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Abstract

The connectivity of a neuronal network has a major ef-
fect on its functionality and role. It is generally believed that
the complex network structure of the brain provides a phys-
iological basis for information processing. Therefore, identi-
fying the network’s topology has received a lot of attentions
in neuroscience and has been the center of many research ini-
tiatives such as Human Connectome Project. Nevertheless, di-
rect and invasive approaches that slice and observe the neural
tissue have proven to be time consuming, complex and costly.
As a result, the inverse methods that utilize firing activity of
neurons in order to identify the (functional) connections have
gained momentum recently, especially in light of rapid ad-
vances in recording technologies; It will soon be possible to
simultaneously monitor the activities of tens of thousands of
neurons in real time.

While there are a number of excellent approaches that
aim to identify the functional connections from firing activ-
ities, the scalability of the proposed techniques plays a major
challenge in applying them on large-scale datasets of recorded
firing activities. In exceptional cases where scalability has not
been an issue, the theoretical performance guarantees are usu-
ally limited to a specific family of neurons or the type of firing
activities.
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In this paper, we formulate the neural network reconstruc-
tion as an instance of a graph learning problem, where we
observe the behavior of nodes/neurons (i.e., firing activities)
and aim to find the links/connections. We develop a scalable
learning mechanism and derive the conditions under which
the estimated graph for a network of Leaky Integrate and Fire
(LIF) neurons matches the true underlying synaptic connec-
tions. We then validate the performance of the algorithm using
artificially generated data (for benchmarking) and real data

recorded from multiple hippocampal areas in rats.1
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1 Introduction

Reconstructing the connectivity of neuronal networks has
been a major challenge for the past decade. Currently, the
only reliable way to map the underlying synaptic connec-
tivity of neuronal networks is by using invasive procedures,
which are prohibitively complex and time-consuming: it took
more than 10 expert/year to map the whole connectome of
C. Elegans, comprising only 302 neurons and 7283 synap-
tic connections (Watts and Strogatz, 1998). Similarly, a 10
expert/year effort was required to capture the connectome
of fruit fly medulla columns, with only 379 traced neurons
and 8637 synapses (Plaza et al, 2014). To map the whole
brain of a fruit fly, with around 10, 000 neurons, we would
have to spend around 4700 expert/year (Plaza et al, 2014;
Chiang et al, 2011). Following the same approach and us-
ing the current technology, it is estimated that it will take
around 14 billion man/year to completely map the human
brain’s connectome (Plaza et al, 2014). Although there is an
increasing effort to make some parts of the invasive proce-
dures automated, such approaches remain impractical even

1 The code and the data related to this paper is available at http:
//rr.epfl.ch/paper/KSV2016
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Fig. 1: Performance of our proposed algorithm in identifying the type of neural connections in a network of 1000 LIF neurons
for a dataset of artificially generated spiking activities (courtesy of Zaytsev et al (2015)) (a) and the memory/CPU footprint
of our proposed algorithm compared to a similar approach proposed in Zaytsev et al (2015) over the same dataset.

for mid-sized networks. Furthermore, the current invasive
techniques cannot be applied to live specimen.

In contrast, inverse methods with the focus on mapping
the functional connectivity from the activity of the neurons
have received more attention in recent years. These approaches
are non-invasive (or minimally invasive) so they can be ap-
plied to live specimen and they require much less time and
labor to identify the functional network. Furthermore, rapid
advances in recording technologies has made it possible to
simultaneously monitor the activities of tens (Perin et al,
2011) to hundreds of neurons (Buzsáki, 2004; Grewe et al,
2010). Upcoming technologies will significantly improve the
accuracy and scale of recording neurons’ activities. It is worth
mentioning that there has also been significant progress in
simultaneously recording and stimulating a set of neurons
(Khodagholy et al, 2014; Herrera and Adamantidis, 2015;
Bertotti et al, 2014). These advancements provide an abun-
dance of data for which computationally efficient and accu-
rate inverse algorithms would be welcome.

In this paper, we focus on the inverse problem. Our main
goal is to design efficient and scalable algorithms that result
in good approximations of the underlying synaptic graph. In
other words, we are interested in algorithms whose inferred
functional network is a close match to that of the underlying
synaptic connectivities for a group of Leaky Integrate-and-
Fire (LIF) neurons (Gerstner and Kistler, 2002).

To this end, we apply a technique, usually known as the
kernel method in the machine learning literature, to map the
nonlinear inference problem to a linear equivalent in the ker-
nel space. Then, we formulate the network inference prob-
lem as an instance of a constrained optimization problem

where the objective function has a simple form and the con-
straints are all linear. As a result, we develop an algorithm
that easily scales to large datasets of recorded neural activi-
ties. Moreover, we theoretically study this mapping and de-
rive the conditions under which our proposed algorithm suc-
cessfully identifies the type of underlying synaptic connec-
tions (e.g. being excitatory/inhibitory) in the limit of large
available data.

We also show that the proposed technique is equally ap-
plicable to networks of both deterministic or stochastic neu-
rons that follow the widely used LIF model. We support our
theoretical findings with an exhaustive set of simulations
where we validate the performance of our algorithm with
respect to the ground truth networks (in artificially gener-
ated spiking data where the ground truth is available). We
also report the result of our algorithm applied to a datatset
of firing activities recorded from hippocampal areas in rats
Mizuseki et al (2013). We find that our results are quite in
line with previous findings (Mizuseki et al, 2009).

Figure 1 summarizes the main contributions of this paper
in a nutshell: in Figure 1(a) we show that in the limit of large
data, the proposed algorithm can successfully identify the
type of synaptic connections, whereas Figure 1(b) demon-
strates the memory/CPU footprint of the proposed approach
compared to that of the approach based on Generalized Lin-
ear Models (GLM) (Zaytsev et al, 2015).2

2 We sincerely thank Dr. Yury Zaytsev, Prof. Abigail Morrison and
Dr. Moritz Deger for making their data and code publicly available.
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2 Related Work

Cross Correlogram is perhaps the most widely-used method
to identify (functional) connection between pairs of neu-
rons or regions (Brown et al, 2004). However, approaches
based on Cross Correlogram usually fall short of identifying
causal relation or effective connectivity of neurons. It is very
well established in statistics that the existence of correlation
between two events is neither a necessary nor a sufficient
conditions for inferring causality. This is why statistical hy-
pothesis tests such as Granger causality measure were pro-
posed as an alternative in order to overcome the drawbacks
of Cross Correlogram (for instance, see the work of Kim
et al (2011)).

Another recent line of work has primarily focused on in-
ference methods that are tailored to LIF model of neurons.
In particular, Van Bussel et al (2011) convert the non-linear
firing behavior of LIF neurons into a set of linear equations,
which can be solved given a sufficient number of recorded
samples. While being efficient, this algorithm is highly sen-
sitive to the accuracy of spike times and relies on the knowl-
edge of model parameters (e.g. synaptic propagation delays)
which are difficult to obtain. Memmesheimer et al (2014)
proposed an inference algorithm based on the Perceptron
learning rule, similar to Baldassi et al (2007), for which
they proved that under accurate estimate of spike times it
is possible to identify a simple n-to-1 feed forward network.
They also proposed a heuristic extension that works with fi-
nite precision in recorded spike times. Nevertheless, their
model does not take the (random) synaptic delays into ac-
count. Moreover, having extra post-synaptic neurons even
in a simple feed forward scenario can have a dramatic ef-
fect on the performance of the inference algorithm when the
structure of the graph (i.e., here being feed-forward) is not
known a priori.

