List[Type]

def instantiate(tp: MethodType)(params:

List[Type]): Type

def unapply(tp: Type): Option[MethodType]

// ...

}

}

�e trait Symbols de�ne common operations on symbols:
trait Symbols { this: Toolbox =>

type Symbol <: AnyRef

def Symbol: SymbolImpl

trait SymbolImpl {

def name(mem: Symbol): String

def asSeenFrom(mem: Symbol, prefix: Type): Type

def isCase(sym: Symbol): Boolean

def isTrait(sym: Symbol): Boolean

// ...

}

}

�e trait Denotations de�nes denotation, a concept bor-
rowed from Do�y, which is basically the meaning of a name:

trait Denotations { this: Toolbox =>

type Denotation

def Denotation: DenotationImpl

trait DenotationImpl {

def name(denot: Denotation): String

def info(denot: Denotation): Type

def symbol(denot: Denotation): Symbol

}

}
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Note that in Scala, a symbol alone doesn’t give exact mean-
ing to a name because of path-dependent types, type mem-
bers and generics. �e exact meaning of a name in a context
has to be the combination of the referred symbol and its type
in the speci�c context.

5.3.1 Safety by construction
By safety by construction we mean that the type system will
reject construction of syntactically incorrect trees. Safety
by construction comes in varying degrees. �e tree-based
approach supports a high degree of safety by construction
by giving di�erent types to di�erent syntactic constructs
and enforcing type constraints in the construction of trees.

�e syntax-based approach allows us to achieve the same
goal, but a li�le di�erently. Instead of using concrete types
of trees, the macro system de�nes abstract types for dif-
ferent syntactic constructs and enforce type constraints on
constructors to reject ill-formed trees.

More abstract types are not more assumptions on compiler
ASTs. For example, in the implementation of the toolbox for
Do�y we equate both TypeIdent and Ident to just Ident in
Do�y. �e compiler doesn’t have to de�ne a di�erent data
structure for each di�erent abstract type.

5.3.2 Removal of the path-dependent curse
We get rid of the path-dependent curse by the following:

object api extends Toolbox {

private val toolbox: ThreadLocal[Toolbox] =

new ThreadLocal[Toolbox]

def Ident =

toolbox.get.Ident.asInstanceOf[IdentImpl]

}

Before macro expansion, the compiler sets its own im-
plementation of the toolbox in the thread-local store. A�er
macro expansion, the toolbox is removed from the store.
Macro authors don’t need to know the existence of uni-

verses or toolboxes. When they decide to write a macro
helper, there’s no longer need to pass universes around and
work around the type system:

import scala.gestalt.api._

object Helper {

def foo(n: Int): Tree = ...

}

5.3.3 Separation of user API from compiler API
�e contract between compilers and the macro system is
de�ned by the APIs in Toolbox. However, those APIs are
not assumed to be used directly by macro users, as they are
designed for easy implementation by compilers but not for
friendly usage by macro authors. Instead, we de�ne a large
amount of friendly helpers that wrap the compiler APIs,
thanks to the support of implicits in Scala:

object api extends Toolbox {

implicit class UntypedOps(tree: Tree) { ... }

implicit class TypedOps(tree: tpd.Tree) { ... }

implicit class SymbolOps(sym: Symbol) { ... }

implicit class TypeOps(tp: Type) { ... }

}

�e separation of user API and compiler API enables us
to adopt two design strategies which result in both friendli-
ness and integrity: (1) user APIs are driven by use cases; (2)
compiler APIs are generalized over the requirements from
user API. For example, when the user API needs to query
whether a symbol is a case class of not, the compiler APIs
satisfy the requirement by providing APIs to query all �ags
of symbols.
In development, the separation makes it easy to review

and manage the contracts with compilers. It serves as a well-
de�ned boundary between the macro system and compilers,
which makes it easy to a�ribute responsibilities.

