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Abstract
In recent years, semiconductor nanowires have attracted considerable attention as a result

of their unique properties and potential applications in many fields. In particular, they can

be very attractive materials for certain optoelectronic and electronic devices, such as lasers,

detectors and solar cells, which benefit from the photonic properties of nanowires. In order

for these future technologies to become a reality, a good understanding of the functional

properties of nanowires is fundamental.

In this thesis we have investigated the optical and the electrical properties of III-V semicon-

ductors nanowires by the means of Raman spectroscopy. Thanks to its non-destructive and

spatial resolution, Raman spectroscopy is a powerful contact-less tool for the characterization

of semiconductor nanowires. Raman spectroscopy can provide information about crystallinity,

orientation, size and chemical composition. In polar semiconductors it is also possible to

characterize the free carriers, through the coupling of plasmons with longitudinal optical

modes.

Due to the small size and particular morphology of nanowires, the interaction of light can

be more complex than in thin films. In particular, the existence of photonic modes alters

significantly the corresponding light-matter interaction. In this thesis we exploit the use of

photonic modes for the compositional mapping of nanowire core-shell heterostructures and

also to circumvent the macroscopic selection rules.

In the first part of this thesis, we have performed Raman scattering measurements on GaAs/Al-

GaAs core/shell nanowires. We have shown that it is possible to select and characterize regions

of the structure with different aluminum content, by performing the measurements at dif-

ferent laser wavelengths. Then, we have shown that the photonic modes can be modified

by suspending the nanowires on a trench. We have shown that in this case it is possible to

enhance the response of the longitudinal optical phonon mode. We have then applied this

configuration for the characterization of the hole concentration on p-type GaAs nanowires in

back-scattering geometry.

The second part of the thesis focused on the assessment of free carriers by Raman spectroscopy

in systems with an expected high electron mobility: GaAs nanowires with a modulation doped

structure and InAs(Sb) nanowires. Raman measurements were performed as a function of the

temperature on modulation doped GaAs/AlGaAs nanowires. By characterizing the coupling

between free carrier and the LO phonons, we have extracted the concentration and the

mobility of charge carriers. We have found that Si donors are mostly ionized for a temperature

above 50 K. We have shown that the mobility is limited by interface scattering, with values of
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400 cm2/Vs at room temperature and 2700 cm2/Vs at low temperature.

Finally, we investigated the electronic properties of InAs(Sb) nanowires as a function of the

temperature. The effect of a dielectric coating on the electronic properties was also studied.

We have found an increase of mobility and electron concentration with the antimony content

, moving from 5100 cm2/Vs for InAs nanowires, to 17500 cm2/Vs for InAsSb with35% of

antimony at 14 K. Moreover, we have shown that in the case of InAs electrons are located in

the accumulation layer at the surface, while for InAsSb our measurements are consistent with

the carriers located in the nanowire core.

Key words: III-V semiconductors, Raman spectroscopy, light-matter interaction, GaAs nanowire,

radial heterostructure, modulation doping, mobility, LO-phonon plasmon coupling, InAs-

InAsSb nanowires, nanowire photonics.
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Résumé
Durant ces dernières années, les nanofils semiconducteurs ont attirés beaucoup d’attention

par leurs propriétés exceptionnelles et leurs potentielles applications dans de nombreux

domaines. Ils sont notamment des matériaux très attirants pour certains appareils optoélec-

troniques et électroniques tels que les lasers, les détecteurs et les cellules solaires qui mettent

à profit leurs propriétés photoniques. Une bonne compréhension des propriétés des nanofils

est essentielle afin de faire de cette technologie futuriste une technique de pointe actuelle.

Dans cette thèse, nous avons étudié les propriétés optiques et électriques de nanofils III-V

à l’aide de spectroscopie Raman. Des mesures non-destructives, sans contact et une bonne

résolution spatiale font de la spectroscopie Raman un important outil de caractérisation des

nanofils semiconducteurs. La spectroscopie Raman peut fournir des informations à propos

de la cristallinité, l’orientation, la taille et la composition chimique. Dans les semiconduc-

teurs polaires, il est également possible de caractériser les porteurs de charge libres grâce au

couplage entre les plasmons et les modes optiques longitudinaux.

