Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Supplementary Materials to “A Non-Euclidean
Gradient Descent Framework for Non-Convex
Matrix Factorization™

Ya-Ping Hsieh, Yu-Chun Kao, Rabeeh Karimi Mahabadi, Alp Yurtsever, Anastasios Kyrillidis, Member, IEEE,
and Volkan Cevher, Senior Member, IEEE

APPENDIX A
PROOF OF SUBLINEAR RATE OF NUCLEAR GRADIENT DESCENT

We first use following lemma to prove the sublinear rate.

Lemma 1. For the sequence of the iterates {U;}¥_, we have
FOUE) = fUis1Uin ") > ai - [V F(X0) - Uiz (A.1)
and
FUUT) = fUUT) < B; - |[VF(X) - Uills.. (A.2)
where o; = 1.117 n; and B; = (2+ 2)|| A, |« = 2+ &)D.(U;, U*).
Define 6; = f(U;UL) — f(U*U*™) and follow the previous lemma. We know {d;} is an positive decreasing sequence and

div1 <0 —a; - |[VF(X) - UiH%'oo
<6 k8

82
Dividing both sides with (J; - d;+1), we obtain, by assumption (IIL.3),

1 1 ;0 oy Q;

i1 0~ B7 i~ BT D2

Telescoping the inequality we get the desired result.
Now we prove (A.I) of lemma [T} The smoothness gives

FUUT) = f(UiaUia ")
>(V (X0, Xi — Xivt) = 21X~ Xl
=(Vf(X3),(U; = Upp1)U + U;(U; = Uip)™)
@
—(VF(Xi), (Ui = Uip1)(Us = Uip1) ")
@
- % X5 = Xiqall? - (A3)
—_——
©)

For () we have

(VI(X3), (Ui = Upp)U] +Ui(Us = Uig1)™)
:2<vf(Xi)Ui, U; — Ui+1>
=20i(V (X)) Uy, [V f(X:)UIE)
=20; |V f(Xo) Uil -
(A4)
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To upper bound @), we use

(VI(X:), (Ui = Uip1)(U; = Uip1)™)
=07 IV F(X;) - Uill3., - Trace(V f(X;)A1A])
<P IVF(X) - Uillz, - IVF(X3) s

)1 ,
< Zﬂi”vf(Xi) Uills..

in which A; is the first singular vector of V f(X;) - U;, and (%) is by 7; <

1
AV Xi)llse
To upper bound 3), we use

10U = Ui Ul 5.
=[|Ui(Ui = Uiy1)" + (Ui = Ui1)U
— (Ui = Ui ) (Ui = Ui |5
L2|Uills. Ui = Uigall« + 1U; = Uisall s [IU; = Ui [l
=20i||Uills.. |V f(X3) - Uill s + 07 IV F(X3) - Uil
=n; IVf(Xi) Uills., 2lUills. +nillVF(Xi) - Uills..]
<ni IVF(Xi) - Uillse 2(Uillse +mll V(X)) s Uil 5., ]

(1) 9
<ni |VF(Xi) - Uills.. 1||Uz'||soc

where (1) is by i < m

Plugging above inequalities into (A.3), we obtain

FOUT) = fUiaUia ")

1
>20; |V F(X)Uill%. — Z?z‘”vf(Xi) Uil
L9

- 5(1711' 1Uills. IV f(X3) - Uill s )?

7 L [9\°
4—2<4) 77iHUiH%oo

)
> 1117 3 |V (X)) - Ul|%

>ni [V F(Xa) - Uill5

where (x) is by 7; <

I XIiH . . We have thus finished the first part of lemma

1
LU TE

Now we give the proof of (A.2) of lemma [I]
We denote

Ry, = argmin ||U; — U*R)|..
R

R is unitary

and define Ay, = U; — U* Ry,. We begin with

—(V(X;),Av,AD)
<2V F(X0) - Uill s | A [l + [V f(X0), Au, AT, )| -

@

NN

(A.5)

(A.6)

(A7)

(A.8)

(A9)



To upper bound (D), we use
(VF(X0), Ay, AT,)
=(Vf(X:)Au,, Av,)
<[IVf(Xi)Au,
=[IVf(Xi)Pay,
<||Vf(Xz)PAU [ IIAulllstAUlll

i

2(IVF (XD Pulls + IV F (X Po-

in which Py denotes the projection onto Col(U). () is due to Span(Col(Ay,)) C Span(Col(U;) U Col(U)) and
Ay, «. Continuing, we get

IVf(X:)P

U; | Soo

5 ) 180,12 (A.10)

= |VA(X)UU 5.
IV U5 —
= (3 (3 OOCTT(Ui)
10
90, (U*)

(A.11)

in which U] denotes the pseudoinverse of U;. Here, (1) is due to o (U]) = o,.(U;) %, and (2) is by assumption (IIL5), Weyl’s
inequality and o,.(U*Ry,) = o.(U™).
Similarly, we have

s = VAU (U5

" 1
< IVAX)U" s,
—_——

IV f(X;) Py~

T (A.12)

To upper bound @), we use the following inequality.

V(XU s
=[IVf(X3)
<[IVF(X)Uills. +[IV(Xi)A
=[IVF(Xi)Uills.. + [IVF(Xi)Pay, Avls..
<IVAX)Uillse + IV F(Xi) Pag, [ls.. |

(2

X
Xi
X;

K3

1)
<IVF(X)Uills..
+ (IV £ Pu, s + IV (X0 P lls. ) 180 5.