A more complex and accurate family of approaches rely
on Generalized Linear Models (GLM) (Paninski, 2004). These
methods consider the collective activity of the neural group
and focus on finding the best functional network that can
explain the traffic. GLM was recently used in reconstruct-
ing a real physiological circuit from recorded neural data
(Gerhard et al, 2013) as well as reconstructing the functional
connectivity for the ganglion cells in the retina (Pillow et al,
2008). The approaches that are based on GLM are generally
accurate (i.e. they identify the correct set of connections in
the underlying graph) provided that the neural model used
to generate the spike data matches exactly the one used in
GLM (Ramirez and Paninski, 2014). Extending these meth-
ods to exploit the prior distribution on the neural connec-
tions results in effective Bayesian models that are especially
powerful in the face of limited data. In particular, Steven-
son et al (2009) proposed a Maximum a Posteriori (MAP)
estimate to infer the neural connections and reported highly

accurate results in limited data regime at the expense of very
high computational costs. Bayesian approaches have also
been used in identifying connections directly from calcium-
imaging data (Mishchenko et al, 2011).

In light of the aforementioned advantages, GLM-based
techniques are among the favorite state-of-the art approaches.
Nevertheless, they are not without limits. The first and prob-
ably most important drawback is scalability, which makes
handling large datasets, both in terms of number of neurons
and duration of recorded firing activity, difficult. Recently,
however, several approximations have been suggested to re-
solve this issue (Ramirez and Paninski, 2014; Zaytsev et al,
2015). Nevertheless, these approximations work only for a
particular choice of nonlinearity (Zaytsev et al, 2015) and
similar to GLM-based techniques, the convergence is only
guaranteed when the model for neurons and that of GLM’s
closely match each other.

In this paper, we propose a novel approach in identifying
the functional connections which offers the following prop-
erties:

1. Scalability: from a practical point of view, it allows more
scalability, i.e. it requires less memory and can scale
with limited resources available (see Figure 1).

2. Performance guarantees: from a theoretical point of
view, its performance guarantees hold under a larger fam-
ily of neurons and nonlinearities.

3. Hidden neurons: the simplicity of the approach also en-
ables us to derive the sufficient conditions under which
the estimated functional network returned by our algo-
rithm is not affected by the existence of hidden neurons
and matches the underlying synaptic skeleton in the limit
of large data.

Finally, we should mention that the consistency prob-
lem even for a n-to-1 feed forward network is NP-hard. In
words, determining whether or not there exists a set of de-
lays and weights such that we can fully match the set of in-
put firing patterns to the output is very difficult (Maass and
Schmitt, 1999) . Although this result does not necessarily
imply that finding such a configuration is impossible (under
the right set of conditions), it shows that finding provable
"positive learning results" for the case of spiking neurons is
quite challenging.

3 Model Formulation and Problem Statement

We formally introduce the neural models and the network
structures considered throughout the paper. We also formally
state the network inference problem.

Neurons’ model: We first consider a network of determin-
istic but noisy Leaky Integrate and Fire (LIF) neurons (Ger-
stner and Kistler, 2002) with a fixed firing threshold θ. In this
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Fig. 2: Network model: a recurrent neural network where we try to identify the incoming connections of node b by observing
the spike trains x1(t), . . . , x5(t) and y(t). Here we assume that edges have randomly chosen propagation delays and neurons
can be excitatory or inhibitory. Note that there are some "hidden" neurons (shown in gray) in the network as well and whose
spiking activities are not recorded but they affect the membrane potential of the observed neurons. After applying some
"kernel" to account for the integration and leak in the membrane potential, we look for the set of weights that result in
the best prediction of the output firing pattern, y(t). The result will ideally be as shown in Part 3. Note that in this paper
we are not interested in reconstructing the exact weights (shown in Part 1 through the thickness of the lines), but to tell if
two neurons are connected to each other and, if so, what the connection type is. If we repeat these steps for the incoming
connections to other neurons, which can be done in parallel, we will get the complete connectivity graph.

model, the membrane potential of a given neuron at time t
is described by

h(t) = h0 +
n∑
i=1

giKi(t) + v(t), (1)

where h0 is the baseline voltage, gi is the actual synaptic
weight (i.e. the ground truth) of the incoming connection
from the pre-synaptic neuron i, Ki(t) is the accumulated
effect of neuron i on the post-synaptic neuron at time t, and
v(t) is an additive "noise" (the noise term can be the result
of different parameters, such as thermal fluctuations).

The form of Ki(t) in Eq. (1) depends on the choice of
the kernel (or filter) for the membrane potential of the con-
sidered post-synaptic neuron. For instance, if we choose an
exponentially decaying filter, then

Ki(t) =
∑

tf∈Ti,tf≤t−di

e−
t−tf−di
τm , (2)

where τm is the membrane time constant, di is the propa-
gation delay between neuron i and the post-synaptic neuron
and Ti is the set of firing times for the pre-synaptic neuron i.

The output, also called the activity, of the post synaptic
neuron at time t will be

y(t) = f(h(t)− θ),

where f(·) is the Heaviside step function and θ is the firing
threshold. We also assume that after a firing, the membrane
potential is reset back to the resting potential h0.

Another model of neurons that we also consider in this
paper is the stochastic LIF model where the membrane po-
tential is explained by Equation (1) as before but the post-
synaptic neuron’s activity is stochastic and is given by the
following probability:

Pr{y(t) = 1} = fs(h(t)− θ). (3)

Here, fs(·) is an increasing function of its argument. There
are several choices for fs(·) proposed in the literature in
which the logistic function is perhaps one of the most pop-
ular. In this paper, however, we do not specify a particular
function and only require that the function fs(·) is increas-
ing in its argument.

Network model: As for the network structure, we do not as-
sume any specific topology on the neural graph. However, as
is the case in many neural networks, we require a balanced
network in terms of excitatory and inhibitory connections.
This requirement ensures that the excitatory and inhibitory
population act in such a way that the average activity stays
below a threshold.

In that regard, we usually pick 80% of connections to
be excitatory and 20% to be inhibitory. For numerical re-
sults, we set the weights of all excitatory connections to be
+1mV and that of an inhibitory connection to−δmV, where
δ = nexc/ninh, and nexc and ninh are the number of exci-
tatory and inhibitory connections in the network. Also, in
accordance with biological data and following Dale’s prin-
ciple Dale (1935), we fix the type of neurons to be either
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excitatory or inhibitory, which means all outgoing connec-
tions of a pre-synaptic neuron have the same sign.

We also assume that neural connections have intrinsic
delays which represent the time it takes for the information
to propagate through the axons and synapses. The delay for
each link is assumed to be a random number in the inter-
val (0, dmax], where dmax > 0 is the maximum delay. The
delays do not change, once assigned, they remain fixed.

Problem Statement: The goal of this paper is to propose a
scalable learning algorithm that infers the (functional) con-
nectivity matrix only by observing the firing activity of the
neurons. Ideally, such an algorithm should be able to ex-
plain the observed firing activity as accurately as possible.
Furthermore, we study conditions under which the identified
functional connectivity is a close approximation of the un-
derlying synaptic connectivity. Specifically, we would like
to design algorithms in order to identify the type of neural
connections. In other words, the inference algorithm should
be able to find out if neuron i has a directed connection to
neuron j, and if so, whether the connection is excitatory or
inhibitory. Figure 2 illustrates the model and the problem
considered in this paper.

4 The Inference Algorithms

We propose an iterative inference algorithm to identify the
functional connections in a network of neurons based on
their firing activity. To better explain the algorithm, we first
study the simpler case of deterministic LIF neurons, as de-
scribed in Eq. (1). We then show in a later section that how
the proposed algorithm can be naturally extended to deal
with stochastic neurons as well.