5.3.4 Type-safe nesting of typed and untyped trees
�e separation of typed and untyped trees enable us to re-
ject the nesting of untyped trees inside typed trees by the
type system. �e code below shows how the separation is
implemented:

trait Toolbox {

type Tree >: Null <: AnyRef

type Splice <: TypeTree with TermTree with

DefTree

// ...

val tpd: tpdImpl

trait tpdImpl {

type Tree >: Null <: AnyRef

}

def TypedSplice: TypedSpliceImpl

trait TypedSpliceImpl {

def apply(tree: tpd.Tree): Splice

def unapply(tree: Tree): Option[tpd.Tree]

}

def If: IfImpl

trait IfImpl {

def apply(cond: TermTree, thenp: TermTree,

elsep: Option[TermTree]): TermTree

def unapply(tree: Tree): Option[(TermTree,

TermTree, Option[TermTree])]

def apply(cond: tpd.Tree, thenp: tpd.Tree,

elsep: tpd.Tree): tpd.Tree

def unapply(tree: tpd.Tree): Option[(tpd.Tree,

tpd.Tree, tpd.Tree)]

}

}
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At the user-facing API, there is an implicit conversion
from typed trees to untyped trees to improve programming
experience:

object api extends Toolbox {

implicit def tpd2untpd(tree: tpd.Tree): Splice =

TypedSplice(tree)

}

It’s impossible to nest untyped trees inside typed trees
because the constructors for typed trees only take typed
trees.

Note that the separation of typed trees and untyped trees
in the macro system doesn’t assume the same separation
in compilers. For example, the Scala 2.x compiler doesn’t
have the separation of typed and untyped trees, it can just
implement the constructor Splice as the identity function,
while still enjoys the guarantee that there are no untyped
trees nested inside typed trees.

5.3.5 Owner Chain Made Easy
�e separation of typed trees and untyped trees enables us to
maintain owner chains automatically without programmers
knowing their existence. Conceptually, when a programmer
composes a complex typed de�nition by nesting some typed
child tree – for instance to de�ne a typed method – it’s
possible to traverse the child tree to get all the symbols of
non-nested de�nitions in the child tree and update their
owners to the symbol of the current de�nition.

�is allows the macro system to completely ignore issues
about owner chains. �ey are technical details that are inter-
nal to particular compilers. For example, in the implementa-
tion for Do�y, we do it as follows in the typed constructor
of Function:

def Function

(params: List[(String, Type)], resTp: Type)

(bodyFn: List[tpd.Tree] => tpd.Tree): tpd.Tree = {

val meth = ctx.newSymbol(

ctx.owner, nme.ANON_FUN,

Flags.Synthetic | Flags.Method,

Types.MethodType(params.map(_._1.toTermName),

params.map(_._2), resTp)

)

t.Closure(meth, paramss => {

ensureOwner(bodyFn(paramss.head), meth)

})

}

Functions are implemented by a method and a closure in
Do�y. �e method call ensureOwner will traverse the non-
nested de�nitions in the function body and set their owners
to the current function. �at’s why we can always set the
owner of the method to the current context owner owner.ctx
– the owner will be updated automatically when it’s nested
inside another de�nition.

5.3.6 �e Adaptation Problem
Manually constructing typed trees implies programmers
need to do apply-insertion, type parameter synthesis, over-
loading resolution, implicit resolution manually, which is
extremely verbose.
In the current Scala macro system, it provides APIs for

macro authors to manually typecheck trees. �is approach
involves undocumented conventions about compiler inter-
nals, which sacri�ces usability and portability.
�e adaptation problem is a special variant of type infer-

ence problem where the parameters of methods are well-
known. We solve this problem by using the type inference
facilities of the underlying compiler. When constructing a
typed Apply tree, the macro system will automatically insert
missing applys, implicit parameters, infer type parameters,
resolve overloadings, etc.

5.3.7 Hygiene
In Gestalt, we have two guarantees about hygiene: (1) names
in meta-program cannot be polluted by user-program; (2)
names in user-program cannot be polluted bymeta-program6.
�ese two guarantees cover most of the hygiene problems
in practice.
To achieve the �rst goal, the type system enforces that

macro authors have to use fully-quali�ed names beginning
from _root_ or scala 7. �e solution is simple, we restrict
that the only untyped identi�ers that programmers can use
is _root_ and scala. �is restriction can be implemented
with the help of literal types:

def Ident(name: "_root_"): Tree

def Ident(name: "scala"): Tree

Of course, programmers can freely create typed identi�ers
based on symbols, which are hygienic. With the facilities
above, the following code will not compile:

q"List(2, 3)" // q"scala.List(2, 3)" works

If the programmer wants to break hygiene intentionally,
they have to import an unsafe capability:

import scala.gestalt.options.unsafe

q"List(2, 3)" // it works now

As you can imagine, the unsafe constructor is guarded by
a capability:

def Ident(name: String)(implicit c: Unsafe): Tree

Of course, it’s always safe to use a resolved name in the
meta-program, as themeaning of a typed tree will not change
during type checking:

def Ident(symbol: Symbol): tpd.Tree

�e separation of typed and untyped trees enables to
achieve the second goal easily: in def macros user-code is