(2)
<[Vf(X)Uills.

10 * ||AUz Soo
+ g (VS0 Uills. + 19 F(U" s, ) 775

(3)
<[Vf(X)Uills.
1 /10 %
+ 15 (G IVFEDUils., + 195 (X0 s, )
10 1
:§||Vf(Xi)Uz‘||Soc + EIIW(X@-)U*HSW- (A.13)

Here, (1) is owing to the similar reason of (A.10), (2) is obtained by plugging in (A.11) and (A.12)), and (3) is by assumption
(OL5) and || Ay, ||s.. < [|Ay, |« Thus we arrive at

IV FX)U* s <(1°) IV F(X)Uills... (A14)

Plugging this into (A.12)), we get

1

IV F(X0) P |5 <(10) IV £l 57 (A15)




Combining (ATT) and (AT3) with (AI0), we obtain
(VI(X:), Au,AL)

<V SNV 5 o

10\ 1

— X)U; —)||Ay,
+ () IV s, A,
190 | Ay, |1«
o ¥ ” U;

81 o (U*)

2
*

=[Vf(X:)Uil s

*

()19
< g IVF(X)Uills 1A«

where () is by assumption (III.5). Now we plug (A.16) into (A.9) and obtain

FUUT) - FUTT) < @+ A,

< LUo|s.. and

oo —

The last part is to prove min;y; > 177 by showing ||U;||s

L
IV F(X0)ls.. < S orU0)oa(T) + IV F(Xo) s...

By assumption ([IL.3) and Weyl’s inequality, we have for every i > 0

1 1
(1- TO)Ul(U*) <o(Ui) < (1+ TO)UI(U*)’ and thus
1+ 15

For ||V f(X,)|s.., we have

IVF(Xi)lls.. <NIVF(Xs) = VI(Xo)llse + V(X0
< Ls, 5., 11X — Xoll« + IV (Xo)lls..

< Ly s (1 = X7l + X0 — X7l

+ IV £(Xo) 5.
Since
1 — X*|lx = |U:(U; = U*Ry,)*
+ (Ui = U Ry)(U"Ruy)" .
< Us = U Ry |l (I0ills. + 107 ls.. ).
we have

1Xi = X7l 4[| Xo — X7
<|Ui = U Ry, [[«(1Uill s + 11U ]|5.0)
+Uo = U* Ry [« (Vo] s + 1U7[5.0)

o (U) 1110 10
<I\Z ) a1y =
<=0 al(Uo)(9+9+ +9)

1 o.(Up) 40
< Up)—
Stz g

40

:8—10T(U0)01(U0)

by applying inequality (AT9).

V(X)) Uills,-

(A.16)
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APPENDIX B
PROOF OF SUBLINEAR RATE FOR NUCLEAR GRADIENT DESCENT, TENSOR VERSION

We first define the action (-) on a bounded linear operator T' of H; ® Hy and H; where H; and Hs are Hilbert spaces.

VT € L(H, ® H,R), hy € Hy, T=Y_ \i(a;i ®b;)
T -hy 2 Z/\i<ai,h1>bi € H,. (B.1)
Immediately we have (T, h; ® ha) = (T - hy, ha), since

(T, h1 ® ha) = <Z Ai(ai ®bi), b @ h2>
= Z)\i<ai7h1><bi7h2>

?

= (T - hy, hy). (B.2)

For the cases H; = R™*™i, we define the norm to be injective cross norm with each H; having the spectral norm ||||s_ as
primal norm and the consequent dual norm, nuclear norm ||||..

|z £ sup (a1 ® ag,x) (B.3)

llaill <1

which satisfies

171 @ hall = [ lls. llhells..

a1 ® azllauar = lla1 |« laz |«
B.4)
We also use ||h; ® hal|s.. and ||a; ® az||. to denote ||h1 @ he|| and |ja; ® a2||duai-
We use following lemma to prove the sublinear rate.
Lemma 2. For the sequence of the iterates {U;}¥_,, we have
fUi@U) = f(Uit1 @ Uig1) 2 i - V(X)) - UlE |3, = i [IVF(X3) - Uil (B.5)
and
FUi@U) = f(U" ©U") < B - [VF(X:) - UL |s.. (B.6)

where o; = 1.117 n; and B; = (2 + 2)|| Ay,

5. = 24 2)Doo (U, U).

Define §; = f(U; @ U;) — f(U* @ U*) and follow the previous lemma. We know {d;} is an positive decreasing sequence and
Oip1 < 0 — i - [I[VF(X) - UL,

<5 oL.8

B2
Dividing both sides with (J; - d;+1), we obtain, by assumption (B.14),

1 1 @ 6; «; o

Siy1 0 T B2 01 82 = D%
Telescoping the inequality we get the desired result.
Now we prove (B.5) of lemma We assume V f(X) is symmetric, i.e. Vf(X) =", Ai(a; ® a;) throughout. The smoothness
gives

L
fUi@Us) = f(Uig1 @ Uiy1) 2 (VF(Xi), Xi — Xig1) — §||Xi - Xinl%,
(VI(X5), (Ui =Uiy1) @ U + U; @ (U — Uiy1))
O]