To start, let us assume that we are interested in identi-
fying the incoming connections to one post-synaptic neuron
(e.g. neuron b in Figure 2). The following procedure can be
then applied to every single neuron. In that case, note that
we can re-write Equation (1) in a vector form as

u = Kg + v, (4)

where uT×1 is a vector whose t-th entry is ut = h(t)− h0,
K is a T × n matrix whose (t, i)-th entry is Kti = Ki(t),
gn×1 is the vector of actual synaptic connection weights (i.e.
g = [g1, . . . , gn]>) and vT×1 is the noise vector (i.e. v =
[v(1), . . . , v(T )]>). Without loss of generality, we assume
h0 = 0 and θ = 03. Now, let us define

ŷ(t) =
{

+1 if y(t) = 1;
−1 if y(t) = 0; (5)

3 Both these terms can be easily integrated into the weight vector by
appending a separate entry to the vector g and the kernel matrixK. We
focus on the case where θ = h0 = 0 for simplicity.

where y(t) is the state of the post-synaptic neuron at time t.
This way, we know that

Ktg + v(t) ≥ 0, ∀t : ŷ(t) > 0

and

Ktg + v(t) ≤ 0, ∀t : ŷ(t) < 0,

where Kt is the t-th row of matrix K. By letting ŶT×T =
diag(ŷ(1), . . . , ŷ(T )), we can rewrite the above constraints
in a matrix form as follows:

Ŷ (Kg + v) > 0, (6)

where 0 is the all zero vector and the inequality is entrywise.
Equation (6) is the cornerstone of our proposed algorithm.
In order to find the neural connections, we aim to solve the
following optimization problem

Problem I: min
w
‖w‖` s.t. Ŷ K ′w > 0. (7)

Basically, by knowing the matrix Ŷ and the firing activity
of neurons, we will look for the smallest vector vector w (in
`-norm) that satisfies a set of constraints. Also note that we
used a different kernel matrix K ′, which may or may not
be the same as the true kernel matrix K, depending on our
prior knowledge about the underlying neural model.

We will show that in scenarios where the original prob-
lem is feasible, i.e. when Kg > 0, as long as K ′ and K
are close (in some precise algebraic sense) then by solving
Problem I, given by Equation (7), we will be able to find the
type/sign and the location of non-zero entries in g, the vector
of the underlying synaptic neural connections.

In practice, however, due to incoming traffic from hidden
neurons as well as large membrane noise, Problem I may be
infeasible, i.e. the constraints define an empty set. There-
fore, to design a more practical algorithm we reformulate
the problem as follows:

Problem II: min
w
‖w‖` +

∑
t

L(Atw), (8)

where At is the t-th row of matrix A, defined as A = Ŷ K ′,
and L is a convex loss function that penalizes unsatisfied
constraints. This way, we look for a regularized solution w∗.
Note that for a proper choices of ` (e.g. ` ≥ 1), the above
problem is convex.

There are many choices of loss functions used in the lit-
erature. One of the most well-known is hinge-loss, i.e.,

L(x) = max(0, 1− x).

For the rest of the paper, we will use hinge loss as well since
it has been well-studied in machine learning algorithms and
there is a wealth of optimization techniques for efficiently
solving the above optimization problem.
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4.1 Centralized Inference Algorithms

There is a wealth of possible algorithms to solve Problem II,
given by Equation (8). Here, we propose two different online
approaches, with emphasis on scalability and capability to
deal with limited memory.

The first approach is an extension of the Perceptron-
based algorithm we proposed in (Karbasi et al, 2015) and
focuses on solving the primal problem. In the proposed ap-
proach, we choose ` = 1 to favor sparsity in the connec-
tions. Then, by noting that the sub-gradient of the hinge loss
function is

L′(x) =
{
−1 if L(x) > 0;
0 otherwise;

we derive the following update rule at iteration τ of the al-
gorithm:

w(τ + 1) = w(τ) + γL(Aiw(τ))A>i ,

where γ is the learning rate.
Now, to take care of the sparsity regularization, letF(x, η)

be the following soft-thresholding function

F(x, η) =


x− η if x > η,

x+ η if x < −η,
0 if |x| < η.

(9)

Previous studies have shown that iteratively applying the
soft-thresholding function above to our estimates w(τ) will
result in a sparse solution (Wright et al, 2009), (Goldstein
et al, 2014). As a result, and by putting these steps together,
the proposed approach, called NEUINF, is shown in Algo-
rithm 1.

Algorithm 1 NEUINF

Input: The observations matrix A over period T , a maximum number
of iterations S, sparsity threshold η, learning rate γ, initial vector
w(0).

Output: Connections belief vector w
for τ = 1→ S do

Pick i ∈ {1, ..., T} at random
Set ŵ(τ) = w(τ) + γL(Aiw(τ))A>i ,
Set w(τ + 1) = F(ŵ(τ), η).

end for
Return w(S).

The second approach is based on solving the dual form
of Problem II using the (Stochastic) Dual Coordinate De-
scent method. This particular formulation is specially inter-
esting from the scalability viewpoint, as discussed in (Jaggi
et al, 2014). To this end, and to facilitate the formulation,
we choose ` = 2 in this approach and use the soft-threshold
function to trim the entries of the returned weight vector.
To formulate the problem in its dual form, we use Fenchel’s

conjugate of the loss function and the regularization term.
The Fenchel dual of the `2-norm is itself and that of the
hinge loss is given by

L?(x) =
{
x if −1 < x < 0;
∞ otherwise.

Therefore, we can formulate the dual problem as (Jaggi et al,
2014):

max
λ∈[0,1]T

E(λ) = −c‖A>λ‖2
2 −

∑
t

L?(−λt)

= −c‖A>λ‖2
2 +

∑
t

λt, (10)

where λT×1 is the vector of the dual variables and c is a
positive constant to control the extent of regularization. By
solving the above problem for the optimal dual variables,
λ∗, we can then find the optimal set of weights as

w∗ = A>λ∗. (11)

We can solve Problem II using the Stochastic Dual Co-
ordinate Descent (SDCD) technique. The details are given
in Algorithm 2. One strong point of the coordinate descent
method is that it does not require a step size (learning rate)
and, therefore, does not require tuning. This make it partic-
ularly attractive from the practical point of view.

Algorithm 2 DUAL NEUINF

Input: The observations matrix A over period T , a maximum number
of iterations S,sparsity threshold η, initial vectors w(0) and λ(0).

Output: Connections belief vector w
for τ = 1→ S do

Pick i ∈ {1, ..., T} at random
Set ∆λ = argmin∆λ+λi∈[0,1]c‖w(s) +Ai∆λ‖2

2 − (λi +∆λ)
Set ŵ(τ) = w(τ)−∆λA>i ,
Set w(τ + 1) = F(ŵ(τ), η).
Set λi(τ + 1) = λi(τ) +∆λ.

end for
Return w(S) and λ(S).

4.2 Scalable Inference Algorithms

In practical situations, the matrix of observed neural activ-
ity could be very large, especially due to the large number
of recorded samples, T . For instance, one of the datasets
that we have used to evaluate the performance of the pro-
posed algorithm has around T = 7, 000, 000 rows and n =
1000 columns, i.e. a matrix of size 7000000 × 1000. In
some cases the dataset will be even larger. Fitting such large
matrices into memory (RAM) is usually difficult due the
limited amount of available resources. Therefore, it is de-
sirable to design an algorithm that can cope with the lim-
its on memory. Furthermore, from the computational point
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of view, it would also be important to have an algorithm
that can break the problem into smaller sub-problems, solve
those sub-problems in parallel, and merge the results such
that the overall solution is optimal.

To this end, we have also designed parallel versions of
NEUINF and DUAL NEUINF that can deal with limited mem-
ory and to fully utilize the available computational resources.
We first divide the data matrix intoM non-overlapping smaller
blocks A(1), . . . , A(M), each of size (around) T/M ×n. We
can then apply either Algorithm 1 or Algorithm 2 to solve
the inference problem for each block and later merge the re-
sults. Depending on the amount of available resources, we
either can do this process in parallel (i.e. if enough RAM is
available) or do this process sequentially, loading one block
A(i) at a time into the memory (i.e. when RAM is limited).
The proposed computational architecture is shown Figure 3.

