
BREAKING THE FF3 FORMAT

PRESERVING ENCRYPTION⋆

F. Betül Durak1 and Serge Vaudenay2

1 Rutgers University
Department of Computer Science

fbdurak@cs.rutgers.edu
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)
LASEC - Security and Cryptography Laboratory

Lausanne, Switzerland
serge.vaudenay@epfl.ch

Abstract. The NIST standard FF3 scheme (also known as BPS scheme)
is a tweakable block cipher based on a 8-round Feistel Network. We break
it with a practical attack. Our attack exploits the bad domain separation
in FF3 design. The attack works with chosen plaintexts and tweaks when
the message domain is small. Our FF3 attack requires O(N

11

6) chosen
plaintexts with time complexity N5, where N2 is domain size to the
Feistel Network.

Due to the bad domain separation in 8-round FF3, we reduced the
FF3 attack to an attack on 4-round Feistel Networks. In our generic
attack, we reconstruct the entire codebook of 4-round Feistel Network

with N
3

2

(

N
2

)
1

6 known plaintexts and time complexity N4.

1 Introduction

Encryption schemes provide a handy tool to data owners to protect their data
privacy when stored on untrusted servers or transmitted over insecure channels.
The design of encryption schemes often shaped by the desired properties of data
that keeps it functional, secure, or computable on. The standard block cipher
designs such as AES aim to build schemes from 128-bit strings to 128-bit stings.
For an arbitrary length ℓ, modes of operation is a way to encrypt ℓ-bit strings
into ℓ-bit string for arbitrary values of ℓ. When the goal of encryption scheme
is to preserve the format of the data in ciphertexts (i.e. the data not necessarily
binary and large but instead decimal and small), we need a cipher design that
encrypts the data into the same format as itself. This is called Format Preserving
Encryption [7, 10] and evolved as a most useful tool in applied cryptography.

Format Preserving Encryption (FPE) schemes encrypt a message into a ci-
phertext by providing its format such as a valid credit card number (CCN) into
a valid CCN or a valid social security number (SSN) into a valid SSN. Thus,

⋆ Short Version

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148033237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FPE provides a way to store the data without changing the database scheme or
application software that runs on a specific data format.

Ideally, FPE constructions should not be format specific for different types of
formats. In particular, the task of FPE scheme can be reduced to design an FPE
for an integral domain as it allows to apply the exact encryption to all other
formats. Therefore, the cheap way to build an FPE scheme is to construct an
easy to compute 1-to-1 mapping from message domain to itself which is a power
of a basis (such as 2ℓ or N2). More precisely, we desire to encrypt on ZNl

× ZNr

with Nl ≈ Nr.
3

The National Institute of Standards and Technology (NIST) published an
FPE standard [1] (finalized in March 2016) that includes two-approved Feistel-
based FPE: FF1 [4] and FF3 [6]. Both FF1 and FF3 standards are tweakable
Feistel schemes with modular addition. FF1 is standardized with round numbers
10 whereas FF3 is standardized with 8 rounds.

In this work, we are particularly interested in the attacks for breaking the
FN-based standard FF3 [1] and attacks against Feistel Network. The former
attack utilizes the latter that is designed as a generic round function recovery
attack. In FF3, a tweak XORed with a round counter is used as an input to
the block cipher. A tweak is a public information and can be controlled by
the adversary. The XOR operation guarantees that round functions are pairwise
different. This is usually called “domain separation”. The security of FF3 asserts
that it achieves several cryptographic goals including chosen-plaintext security
or even PRP-security against an adaptive chosen-ciphertext attack under the
assumption that the underlying round function is a good pseudorandom function
(PRF). Our work shows that its security goal has not met even when the round
functions are replaced by secure PRFs and gives a round function recovery attack
on FF3.

Overview Of Previous Work: A security for message recovery in FPE con-
structions along with many other notions for FPE was first defined by Bellare
et. al. [3]. A recent work by Bellare et. al. [2] gives a practical message recovery
attack on NIST standard Feistel-based FPE (both FF1 and FF3) on small do-
main sizes. In this work, however, the security definition they consider is under
the new message recovery security that they define in the same work. The attack
by Bellare et. al. in [2] works using O(N5 logN) data and time complexity with
many tweaks on 8 rounds. This is quite interesting when the amount of data
is limited for each tweak. It is a decryption attack. Our attack herein is more
traditional. It uses only two tweaks, but O(N

11

6) chosen plaintexts with O(N5)

time complexity. We recover the entire codebook (for both tweaks).