L

= (VA(X), Ui = Uig1) @ (Ui = Uira)) =5 |1 Xi — Xi1llz, (B.7)

@ ©)




For () we have

<Vf( ) (U UZ+1)®U +U; ®(U Uz+1)> - 2< ( z) UZ7U U2+1>

—27h< f(Xl) 17[vf( z)Uz]o#o>
= 20,||V f(Xa) - Uilf2

(B.8)
where (x) is by the assumption that V f(X;) is symmetric.
To upper bound @), we use
(VF(X:), (Ui = Uis1) @ (Us = Uiin)) = i |VF(Xo) - Uil2(V f(X;), AB" @ ABT)
<0 IVF(X) - UillZ - IVFX) I ABTIE
() 1
< m||Vf( i) Ul (B.9)
in which A and B are respectively the left and right singular vectors of V f(X;) - U;. (%) is by n; < m.
To upper bound (3), we use '
Ui @ Ui = Uit1 @ Uit lls.. = Ui @ (Ui = Uigr) + (Ui = Uig1) @ Ui = (Us = Uiy1) @ (Ui = Uil s
< 2|Uills. Ui = Uiallse + Ui = Uil
= 20il|Uill s IV f(X3) - Uills + 02 IV f(Xo) - Uil
=ni IVF(X:) - Uil 2||Uills. +mllVf(Xi) - Uills]
1)
< i [VF(X5) - Uil [2||U'||s + il VF(X) Uil s.c]
(2
< ni [Vf(Xi) - Us ||* 1Uillsoe (B.10)
(2) is by n; < m and (1) is due to
IVf(Xi) - Uill« = sup  (VF(Xi)-Us,y)
lyllsee <1
= sup (Vf(X;),U;®y)
[yl see <1
< sup VX)L Uil s Nyl s
lyllsee <1
= IVF(X) [« [[Uil s
B.11)
Plugging above inequalities into (B.7), we obtain
f(Ui®Ui)_f(Uz+l®Uz+l) 2 QThHVf( ) U||2 nszf( ) UH2
L9
= 5 (i 1Uills IV F(X3) - Till.)?
7 L (9\
> Vs |5 - 5 (3) mivils.
® )
> 11170 |\ VA(X,) - Uiz (B.12)

. ) 1 o 1 .
() is by n; < ITXiTTew = AT We thus finish the first part of lemma
We give the proof of of lemma [2| which only holds for the phase retrieval case. We then use f (X ) to denote the

original objective function, i.e. X = UUT, f(X) = f(X) = f(U®U) and U, a p x 1 vector, is the vectorization of U, a
m X n matrix where p = m - n. We have the following equalities.

(Vf(X:), U @ Us) = <Vf~(X'Z), Ullng> and its immediate consequence
(VI(Xi)-Up,Ug) = <Vf(X¢)U1, Uz> (B.13)



in which both sides of the first equation are the first order term of the objective function.
The assumption made here, which corresponds to [IV.3] would be

Do = max Do (0,07 < ZminlUT) _ 0T _ 107, (B.14)
U:f(OUT)F(UoUT) 10 10 10
We denote
Ry, = argmin||U; — U*R||s..
R unitary
= argmin ||U; — U*R)||s__.
Re{1,—1}
and define Aﬁi =U, — U*R~i.
fU;U;) — f(U*@U*) < <Vf(X <Vf X, Ui@U; —U*Rg @ U*Ry.)

_2<vf(5( Ul,A > (v f(fg ). Ag, AIT]Z>
< 2AVFE) Tl Ag s + [(VAR), p,A7 )|
@
(B.15)
To upper bound (D),
’<Vf(Xz)7 > ‘< VF(X:) Ag.,A“>
< IVF(XD)Ag, 114, s
=V f(X)(PA Ag )|l
< [IVF(X)Pa H*”AUngw
() o
< (IVA(X) Py |ls + IV F(Xo) P 1A, 115 (B.16)
in which Py; denotes the projection onto Col(U). (x) is due to Span(Col(Ag )) € Span(Col(U;) U Col(U})).
F(X ; t 1 @ s 10
IVF(X) Py, |l = IV F(X)UiU] || IIVf( ills ——— < IV (X)Uills 5—775 (B.17)

Gmin(Ui) ggmin(U*)

in which U;r denotes the pseudoinverse of U; and o,,;, denotes the smallest non-zero singular value. (1) is due to Ul(UiT)
o-(U;)71. (2) is by assumption (B.14) and Weyl’s inequality.
Similarly, we have

P PO PO 1
IV F(Xi) Pyl = IVF(X)T*(U*) ]« < [V F(X)U . ST (B.18)
@
To upper bound @), we use the following inequality.
IVFENT . = IVF (R0 R 1.
< [VFX)Uill. +IVF(X)Ag, Il
= IVA(X)Uills +||Vf(5() Ag,l-
< IVA(XD)Till« + IV f( i)PAOiH*HAallsw
1) -
< IVFEXD)Tills + (IVF(X) Py F(Xi) Po- )1 A, s
@ . e A s
< IVAX)Ull + (IV (X )UII +|\Vf( U II*)W

(3) s~ s~ Yo 1
< IIVf(Xi)Uz—II*+(HVf(X¢)UiII*§+ IVF(X)U™ ) 15

10 ST 1 s~
= 5 IVF(&X)Uills + 15 IVFX)U (B.19)



(1) is owing to the similar reason of (B.16). (2) is obtained by plugging in and (B.18). (3) is by assumption (B.14).
Thus we arrive