The detailed process for parallelizing NEUINF is given
in Algorithm 3. For algorithms that are based on Dual Coor-
dinate Descent methods, e.g. Algorithm 2, an elegant paral-
lelization procedure is proposed in Jaggi et al (2014), called
Communication-Efficient Distributed Dual Coordinate As-
cent (CoCoA). We will adapt this technique to parallelize
DUAL NEUINF. The details are shown in Algorithm 4.

Algorithm 3 PARALLEL NEUINF

Input: The observations matrix A over period T , a maximum number
of iterations S,sparsity threshold η.

Output: Connections belief vector w
Initialize w(0) = (0, . . . , 0)1×n
for s = 1→ S do

Initialize ∆w = [0, . . . , 0]n×1
for Each Block m = 1→M (and in parallel if possible) do

Let z = NEUINF(A(m), w(s))
∆w = ∆w + z

end for
w(s) = w(s− 1) + ∆w

M
end for

Algorithm 4 PARALLEL DUAL NEUINF

Input: The observations matrix A over period T , a maximum number
of iterations S,sparsity threshold η.

Output: Connections belief vector w
Initialize w(0) = (0, . . . , 0)1×n
for s = 1→ S do

Initialize ∆w = [0, . . . , 0]n×1
for Each Block m = 1→M (and in parallel if possible) do

Let z, Λ = DUAL NEUINF(A(m), w(s), λ(m)(s))
∆w = ∆w + z
λ(m)(s) = λ(m)(s− 1) + Λ

M
end for
w(s) = w(s− 1) + ∆w

M
end for

5 Theoretical Analysis

In this section, we analyze the performance of the proposed
algorithms in order to identify connections under which the
returned functional graphs closely approximates the under-
lying synaptic connections.

We start by proving the desired results for a neural net-
work consists of deterministic (and noisy) LIF neurons spec-
ified by Equation (1). We also assume that there is incoming
traffic from some unobserved (also called hidden) neurons.
We establish sufficient conditions on both statistical prop-
erties of the noise as well as the inference kernel (denoted
by K ′) such that the type of connections in identified func-
tional graph by the algorithms introduced in the previous
section matches the type of corresponding neural connec-
tions in the underlying synaptic graph. We then extend our
results to show that the same algorithm can be applied to the
more realistic scenario of stochastic LIF neurons.

5.1 Network of Deterministic Noisy LIF Neurons with
Hidden Traffic

For the network of deterministic noisy LIF neurons, we first
show that as long as the noise term satisfy some statistical
properties, the algorithm yields the desired result. We then
investigate the conditions under which the net effect of in-
coming traffic from a set of hidden neurons can be modeled
by the noise term with the specified statistical properties,
which means that the algorithm will be successful in identi-
fying the connection types even in presence of unobserved
traffic.

To start, let us remind ourselves that the membrane po-
tential of LIF neurons, define in Equation (1), is given by

h(t) = h0 +
n∑
i=1

giKi(t) + v(t),

where v(t) is the added noise at time t. Intuitively, if the
magnitude of noise is very small, then the set of constraints
Ŷ Kg > 0 will not be affected by noise. Likewise, if the
noise has a zero mean, and we have enough firing data for
the pre-synaptic neurons, we should be able to reconstruct
the connections on average and in the limit of large data.

The following assumptions state the above intuition more
rigorously. We then show that as long as these assumptions
are held, we can identify the type of connections in the limit
of large T .

(A1) Having enough firing data: the observed neurons fire
at a rate linear T , i.e. neuron i fires αiT spikes in the
interval [0, T ], with αmin > 0.
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Fig. 3: Parallelization architecture.

(A2) Zero-mean noise: the noise in the membrane potential
{v(t)} is a zero-mean4 random variable and its sam-
ples are uncorrelated if they are more than ∆v time slots
apart.

Note that the first assumption makes sure that each neu-
ron fires enough spikes for its connection to be successfully
identified and the second assumption basically states that the
noise should have a vanishing correlation, i.e. the very long
future samples should not depend on the current samples.
We also trivially pick the inference kernel K ′ in such a way
that it proportionally captures the quantity of the firing ac-
tivity, i.e. the entries in the inference kernel matrix, K ′ are
non-negative and the number of non-zero entries in column
i of the matrix K ′ is proportional to the number of spikes
fired by neuron i.

With the above assumptions in mind, we can prove the
following lemma.

Lemma 1 Let us assume that we have enough samples such
that the matrix K>K and (K ′)>K ′ are invertible. Now, if
the matrix K>K ′ is positive definite, then, under the as-
sumption A1-A2 defined above, and in the limit of large T ,
we can recover the type of the actual connections, i.e., the

4 Even if the noise has a non-zero mean, it might be possible to
compensate for that by adjusting the firing threshold in such a way that
the mean of noise remain zero.

estimated weight vector w∗ (the output of Algorithm 1 or 2)
has the same sign as the actual connection weights, namely,

lim
T→∞

Pr{w∗i gi > 0} → 1, ∀i = 1, . . . , n, where |gi| 6= 0.

(The proof is given in Appendix A.1) The above theo-
rem addresses the case of a deterministic noisy LIF neu-
ron. Now we can use this result and extend it to a scenario
where we have incoming traffic from a set of unobserved
(hidden) neurons. To this end, suppose there are m unob-
served neurons whose spikes affect the membrane potential
of the post-synaptic neuron in consideration through a set of
connections g′ = [g′1, . . . , g′m]. As a result, we can rewrite
Equation (4) as,

u = Kg +Hg′, (12)

where HT×m is the net effect of m outside neurons filtered
through the neural kernel. Now, given the result of Lemma 1,
we intuitively know that as long as Hg′ is a zero-mean ran-
dom variable with vanishing correlation, we should be able
to recover the type of connections. The following assump-
tions formulate this intuition more rigorously.

(A3) Traffic of two hidden/outside neurons i and j are inde-
pendent of each other.
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(A4) The incoming weights from the hidden/outside neurons
form a balanced random network (similar to the incom-
ing traffic from "visible" neurons), i.e.,

E{g′i} = 0.

(A5) Outgoing traffic of neuron i at time t and t + ∆ are un-
correlated for sufficiently large ∆.

In words, assumptions A3 and A4 ensure that Hg′ is a zero-
mean random variable with vanishing correlation. Assump-
tion A5 requires that the firing activity of each neuron has
vanishing correlation, i.e. very far ahead future spikes should
be uncorrelated from current spikes. Out of the three, as-
sumption A3 is probably the most strict one and assumption
A5 is the weakest one as it is automatically satisfied when
there is a post-synaptic spike in the interval [t, t + ∆) (due
to the "reset" effect of the membrane potential).

Note that a direct consequence of the above assumptions
is that if we sample constraints at intervals that are far apart,
the noise terms should be uncorrelated. This might become
handy in practice to design better algorithms.

Now the following theorem shows that given the above
assumptions, we can rewrite Hg′ as a zero-mean colored
noise with vanishing correlation.

Lemma 2 Given assumptions A2-A5 above, the random vari-
able v(t) = Htg

′ form a colored random variable with van-
ishing correlation.

(The proof is given in Appendix A.2) Combining the re-
sults of Lemma 1 and Lemma 2, we can prove the conver-
gence of the algorithm for the case of deterministic noisy
LIF neurons with incoming hidden traffic. This is formally
proven in the next theorem.

Theorem 1 Let us assume that we have enough samples
such that the matrix K>K and (K ′)>K ′ are invertible.
Now, if the matrixK>K ′ is positive definite, then, under the
assumptions A1 through A5 stated above, and in the limit of
large T , we can recover the type of the actual connections,
i.e., the estimated weight vector w∗ has the same sign as the
actual connection weights. formally,

lim
T→∞

Pr{w∗i gi > 0} → 1, ∀i = 1, . . . , n, where |gi| 6= 0.