Since its invention, Feistel Networks have created active research areas for
cryptographers (both in theory and in practice). The security of Feistel schemes
aims to either distinguish a Feistel scheme from a random permutation or to
recover the round functions. In their famous work [8], Luby and Rackoff proved

3 When the ranking is to a domain the size of which is not exactly a product Nl ×Nr,
we can use additional techniques such as shuffling (random walk in a graph) in a
slightly larger domain.

2

the indistinguishability of Feistel Networks for 3-rounds against chosen plaintext
attack and 4-rounds against chosen plaintext and ciphertext attacks for the
number of queries q≪

√
2n, where 2n is the input length. The directions derived

from this result tried to improve the security bounds until q≪ 2n (that is called
the “birthday bound”). A work by Patarin [9], using the mirror theory, showed
improved proofs and stronger security bounds for 4, 5, and 6 rounds Feistel
Networks. Namely, for q ≪ 2n, 4 rounds are secure against known plaintext
attacks, 5 rounds are secure against chosen plaintext attacks, and 6 rounds are
secure against chosen plaintext and ciphertext attacks.

From an information theory viewpoint, we could recover all functions in time
2O(n2n) by exhaustive search. Our attack uses q ∼ 2

3

2
n and is polynomial in 2n

with known plaintexts up to 4 rounds.

2 Known Plaintext Round Function Recovery Attack on

Feistel Scheme

In a recent work by Biryukov et. al. [5], the new cryptanalysis results against
Feistel Networks with modular addition for 4 and 5 rounds are presented. For 4
rounds, they achieve the full recovery of round functions with data complexity
O(2

3n
2) with a guess and determine technique, where 2n is defined as message

length. They use chosen plaintexts and ciphertexts. We summarize their results
and ours on Table 1.

rounds mode time data ref

3 known plaintext 2n 2n Section 2.1
4 chosen plaintext and ciphertext 23n/2 23n/2 [5]
4 known plaintext 23n 23n/2 Section 2.2

5 chosen plaintext and ciphertext 2n2
3n/4

22n [5]

5 chosen plaintext 2O(n2
n/2) 23n/2 Section 2.2

r > 6 chosen plaintext 2(r−5)n2
n

23n/2 Section 2.2

Table 1. Round function recovery attacks against balanced Feistel schemes with two
n-bit branches and any addition rule (we omitted polynomial terms in n)

2.1 Round Function Recovery on 3-Round Feistel Scheme

Consider a 3-round Feistel Scheme with three round functions F0, F1, F2 and
modular addition. Given x and y in X, we define:

c = x+ F0(y)

t = y+ F1(c)

z = c+ F2(t)

(1)

3

A 3-round Feistel scheme with (F0, F1, F2) for an input (xy) will output the
same pair (zt) to a 3-round Feistel scheme with round functions (F0−δ, F ′

1, F2+δ)

for the input (xy) with F ′
1(c) = F1(c + δ). This allows us to fix F0 on one point

arbitrarily (i.e. we can reconstruct F0 up to a constant δ). The idea of our attack
is to concentrate on data for which we know how to evaluate F0 so that we can
deduce the output for the round function F2. Then, we concentrate on data for
which we know how to evaluate F2 and we deduce more points in F0. We continue
by alternating the deduction between F0 and F2 until we recover them all. When
we continue iterating as described, we can fully recover the tables for all three
round functions (F0, F1, F2). Our attack presented in Algorithm 1 in more detail.

Algorithm 1: (F0, F1, F2) Recovery Attack

Input : a set S of tuples (xyzt) of size θN.
1 Take a subset S1 ⊆ S of size θ such that y is constant in S1.
2 Fix F0(y) = 0 arbitrarily and make a 2-round attack to deduce θ tuples

(c,y, z, t). Notice that when F0(y) = 0, c = x. Since c = x, we collect θ
equations of the form F2(t) = z− c.

3 Take the subset S2 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S1 with
t = t ′. The expected size of S2 is θ2.

4 Using the θ equations F2(t) = z− c, we deduce θ2 tuples (xyct). From
these tuples, we obtain θ2 equations of the form F0(y) = c− x.

5 Take the subset S3 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S2 with
y = y ′. The expected size of S3 is θ3.