IVFE)T* . < (10) IV F(X) Tl (B.20)

Plugging this into (BI8), we get

o 10\ _ .+ o - 1
VX)) Py« < | = V(X)U;l|s ——=—. B.21
V7Pl < () VAR — B21)
Combining (B.I7) and (B:2I) with (B:I6), we obtain
P PP 10 10 5 ~ 1
. AT\ < Uil 5— e ————) A |2
: 190 ||
= IVA XUl = ( )II
19 2 o~
< g\\vf(Xi)UiH*HAgist (B.22)
where (x) is by assumption . Now we plug into and obtain
* * 19 7
fUieU) - fU"®U )§(2+*)||A” IV F(X)Uill.
(%)
< 2+ )COHAU s IV (Xa) - Uil (B.23)

where Cj is a constant and (x%) is obtained by the connection between Vf(X;) - U; and f U (see (B -) and the
equivalence of norms of finite dimensional Banach space.
The last part is to prove min;y; > 17 by showing ||U;||s.. < &(|Uol|s.. and

40L
IVF(Xi)rlls < <7 Omin(Uo)or(Uo) + [V f(Xo)r |l (B.24)
By assumption (B:T4) and Weyl’s inequality, we have for every i > 0
1 . 1 . 1+ 4
(1—E)0'1(U )SO‘l(U) (1—‘1-10) (U ), and thus 17LO'1(U0)20'1(U1‘). (BZS)
10

Since ||V f(X;)r||« is the Ky Fan r-norm of V f(X;), we have
IVF(Xi)ells < [(VF(Xi) = VF(Xo))ells + [V (Xo)r I«
< [Vf(Xi) = VI(Xo)[l« + [V F(Xo) I«
< Ls -5 1Xi — Xollse + [V F(Xo)r |l
< Lsoss (11X = X ls + 1 X0 = X7 [s.) + [[VF(Xo) ]

Since

X — X*||s.. = lUi ® (Ui —U*Ry,) + (U — U*Ry,) ® (U"Ry,)||s
<|\U; = U*Ry,||s..( lls.0)

we have

1Xi = X" [lsc + [ Xo =

Seo IUills + 11U 5.)
+ 100 = U Ry [l (0ol s + 11U 152

Tomin (U™) 1110 10
< Imin\Y ) U (= 4+ — +1+ —
< =5 Wo)lg + 5 +1+3)

1 Jmin(UO) 40
Sior o Oy

40

— ﬁamin(UO)al(UO)

by applying inequality (B.23).



APPENDIX C
PROOF OF LINEAR RATE FOR NUCLEAR GRADIENT DESCENT

We use U and U™ to denotes the current state and the updated state. Let X* = U*(U*)T be the optimum, X = UU? and

Xt = U+(U+)T,
Ut =U—nuVFUOUD* .U

where ny = 160 which also denoted as 7 for simplicity.

1
LIX|[s0e HIVF(X)#QuQT I ses)
We now start to prove the following key lemma.

Lemma 3. Given Dp(U,U*) < po,(U?) and D,(U,U*) < ﬁ‘;;(j,jf)),

1
(U =UNU U Ry)
=(Vf(X)*U,U - U} Ry)
0.
20869V f(X)FU} + 2o, (X Dp (U, U7
L * *
- ZHX - Xr H%’a

in which Ry = argmin |U — U*R)||p.
R is Iu%titarjv

First, we define A = U — U} Ry and thus
(VA(X)*U,U - U} Ry)
=S (VIOO#, X = X7) + 5 (VA(X)#, A7),
First, we lower bound (V f(X)#, X — X):
FX) 2 F(X*) — (V) X = X) = Zjx* = X2
> f(X%) ~ (VA(X), X+ = X) = ZIX* - X2,
and

FX7) 2 F(X) + (VF(X), X} = X) + 51X = X2

(C.1)

(C.2)

(C.3)

(C4)

(C5)

Noticing PSD matrices form a convex cone, we obtain (Vf(X™*), X*) = 0 and consequently (V f(X*), X)) = 0. Therefore

we have
* * * * * L * *
FOXT) < F(X7) +{VA(X), X = X7) + S| X7 = X712
* L * *
— J(X) + S - X7
Summing up previous three inequalities, we have
(Vf(X), X —X7)
L
>(VAX), X = X7) = S| X" = X2
M * 2 L * * 12
|| XF - X7 — =X = X"z
+ By - X2 - S - X2
Let A=1—1QuQLVf(X)#, we have

Xt =X = (U -9V X)*U)U -V (X)*U)" —UU"
= VF(X)*XA-nATXVf(X)*

(C.6)

(C.7)

(C.8)



where we have used the property of V f(X)# being symmetric.
Plugging the previous equality into (C.7), we achieve

* /’1/ * L * *
(VAX0),X = X7) = 517 = X2+ 2117 - X2
L
>(V/(X),X - X+) = ZIX+ - X2
L
2

>9n(V f(X), VF(X)*XA) — 5 @V F(X)* X AL)? (€9)

where we have used ||Y + YT, <2[Y]..
For the two terms on the RHS of (C.9) we have the following bounds.

