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Abstract. Francis turbines operating at part load conditions experience the development of a
high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing
vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical
system and may jeopardize the system stability if resonance conditions are met. Although
many aspects of the part load issue have been widely studied in the past, the accurate stability
analysis of hydro-power plants remains challenging. A better understanding of the vortex rope
dynamics in a wide range of operating conditions is an important step towards the prediction
and the transposition of the pressure fluctuations from reduced to prototype scale. For this
purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced
scale physical model operating at part load conditions is performed by means of 2D-PIV in three
different horizontal cross-sections of the draft tube cone. The measurements are performed in
cavitation-free conditions for three values of discharge factor, comprised between 60% and 81%
of the value at the Best Efficiency Point. The present article describes a detailed methodology
to properly recover the evolution of the velocity fields during one precession cycle by means
of phase averaging. The vortex circulation is computed and the vortex trajectory over one
typical precession period is finally recovered for each operating point. It is notably shown that
below a given value of the discharge factor, the vortex dynamics abruptly change and loose its
periodicity and coherence.

1. Introduction

Francis turbines operating with a discharge lower than the nominal discharge (part load
conditions) experience the development of a cavitation precessing vortex rope at the runner
outlet in the draft tube. Its rotational frequency lies between 0.2 and 0.4 times the runner
frequency [1]. The precession of the vortex induces pressure fluctuations at the same frequency,
which can be decomposed into two different components in the draft tube cone [1, 2, 3]. The
convective or asynchronous component corresponds to the rotation of the pressure pattern with
the precessing vortex core in the draft tube. The second one, called synchronous component,
has been identified as the result of the excitation source produced by the precession of the
vortex rope in the elbow [4] and is known to propagate into the entire hydraulic system. In case
of resonance, the synchronous component becomes dominant, leading to pressure and power
surges [5] able to jeopardize the stability of the machine and of the electrical grid to which it is
connected. As the extension of the operating range of hydro-power plants is increasingly required
due to the massive penetration of intermittent energy sources into the existing electrical grid, an
accurate assessment of the stability of hydro-power plants operating at part load is essential. For
this purpose, one-dimensional flow models have been developed in the past decades [4, 6, 7, 8],
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in which the cavitation draft tube flow is modeled by the cavitation compliance parameter [9]
and the excitation source by an additional source term in the momentum equation. Recently,
these parameters have been identified by using an original experimental approach in the case of
Francis turbine part load conditions [10, 11]. However, the exact physical mechanisms driving
the excitation source remain unclear and sparsely documented. It is for instance essential to
understand how the flow discharge influences the vortex dynamics and to establish the link
between the intensity of the excitation source and the draft tube flow characteristics in a wide
range of operating conditions. Several contributions have already reported the investigation of
the axial velocity field in the draft tube cone at both partial load [12, 13] and full load conditions
[14].

The present work aims at investigating the vortex rope dynamics and structure for different
values of discharge factor at part load conditions. For this purpose, the tangential flow field is
investigated at the outlet of a reduced scale physical model of a Francis turbine by means of
2D-Particle Image Velocimetry (PIV) performed in three horizontal cross-sections of the draft
tube cone. A particular set-up is designed in order to guarantee a proper optical access across
the complex geometry of the machine. Based on phase-averaged velocity fields, the vortex
parameters, such as trajectory and circulation, are finally determined.

2. Test-case

2.1. Reduced-scale model

The investigation is performed on a reduced scale physical model of a 16 blades Francis turbine
with a specific speed of v = 0.27. The model is installed on a close-looped test rig of EPFL
Laboratory for Hydraulic Machines (see Figure 1). The facility includes two axial double-volute
pumps generating the specified head while the discharge is adjusted by the guide vanes opening.

Figure 1: Reduced-scale physical model of a Francis turbine installed on EPFL test rig.

Pressure fluctuations are measured at different locations of the test-rig by flush-mounted
piezo-resistive pressure sensors. In the draft tube cone, the wall pressure is measured at two
different streamwise positions, respectively 0.39 x D7 and 1.02 x D7 downstream the runner
outlet, Di being the outer diameter of the runner. For each section, 4 pressure sensors are
installed and regularly spaced by an angle of 90° (positions C1E-CIN-C1W-C1S in the upper
section and positions C2E-C2N-C2W-C2S in the lower section), enabling the decomposition
of the pressure fluctuations into convective and synchronous components. In the headwater
connecting pipe, one pressure sensor is installed at the inlet of the spiral casing (position P1 in
Figure 1).
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2.2. Operating conditions

Pressure fluctuations are first performed in cavitation-free conditions in a wide range of discharge
factor, from 100 % to 50 % of the value at the BEP. The speed factor is kept constant at
the nominal value ny,, = 0.288. The influence of the discharge factor on both the precession
frequency and the amplitude of the pressure fluctuations measured in P1 is given in Figure 2.
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Figure 2: (a) Precession frequency made dimensionless by the runner frequency and (b) auto-
spectral amplitude at the precession frequency as a function of the discharge factor. The
corresponding pressure signal is measured in the upstream pipe (location P1).