6�e second guarantee is only valid for def macros.
7Supporting pre�x scala is not necessary, but it increases friendliness.
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already type checked, i.e. the meanings of names in user-
code are already �xed, it’s impossible to pollute the names
in user-code unless we confuse typed trees with untyped
trees. �is can be illustrated by a dummy macro hygiene:

def hygiene(x: Int): Int = meta {

q"""

val x = 4

$x

"""

}

�e macro hygiene will transform the following code:
val x = 5

hygiene(x) // x = 5

to the following:
val x = 5

{ val x = 4

x } // x = 5

Note that a�er macro expansion, the variable x still refers
to the original variable, as its meaning is already �xed be-
fore macro expansion. We don’t have such guarantees for
annotation macros, because they are expanded before type
checking. Luckily, typical use cases of annotation macros are
to enrich class de�nitions with well-de�ned �elds or meth-
ods, where introduction of well-known names to classes is
an intended e�ect.

5.3.8 Platform-Independent�asiquotes
Another nicety of Gestalt is that quasiquotes are platform-
independent. It means that compilers only need to write
several lines of glue code in order to reuse the quasiquote im-
plementation. Or no glue at all if we implement quasiquotes
as macros in Gestalt, then we get portability for free.
As quasiquotes are meta-programs that construct or de-

construct trees, seemingly quasiquotes can be implemented
easily in terms of standard constructors and extractors. How-
ever, it is not so obvious if we check the imaginary type
signature of simple quasiquotes (without unquotes):

q : String => Tree[Tree[_]]

We use the notation Tree[T] to mean that code of the
tree when executed will produce a value of type T. Given
the quasiquote q"3", how it can be represented by the con-
structors? �e obvious answer Literal(3) is incorrect, as
quasiquotes should return trees that represent trees, not
trees themselves! �e correct answer should be trees that
represent Literal(3), i.e.:

Apply(

Ident("Literal"),

Literal(3)

)

To execute the code above, a toolbox instance is required.
Meanwhile, the result of the execution can be executed again,
and they need another toolbox instance. �e two toolboxes

are di�erent, because they are used at completely di�erent
stages: the �rst toolbox is used during macro de�nition, the
second is used during macro expansion.

5.4 Assumptions
A good design depends on good assumptions. In the imple-
mentation of Gestalt, we use many assumptions to minimize
the number of supported extractors. �e syntax-based ap-
proach enables us to make bold assumptions on this ma�er
– when a concrete use case surfaces, we can always provide
support for the required extractors.
We list the major assumptions below. We are conscious

that the assumptions are opinionated, as it’s the case in most
design activities. However, as they are important to the
design, we think it’s good to document them so that they
can be debated, validated or invalidated, thus serve as a basis
to improve the design.

(1) Macros should never match modi�ers exactly
(2) �asiquotes should never be used as pa�erns
(3) No extractors are required for type trees
(4) No extractors are required for pa�ern trees
(5) No extractors are required for for comprehensions
(6) No extractors are required for Self
(7) No extractors are required for this and super

(8) No extractors are required for parent de�nition list
(9) No extractors are required for import statements
We could add more to the list: no extractors for primary

and secondary constructors, etc. We justify some of the
above assumptions by reasoning and/or empirical evidence.

Macros should never match modi�ers exactly. �is is
more like a rule. �e reason is that modi�ers like private,
implicit, lazy can be reordered without changing the se-
mantics of programs, and it’s impossible to know in advance
how many modi�ers a de�nition could have. As a result, all
macros that match modi�ers exactly are buggy. �is leads
us to model modi�ers as a black box of �ags, which pro-
grammers can query or set. If a macro author a�empts to
match modi�ers exactly, the macro system will instruct the
compiler to produce an error message.