6 Using the θ2 equations F0(y) = c− x we obtained from S2, we collect θ3

equations F2(t) in S3.
7 Play yo-yo until nothing new is recovered.
Output: (partial) tables for F0F1F2

We model our set S as a bipartite graph with two parties of N vertices (one
for the y’s and the other for the t’s) and edges for each (y, t) pair in tuples
from S. What our algorithm does is just looking for a connected component
of a random starting point y with complexity O(θN). Following the theory of
random graphs, we have θN random edges so that the graph is likely to be fully
connected when θ ≈ ln(N). For a constant θ > 1, it is likely to have a giant
connected component. This component corresponds to a constant fraction of the
tables of F0 and F2. Therefore, after logθ N iterations, we can reconstruct F0 and
F2 which allow us to reconstruct F1. For any y, we can see that it does not appear

in S with probability
(

1− 1
N

)θN ≈ 1 − e−θ. Thus, we can only hope to recover
a fraction 1− e−θ of the table of F0. The same holds for F1 and F2. When we set
θ = 2, we need 2N tuples to apply this attack on 3-round Feistel Scheme.

2.2 Round Function Recovery on 4-Round Feistel Scheme

Consider a 4-round Feistel scheme with round functions F0, F1, F2, F3. Given x

and y in X, we define the following equations (See Fig. 1 (a)):

4

c = x+ F0(y)

d = y+ F1(c)

z = c+ F2(d)

t = d+ F3(z)

Assume that we collected M random pairwise different plaintext messages (x,y).
We collect the pairs:

V = {(xyzt, x ′y ′z ′t ′) | z ′ = z, t ′ − y ′ = t− y, xy 6= x ′y ′}

Vgood = {(xyzt, x ′y ′z ′t ′) | z ′ = z, c ′ = c, xy 6= x ′y ′}

where c,d (respectively c ′,d ′) are defined from (x,y, z, t) (respectively form
(x ′,y ′, z ′, t ′)) as above. We define Label(xyzt, x ′y ′z ′t ′) = x− x ′.

F0

F1

F2

F3

x y

tz

d

c

(a)

F0

F1

F2

F3

x ′ y ′ = y+ ∆

t ′ = t+ ∆z ′ = z

d ′

c ′ = c

(b)

Fig. 1. 4-round Feistel Scheme Attack

We define a directed graph G = (V,E) with the vertex set V as defined above.
We take (x1y1z1t1x

′
1y

′
1z

′
1t

′
1, x2y2z2t2x

′
2y

′
2z

′
2t

′
2) ∈ E if y ′

1 = y2 (i.e. a vertex v1 is
connected to a vertex v2 if the y ′

1 in the second message of v1 is same as the first
message in v2). Furthermore, we let Egood = V2

good∩E and define the sub-graph
Ggood = (Vgood,Egood).

We state an important observations in the following Lemma with four prop-
erties:

Lemma 1. Given a graph G with a vertex set V defined as above:

1. Vgood ⊆ V.
2. If (xy, x ′y ′) ∈ Vgood, then F0(y

′) − F0(y) = Label(xy, x ′y ′).

3. For all cycles v1v2...vLv1 of Ggood,
∑L

i=1 Label(vi) = 0.

5

The principle of our attack is as follows: if we get vertices in Vgood, the
property 2 from Lemma 1 gives equations to characterize F0. One problem is
that we can identify vertices in V, but we cannot tell apart good and bad ones.
One way to recognize good vertices is to use property 3 in Lemma 1: to find
cycles with zero sum of labels. For this, we will prove in Lemma 3 that this is
a characteristic property of good cycles, meaning that all the vertices in these
cycles are good vertices.

Lemma 2. For F0, F1, F2, F3 random, E
(

#Vgood

#V

)

=
1− 1

N

2− 1

N

≈ 1
2
.

We have the property that for each cycle v1v2...vLv1 ∈ G, if v1, ..., vL are all
in Vgood, then the sum of Label(vi) is zero due to Lemma 1, property 3. If one
vertex is not good, the sum may be random. This suggests a way to find good
vertices in V that is to look for long cycles in G with a zero sum of labels.

Lemma 3. (L = 2 case) If v1 = (x1y1z1t1, x
′
1y

′
1z

′
1t

′
1) we say that v1 and v2 are

permuting if v2 = (x ′
1y

′
1z

′
1t

′
1, x1y1z1t1). If v1v2v1 is a cycle in G with zero sum

of labels, and v1, v2 are not permuting, then v1 and v2 are likely to be good. More
precisely, for v1 and v2 random, we have
Pr[v1, v2 ∈ Vgood | v1v2v1 is a cycle, v1, v2 not permuting,

∑
2

i=1
Label(vi) = 0]

>
1

1+ 10

N−5

.