(VF(X), VI(X)*XA)
=[(Vr(x), VA(X)FUUT)
— UVI(X), VI(X)PUUTQuQEV F(X)*)]
n
>[VFXO)PU % = SIVAX)PUIEIQUQEY F(X) %5
1
L= IV U (C.10)
where the last inequality is due to the choice of the step size. Continuing, we compute
IVAXO)FX AL < IVFOPUNLNU s Alls.
1
< IV ULV s, (14 35)- (C.11)
Now plugging these two bounds into (C.9), we have

>(

R L. L . .
<Vf(X)7X—XT>—§||XT—Xllf+§||XT—X |12

2
1 33
1— — LUl (2

Lo L1 83y
32 16 \ 32

> |VA(X)*U %

> |VF(X)*U %

18n
> VXU

That is,
(VX)X - X;)
18
— 10
We now lower bound (V f(X)#, AAT), the second term of (C.3):
(VF(X)*,AAT)
(QaQAVS(X)*,AAT)
[Trace(AATQAQAV f(X)¥)|
1QAQAVF(X)* 5. (A, A)
>~ [1QuQEVF(X)*|ls..
+1Qus QE: VF(X)*|ls.. | - Dir(U, U} (C.13)
where the last inequality is owing to Span(Col(A)) C Span(Col(U) U Col(U;)).
1QUQTV F(X)F|lsee Dr(U,UF)* = n 16(L| X|ls.. + [ VF(X)*QuQplls.)IQuQEVF(X)¥|ls.. Dr(U,U})?
= 16nL||X |5, [|QuQuVF (X)*|ls.. Dr (U, UF)*+
60|V f(X)*QuQp 1%, Dr(U,U;)?

* L * *
IVFOOFUIE + S1x5 - X2 = 517 - X712 (€.12)

2_
27

(C.14)



We bound the underlined term by considering two possible conditions, [|[Vf(X)#QuQ¥|s. < %&X} and
IVFX)*QuQT s > #7552

167 L[| X |50 1o (X)
40

160L[| X ||s.. |QuQEV f(X)¥|ls.. D* < maX{ D?, 167740%7(X)|Vf(X)#QUQ§||§wD2}

IN

wor (X
16925, "7 D2 4 16ma0n () |V £ QuE I3 D2

< por (X)

<=0 0 D? + 1604057 (X)|V f(X)* QuQy |I%, D? (C.15)

in which D denotes D (U, U;). Combining the previous inequality with inequality (C.14), we get

1Qu@EV ) #lls. D* < 7 2 4 (0 () + 1)160V 5 (X)#Quh . D?

< 1) b 4 (a0 S rer (37) 4+ 101601V F(X)# QuQE IR (0o (U7))?

O X * *
< 40 2 416 a3ner (X)) 9 £ () FQuQE B o0 (X007

- 40
(@) po.(X) or(X7) 5

< D16 43 (X |V A(X)PU5

UT(X)
(i) o, (X * l
< uTé)DM16-43nnT(Xr)HVf(X)#U”25w(@)2’02
() po (X 2
< %E))D2+£||Vf(x)#[]”25m o

(i) and (iii) is due to the assumption D (U, U*) < po,(U;) and lemma [6] (ii) is owing to

IVS(X)FU s = IUTVFX)* |50 = IUTQuQEV F(X) ¥ |50 2 min(D)VF(X)FQuQT 5.

and 0,55, (U) = 0,(U) = /0. (X). (iv) is obtained by plugging p = 155,77 -
We first note that Vf(U*(U*)T)U* = 0, since X* is the optimum, and thus V f(X*)Qu~ = 0. Now we start to bound
Qo Q. VF(X)#|ls...

1Qu: QL. VF(X)#||s.. < 1Qu: QL. V(XI5
= 1Qu: QT (VF(X) = V (X))l
<VAX) = VAX) 5.
SL(IX = X7 [l + X7 — X*[|.) (C.17)

where the last inequality is owing to L-smoothness and the triangular inequality.

Plugging inequalities (C.16) and (C.I7) into (C.I3), we get

(VF(X)#, AATY > - [“"4<OX)D SOOI+ LOIX — X2+ X5 = X)) Dﬂ | C18)

Now we plug two bounds (C.12) and (CI8) into (C3) to get

18n J /- L . .
(VF(X)*U,U - U} Ry) > { V(X )#UII%+§||XT —Xlli—§||X7- -X ||3]

1 [por(X) 2n . . .
— o | DA+ I VAXO)PU R, + L(1X — X5l + | X) — X)) D?
2 40 29
L, . .
> 0.86n||V f(X)* U7 — 71X = X2
" o (X*)D? ; . i}
1 ['Xr = PEIP op? (1x - X+ I - x ||*)} (C.19)

Now we present two lemmas to bound | X* — X ||, and thus the underlined term in (C.19).



Lemma 4. If Dp(U,U*) < po,(U}) and p < <5, then for any unitary matrix R

IX = XX = [UUT = U (U) 7|

= |vUT —-UrRUT + U RUT —U*R(UR)T|.

<NU =UZR[|Ullse +IU = UZR[|L U |5

(4)

< U =URI(1+p)US s + U = UZRILNU |15

< @C+)IU-UIR[ U 15

< QODI|U - Uz RILIU; ls.. (€20
where (i) is due to lemma [6]
Lemma 5. Let X = UUT and XU (UX)T then

IX = X515 > 2(vV2 = 1)on (X)) De (U, UF)>. (€21

See reference [2|].