(The proof is given in Appendix A.3)

5.1 Network of Stochastic LIF Neurons

In the previous section, we proved that under certain as-
sumptions the proposed algorithms are guaranteed to iden-
tify the type of connections in the limit of large data for
deterministic LIF neurons (with hidden incoming traffic as
well). In this section, we show that the same can be proved
for stochastic LIF neurons if we slightly modify the pro-
posed algorithm. The main idea is to show that solving the

problem for stochastic neurons results in the same solution
as solving the problem for deterministic neurons, defined
in Problem II. Therefore, we can solve Problem II for the
stochastic case as well to identify the connections.

To start, recall that the firing rule for stochastic LIF neu-
rons, defined in Equation (3) is given by

Pr{y(t) = 1} = fs(h(t)− θ),

where the membrane potential, h(t) is given by

h(t) = h0 +
n∑
i=1

giKi(t) + v(t),

Now from a statistical point of view, we can cast the
neural network reconstruction as an instance of a Maximum
Likelihood estimation: find a vector w that maximizes the
likelihood of observing the output spike pattern {y(t)}, given
the set of pre-synaptic spikes or their "filtered" effect through
the kernel matrix K ′. More precisely,we are interested in
solving the following problem:

arg max
w

Pr{y|K ′, w}, (13)

where y is the T ×1 vector of observed post-synaptic spikes
and K ′ is the T × n neural kernel matrix that captures the
leaky integrated effect of the pre-synaptic neurons. This is in
fact what traditional GLM approaches do to identify the vec-
tor w (Paninski, 2004). However, in this section, we show
that under mild and natural assumptions on the post-synaptic
neuron and its firing pattern, solving Problem (13) is equiv-
alent to solving Problem II. By establishing this connection
we can solve the above ML problem at scale, as we ex-
plained earlier.

The assumptions are as follows

(B1) The function fs(·) is an increasing function of its argu-
ment.

(B2) The firing pattern of the post-synaptic neuron has a van-
ishing correlation, i.e., if two samples are more than ∆
time slots apart, they becoming conditionally indepen-
dent. More precisely, if t′ − t > ∆, then

Pr{y(t), y(t′)|K ′, w} = Pr{y(t)|K ′(0, t), w}
× Pr{y(t′)|K ′(t, t′), w},

where K ′(t1, t2) is the subset of samples in the interval
[t1, t2].

Note that Assumption A2 will be easier to satisfy if the post-
synaptic neuron has fired at least once in the interval [t, t′),
due to the reset effect of neurons.

Under our assumptions, we know that if we only con-
sider samples that are more than ∆ time slots apart, they are
independent. With slight abuse of notation, let yT ′×1 and
K ′T ′×n denote the vector of sampled output spikes that are at
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least ∆ samples apart and the corresponding kernel matrix,
respectively. Then, one can rewrite the ML problem (13) as

arg max
w

Pr{y|K ′, w} = arg max
w

T ′∏
t=1

Pr{y(t)|K ′(t), w}

(14)

or equivalently,

arg max
w

T ′∑
t=1

log (Pr{y(t)|K ′(t), w}) . (15)

Let T ′+ indicate the set of time instances such that ∀t ∈ T ′+
we have y(t) = 1. Likewise, let T ′0 be the set of instances
such that y(t) = 0, for ∀t ∈ T ′0. By combining Equations
(1), (3), and (15) we obtain the following optimization prob-
lem to solve

arg max
w,‖w‖2=1

∑
t∈T ′+

log (fs(K ′tw))+
∑
t∈T ′0

log (1− fs(K ′tw)) ,

(16)

where K ′t is the t-th row of K ′. To simplify the above equa-
tion, letK ′′t be a 1×n vector in such a way that the following
holds:

1− fs(K ′tw) = fs(K ′′t w).

Remark 1 For the special case of fs being the sigmoid func-
tion, we have K ′′t = −K ′t. This is the form that has been
considered in GLM (Paninski, 2004).

Now, let us define a T ′ × n matrix H as follows

Ht =
{
K ′t if t ∈ T ′1;
K ′′t if t ∈ T ′0; (17)

where Ht is the t-th row of H . As a result, we can rewrite
problem (16) as

arg max
w,‖w‖2=1

∑
t

log (fs(Htw)) (18)

Our main observation is that the optimization problem given
by Equation (18) and Problem II are equivalent, meaning
that the maximizer of Equation (18) is also the minimizer of
Problem II, as long as we pick a loss function that is

– Decreasing, i.e., L(x) ≤ L(y) if x ≥ y.
– Satisfies the inequality log(fs(x)) ≤ −L(x).

For instance, if fs(·) is the sigmoid function, then we can
pick L(·) to be the sigmoid function or a slightly modified
version of the hinge loss, e.g., L(x) = max(ε(1−x), 1−x),
where 0 < ε < 1 is a small.

Theorem 2 Under assumptions B1-B2 above, and with a
proper choice of loss function, the problem given by Equa-
tion (18) and Problem II are equivalent in the sense that the
solution w∗ to Problem II is also the maximizer of Equation
(18).

(The proof is given in Appendix A.4) This equivalence has
significant consequences. First, we can efficiently find the
ML estimator for problem (13). Second, it also suggests that
the convergence results for our deterministic algorithm (dis-
cussed earlier in this section) also apply to the stochastic
family of neurons.

6 Experiments

In this section we validate the performance of the proposed
algorithm via numerical experiments on both artificially gen-
erated data as well as data recorded from real neurons. For
the former, we have used the dataset generated by (Zaytsev
et al, 2015).5 Testing on artificially generated data has an
advantage in having access to the underlying synaptic con-
nectivity (ground truth) which allows benchmarking the per-
formance of the proposed algorithm. We have also applied
the inference algorithm to a dataset of real recordings from
the multiple hippocampal areas in rats (Mizuseki et al, 2013,
2009).6

6.1 Results on Simulated Data

The dataset of artificially generated spikes (Zaytsev et al,
2015) contains the firing activity of 1000 LIF neurons, with
a fixed firing threshold of 20mV and a random (and un-
known) synaptic propagation delay of up to 2ms (Zaytsev
et al, 2015). The network topology was recurrent and ran-
domly generated.

We apply PARALLEL DUAL NEUINF to the dataset and
compare the returned weights for each neuron to the actual
ones. We calculate the accuracy of the algorithm in terms of
three measures:

1. Spike prediction accuracy: we verify the ability of the
algorithm to predict output firing activity of the post-
synaptic neuron (i.e. by solving Problem I), given the
inferred connection weights and the firing activity of its
neighbors (when Problem I is feasible).

2. Average quality: we take an average over all the returned
weights for excitatory, inhibitory and void connections

5 We sincerely thank Dr. Yury Zaytsev, Prof. Abigail Morrison and
Dr. Moritz Deger for making their data and code publicly available.

6 We sincerely thank Prof. Kenji Mizuseki, Prof. Anton Sirota, Prof.
Eva Pastalkova and Prof. György Buzsáki for making the dataset pub-
licly available.
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Fig. 5: Average of weights of the incoming connections to
neuron 1 returned by Algorithm 2 for each connection type
as a function of the total number of recorded samples, T .

when solving Problem II. In the ideal case, these three
average should be well-separated and the returned weights
should be concentrated around the means (i.e., variance
should tend to zero).

3. Precision and recall: we then transform the analog as-
sociation matrix returned by the algorithm to a ternary
adjacency matrix of the graph. We measure how accu-
rately the algorithm has identified excitatory, inhibitory
and void connections by calculating precision and recall
for each connection type.

We start by evaluating the performance of PARALLEL

DUAL NEUINF in explaining observed firing activity. For
relatively small T , the algorithm is always capable of find-
ing a set of weights that accurately explain the observed ac-
tivity (since Problem I remain feasible). Figure 4 illustrate
a sample of observed vs. predicted spike activity by the set
of weights returned by Algorithm 2 when the inference ker-
nel K ′ consists of a single decaying exponential filter with
a time constant of 20ms.