We believe that Lemma 3 remains true for valid cycles of small length except
in trivial cases. We extend to L > 2 for cycles satisfying some special non-
repeating condition [¬repeat] on the c and d values to rule out many trivial
cases. However, this condition [¬repeat] cannot be checked by the adversary.
Instead, we could just avoid repetitions of any message throughout the cycle (as
repeating messages induce repeating c’s or d’s). We use the following conjecture
(which is supported by experiment for L = 3),

Conjecture 1 If v1v2...vLv1 is a random cycle of length L in G with zero sum
of labels and the vertices use no messages in common, then v1...vLare all good
with probability close to 1.

Now, we give the full algorithm of our attack to 4-round Feistel scheme.

Algorithm 2: (F0, F1, F2, F3) Recovery Attack (Strategy S2)

Input : M known plaintexts and ciphertext pairs (xyzt)
1 Create G = (V,E).
2 Collect non-trivial cycles of length L with zero label sum.

3 Deduce M2L

N3L relations Label(vi) = F0(y
′) − F0(y)

4 Create G ′ from {y,y ′} from the collected vertices.

5 Find the largest connected component C in G ′ (works for M > N
3

2 + 1
2L

).
6 Assign one F0(y) value arbitrarily and deduce F0 on C.

7 We have M
N
×#C tuples with known F0(y)

8 Apply 3-round attack on all known F0(y) (works since
M
N
×#C > N)

9 Play a yo-yo game on 4-round FN with the results from 3-round attack.
Output: (partial) tables for F0F1F2F3

6

Our attack algorithm has two phase transitions. The first phase transition
occurs with enough data to be able to make the graph G and find cycles in it.
The second phase transition occurs with the bad edges in the collected cycles. If
this happens, we must enrich to be able to collect desired vertices. Since there
is a sufficient window in between these two phase transitions, our attack breaks
the scheme with good probability of success without overcoming the difficulty
with the bad edges in the second phase.

In Table 2, we show the experimental results of success probability of the
entire attack for a strategy called S2. Let S2 be an event. In S2, we look at the
largest connected component and fail unless it has no bad edges in G ′. What we
report in Table 2 includes the success probability Prsucc of S2 and we recover
the entire tables for each round function.

N M #trials Pr[succ,S2] (Pr[S2])

22 9 3864 3.60% (88.69%)

23 29 5791 29.11% (78.62%)

24 91 6585 49.83% (73.27%)

25 288 6814 62.91% (71.79%)

26 913 6981 73.80% (77.14%)

27 2897 6609 83.10% (83.83%)

28 9196 3154 89.22% (89.38%)

29 29193 212 92.45% (92.45%)

Table 2. Experiments with Pr[S2] and success probability over many trials for L = 3

and M ∼ N
3

2

(

N
2

)
1

2L

The data complexity of our attack in Algorithm 2 is M = O(N
3

2
+ 1

2L). We
compute the time complexity for the algorithm based on the step 1, 2, 3, and
4 since the other steps are much shorter than these steps. The complexity is
weighted by Step 2, we have the time complexity of our attack as the complexity
of finding cycles in G. The cycles of length L in our graph can be found with
multiplication on adjacency matrix (which is sparse). Matrix multiplication can

be done in O(|V |2d) where d = 2 |E|
|V |

is the average degree of a vertex. Therefore

the complexity is O(|V ||E|). With the Floyd-Warshall algorithm, we need (L− 1)
multiplications by the adjacency matrix in the max-plus algebra that leads us

to a complexity O(L|V ||E|). With E ∼
|V |2

N
, where |V | = 2M2

N2 = 23−
1

LN1+ 1

L and L

constant, we have O(
|V |3

N
) which is equal to O(N2+ 3

L).

The 4-round attacks extend to more rounds by doing exhaustive search on
the additional round functions. Interestingly, by changing our attack to a chosen
plaintext attack, we do not need to run a full exhaustive search on the first round
function.

7

3 Slide Attack on FF3

3.1 The FF3 Scheme

A Tweakable Format Preserving Encryption (TFPE) is a block cipher that pre-
serves the format of domain in the output. A TFPE function E : K×T×X 7→ X

is defined from a key space K, a tweak space T, and a domain X to the same
domain X. We are particularly interested in a TFPE scheme by Brier, Peyrin,
and Stern [6] whose design is based on Feistel Network depicted in Fig. 2 (b). It
is named as FF3 in the NIST standards.