En raison de la taille et la morphologie des nanofils, leurs interactions avec la lumière peuvent

être plus compliquées que dans les couches minces. En particulier, l’existence de modes pho-

toniques modifie les interactions lumière-matière correspondantes de manière significative.

Dans cette thèse, nous tirons profit des modes photoniques pour cartographier la composition

chimique de nanofils en hérétostructure noyau-enveloppe et pour contrevenir aux règles de

sélection macroscopiques.

Dans la première partie de cette thèse, nous avons effectué des mesures de diffusion Raman sur

des nanofils de GaAs/AlGaAs structurés en noyau/enveloppe. Nous avons démontré qu’il est

possible de choisir et de caractériser des régions de la structure ayant des teneurs d’aluminium

variables en effectuant les mesures avec différentes longueurs d’onde de laser. Ensuite, nous

avons montré que les modes photoniques peuvent être modifiés en suspendant les nanofils

au-dessus d’une tranchée. Dans ce cas, nous avons démontré qu’il est possible de renforcer

la réponse des phonons dans le mode optique longitudinal. Nous avons alors utilisé cette

configuration pour la caractérisation de la concentration des trous dans des nanofils de GaAs

de type p en géométrie de rétro-diffusion.

La deuxième partie de cette thèse s’est intéressée à l’évaluation des porteurs de charge libres

par spectroscopie Raman dans des systèmes dans lesquels une grande mobilité des électrons

était attendue : des nanofils de GaAs avec dopage modulé et des nanofils de InAs(Sb). Des

mesures Raman à température variable ont été effectuées sur des nanofils de GaAs/AlGaAs

avec dopage modulé. En analysant le couplage entre les porteurs de charge libres et les
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phonons LO, nous avons extrait les concentrations et les mobilités des porteurs de charge.

Nous avons découvert que les donneurs Si sont presque ionisés à une température au-dessus

de 50 K. Nous avons montré que la mobilité est limitée par la diffusion à l’interface, avec des

valeurs de 400 cm2/Vs à température ambiante et 2700 cm2/Vs à basse température. Pour

terminer, nous avons étudié les propriétés électroniques de nanofils de InAs(Sb) en fonction de

la température. L’effet d’un revêtement diélectrique sur les propriétés électroniques a aussi été

étudié. Nous avons trouvé une augmentation de la mobilité et de la concentration d’électrons

avec la teneur d’antimoine, allant de 510 cm2/Vs pour des nanofils de InAs à 17500 cm2/Vs

pour du InAsAb avec 35% d’antimoine à 14 K. De plus, nous avons montré que dans le cas du

InAs, les électrons sont situés dans la couche d’accumulation à la surface, tandis que pour

le InAsSb, nos mesures sont cohérentes avec des porteurs de charge situés dans le noyau du

nanofil.

Mots-clés : Semiconducteurs III-V, spectroscopie Raman, interaction lumière-matière, nanofil

de GaAs, hétérostructure radiale, modulation du dopage, couplage phonon-LO plasmon,

nanofils de InAs-InAsSb, photonique de nanofil.
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1 Introduction

This thesis is dedicated to the characterization of the functional properties of III-V nanowires

by Raman spectroscopy. Understanding the functional properties is a fundamental step for

the use of nanowires in future applications. Beside to new controlled ways to growing complex

nanostructures, also new characterization tools are needed to be developed for their study, due

to the small size. The characterization of nanowires is also important in the framework of the

development of devices in order to predict the possibility of their use in future technologies.

In the first part of this chapter, we introduce nanowires and their role in the history of down

scaling of devices. We will describe the new physical properties, their possible applications

and how they can be obtained.