Combining lemmas [4] and [5} we obtain a lower bound for the underlined term in (C.I9).

* O—T(X*)Dz * * *
1 = X% = =55 — 2:D* (|IX = XJ[J. + |1 X7 = X7.)
@ o (X*)D? o (X*)
>Xr = X7 — 52— = 26D (| X = XM+ s
—|| T ||F 20 K H 7|| + 200,{/1‘57_()(:)
223~ 1o, (x7)0? - O g - xy), - 2EIE
(4i9) 1 1 1 o.(X*)
> |2 —1)— — — —| 0. (X*)D? — 26D?(2.01)— —~ *
2 |20vE - 1) - g5 - 55| o x0D? - 2o - T
1 1 1
>2(vV2—-1)— — — — — — | o (X)) D?
—[(‘[ T 20]0( r)
> 0.7 0,(X}) D? (C.22)
where (¢) is due to || - ||« > || - ||, and (47) is owing to lemrna (#44) is due to the assumption D, < ﬁ‘;’;%;; Combining
(C22) with (CI9), we get
L 0.7
(VIX)*U,U = U Ry) > 086y VF(X)FU|[F = I1X] = X2 + T"‘JT(X:) D?, (C.23)
the desired lemma [3
Dp(U*,U)? = min |U* - U} < |UT = U Ryl%
R is unitary
= |U = U; Ry} — 20(V f(X)*U,U = U} Ru) + n*|VF(X)*U | %
(#) L 0.7
< De(U.0°)? - 2 |- 1K - X7+ 2o, (XD 07 -
(2(0-86) = V* [V F(X)*U
0.7 L
< |1 S o, (x| DU+ T - X 24
in which Ry = argmin ||[U — U} R||r. (7) is by lemma |3
Risfl%nitary

Lemma 6. Let U and U} be two n X r matrices such that Dp(U,U}) < po.(U}), for p < 1&5. Define X = UUT and
X =UxU)T. Then we have

1 1
(1— m)m(U:) <o (U)<(1+ 1700)01([]:) (C.25)
1 1
(1= 355)07(U7) < or(U) < (1 + 755)00(UF) (C.26)
and thus
HU) < %T(U:) and 7(X) < (%)%(X:) (C.27)



Proof. By || - |ls.. < || - ||F and Weyl’s inequality for perturbation of singular values, we obtain
1
0:(U7) — i) < po,(U7) < 15500(U7). (€28)
O

Now we show mlnm > %ﬁ by verifying ||U;UT||s., < (1+p> | Xolls., and |[|[VF(ULUN#Qu, aHs&

4LorWo)or (X7) | + IV f( f X0)||s..- The first one is an immediate result of 1emma|§l Applying the same arguments of l ,

8lko (U*)(1—p) -
A.21) and A 22), the second part is a direct consequence of assumption D, < 81,-; ZTE)U(*)) and assumption D < po,.(UY).

APPENDIX D
PROOF OF SUBLINEAR RATE OF SPECTRAL GRADIENT DESCENT

We first use following lemma to prove the sublinear rate.
Lemma 7. For the sequence of the iterates {U;}¥_, we have
FUUL) = f(UiUia") = i - [I[VF(X0) - UilE 1%,
=a; - [|[Vf(Xi) - Uill? (D.1)
and
FOUD) = fO U ") < B IV F(X0) - Uil ls. (D:2)
where ci; = 1.117 n; and B; = (2 + 12) Do (U;, U*).
Define 6; = f(U;U) — f(U*U*™) and follow the previous lemma. We know {d;} is an positive decreasing sequence and
dip1 < 0; — Oéi IV F(X)-UlZ 5.
<6 — ? 87
Dividing both sides with (J; - §;+1), we obtain, by assumption ([V.5)),
S T R T
Siv1 0 B din ﬂ2 »
Telescoping the inequality we get the desired result.
Now we prove (D.I) of lemma [7] The smoothness gives
FOUT) = FUaUin™) <Vf(X-) Xi = Xop) — 51X — Xelh,
= (Vf(X;), (U; — UM)UT +Ui(U; = Uis1)")

@
—(Vf(X:), Ui = Uip1)(Ui = Uit1)") == HXv: - Xipll3., (D.3)
@ ©)

For () we have
(VI(X3), (Ui = Uip)U] + Ui(U; = Uis1)™)
=2V f(X:)U;, Ui — Ui41)
=20,(V S (X)Us, [V f(X)UIJE)
=20,V f(X) Ui 2.
(D.4)
To upper bound @), we use

(VI(X:), (U = Uig)(Us = Uis1)")
=07 IV F(X;) - Usl|? - Trace(ATV f(X;) A

<IIVEX) - Ul - IV (Xl

(*)1
<= mIIVf( i) - Uill? (D.5)

I, 0
0 O(nfr)x(nfr)



in which A is the left-singular vectors of Vf(X;) - U; and |V f(X;),|« equals to the sum of the top r singular values of
Vf(Xi). (x )lsbym_m
To upper bound (@), we use
10U = Ui U 5.