Moving to the quality of the returned weights in terms of
matching with the underlying synaptic connections, we first
calculated the average of returned weights for all excitatory,
void and inhibitory connections, respectively. The desired
properties that we are looking for are that first there should
be an ordering between the average weights (excitatory to
be higher than void, and void to be higher than inhibitory).
Secondly, the variance of weights for each type should tend
to zero as T grows, i.e., the algorithm returns a set of weights
where the weights for each connection type are concentrated
around their mean. Figure 5 shows that both of the desired
properties hold for the proposed algorithm.

We also use the Receiver Operating Characteristic (ROC)
curve to evaluate the quality of the returned weights. To
this end, we normalize the incoming weights of neurons to
zero mean and unit variance. We then gradually adjust two
thresholds, one for excitatory and one for inhibitory connec-
tions, beyond which we declare a connection excitatory or
inhibitory, respectively. For each pair of selected thresholds,
the number of true and false positives for each connection
type is calculated. The closer the area under the curve is to
1, the better the inference algorithm is. The results for the
incoming connections to neuron 1 are shown in Figure 6. As
shown in the figure, having more samples result in better in-
ferred graphs. In Figure 6, we also report the ROC curve
for the "aggregate inferred weights", where we have per-
formed the inference algorithm 5 times with different hy-
per parameters and averaged over the results. Clearly, this
strategy results in a much better performance and an almost
perfect reconstruction of connection types. We can make a
trade off between the simulation time and RAM depending
on the amount of available resources.

Next, we evaluate the performance of the algorithm in
terms of precision and recall. For this part, we use the ag-
gregate set of weights discussed above and divide the set
of incoming connections into three categories (i.e., excita-
tory, void and inhibitory), using the K-Means clustering al-
gorithm (with 3 clusters). We then count the number of true
positive/negatives for each connection type over this ternary
adjacency matrix. This way, we can calculate the precision
and recall of the algorithm as a function of T for the pro-
posed algorithm, as shown in Figure 7.

We have also examined the effect of hidden neurons on
the performance of our proposed algorithm in identifying
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Fig. 6: The ROC curve for the incoming connections to neuron 1 returned by Algorithm 2.
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Fig. 7: Precision and recall of for the incoming connections to neuron 1 in the artificially-generated dataset after transforming
the returned association matrix by PARALLEL DUAL NEUINF to a ternary adjacency matrix using the K-Means algorithm.
We have averaged over several association matrices before transforming the results to ternary in order to reduce the effect of
noise and randomness in the algorithm.

the connection types. Although hidden neurons were also
present in the original dataset provided in (Zaytsev et al,
2015), but in order to quantitatively investigate the effect
of hidden neurons, we artificially "hid" some neurons in the
database by removing their spike times when applying the
proposed algorithm. We then evaluated the performance of
the algorithm in correctly identifying the type of neural con-
nections among the visible neurons. For a fixed number of
hidden neurons, we generated 5 random graphs by randomly
hiding the given number of neurons. The average results are
shown in Figure 8. In the figure, the horizontal axis illus-
trates the ratio of the number of hidden neurons to the num-
ber of visible neurons. The vertical axis show precision and
recall for the excitatory, inhibitory and void connections. As
shown in this figure, the algorithm is quite robust against the
effect of hidden neurons and precision is less affected than
recall. In other words, what the algorithm returns is quite ac-

curate, but it might not capture all connections of the specific
type when the number of hidden neurons is increasing.

Finally, we calculated the amount of computational re-
sources used by our algorithm. Figure 9 shows the simula-
tion time (in hours) as well as the amount of RAM (in Gi-
gabytes). As expected, since we divide the data matrix into
smaller blocks and load them one at a time, the amount of
RAM remains fixed and the simulation time scales (almost)
linearly with the amount of available data.

6.2 Results on Real Data

After validating the performance of the algorithm on simu-
lated data, we applied the inference algorithm to a dataset of
real recordings from the multiple hippocampal areas in rats
(Mizuseki et al, 2013, 2009). This dataset corresponds to
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Fig. 8: Effect of hidden neurons on the precision and recall of for the incoming connections to neuron 1 in the artificially-
generated dataset. The horizontal axis shows the ration between the number of hidden and visible neurons in the network.The
vertical axes show precision and recall, calculated after transforming the returned association matrix by PARALLEL DUAL

NEUINF to a ternary adjacency matrix using the K-Means algorithm.

442 recording sessions when the rats were performing some
tasks. In each session, the activity of tens of neurons were
recorded simultaneously (ranging from 64 to 256 neurons).
Here, and for most of available datasets of recordings from
living species, the ground truth is not available. Therefore,
we cannot benchmark the performance of the algorithm with
respect to the underlying synaptic connectivity. Neverthe-
less, we can analyze the results in order to make sure that
they are in line with biological findings about the species
and perform sanity checks on the obtained functional graph.
With this in mind, Figure 10 illustrates the inferred weights
by Algorithm 2 for neuron 1 based on the recordings for task
"ec013.18" in the dataset, that contains the firing activity of
94 neurons.

Furthermore, given that the data providers have performed
some physiological analysis to determine the type of each
neuron (i.e. being excitatory or inhibitory), we have com-
pared the "verdict" of our algorithm about the type neurons
against the one found by the data providers. Note that there
are several ways of deciding about the "type" of a neuron in
our algorithm:

– One can calculate the "net" outgoing weight for each
neuron and if it is higher/lower than a threshold, call it
excitatory/inhibitory.

– Alternatively, one can count the number of positive and
negative "peaks" among the outgoing weights and clas-
sify the neuron as excitatory/inhibitory if these two num-
bers are significantly different from each other.

We considered the second method and the results are
shown in Figure 11. To interpret the data given in Figure 11,
note that not all neurons were classified in Mizuseki et al
(2009) and we only compare the types for neurons that were
indeed classified. In the figure, we have also included the re-
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Fig. 9: The amount of CPU and RAM used by the algorithm
as a function of T .

sults of neuron type prediction using cross correlation that
was performed in Mizuseki et al (2009). As shown in Fig-
ure 11, the proposed algorithm performs quite well in iden-
tifying the excitatory neurons but requires improvements in
identifying inhibitory neurons. This might be partly due to
the fact that the firing rates of inhibitory neurons in the dataset
was on average lower than those of excitatory neurons and
the fact that the LIF model we considered in this paper is
more accurate in modeling the behavior of excitatory neu-
rons than that of inhibitory ones.

7 Conclusion and Future Work

In this paper, we introduced a novel approach to identify
neural connectivity from the observed firing activity of neu-
rons. The proposed approach is based on a simplified but
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accurate formulation of LIF neurons that facilitates theoret-
ical analysis and allows scalable implementations through
machine learning algorithms.

We theoretically proved the accuracy of the algorithm
and derived the conditions under which the inferred func-
tional connectivity matches that of the underlying synaptic
network. We also showed that the algorithm is capable of
dealing with both deterministic and stochastic LIF neurons
through the same framework. Finally, using numerical anal-
ysis, we showed that the proposed algorithm successfully
identifies the synaptic connections over a dataset of simu-
lated spiking activity (to be able to benchmark against the
ground truth) and is capable of dealing with datasets of real
recordings yielding meaningful interpretations.

As for future directions, there are several major chal-
lenges that seems deeply intriguing. The first one concerns
the existence of hidden neurons. In this paper we showed
that as long as the incoming traffic from hidden neurons sat-
isfy some statistical conditions, we are capable of finding
the connectivity for the observed part of the network. Nev-
ertheless, the more interesting challenge would be to (par-
tially) identify the connectivity between the observed and
hidden part of the network. The second challenge involves
considering more realistic models of neurons. In this paper,
we considered LIF neurons with fixed firing threshold. In
reality though, the firing threshold is also adaptive and neu-
rons need more accurate models to describe their behavior
(especially the inhibitory ones). Taking these dynamical as-
pects is certainly part of our future work.
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Appendix A Proofs of Theorems and Lemmas

Before we proceed to the proofs of the theorems in the paper,
we prove a few auxiliary results that will help us obtain the
desired proofs.

