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Abstract—The use of drones is recently gaining particular
interest in the field of search and rescue. However, particular
skills are still required to actively operate in a mission without
crashing the drone. This limits their effective and efficient em-
ployment in real missions. Thus, to assist the rescuers operating
in stressful conditions, there is a need to detect an increase of
workload that could compromise the outcome of the mission. In
this work a simulator is designed and used to induce different
levels of cognitive workload related to search and rescue missions.
Physiological signals are recorded and features are extracted
from them to estimate cognitive workloads. The NASA Task Load
Index is used as subjective self-report workload reference. Then,
performance is recorded to objectively evaluate the execution of
the tasks. Finally, the analysis of variance (ANOVA) is used to
verify intra- and inter-subject variability. Results show statistical
decrease of the mean normal-to-normal (NN) interval with
an increase of cognitive workload. Moreover, it is observed a
decrease of performance while an increase of cognitive workload
exists. This information can be used to detect the need for
assistance.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs), or drones,
was originally limited to the military sphere. Subsequently,
thanks to their commercial accessibility and their large degree
of versatility, the utilization has exploded in different other
fields (e.g., aerial mapping, search and rescue, transportation
and delivery, or even for private leisure [1]). Moreover, en-
hancements in technology allow the drones to be used to
collect, process, store and relay data on their own and in real
time, thus transforming them in some kind of evolved smart
multi-sensor networks [2–4].

Nowadays, drones are extremely interesting devices for
search and rescue applications, where collecting information
is of primary importance. Once a disaster occurs, rescuers
have to gather information to immediately evaluate each
emergency situation upon arrival. This first task is crucial to
take the proper decisions and effectively master the emergency.
Gathering information from a chaotic place is hard and time
consuming, because accesses are often difficult and resources
relatively limited. A drone, or a network of drones, can
easily facilitate and accelerate this task, especially providing
information that is not available from a ground perspective.
Moreover, drones can be used to establish a communication
with victims, or to provide them first assistance (e.g., with
water, oxygen, or moral support).

Even though drones find many applications in the field of
search and rescue, limitations exist in their effective and effi-
cient utilization in real missions. The reason is that employing
drones in stressful conditions remains a challenge, even if
driving a drone in controlled environments has become quite
straightforward. Operating in extreme conditions, dealing with
the scarcity of human resources, and having the feeling of
urgency in finding victims, demands an important cognitive
effort. In such conditions, simple tasks as driving a drone
become more complicated. Therefore, the risk of not being
able to perform the mission or to crash the drone is extremely
high.

To address this problem, researchers started to protect the
drones with cages that prevent crashes [5], developed shared
controllers that modulate the level of assistance [6], and
focused on embodied interaction that facilitate their control
[7]. However, there is a need to ensure efficient interaction
between rescuers and drones. Thus, the online monitoring of
the cognitive workload of the rescuers has to be considered to
dynamically adapt the level of assistance, in order to ensure
that missions are efficiently performed, and to avoid crashes
of drones.

The monitoring of cognitive workload has been widely
studied in the past. Indeed it has been proven that changes in
cognitive level of workload are visible in physiological signals
[8]. Therefore, characterizing the cognitive workload level
from physiological signals is the key to develop a minimally
intrusive wearable interface in order to estimate a possible
need of assistance.

In this context, different works show how to characterize
cognitive workload from physiological signals. For instance,
multi-tasks activities, such as, auditory, mental arithmetic, and
memory tasks can be combined to induce different levels of
cognitive workload that are visible in physiological signals
[9], [10]. Based on the similar principle, the Multi-Attribute
Task Battery (MATB-II) has been developed to evaluate op-
erator performance and workload [11]. Artificially combining
multi-tasks activities is the first step to properly characterize
cognitive workload. This allows a design of an experiment in
a controlled environment, reducing the amount of undesired
external factors. Then, with a better knowledge of the problem,
it is possible to extend the study in the applied field. As
an example, researchers studied fighter pilots during simu-
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lations [12–14], and real flights [15–17]. Other investigated
the roots of the problem and validated their hypothesis by
studying car drivers during real-world driving tasks [18], and
people in everyday-life office-work scenario [19], [20]. Recent
studies moved to physical human robot interaction related
to rehabilitation activities [21]. However, to our knowledge
there is no study that explore physiological changes due
to cognitive workload induced while performing search and
rescue missions employing drones.