F0

F1

F2

F3

L0 R0

R4L4

(a) Feistel Network

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

L0 R0

R4L4

(b) FF3 Encryption

Fig. 2. 4-round Feistel Network and FF3 Encryption

The FF3 encryption algorithm splits the input X into two substrings L0 and
R0. For the right half (respectively left half), the algorithm first takes the tweak
TR (respectively TL) XORed with the encoded round index i and Ri (respectively
Li) to input tweakable PRF FK. Second, it applies modular addition of the output
of FK to Li (respectively Ri). The mod operation is necessary to make sure the
ciphertext stays in the domain to preserve the format. In concrete proposal round
functions are AES encryption with 128 bits. [1].

For simplicity and by abuse of notations, we say that FF3 encrypts the
plaintext (L0,R0) into the ciphertext (Lw ,Rw) with tweak (TL, TR). We illustrate
the 4-round FF3 scheme in Fig. 2 (b).

3.2 FF3 Attack

We develop an attack on FF3 that aims to reconstruct the entire codebook for
a challenge tweak for a number of queries which is lower than the size of the
brute force codebook attack. The main idea of the designed FF3 attack takes
advantage of the flexibility to change the tweak to permute the round functions.

Consider two functions G and H, where G is a 4-round Feistel scheme using
tweakable block cipher F with tweaks (TR ⊕ 0, TL ⊕ 1, TR ⊕ 2, TL ⊕ 3) and H is a
4-round Feistel scheme using tweakable block cipher F with tweaks (TR⊕ 4, TL⊕

8

5, TR ⊕ 6, TL ⊕ 7). In Fig. 3, we show two runs of FF3 encryption with tweak
T = TL||TR in (a) and tweak T ′ = TL ⊕ 4||TR ⊕ 4 on two distinct plaintext. We
observe that FF3.Enc(K, T , ·) = H ◦ G and FF3.Enc(K, T ′, ·) = G ◦ H. With this
observation, we desire to form a “cyclic” behavior of plaintext/ciphertext pairs
under two FF3 encryption with sliding G and H.

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

L0 R0

R8L8

G

H

(a) FF3 Encryption

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

L ′
0

R ′
0

R ′
8

L ′
8

H

G

(b) Slided Encryption

Fig. 3. FF3 Encryption with Sliding Round Functions

More precisely, we take two parameters α and β to be optimized and consider
two sets of messages of sizeNα picked at random X = {x10, , . . . , xi0, . . . xNα0} and
X ′ = {x ′

10, . . . x
′
i0, . . . x

′
Nα0}. For each message xi0 in X, set xi(j+1) = Enc(K, T , xij)

with a fixed tweak T ∈ T and a fixed key K ∈ K. We repeat the chain encryp-
tion of outputs Nβ times for each message in X. Let XC be the set of chain
encryption of elements of X. It is a segment of length Nβ of a cycle of H ◦ G.
Similarly, for each message x ′

i0 in X ′, set x ′
i(j+1) = Enc(K, T ′, x ′

ij) with the fixed

tweak T ′ ∈ T under the same key K. Let X ′C be the set of chain encryption of
elements of X ′. Apparently, we have |XC| = NαNβ and |X ′C| = NαNβ. Given
these 2 sets XC and X ′C, we attempt to find a collision between XC and X ′C

such that G(xij) = x ′
i′0 or G(xi0) = x ′

i′j′ for 1 6 i, i ′ 6 Nα and 1 6 j, j ′ 6 Nβ.
Upon having a table with inputs to G and H, we can apply the known plaintext
recovery attack on 4-round Feistel Networks. The concrete algorithm to collect
plaintext/ciphertext pairs is given in Algorithm 3.

9

Algorithm 3: FF3 Attack

Input : a tweak bit string T such that |T | = 64, a key K

1 T ′ ← TL ⊕ 4||TR ⊕ 4
2 foreach i = 1 · · ·Nα do

3 pick xi0 and set xij = FPE.EncT (xi(j−1)) for j = 1, . . .Nβ

4 pick x ′
i0 and set x ′

ij = FPE.EncT
′

(xi(j−1)) for j = 1, . . .Nβ

5 end

6 foreach i, i ′ = 1 · · ·Nα do

7 foreach j = 0 · · ·Nβ −M− 1 do

8 assume that G(xij) = x ′
i′0

9 run 4-round attack on G with G(xi(j+k)) = x ′
i′k for k = 0 · · ·Nβ − j

10 if succeeded, run attack on H with samples H(G(xik)) = xi(k+1)