Lemma 3 Let r denote a non-zero 1× T vector and B and
E be diagonal matrices with positive diagonal elements.
Then, the matrix Br>rE is positive semidefinite.

Proof To start the proof, letC = r>r. Now, note thatBC =
B′
⊙
C, where

⊙
indicates the Hadamard product andB′ =

1T×1b1×T , with b1×T being the diagonal entries of the ma-
trix B. Also, let E′ = 1T×1e1×T , with e1×T being the di-
agonal entries of the matrix E.

Now, matrices B′ and E′ are positive semidefinite since
their only non-zero eigenvalue is equal to the sum of all
eigenvalues (the rest are zero), which is equal to the trace
of matrix B′ (resp. E′), i.e.

∑
j bj > 0 (resp.

∑
j ej > 0).

Furthermore, the only non-zero eigenvalue of matrix C
is equal to rr> > 0, which means matrix C is also posi-
tive semidefinite. Also, from Shcur product theorem (Schur,
1911) we know that the Hadamard product of two positive
semidefinite matrices is positive semidefinite. Thus, matrix
D = B′

⊙
C = BC is positive semidefinite. Likewise, the

matrix D′ = D
⊙
E′ is positive semidefinite, which proves

the lemma.

Lemma 4 Consider a banded matrix H in which only ele-
ments that are close the diagonal part are non-zero. More
specifically,

Hij =
{

0, if |i− j| > ∆,

6= 0, if |i− j| ≤ ∆,

for some constant integer ∆ > 0. Furthermore, let h =
maxi,j |Hij |. Then,

‖H‖2
2 ≤ 8∆2h2 = cons.

Proof To start the proof, let C = H>H . Then,

‖H‖2
2 = max

x
‖Hx‖2

2 = max
x

x>H>Hx = x>Cx (19)

where

‖x‖2 = 1 (20)

Now for matrix C we have

Cij =
{

0, if |i− j| > 2∆,
6= 0, if |i− j| ≤ 2∆.

As a result, and by letting x(d) be the shifted version of the
vector x by d positions to the right and c = maxij Cij , we

obtain

E(x) =
∑
i

∑
j

xiCijxj

=
∑
i

xi
∑

i−2∆≤j≤i+2∆
Cijxj

=
∑
i

Cii(xi)2 + Ci,i+1xixi+1 + · · ·+ Ci,i+2∆xixi+2∆

+ · · ·+ Ci,i−1xixi−1 + Ci,i−2∆xixi−2∆

≤ c

2∆∑
d=−2∆

x>x(d)

≤ c

2∆∑
d=−2∆

‖x‖2‖x(d)‖2

≤ 4∆c, (21)

where we have used the fact that ‖x‖2 = 1. Therefore,

‖H‖2
2 ≤ 4∆c. (22)

Now, letting Hi denote the i-th column of H , we obtain

c = max
ij

Cij = max
ij

H>i Hj ≤ ‖Hi‖2‖Hj‖2.

On the other hand, we have

‖Hj‖2 ≤
√

2∆h2.

Therefore, c ≤ 2∆h2. This implies that

‖H‖2
2 ≤ 8∆2h2,

which concludes the proof.

A.1 Proof of Lemma 1

The proof involves two main steps

1. Showing that mean value of w∗i gi (over the noise’s prob-
ability distribution) is positive.

2. Showing the variance of w∗i gi tends to zero as T grows.

To prove the first step, note that from solving Problem II,
given by (8), we know that there is a vector e with positive
entries where the optimal solution, w∗, satisfy (a subset of)
the constraints, i.e.,

ŶcK
′
cw
∗ = e > 0, (23)

where Ŷc and K ′c correspond to the set of satisfied con-
straints. As a result, and by letting F ′ = (K ′c)−1, we will
have

w∗ = F ′Eŷc,

where E is a diagonal matrix with positive entries, i.e., E =
diag(e). Now from Equation (6) we have

Kg + v = Bŷ, (24)
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where B is a diagonal matrix with positive entries. By fo-
cusing only on the time instances where w∗ satisfy the con-
straints, we will see that

Kcg + vc = Bcŷc,

where Kc and Bc are the sub-matrices corresponding to the
satisfied constraints. Therefore,

g = F (Bcŷc − vc), (25)

where F = K−1
c . To simplify the notations, let Fi (resp.

F ′i ) denote the i-th row of matrix F (resp. F ′). Also, let
CT×T = F>i F

′
i . As a result, if gi 6= 0, we have

giw
∗
i = (ŷ>c Bc − v>c )F>i F ′iEŷc

= ŷ>c BcF
>
i F

′
iEŷc − v>c F>i F ′iEŷc. (26)

Therefore,

E{giw∗i } = ŷ>c BcF
>
i F

′
iEŷc − E{v>c }F>i F ′iEŷc

= ŷ>c BcF
>
i F

′
iEŷc, (27)

where the last equality follows from the fact the we had a
zero-mean noise. Now from Lemma 3 we know that the ma-
trix BF>i FiE is positive semidefinite. Therefore,

ŷ>c BcF
>
i F

′
iEŷc > 0,

which means E{giw∗i } > 0 if gi 6= 0.7

The second part of the proof relies on the fact that the
variance of giw∗i tends to 0 as T → ∞. To this end, let
∆v denote the time window within which the noise term
samples in the membrane potential remain correlated. Now,
we have

σ2
wigi = E{(wigi)2} − (E{wigi})2

=
(
ŷ>c BcF

>
i F

′
iEŷc

)2 + E{
(
v>c F

>
i F

′
iEŷc

)2}
− 2E{

(
ŷ>c BcF

>
i F

′
iEŷc

) (
v>c F

>
i F

′
iEŷc

)
}

−
(
ŷ>c BcF

>
i F

′
iEŷc

)2

= ŷ>c E(F ′i )>FiE{vcv>c }F>i F ′iEŷc, (28)

where we have used the fact that {v(t)} is a zero-mean ran-
dom variable. Now let H = E{vcv>c }. Then, and using the
results of Lemma 4, we will get

σ2
giw∗i

= ŷ>c E(F ′i )>FiHF>i F ′iEŷc
≤ ‖H‖2‖F>i F ′iEŷc‖2

2

=
√

8σ2
max∆v‖F>i F ′iEŷc‖2

2

≤
√

8σ2
max∆v‖F>i F ′i‖2

2‖ŷc‖2
2‖E‖2

2

=
√

8σ2
max∆ve

2
maxTc‖F>i F ′i‖2

2, (29)

7 Note that we have excluded the case where ŷ>c BcF>i F
′
iEŷc = 0

because it will happen if
∑

t
ŷc(t) = 0, i.e. if we have the same num-

ber of firing instances as the instances of inactivity. However, in real
neurons the latter event is much more frequent. Therefore, and when
the amount of data increases, the probability of having

∑
t
ŷc(t) = 0

tends to zero.

where Tc is the number of satisfied constraints (i.e. the length
of ŷc), σ2

max is the maximum value in the matrix H and
emax is the maximum entry in the diagonal matrix E. At
this point, note that

‖F>i F ′i‖2
2 ≤ ‖Fi‖2

2‖F ′i‖2
2

≤ ‖F‖2
2‖F ′‖2

2

=
(
λmax(F>F )

) (
λmax((F ′)>F ′)

)
, (30)

where λmax(F>F ) is the maximum eigenvalue of the ma-
trix F>F . Now, since F is the pseudo-inverse of the kernel
matrix Kc, we have F = (K>c Kc)−1K>c . Therefore,

λmax(F>F ) = λmax(FF>)
= λmax((K>c Kc)−1K>c Kc((K>c Kc)−1)>)
= λmax((K>c Kc)−1)

= 1
λmax(K>c Kc)

.