Although the subject is widely covered in the literature,
characterizing cognitive workloads from physiological signals
is not properly addressed for drone pilots. Physiological sig-
nals exhibit high intra- and inter-subject variability as a result
of age, gender, time of day and other factors [22]. Therefore, it
is important to characterize the physiological effects related to
the specific case study of rescue missions with drones. Thus,
this work contribute by:

• designing a drone simulator to induce cognitive workload
related to search and rescue missions;

• selecting physiological features that give a dynamic indi-
cation of rescuers’ internal state in the context of search
and rescue missions employing drones;

• showing a decrease of performance while increasing the
level of cognitive workload, information that can be
translated into a possible need for assistance.

The rest of the paper is organized as follows. In Section II
we introduce the method used to access cognitive workload
from physiological signals. In Section III we describe the
experimental setup. Then, in Section IV we present the exper-
imental results that validate the approach. Finally, in Section
V we draw the main conclusions of this work.

II. METHOD FOR COGNITIVE WORKLOAD
CHARACTERIZATION

A block diagram of our proposed method is shown in Fig. 1.
The simulator (Sec. III-A) contains several tasks (Sec. III-B),
with a particular level of cognitive workload, that the recruited
subjects (Sec. III-E) perform. The execution of the tasks is
objectively evaluated by monitoring the performance (Sec.
III-C) of the subjects. The level of cognitive workload is self
evaluated by the subjects after each task, based on the National
Aeronautics and Space Administration Task Load Index
(NASA-TLX) [23]. The workload affects the physiological
signals that are constantly recorded. Then, features (Sec. II-A)
are extracted from the physiological signals and compared
with both performance and NASA-TLX. Finally, a complete
data analysis (i.e., Analysis of Variance or ANOVA) is used
to verify intra- and inter-subject variability [24].

A. Signal Acquisition and Feature Extraction

We record Electrocardiogram (ECG), in particular the lead
II. From the ECG, the so called normal-to-normal (NN)
intervals are extracted. Then, the Heart Rate Variability (HRV),
the variations of the NN intervals, are analyzed in both time
and frequency domains as described in [25].

Fig. 1. Block diagram showing the method used to characterize cognitive
workload from physiological signals.

B. Time-domain features

For the time-domain analysis, we considered both statistical
and geometrical method.

Regarding statistical methods, the mean NN interval and
the square root of the mean squared differences of successive
NN intervals (RMSSD) are calculated. The number of interval
differences of successive NN intervals greater than 50 ms
(NN50), and the proportion derived by dividing NN50 by the
total number of NN intervals (pNN50), are not considered
because of their inferior statistical properties compared to
RMSSD [25]. The standard deviation of NN intervals (SDNN),
the standard deviation of the average NN interval calculated
over short periods (SDANN), and the SDNN index are not
considered as well, being all of them appropriate for long-
term recordings only.

Concerning geometrical methods, we extract different fea-
tures from the Poincaré (or Lorenz) plot indicating vagal and
sympathetic function [26], such as, the length of the transverse
axis (T ), which is vertical to the line NNk = NNk+1; the
length of the longitudinal axis (L), which is parallel with
the line NNk = NNk+1; the ratio L/T , called Cardiac
Sympathetic Index (CSI); the modified CSI (L2/T ); and
the log10(L · T ), called Cardiac Vagal Index (CVI) [25],
[26]. On the other hand, the HRV triangular index and the
triangular interpolation of NN interval histogram (TINN) are
not considered, as they are inappropriate to access short-term
changes in HRV [25].

C. Frequency-domain features

For the frequency-domain analysis of HRV, we first estimate
the Lomb-Scargle Power Spectral Density (PSD) of the NN
intervals [27], and then we compute the power in the low-
frequency band (LF) between 0.04 and 0.15 Hz, in the high-
frequency band (HF) between 0.15 and 0.4 Hz, and the ratio
of the two, referred to as the LF/HF ratio. LF and HF are
normalized by dividing the values by the total power minus
the very-low-frequency (VLF) component (≤ 0.04 Hz ) [25].



III. EXPERIMENTAL VALIDATION

A. Rescue simulator

For this study we designed and implemented a flight sim-
ulator with Unity3D [28]. The simulator aims to reproduce a
rescue scenario where the pilot of a drone has to deal with
two different activities, namely, flying and mapping.

The flying activity consists in flying a drone following a
precise path. The flight path is showed by 90 waypoints (white
clouds) distributed over a village every 20 m along a randomly
generated trajectory.

The mapping activity consists in mapping a damage situa-
tion of a disaster area. In the simulator, the damage situation
is represented by cubes of 4 different colors randomly dis-
tributed over the flying trajectory. The colors are: yellow to
indicate rescue situations, red for fire, blue for water damages,
and green for accidents. Colors are chosen according to the
regulation of the Swiss Firefighters [29].