=Ui(Ui = Uis1)" + (Ui = Uir))U]" = (Ui = Uiz1)(Ui = Uis1) " |15

<2||Uills.o U; = Usallsee + 1Us = Uigall5,

=21il|Uill s IV £ (X2) - Uills + 2 |V f(X5) - Uall

=i [Vf(Xi) - Uill« 2I[Uillsc +mllVf(Xe) - Uills]

1)

<mi |Vf(Xi) - Uil [QHU-HS + il VF(Xo) el 1Uill 5]

(2)

<ni [Vf(Xi) - Ull* 1Uills.. (D.6)

where (1) is due to the rank of U; is less than r and (2) is by 7; < W. Plugging above inequalities into @I), we
obtain o

FUUT) - f(Ui+1Uz+1T)
>2n||V (X)) Ui |2 — 4"71||vf( i) - Uil|?
L9
2(4771 1Uills. IV £(X3) - Usl|+)?

7 L [9)\°
4—2(4> 77i||Ui||%oo

*)
> 1117 n; V(X)) - Uil|2 (D.7)

>nil[V f(X3) - Uil

. 1 .
(x) is by n; < TXes = 4L\|U B . We have thus finished the first part of lemma

Now we give the proof of (D.2) of “Temma [l
We denote

Ry, = argmin ||U; — U*R||s,.. (D.8)
R is unitary
and define Ay, = U; — U*Ry,. Then we have
FO:UT) ~ f(U Ut
<(VF(Xi), Xi = X7)
=(Vf(X;), AUUT>+<Vf UAT> (VF(X;),Au,AL)
=2(Vf(X )Uz,AU <Vf AU AT >

<2V f(X;) - ), Ay, AT
©)
(D.9)
To upper bound (I), we use
(VF(X), Av, AL, = (V(X)Au,, Av,)
< IVI(Xi)Au
||vf(X’L)PAUL
< ||Vf<Xz>PAU I+ ||AU HS
2 (1vrxops
+ IV £ (X) P11 ) 180, 3., (D.10)

in which Py denotes the projection onto Col(U), and (x) is due to Span(Col(Ay,)) € Span(Col(U;) U Col(U})).
Continuing, we compute



IVf(X:)

= IVF(X)UU] .
< s
>~ 7 AIES Ur(Ui)
10
90.,.(U*)
in which UZ-T denotes the pseudoinverse of U;. Here (1) is due to al(UJ) = 0,(U;)~%, and (2) is by assumption (IV.5), Weyl’s
inequality and o,(U*Ry,) = o,(U*). Similarly, we have
IV £(X3) Po- |l = IV F(X)U*(U)1]s

|
< |IVAX)HU" ||« (U]

2
< [IVA(Xa)Uill (D.11)

(D.12)

To upper bound @), we use the following inequality.
IVAX)U |« = IV f
<|[Ivf
=[IVf
<|Ivf

Xi
Xi
Xi
X

U*Ry, ||«
Uill« + IV £(X3) A, ||«
Uill« + IV f(X3) Pay,
Uill« + IV f(X5)

o~~~ o~
_ L =

1)
< [IVFA(X) Uil + (IVF(Xa) Pu
+IVf(Xi)Py-

Ay ls..
(2 10
< VAU + (G IVFXD U

+ IIVf(Xi)U**)W

—

3)
< VAT + 15 (G IV F Tl

+ IIVf( X)U.)
10 1
= S IV XUl + IV (X)U .. (D.13)

Here, (1) is owing to the similar reason of (D.10), (2) is obtained by plugging in (D.11) and (D.12) and (3) is by assumption
(TV3). Thus we arrive at

10
wrekor . < () iwseon. .14
Plugging this into (D-12)), we get
1
wsore < () 1w sen. s .15
Combining (D.IT) and (D-13) with (D.I0), we obtain
T _ 10
(VI 8u L) < (IVF Uil =755
10 1
+ \Y Ui ||«
()|f<>|| ())
— v U, NAU:lISe
IV (Xa)Us|« == ( )
19
< g‘lVf(Xi) il (D.16)
where (x) is by assumption (IV.3). Now we plug into and obtain
FOUE) - ST < (24 3 ) I VXD - Ul .17



The last part is to prove min;y; > 17 by showing ||U;||s.. < 4(|Uols.. and

40L
IVF(X)r e = g0 (Vo)1 (Uo) + IV f(Xo)r - (D.18)
By assumption (TV.5) and Weyl’s inequality, we have for every i > 0
1 1
(1= 35)e1U") s o1 (Ui) < (L+ 75)on(U”), and thus
14 15
- T01(Uo) > 01(Uy). (D.19)
10

Since |V f(X;)r||« is the Ky Fan r-norm of V f(X;), we have

IVF(X)rll« < ((VF(Xi) = VI(Xo))rll« + [V F(Xo)rl«
< V(X)) = VA Xo)ll« + IV F(Xo)rll«
< Ls_ s, | Xi — Xollso. + IV (Xo)r||«

< Lsoss, (16 = X llse + X0 = X7 )

+ IV (Xo) [l
Since
16 = X*||s.. = |Ui(Ui = U*Ry,)"
+ (Ui = U"Ry,)(U*Ru,) " |ls...
< Ui = U Ry, s (Uillse. + 10" 5);
we have

1Xi = X lsee + [ Xo = X |
<|Ui = U* Ry |ls. (Uil s + 1U7[[5.0)
+ 0o = U* Ry || s (100l s + 1771 50)

oo (U*) 1110 10

U (= + — 4+ 14~

0 01(0)(9+9+ —|—9)
1 UT(Uo) 40

St Wy

by applying inequality (D.T9).