In the second part, we review the use of Raman spectroscopy on nanowires. Additionally, we

introduce the technique of Photoluminescence and TeraHertz spectroscopy as contact-less

techniques, for the assessment of electronic properties of nanowire systems.

At the end, an overview of the thesis is given.

1



Chapter 1. Introduction

1.1 Towards III-V semiconductor nanostructures

The semiconductor transistor was invented at the Bell labs in 1947 by John Bardeen, Walter

Brattain and William Shockley [1]. They were aiming to find an alternative of the amplifying

vacuum tubes using a solid state device. It was a breakthrough which enabled the development

of the electronics that now we are so used having in our daily life. Moreover, it marked the

beginning of an increased of interest in the study of semiconductor materials.

This invention, together with the development of the integrated circuits, represents the starting

point of the so-called “ Microelectronic-age”, or “Silicon-age“, the material that has practically

dominated the electronics market. The invention of integrated circuits developed by Jack

Kilby at the Texas Instruments in 1957 represent the second big step in the history of electron-

ics [2]. The planar manufactured process allowed to create and connect multiple transistors

concurrently.

Since that moment, the progression of circuit fabrication followed the Moore‘s law, with a

doubling of the number of transistors every 18 month. The benefits to the circuits charac-

teristics in terms of the reduction of the size, as the higher performance and the less power

consumption, explain the tremendous accelerated down-sizing.

At the moment, the electronic industry has reached the ∼10 nanometer scale. At these dimen-

sions, the capability limit with the top-down conventional fabrication methods is a serious

obstacle to a further down-scaling. The top-down approach consists on the fabrication of

nanostructures from the bulk material. The emergence of a different methodology called

bottom-up brought a new perspective in overcoming the limitation of the down-scaling [3].

The bottom-up synthesis method implies that the nanostructures synthesized onto a substrate

by stacking atoms onto each other. In this context, we can understand the increased interest

during the last years for nanostructures, as nanowires and nanomembranes, realized with the

bottom-up method.

Even if the commercial market of integrated circuits is dominated by Silicon, III-V com-

pound semiconductors are catching the interest for modern electronics and integrated opto-

elecronics. In fact, most of the III-V semiconductors present a higher carrier mobilities and

higher carrier velocities than Si [4]. This results in an improvement of the device performance.

From another point of view, silicon has indirect bandgap. On the contrary, most of III-V

semiconductors have a direct band-gap which makes them better suited for optoelectronic

devices, such as laser diodes and solar cells. The integration of III-V materials with the existing

Si technology would be advantageous for the modern technology [5].

The integration of the two materials presents some challenging issues due to the effect of

the lattice and thermal mismatches, and the non-polarity of silicon and polarity of III-V

semiconductors. Growing III-V semiconductors in the form of nanostructures can minimize

these effects. Nanowires seem to be among the most promising building-blocks of nano-

devices.
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1.2 Nanowires

Nanowires are filamentary crystals with a tailored diameter ranging between few and hundred

nanometers. Nanowires were reported for the first time by Wagner and Ellis [6] in the early

1960’s. It was demonstrated the possibility to grow microstructures with a high aspect ratio,

using a new growth mechanism called Vapor Liquid Solid (VLS).

Nanowires, initially called Whiskers at the time of their discovery, did not attract attention

immediately. Only in the early 1990’s the interest in nanowires was renewed thanks to the work

of Hiruma et al. [7], where the Vapor Liquid Solid mechanism was used with droplets at the

nanometer scale. The resulting GaAs and InAs nanowire structures were used to demonstrate

a functional p-n junction device. Thereafter the field showed a rapid growth, attracting many

laboratories to enter into the nanowire community. As the research on the growth mechanism

was catching the attention of scientific community, experiments of electro-transport, mechan-

ics and optics were implemented. The possibility to combine materials with strongly different

lattice parameter limiting strain-related defect contributed to rise the interest of this emerging

field. At the present time, different growth mechanisms and fabrication techniques are used

to synthesized nanowires, made of many different materials: Si, ZnO, GaN, GaAs and so on.