For each value of the discharge factor, the coherence between two pressure signals measured
in the same cross-section of the cone is computed. The influence of the discharge factor on its
value at the precession frequency is given in Figure 3 for two pairs of sensors.
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Figure 3: Coherence at the precession frequency between two pressure signals measured in the
same cone cross-section as a function of the discharge factor.

Three different flow regimes are highlighted depending on the value of the discharge factor
[15]. In the flow regime 2, the precessing vortex core is highly coherent and the precession
frequency linearly increases as the value of the discharge factor is decreased. The amplitude of
the synchronous pressure fluctuations measured in the upstream pipe also increases and is at
its maximum as the value of the discharge factor is equal to 65 % of the value at the BEP. The
following study is focused on three particular operating points, corresponding to 81 %, 64 %
and 60 % of the BEP. The corresponding parameters are given in Table 1.
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Table 1: List of investigated operating points

OP ngp Qep Qep/Qup

1 0283 0.161 0.81
2 0.288 0.128 0.64
3 0.288 0.120 0.60

3. PIV measurements

3.1. PIV set-up

The flow velocity fields are investigated by means of PIV in three horizontal cross-sections of
the draft tube cone, situated 0.39 x D1, 0.75 x D1 and 1.02 x Dj downstream the runner outlet.
A flat waterbow is used to minimize the optical distortion potentially induced by the curved
surface of the cone. A CCD camera is placed at the bottom of the elbow and is aligned with
the coordinate system of the test rig to measure directly the corresponding velocity components
Cz and C'y. The set-up for the PIV measurements is presented in Figure 4. Standard 20-pum
polyamide particles are used for the seeding as the measurements are performed in cavitation-free

conditions.
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Figure 4: Experimental set-up for the PIV measurements in horizontal cross-sections of the draft
tube cone, together with a cut-view of the optical access.

For each operating point, a total of 10,000 pairs of images is acquired, corresponding to
10,000 instantaneous velocity fields. In order to enable a phase averaging of the velocity fields
and to recover their evolution over one precession cycle of the vortex, the output voltage of
the internal trigger of the PIV system, called Q-switch, is used to determine a time stamp
for each recorded instantaneous velocity field. The pairs of images are acquired continuously
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with a sampling frequency of 10 Hz whereas the Q-switch voltage and the pressure signals are
recorded synchronously with a sampling frequency of 1,000 Hz. An example of shortened signals
is presented in Figure 5.
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(a) Raw pressure signal (b) Filtered pressure signal

Figure 5: Reference pressure signal (black solid line) and output voltage from Q-switch laser
(red solid line). The limits of the successive precession cycles are indicated by the dashed black
lines in the right-handed figure.

3.2. Post-processing methodology
Each image is first dewarped using a third-order polynomial imaging model fit based on a
calibration image. Individual velocity fields are then obtained by applying an adaptive cross-
correlation method to each pair of images. The resulting velocity fields contain 272 x 241 vectors
with a spatial resolution of Az = Ay = 1.54 mm, 1.63 mm and 1.68 mm in the measurement
sections 1, 2, and 3, respectively.

A phase averaging of the velocity fields, based on the precession cycle identified in a reference
pressure signal, is performed [16]. The different precession cycles are first determined in the
reference pressure signal through their local pressure minima. Each individual precession cycle
is divided into 90 phase window of 4° width. The instantaneous velocity fields measured inside
the same phase window are then averaged together, resulting in 90 mean phase averaged velocity
fields. They represent the periodical behaviour of the flow over one typical precession period.
An example of one instantaneous velocity field and the corresponding phase averaged velocity
field is given in Figure 6.

3.3. Vortex parameters

3.8.1. Vortexr centre The vortex centre is determined by using the algorithm proposed by

Graftieaux et al. [17], which permits to fairly identify the centre of vortical structures without

computing any velocity gradient [18]. They introduced a dimensionless scalar 7, which is defined
at a given point P by:

3(P) = 3 30 T AU

N5 IPM| - G ()]

with S a rectangular domain of fixed size surrounding the point P, M a point inside the
domain S and N the number of points inside S. The symbols A and - correspond to the cross
product and the scalar product, respectively. c (M) is the velocity vector in the (x,y)-plane and
Z the unit vector normal to the (x,y)-plan. The vortex centre is identified as the point where

(1)
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Figure 6: Example of one instantaneous velocity field, together with the corresponding phase
averaged velocity field for the relative phase § = 107/6 of the precession cycle.

the scalar |vy;| is at its maximum. In the present study, the vortex centre is identified in the
phase averaged and instantaneous velocity fields, permitting to determine its average trajectory
over one precession period and the corresponding dispersion.