With a modulation of both flying and mapping activities, it
is possible to induce different levels of workload. The same
principle is applied for MATB-II, where different tasks are
combined to induce different levels of workload [11]. The
combination used in this study is explained next.

B. Tasks inducing cognitive workload

To induce different levels of workload, both flying and
mapping activities are combined yielding in five different
tasks: Baseline (B), Training (T), Flying (F), Flying and
Mapping 1 object (F1M), and Flying and Mapping 3 objects
(F3M). The tasks F, F1M, and F3M are designed to have low,
medium, and high cognitive workload, respectively. The tasks
are described as follows:

1) Baseline (B): As baseline we consider a flying sequence
controlled by an auto-pilot. The speed of the drone is constant
at 6m/s (same for all the other tasks). No mapping activity
is required during this sequence. For this task, the subjects
are instructed to relax and to simply watch the sequence. This
sequence puts the subjects in a framework that is the same for
the entire experiment, avoiding as much as possible changes
of uncontrollable variables.

2) Training (T): To get confident with the simulator, a
training sequence is presented. The sequence is characterized
by a mix of both flying and mapping activities. For this task,
the number of objects to be mapped are 60 per session, i.e.,
15 per color. During this sequence, the subjects are asked to
fly as close as possible through the center of the waypoints,
and to press the button of the controller relative to the color
of the objects that randomly appear.

3) Flying (F): The low level of workload is the flying
activity alone, without mapping. During this task, the subjects
are asked to control the drone and to fly as close as possible
through the center of the waypoints.

4) Flying and Mapping 1 object (F1M): The medium level
of workload is the same as training, including the same
combination of both flying and mapping activities. As in the
training task, the subjects are asked to fly as close as possible

through the center of the waypoints, as well as pressing the
button of the controller relative to the color of the objects that
randomly come into sight.

5) Flying and Mapping 3 objects (F3M): The high level of
workload is again a combination of both flying and mapping
activities but with a more demanding mapping activity. For
this task, the objects displayed at the same time on the screen
are three, and not only one as in the F1M or T. The total
number of objects to be mapped are 240 per session, i.e.,
60 per color. Again, the subjects are asked to fly as close as
possible through the center of the waypoints, and to press the
button of the controller relative to the color of the objects that
become visible.

C. Performance metrics

The performance (ρ) of the pilot is evaluated based on both
flying and mapping activity, as shown in Eq. 1:

ρ = 1− 1

4
(td1 + td2 + em + tr). (1)

td1 is the root-mean-square of the time delay, which is the
difference between the time actually needed to fly through
two subsequent waypoints and the optimal time. Being the
waypoints equidistant (20 m) and the speed of the drone
constant (6 m/s), the optimal time is a constant as well, which
was computed by dividing the distance of two waypoints with
the speed of the drone. td2 is the root-mean-square of the
distance between the drone and the center of the waypoint
divided by the speed of the drone. This distance lays in the
plane perpendicular to two subsequent waypoints and tells
how close to the waypoints the subject was able to fly. em
is the error detection rate for the mapping activity and tr is
the reaction time in detecting the objects.

Finally, before combining them, all the metrics are normal-
ized to have values between 0 and 1.

D. Study protocol

During the experiment, the subjects seated in a room in front
of a screen and played the simulator with a Gamepad from
Logitech [30]. They were asked to not talk and to avoid as
much as possible any kind of unnecessary movements during
the tasks, but they were free to rest and move otherwise.
After each task, they reported a subjective cognitive workload
estimation based on the NASA-TLX procedure.

The lead II of the ECG was recorded in a noninvasive way
through the Biopac MP160 data acquisition system [31]. The
signal was acquired with Ag/AgCl snap electrodes. From the
ECG, sampled at 2 kHz, the NN intervals were determined
with AcqKnowledge 5.0 [32]. The HRV analyses was per-
formed using Matlab R2016a (The MathWorks Inc., Natick,
Massachusetts). An overview of the experimental setup is
shown in Fig. 2.

A first subject participated in a preliminary experiment over
three different days. The aim of the study was to evaluate phys-
iological intra-variability caused by external factors. During
one experimental session, the subject repeated eight times a
task with a specific workload level interleaved with a baseline
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Fig. 2. Setup of the experiment. The subject seats in front of a screen and
interacts with the simulator through a gamepad. The electrodes placement on
the chest for ECG monitoring is depicted on the left. On the right, a screenshot
of the F3M task, namely, flying and mapping 3 objects is shown. The arrow
on the image indicates the direction of the next waypoint (white cloud), and
the cubes are the objects to be detected by pressing a button of the controller.