APPENDIX E
PROOF OF LEMMA ]

Using chain rules, we see that
Vf(A) = Vise(Az)x . (E.1)

To prove the convexity of f, we compute

(VI(A) - Vf(A),A-A)

(Vise(Az)z" — Vise(A'z)z ", A~ A')
(Vise(Az) — Vise(A'z), Ax — A'x)

v

since the Ise function is convex.
We now turn to the smoothness parameters. Since transposing a matrix does not alter the Schatten-p norm, we have

IVF(4) = VI (A)]r = ||(Vise(A) — Vise(4'a) )aT]|
< ||z|2]|Vise(Ax) — Vise(A'z)||2
< Jlzll2fI(A = A)z|l2, by (V)
< |l=[31A - A'llr
which proves ([V:3).



Using similar arguments, we compute

IV F(A) — VF(A)||s, = H (Vlse(Am) - Vlse(A’x))a:T‘

< ||z|]2]|Vise(Ax) — Vise(A'z)||2
< ||z||2||Vise(Az) — Vise(A'z)]||1
< zllall(A = A)]loo,

S

by [IV3)
< ll2l31A = A'lls.
which establishes ([V.9).
APPENDIX F
PROOF OF LEMMA
The convexity of f follows immediately from the convexity of f.
For any two positive semi-definite matrices Z; = gfr gj and Z5 = {gjr gj, we have
; ; 1 0 VI(B1) = V(Ba)] |
Vi(Z)=Vf(Z)|L ==
H f( 1) f( 2)”84 2 H|:Vf(Bl)Vf(Bz) 0 s
w1 [VﬂBl) — Vf(Bz) 0 ] !
2 0 VI(B1) = Vf(Ba)]||g,
@1

5 (IV5(B) = VA (B, + IV £(B1) — V(B2)]I3,)

® ,
< LBy = Bollg

(E1)
where
(1) is because || - ||, is permutation invariant,
(2) 1is because of the block-diagonal structure, and
(3) uses the smoothness of f.
It remains to see that | By — Ba||s, < [Z1 — Z2||s,. In order to prove this, we use the permutation invariance of the || - [|s,.
and the Pinching inequality [|I|]:
Bi—B, A -4
_ 7P — 1— B2 1— Ao
||Z1 Z2||Sp H [Dl — Dy BIT —B;—} s
P

> ||B1 — Balfg -

APPENDIX G
SYNTHETIC DATA FOR PHASE RETRIEVAL

Two synthetic datasets are further presented in Figure [T} and [2] The results are in accordance with Section [V in the main text.
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Fig. 1: Comparison of phase retrieval algorithms, synthetic dataset 2.
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Fig. 2: Comparison of phase retrieval algorithms, synthetic dataset 3.
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APPENDIX H
WIRTINGER FLOW V.S. NUCLEAR WIRTINGER FLOW

In Figure [d] we present the images recovered from nuclear Wirtinger flow and Wirtinger flow, indexed by time. Our experiments
show that the nuclear Wirtinger flow quickly finds area (at ¢ = 4s) where meaningful image characteristics start to emerge. At
t = 8s, a fully visible image is recovered, and the reconstruction stays at the solution for a short period. However, the nuclear
Wirtinger flow eventually overfits and returns a noisy figure; see Figure [3] This phenomenon is possibly due to the mismatch of
the mathematical model and real Fourier Ptychographic reconstructions.

In contrast, the Wirtinger flow recovers only partial image at ¢ = 8s, and exhibits oscillating behaviors. Eventually the
Wirtinger flow overfits, and return solutions like random noise.

We stress that the Wirtinger flow fails to recover the image for all the initializations we have tried, whereas the nuclear
Wirtinger flow is quite robust to the choice of initial point.

40 b

80 |

100

120 |

140 F

160 b

L L L L L L
20 40 60 80 100 120 140 160

Fig. 3: Final solution of the nuclear Wirtinger flow, ¢ = 37s.

APPENDIX |
SPECTRAL GRADIENT METHODS FOR FASTTEXT
Four more datasets are presented in Figure [5] The results are in accordance with our observations in Section [VI-B} The
heuristic version of (V.4) is the best optimization algorithm, in that it solves the training problem most efficiently, but is prone
to overfitting. On the other hand, the theoretical iterates is either the best or comparable to the other methods in terms of
prediction accuracy.
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Nuclear Wirtinger Flow

(a) Nuclear Wirtinger flow at ¢t = 2s.

Nuclear Wirtinger Flow

(¢) Nuclear Wirtinger flow at ¢ = 4s.

Nuclear Wirtinger Flow

(e) Nuclear Wirtinger flow at ¢ = 8s.

Nuclear Wirtinger Flow

(g) Nuclear Wirtinger flow at t = 14s.

Nuclear Wirtinger Flow

(1) Nuclear Wirtinger flow at ¢ = 16s.
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(d) Wirtinger flow at ¢ = 4s.

Wirtinger Flow

(f) Wirtinger flow at ¢ = 8s.

Wirtinger Flow

(j) Wirtinger flow at ¢t = 16s.

Fig. 4: Nuclear Wirtinger Flow v.s. Wirtinger Flow
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Fig. 5: From left to right, training loss and test accuracy. From top to bottom, results on Yelp Review Polarity, AG

News, Sogou News, and Amazon Review Polarity
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