�asiquotes should never be used as pa�erns. We think
that use of quasiquotes as pa�erns is an abuse. First, pat-
terns tend to be simple. Complex pa�erns with rich details
make too many assumptions on user code, which is usually
buggy. With extractors and extractor helpers, use of extrac-
tors makes the pa�ern match code cleaner (no strings and
dollars). Second, the semantics of extractors are more trans-
parent and predictable than quasiquotes. Macro authors can
get type information about extractors from IDEs. �ird, it’s
easy to make mistakes in quasiquote pa�erns. For exam-
ple, forget to put $_ both before the class de�nition and the
argument list to handle possible modi�ers when matching
against a class de�nition. If extractors are used, the type
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system guards against such mistakes. Fourth, from our expe-
rience with macros and impression with libraries, extractors
are much more widely used than quasiquote pa�erns.

No extractors are required for type trees. First, Scala sup-
ports type alias and imports, the syntactic information of
types is not informative at all. Programmers can’t tell whether
a type is Int by checking whether it’s shape is the same as
scala.Int. Second, Scala supports local type inference, type
arguments are optional. Macros that operate on the shape
of type trees will be unable to handle inferred type trees.
In a word, the programmers can only do wrong things by
inspecting the structure of type trees.

No extractors are required for pa�ern trees. �ere is no
good reason to transform pa�erns in user code. If there’s
indeed a use case, it should be discouraged, as it reduces
maintainability of the code and harms predictability of pro-
gram behaviors. �e only macro we know that manipulates
pa�ern trees is quasiquotes, but we have discussed that the
usage is problematic.

No extractors are required for ‘for’ comprehensions. As
we discussed in Section 4.4, it’s tricky to guarantee stable
semantics across compilers for macro code that inspect struc-
tures of for comprehensions. Meanwhile, macros that only
handle for but not map or flatMap are problematic, as the for-
mer desugars to the la�er. Finally, in all Scala compilers we
know of, for comprehensions are already desugared before
the expansion of def macros.

No extractors are needed for ‘Self’. �e self-annotation in
class or object de�nition is optional. Note that the most
important information in self-annotation is the types, but
we have argued above that no extractors are required for
type trees. We don’t know any macros that inspect self-
annotations.

No extractors are needed for ‘this’ and ‘super’. We don’t
know any macros that pro�t from inspecting this or super.

No extractors are needed for parent de�nition list. First,
parent de�nition is mostly about types, and we have ar-
gued type trees should not be inspected. Second, doing any
changes to parent list will greatly reduce maintainability
and the predictability of program behavior, thus discouraged.
�ird, we don’t know any macros that manipulate parent
de�nitions.

No extractors are needed for ‘import’ statements. Wedon’t
know anymacros that manipulate import statements. Chang-
ing the semantics of import is discouraged as it reduces pre-
dictability of programs.

6 Related Work
As far as we know, portability of macros is largely ignored in
the research of meta-programming, while there are plentiful

studies on hygiene (Dybvig et al. 1993; Kohlbecker et al. 1986)
and type-directed meta-programming (Davies and Pfenning
2001; Ganz et al. 2001; Lämmel and Jones 2003; Sheard and
Jones 2002; Taha and Sheard 2000).

scala.reflect is the �rst experiment to introduce macros
to Scala. It has brought signi�cant bene�ts to programmers.
It takes a similar approach based on constructors and ex-
tractors as proposed in this paper. However, the vision is
quite di�erent. For example, scala.reflect de�nes the trait
IfApi which is intended to be inherited by all compiler data
structures that represent if/else expressions. Imposing a
common set of traits is just one step away from imposing
that all compilers should use the same ASTs, which is even
harder to achieve than standardizing ASTs just for macros.
�e scalameta project intends to be the successor of the

experimental scala.reflect macros. It de�nes a standard
set of ASTs and macros are de�ned in terms of the standard
ASTs. �e compiler does conversion between compiler trees
and Scalameta trees during macro expansion. �e scalameta
project eventually got blocked with the implementation of
semantic APIs. Nevertheless, the project directly inspired
us to invent the syntax-based approach, which is impossible
without the experiments in scalameta.

7 Conclusion
In this paper we presented the syntax-based approach to
implement portable macros based on standard constructors
and extractors. We showed that this approach has many
advantages over the tree-based approach. We implemented
a macro system based on this idea and reaped signi�cant
bene�ts compared to alternative solutions. Our solution
outlined in this paper has been adopted in the o�cial new
Scala macro system.
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