Likewise, we can show that

λmax((F ′)>F ′) = 1
λmax((K ′c)>K ′c)

.

As a result, will obtain

σ2
giw∗i

≤
√

8σ2
maxe

2
max∆vTc

λmax(K>c Kc)λmax((K ′c)>K ′c)
. (31)

We know that for any real-valued symmetric matrix Mn×n,
we have

∀ν ∈ Rn, ‖ν‖2 = 1 : ν>Mν ≤ λmax.

We set ν = 1√
n

1n×n, and by using M = K>c Kc, we get

λmax ≥
1
n

∑
ij

Mij ≥
1
n

Tr(M),

where the last inequality follows from the fact that entries
of matrix M (and those of K) are all non-negative. Now we
have

Tr(M) =
n∑
i=1

Tc∑
j=1

((Kc)ji)2

≥
n∑
i=1

αiTc

≥ αminnTc, (32)

where the first inequality follows from the fact that the term∑Tc
j=1((Kc)ji)2 is at least as large as the number of spikes

fired by neuron i in the interval [0, Tc]. Combining the above
equations, we obtain

λmax(K>c Kc) ≥ αminTc.

Similarly, we can also show that

λmax((K ′c)>K ′c) ≥ αminTc.
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Combined with Equations (28), (29) and (33), this results in

σ2
wigi ≤

√
8σ2

maxe
2
max∆vTc

(αminTc)2

≤
(

2σmaxemax

αmin

)2
∆v

Tc
. (33)

This shows the desired result that the variance tends to zero
as Tc grows. Given that the number of satisfied constraints
also grow with T , the above steps show that the variance
tends to zero as T grows.

At this point, and with the above results, we can eas-
ily prove the theorem using the Chebyshev’s inequality. We
simply define µ = E{giw∗i } and will have

Pr{|giw∗i − µ| ≥ kσ} ≤
1
k2 ,

where σ = E{(giw∗i )2} and k is a constant bigger than one.
Now since we know that limT→∞ σ = 0, we can select the
constant k arbitrarily large, which is equivalent to having

lim
T→∞

Pr{|w∗i gi − µ|0} ≤ ε, (34)

for some arbitrarily small ε > 0. This shows that if gi 6= 0,
the term wigi will be concentrated around its mean, µ > 0,
with probability 1. This proves the theorem.

Remark 2 Note that the above theorem only states that if
there is an underlying synaptic connection, i.e. if gi 6= 0, we
will identify its sign in the limit of large data. However, it
does not discuss the cases where gi = 0. In those cases, the
additional sparsity regularizes (e.g. in the form of `1-norm
minimization) help us prune the connections by removing
those that are close to zero.

A.2 Proof of Lemma 2

We start by calculating E{v(t)v(t − ∆)} for some integer
∆ > 0, noting that v(t) =

∑m
i=1 Htig

′
i.

E{v(t)v(t−∆)} =
∑
i

∑
j

E{HtiHt−∆,jg
′
ig
′
j}

=
∑
i

E{HtiHt−∆,i(g′i)2}

+
∑
i

∑
j 6=i

E{HtiHt−∆,jg
′
ig
′
j}

a=
∑
i

E{HtiHt−∆,i(g′i)2}

+
∑
i

E{Htig
′
i}
∑
j 6=i

E{Ht−∆,jg
′
j},

where a= follows from assumption A3. Hence,

E{v(t)v(t−∆)} =
∑
i

E{HtiHt−∆,i(g′i)2}

+
∑
i

E{Htig
′
i}ci

b=
∑
i

E{HtiHt−∆,i(g′i)2}

−
∑
i

E{Htig
′
i}E{Ht−∆,ig

′
i},

where ci =
(∑

j E{Ht−∆,jg
′
j} − E{Ht−∆,ig

′
i}
)

and b=
follows from assumptions B1 since

∑
j E{Ht−∆,jg

′
j} =

E{v(t − ∆)} = 0. At this point, let Et,∆ denote the event
of having at least one post-synaptic firing in the interval [t−
∆, t] and Ēt,∆ denote the event of having no post-synaptic
firing in the interval [t − ∆, t]. Now, if we assume an ex-
ponentially decaying filter for membrane potential with a
decay coefficient of τ , we obtain8

Hti =
{
e−∆/τHt−∆,i + edi/τ

∑
t−∆<ti<t e

− t−tiτ , if Ēt,∆,
edi/τ

∑
tf<ti<t

e−
t−ti
τ , if Et,∆.

(35)

Therefore, and by letting

pfire = Pr{a post-synaptic firing in ∈ [t−∆, t]},

from Equation (35) we obtain

E{Hti} = (1− pfire)e−∆/τE{Ht−∆,i}
+ (1− pfire)E{S1}+ pfireE{S2}, (36)

where

S1 = edi/τ
∑

t−∆<ti<t
e−

t−ti
τ ,

S2 = edi/τ
∑

tf<ti<t

e−
t−ti
τ .

Furthermore, we have

E{HtiHt−∆,i} = (1− pfire)e−∆/τE{(Ht−∆,i)2}
+ (1− pfire)E{S1}E{Ht−∆,i}
+ pfireE{S2}E{Ht−∆,i}, (37)

where we have used assumption A5. As a result, and com-
bining Equations (35), (36) and (37) we obtain

E{v(t)v(t−∆)} =
m∑
i=1

E{(Ht−∆,i)2}ci

−
m∑
i=1

(E{HtiHt−∆,i})2ci

= e−∆/τ (1− pfire)
m∑
i=1

σ2
i E{(g′i)2},(38)

8 The choice of filter is made for convenience of representation only
and we can extend the proof to other decaying potentials as well.
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where

ci = E{(g′i)2}e−∆/τ (1− pfire),

and

σ2
i = E{(Ht−∆,i)2} − (E{HtiHt−∆,i})2.

In the above equation, both e−∆/τ and 1 − pfire are de-
creasing functions of ∆ (i.e., the time interval). Therefore,
the correlation is vanishing which proves the lemma.

A.3 Proof of Theorem 1

The proof is actually a direct consequence of Lemma 1 and
Lemma 2: Lemma 2 makes sure that, given assumptions A3-
A5, the contribution of outside traffic satisfies the assump-
tions about the noise term in Lemma 1. Combined with as-
sumptions A1-A2, we can then apply the proof of Lemma 1
to prove the desired result here.

A.4 Proof of Theorem 2

To start the proof, let et = Htw. Then, we are first interested
to show that the following two problems have the same max-
imizer

max
w,‖w‖2=1

E1 =
∑
t

log (fs(et)) (39)

and

max
w,‖w‖2=1,Hw≥0

E2 = −
∑
t

L(et), (40)

where L(.) is a "suitable" cost function, i.e. it is decreasing
and log(fs(x)) ≤ −L(x). Now, the proof consists of two
steps

1. Showing that both functionsE1 andE2 are an increasing
function over their domain, namely, et.

2. showing that E1 ≤ E2.

The first part follows from the fact that

∂E1

et
= f ′s(et)
fs(et)

≥ 0,

where the inequality follows from the fact that 0 ≤ fs(x) ≤
1 and fs(x) is an increasing function of x, therefore its deriva-
tive is always positive. Additionally, since L(x) is a decreas-
ing function, E2 is also increasing.

Furthermore, note that since we have selected L(x) to be
less than − log(fs(x)), then we will have

E1 ≤ E2.

All this results in the fact that the argmax of functionE2 will
also maximize E1.

Now, given that the objective functions for both Problem
(39) and Problem (40) is increasing, the maximizer of both
are at the boundaries. Therefore, in order to solve the ML
problem given in Equation (13), we can focus on solving the
potentially simpler problem, called Problem II and given by
Equation (8). This concludes the proof.
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