3.8.2. Vortex circulation The vorticity w, = % — 8876;5 is computed by direct derivation of

the velocity components (Cz, Cy). The vortex circulation is then estimated by integrating the
vorticity within the limits of the vortex core:

r:%é.df:/wz-ds (2)
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Figure 7: Velocity magnitude and vorticity for a given phase of the precession cycle in the PIV
measurement section 3. The limits of the vortex core are indicated by the solid black contour

(QED/Q:;D = 0~64)‘
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The limits of the vortex core must be defined properly. For this purpose, a second algorithm
proposed by Graftieaux et al. [17] for the detection of the boundaries of large vortical structures
is used. They introduced a second scalar s, which is defined at a given point P by:

1 (PN (G - C(P)) 2

P) = 5 2 S Ria -G - G|

3)

with C(P) the average velocity vector within the domain S. Graftieaux et al. [17] showed
that when the scalar |v,| is greater than 2/, the flow is locally dominated by the rotating
motion, which corresponds to the vortex core. An example of the phase averaged velocity field
magnitude, together with the corresponding vorticity distribution, is presented in Figure 7. The
boundaries of the vortex core are given by the black solid lines.

4. Results

4.1. Phase averaged velocity fields and vortex circulation

The magnitude of the phase averaged velocity fields obtained in the measurement section 3 is
presented in Figure 8 for a given phase of the precession cycle.
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Figure 8: Influence of the discharge factor on the magnitude of the velocity fields in the
measurement section 3. The black solid lines correspond to the limits of the vortex core.

For all the investigated values of the discharge factor, a large vortical structure is identified,
corresponding to the precessing vortex core. The surface delimited by the solid black lines
corresponds to the vortex core. However, a decrease in the value of the discharge factor modifies
the structure of the vortex core. For the highest value of discharge factor, the vortex core is
quasi-circular and the distribution of tangential velocity around the vortex centre is nearly axi-
symmetric, whereas a slight acceleration of the flow between the vortex centre and the cone wall
is already observed. By decreasing the value of the discharge factor, the vortex core takes an
elliptical shape and the distribution of tangential velocity is increasingly asymmetric.

The values of the vortex circulation obtained for the operating points 1 and 2 are given
in Table 2. In all the measurement sections, the vortex circulation strongly increases as the
discharge factor is decreased, as it induces an increase of the swirl degree of the flow feeding
the draft tube. For the operating point 3, it is not possible anymore to compute the vortex
circulation as the identification of the vortex core limits fails for certain phases of the precession
cycle.

1135



28th IAHR Symposium on Hydraulic Machinery and Systems

Table 2: Value of the vortex circulation

Section OP T (m?s71)

1 1 2.411
2 3.026
9 1 2.211
2 2.755
3 1 2.165
2 2.881

4.2. Average trajectory and dispersion of the vortex centre

For each operating point, the vortex centre is identified for all the phase averaged velocity fields,
enabling the reconstruction of the average vortex centre trajectory over one typical precession
period. The results are presented in Figure 9 for the measurement sections 1, 2 and 3.
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Figure 9: Trajectory of the vortex centre over one typical precession cycle for three values of
the discharge factor.

The vortex trajectory features a strong asymmetry, which is increasingly pronounced as the
discharge factor is decreased from the value Qy,/Q% = 0.81 to the value Q,/Q% = 0.64.
Moreover, the precession of the vortex experiences a strong widening of its trajectory. Below
the transition from the flow regimes 2 to 3, the diameter of the vortex trajectory is however
reduced and its asymmetry is less pronounced.