for k = 0 · · ·Nβ − 1

11 end

12 foreach j = 0 · · ·Nβ −M− 1 do

13 assume that G(xi0) = x ′
i′j′

14 run 4-round attack on G with samples G(xik) = x ′
i′(j+k) for

k = 0 · · ·Nβ − j

15 if succeeded, run attack on H with samples H(G(xik)) = xi(k+1)

for k = 0 · · ·Nβ − 1

16 end

17 end

Our attack has 2Nα+β data complexity. The time complexity is N2α+β times
the complexity of 4-round recovery attack on Feistel Network. To minimize the
data complexity 2Nα+β, we want α + β to be minimal such that 2α + β = 2
and Nβ > M. Now, α can be parameterized by β and we minimize β+2

2
. When

we set Nβ = 2M, then Nα = N√
2M

. Therefore, we have data complexity of FF3

attack as 2N
√
M and time complexity as N2 times the complexity of 4-round

recovery attack on Feistel Network and psuccess ≈ 1− e−pFeistel
success .

We fully implemented the attack but to test its success probability we could
skip some parts of the running time we knew the attack would fail. We show on
Table 3 the experimental probability of success of the whole attack following the
strategies S2. The probability was computed for 10,000 executions.

We conclude that the full attack succeeds with high probability using our
parameters.

4 Conclusion

We took the NIST standard FF3 and investigated its security on small domain
sizes. We exploit that the round functions can be permuted due to a bad domain
separation in the tweak scheme which uses a XOR with the round index. This
bad design choice lead us to develop a slide attack on FF3 based on our own
design for 4-round FN attack.

10

N M Nα Nβ #trials Pr[succ]

2 3 1 6 10000 0.00%
22 9 1 18 10000 1.40%
23 29 2 58 10000 17.99%
24 91 2 182 10000 35.35%
25 288 2 576 10000 45.89%
26 913 2 1826 10000 54.14%
27 2897 2 5794 10000 56.85%
28 9196 2 18392 5098 56.34%
29 29193 3 58386 256 77.73%

Table 3. Experimental success probability in the FF3 attack for various parameters

for L = 3 and M ∼ N
3

2

(

N
2

)
1

2L

This work shows that Feistel schemes with small domains has not well un-
derstood yet. We showed a known plaintext attack on 4-round Feistel structure
to recover entire round functions. More attacks for bigger rounds are possible in
small domains.

Acknowledgments. The work was done while the first author was visiting EPFL.
The first author was supported in part by NSF grant CNS-1453132. We thank
Adi Shamir for the useful comments and Stefano Tessaro for the discussions.

References

1. Recommendation for Block Cipher Modes of Operation: Methods for Format Pre-

serving Encryption. National Institute of Standards and Technology, 2016.

2. Mihir Bellare, Viet Tung Hoang, and Stefano Tessaro. Message-recovery attacks
on Feistel-based Format Preserving Encryption. In 23th CCS Proceedings, 2016.

3. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-
preserving encryption. In Michael J. Jacobson, Vincent Rijmen, and Reihaneh
Safavi-Naini, editors, Selected Areas in Cryptography: 16th Annual International

Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Se-

lected Papers, volume 5867, pages 295–312. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

4. Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode
of operation for format-preserving encryption. Draft 1.1. Submission to
NIST, Feb. 2010. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/ffx/ffx-spec.pdf.

5. Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of feistel networks
with secret round functions. In Orr Dunkelman and Liam Keliher, editors, Selected
Areas in Cryptography - SAC 2015: 22nd International Conference, Sackville, NB,

Canada, August 12-14, 2015, Revised Selected Papers, volume 9566, pages 102–121.
Springer International Publishing, 2016.

11

6. Eric Brier, Thomas Peyrin, and Jacques Stern. BPS: a Format-Preserving En-
cryption Proposal. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/bps/bps-spec.pdf.
7. Michael Brightwell and Harry E. Smith. Using Datatype-Preserving Encryption To

Enchance Data Warehouse Security. Available at: http://csrc.nist.gov/nissc/
1997/proceedings/141.pdf, 1997.

8. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, April 1988.

9. Jacques Patarin. Security of balanced and unbalanced feistel schemes with linear
non equalities. http://eprint.iacr.org/2010/293, 2010.

10. Terence Spies. Format preserving encryption. Unpublished white
paper, available at: https://www.voltage.com/wp-content/uploads/

Voltage-Security-WhitePaper-Format-Preserving-Encryption.pdf, 2008.

12