B F · · · B F

Fig. 3. Protocol to evaluate physiological intra-variability caused by external
factors. A baseline (B) sequence is interleaved with one level of workload
(i.e., F, F1M, or F3M) and repeated eight times. Here an example with the
flying (F) task.

B T T F F F1M F1M F3M F3M B

Fig. 4. Protocol of the full experiment to assess inter-variability. The subjects
start with a baseline (B), continue with two training (T) sessions, move to the
flying and mapping tasks (F, F1M, and F3M), and end with a baseline again.

sequence (see Fig. 3). Each task was 5 minutes long. The
level of workload was constant for one session, but differed
between days. The subject was confident with the simulator,
then no training sessions was proposed. For the simulator, the
speed of the drone was kept constant at 6m/s for the entire
experiment.

Afterwards, we extended the study to different subjects to
assess the inter-variability. All the recruited subjects partici-
pated in the full experiment twice, on two different days. The
subjects performed all the tasks (5 min. each), as shown in
Fig. 4. Apart from the baseline that was recorded once at the
beginning and once at the end of the experiment, all the other
tasks were repeated twice in a row.

E. Subjects

Seven young subjects (4 males and 3 females) aged between
25 and 37 years old (27.7± 4.2), volunteered to participate in
the study and provided informed consent before participating.
The subjects were healthy, free of any cardiac abnormalities
and were receiving no medical treatment.

IV. EXPERIMENTAL RESULTS

The results are obtained from two separate analysis. The
first one, the intra-subject analysis shows the effect of the
day on the physiological measurements on the same subject.
The second analysis shows the effect of induced cognitive
workload on different subjects.

A. Intra-subject analysis confirms the need for normalization

The results of the intra-subject analysis are based on a task
with one level of workload interleaved with a baseline and
repeated 8 times. Our analyzed data in Fig. 5 comes from one
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Fig. 5. Intra-subject analysis showing the trend of the normalized mean
NN interval for the three induced cognitive workloads F ,F1M, and F3M.
A one-way ANOVA shows that the effect of the induced level of workload is
significant on the mean NN interval F(2,21) = 21.6, Prob>F = 8.0247e-06.

subject only, who repeated the experiment three times in three
different days, each day with a different level of workload.
The one-way ANOVA showed that the effect of the day on
physiological measurements is significant (p<0.05) for most
of the features extracted from ECG: RMSSD, CSI, CVI, LF,
HF, and LF/HF. This indicates a significant difference on the
baseline, thus a need exists for normalization. This finding is
in line with the normalization requirement proposed in [21].

After normalization of the physiological measurements by
the baseline, the one-way ANOVA shows that the effect of
the induced level of workload is significant (p<0.05) on the
mean NN interval, CSI, LF, HF, and LF/HF. Although the
study focuses in a different context, similar results are reported
in [33]. Fig. 5 shows a decreasing trend of the normalized
mean NN interval while increasing the cognitive workload.
Therefore, changes in cognitive workload related to search and
rescue missions are visible in physiological signals.

B. Mean NN interval characterizes workloads

The results of the inter-subject analysis are based on the data
collected from all the seven subjects. All the measurements
are normalized by the baseline to avoid the effect of the day.
A two-way ANOVA is conducted on the influence of two
independent variables (cognitive workload level and subject)
on the features extracted from the physiological signals to
estimate the level of cognitive workload. Cognitive workload
includes three levels (i.e., F, F1M, and F3M).

The main effect for cognitive workload yields a F ratio of
F(2, 63) = 3.7, Prob>F = 0.03 on the mean NN interval,
indicating a significant difference between the tasks F1M and
F3M (p-value = 0.0227). Therefore, it is possible to use the
mean NN interval to detect changes when the mapping activity
becomes more demanding. The mean NN interval was used in
other studies showing similar changes [33], [34]. However, it is
difficult to distinguish the task F from F1M (p-value = 0.3560),
or F from F3M (p-value = 0.3810). F1M is characterized by a
relative simple mapping task, which probably does not seem
to be perceived as having different complexity from F. This
could explain the fact that no significant differences are visible
on the mean NN interval. Moreover, a lack of training could
also explain the physiological response. Thus, our analysis
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Fig. 6. Influence of induced cognitive workload level on the reported cognitive
workload level. The NASA-TLX shows a consistent, but non-significant
difference of the reported overall workload between the tasks F and F3M,
F(2,39) = 2.98, Prob>F = 0.0622.

indicates that clearly a bigger effort is required to manage
flying related tasks that are not well known. This is the case
of F, which is performed after only 10 minutes of training.
Therefore, a longer training or a randomization of the order
of the tasks is expected to reduce this effect.