The instantaneous positions of the vortex centre present a dispersion around its average
trajectory. The standard deviation of the vortex centre coordinates (z.,y.) is plotted as a
function of the discharge factor in Figure 10. The standard deviation for both coordinates
remains nearly constant within the flow regimes 1 and 2 and is comprised between 6 and 7
% of the section radius. Beyond the transition between the flow regimes 2 and 3, it however
drastically increases, which is another evidence of the loss of periodicity and coherence in the
vortex dynamics occurring for values of discharge factor @, /Q% < 0.62.
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5. Conclusion

The flow velocity fields are investigated in three horizontal cross-sections of a Francis turbine
draft tube cone at part load operating conditions by means of PIV. The investigation is focused
on three different values of the discharge factor in cavitation-free conditions. Furthermore,
pressure fluctuations measurements are performed in a wide range of value of the discharge
factor at different locations of the test-rig, including the draft tube cone and the upstream pipe
of the machine. A methodology is proposed to recover properly by phase averaging the evolution
of the velocity fields over one typical precession period. Based on the latter, the parameters of
the vortex, such as trajectory and circulation, are determined for each operating point.

The results suggest the occurrence of three different flow regimes, depending on the value of
the discharge factor. The vortex circulation and the diameter of the vortex trajectory reach their
maximum value within the flow regime 2, for which the coherence of the pressure fluctuations
measured in the cone is at its highest level. As a result, the amplitude of the pressure fluctuations
measured in the upstream pipe of the machine is at its maximum. Beyond the transition from
the regimes 2 to 3, an abrupt change in the vortex dynamics is observed, characterized by a
retraction of its trajectory and a loss of coherence and periodicity. It is notably illustrated by
an important increase of the dispersion of the instantaneous vortex centres around the average
trajectory.

Acknowledgments

The research leading to the results published in this paper is part of the HYPERBOLE research
project, granted by the European Commission (ERC/FP7- ENERGY-2013-1-Grant 608532).
The authors would also like to thank BC Hydro for making available the reduced scale model, in
particular Danny Burggraeve and Jacob losfin. Moreover, the authors would like to acknowledge
the commitment of the Laboratory for Hydraulic Machines’ technical staff, especially Georges
Crittin, Maxime Raton, Alain Renaud and Vincent Berruex.

References

[1] Nishi M, Matsunaga S and Kubota T'S'Y 1982 Flow regimes in an elbow-type draft tube Proceedings of the
11th IAHR Symposium on Hydraulic Machinery and Systems, Amsterdam, Netherlands

[2] Dérfler P and Ruchonnet N 2012 IOP Conference Series: Earth and Environmental Science 15

[3] Duparchy A, Guillozet J, De Colombel T and Bornard L 2014 IOP Conference Series: Farth and
Environmental Science 22

[4] Dorfler P 1982 System dynamics of the Francis turbine half load surge Proceedings of the 11th IAHR
Symposium on Operating Problem of Pump Stations and Powerplants, Amsterdam, Netherlands

[5] Rheingans W 1940 Transactions of the ASME 62 171-184

[6] Couston M and Philibert R 1998 The International Journal on Hydropower and Dams 1 146-158

1137



28th IAHR Symposium on Hydraulic Machinery and Systems

Nicolet C, Herou J, Greiveldinger B, Allenbach P, Simond J and Avellan F 2006 Methodology for risk
assessment of part load resonance in francis turbine power plant Proceedings of the 1st IAHR Workgroup
on Cavitation and Dynamics Problems in Hydraulic Machinery and Systems, Barcelona, Spain

Alligné S, Nicolet C, Tsujimoto Y and Avellan F 2014 Journal of Hydraulic Research 52(3)

Brennen C and Acosta A 1976 Journal of Fluids Engineering, Transactions of the ASME 98 Ser 1(2)
182-191

Landry C 2015 Hydroacoustic Modeling of a Cavitation Vortex Rope for a Francis Turbine Ph.D. thesis
EPFL Lausanne, Switzerland

Landry C, Favrel A, Miiller A, Nicolet C and Avellan F 2016 Journal of Hydraulic Research (article in press)

Iliescu M, Ciocan G and Avellan F 2008 Journal of Fluids Engineering, Transactions of the ASME 130(2)

Iliescu M, Houde S, Lemay S, Fraser R and Deschénes C 2011 Investigation of the cavitational behavior of
an axial hydraulic turbine operating at partial discharge by 3D-PIV Proceedings of the 9th International
Symposium on Particle Image Velocimetry, Kobe, Japan, July

Miiller A, Dreyer M, Andreini N and Avellan F 2013 Ezperiments in Fluids 54(4)

Favrel A, Miiller A, Landry C, Yamamoto K and Avellan F 2015 Ezperiments in Fluids 56(12)

Miiller A, Yamamoto K, Alligné S, Yonezawa K, Tsujimoto Y and Avellan F 2015 ASME J. Fluids Eng.
138(2)

Graftieaux L, Michard M and Nathalie G 2001 Measurement Science and Technology 12(9)

Dreyer M, Decaix J, Miinch-Alligné C and Farhat M 2014 Ezperiments in Fluids 55(11)

1138