The effect for subject yields a F ratio of F(6, 63) = 29.62,
Prob>F = 0, indicating that the effect for subject is significant.
The interaction effect between subjects and workload is not
significant, F(12, 63) = 0.69, Prob>F = 0.75. Although there
is a significant variation between the subjects, the mean NN
interval can be used to characterize changes in cognitive
workload. Moreover, no subject adaptation is required because
of the absence of significant interaction between subjects and
workload.

Although the intra-subject analysis shows a significant dif-
ference in many features, such as, CSI, LF, HF, and LF/HF,
this is no longer the case when considering all the subjects of
the study (inter-subject analysis).

These results indicate that a very limited number of fea-
tures can be sufficient to perform workload characterization
in rescue missions with drones for different subject. This
conclusion is in contrast with other studies [34], [35], which
cover physiological responses in other robotics-related fields,
where a larger set of features are required to differentiate from
subject to subject.

C. Induced workload perceived by participants

A one-way ANOVA is conducted on the influence of
induced cognitive workload level on the reported cognitive
workload level. The main effect for the performance yields
a F ratio of F(2, 39) = 2.98, Prob>F = 0.0622, indicating a
consistent, but non-significant difference between the tasks F
and F3M. Thus, this trend, also shown in Fig. 6, indicates that
participants perceived the induced cognitive workload levels
as intended from the experiment design. However, the trend
of the median lines showed in Fig. 6 is similar to the one of
the mean NN interval (Sec. IV-B). This validates the results
obtained with the inter-subject analysis, namely, physiological
signals are affected by workload changes related to simulated
rescue missions.
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Fig. 7. Influence of cognitive workload level on global performance, which
considers both flying and mapping performances. A one-way ANOVA shows
a significant difference between F and F1M, and between F and F3M, F(2,
81) = 6.23, Prob>F = 0.0031.

D. Performance affected by increase of workload

A one-way ANOVA is conducted on the influence of cog-
nitive workload level on the flying and mapping performance.
The main effect for the performance yields a F ratio of F(2, 81)
= 6.23, Prob>F = 0.0031, indicating a significant difference
between the tasks F1M and F3M (p-value = 0.0343), and
between F and F3M (p-value = 0.0031), but not from F and
F1M (p-value = 0.6723). A visual representation of the results
is shown in Fig. 7.

Some other studies link highly aroused stress states with
degraded performance [18]. Therefore, our analysis confirms
that with increases of cognitive workload, there is always a
significant decrease of performance. In accordance with the
physiological measurements and the self-reported cognitive
level of workload, this decreasing trend of performance vali-
dates the hypothesis that physiological signals can be used to
detect a possible need for assistance in rescue missions with
drones.

V. CONCLUSION

To assist the rescuers operating in stressful conditions of
rescue missions with drones, there is a need to detect an
increase of workload that could compromise the outcome
of the mission. Thus, characterizing the cognitive workload
level from physiological signals is the key to develop a
minimally intrusive wearable interface for estimation of need
for assistance. To address the problem, we first design a drone
simulator that is used to induce cognitive workload related
to search and rescue missions. Then, we select physiological
features that give a dynamic indication of rescuers’ internal
state in the context of search and rescue missions employing
drones.

Our results show a statistical decrease of the mean NN-
intervals with an increasing of workload. Therefore, changes
in cognitive workload are visible in physiological signals.
The NASA-TLX confirms that the participants perceived the
induced workload levels as intended from the experiment
design. Moreover, we show a decreasing of performance with
an increase of cognitive workload. Our results validate the
hypothesis that physiological signals can be used to detect a
possible need for assistance.



In conclusion, our experimental results yield to lay the
foundations to design a wearable embedded system able to
detect a need for assistance. This can prevent a possible drop
of performance that could compromise the outcome of a search
and rescue mission.

Being this experiment based on a simulated and controlled
environment, the subjects were not exposed to the same
stressful conditions as they would be in the case of real search
and rescue missions. In particular, no real drone was employed,
there was no fire, and no one was in real danger. Therefore,
there is a need to further investigate unexpected physiological
changes in the field during real-life rescue missions with
drones, in order to estimate the possible benefits of person-
specific thresholds indicating the need for assistance.
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