1.2.1 Nanowire properties

Nanowires have attracted considerable attention not only for their promising potential ap-

plications in micro-electronics. Thanks to their particular morphology, they present unique

properties, which are not observed in bulk materials. Indeed, the physical properties of

nanowire materials, like crystal and electronic band structure, can be different respect to the

bulk properties. In nanowire form, many materials can be grown in a crystal phase, which is

not stable in the correspondent bulk material. This gives the possibility to study new materials,

such as wurtzite for GaAs.

Moreover, nanowire structures allow studying new physical effects. The main ones are con-

nected with surface and finite-size properties. For example, the effect of surface states in

nanowires are dominant due to the high length-diameter ratio. The presence of surface states

are detrimental for both the optical and electronic properties. Nanowires coated with a wide

band-gap material are the most studied structure to limit this effect. Furthermore, the finite

-size and the shape anisotropy are responsible for special interaction of light with nanowires.

Nanowires give also the possibility to build complex structures, as heterostructures, in two

different ways: along and across the nanowire axis, giving rise to axial and radial heterostruc-

tures, respectively. In axial heterostructures, mismatched materials are combined along the

nanowire, thanks to a radial strain release. In radial heterostructures, shells of one or more

materials can be grown around a nanowire core. The possibility to grow radial heterostructures

leads to grow more complex structures, such as modulation doping nanowire structure. With

this arrangement, two or one dimension gas on the facets or on the edge of the core can be
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achieved respectively.

1.2.2 Applications based on nanowires

Thanks to their unique properties, nanowires enable applications potentially enhancing

the device performance in many fields, such as electronics, opto-electronics, photonics,

biosensing, energy conversion and storage. Some examples are presented in the following.

As we have mentioned, nanowires can be used as field effect transistor, i.e. the main compo-

nent of integrated circuits. Thanks to the good gate controllability over the channel, nanowire

Field Effect Transistor with a cylindrical gate-all-around can offer efficient device [8]. Moreover,

nanowires offers also the possibility of implementing Tunnel-FET scheme [9]

In the field of energy conversion, the geometry of nanowires, which is advantageous to capture

light and to minimize material usage make them ideal building blocks for high efficiency

solar cells [10]. Moreover, the low thermal conductivity of nanowires renders them suited for

thermoelectric devices [11].

The study of nanowires as photonic components has been widely exploited, because of the

properties to confine electromagnetic waves in the radial direction and to guide light in the

axial direction. These properties arise from the size of nanowire diameter, smaller than the

light wavelength in the visible range. The waveguiding behavior and the gain media for

light amplification allow a highly directional lasing. The first ZnO nanowire laser has been

demonstrated in 2001. [12] Consequently, nanowires made of various materials are used as

lasers, covering a wide range of the visible and infrared range [13, 14]

Finally, nanowires can be interfaced with living cell for delivery drugs or doing sensing activity.

Thanks to their small diameter, nanowire reduce the invasiveness and the high surface volume

ration ensures a good interaction with the cell [15]

1.2.3 Nanowire growth

The growth of semiconductor nanowires has taken great advantage of growth techniques

originally developed for the growth of semiconductor materials on plane (2D). Among them,

the most used techniques to grow high quality III-V nanowires are the metal-organic chemical

vapour deposition (MOCVD), and the molecular beam epitaxy (MBE). All the nanowires

characterized in this thesis were produced by MBE, which is briefly described in the following

section.

Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals,

originally invented in the late 1960s at Bell Telephone Laboratories by J.R. Arthur and A.Y.
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Cho [16]. This technique, widely used in the manufacture of semiconductor devices, takes

place in ultra-high vacuum environment (typically 10−8 to 10−12 Torr). In solid source MBE,

ultra-pure elements such as gallium and arsenic are heated in separate effusion cells. When

As begins to sublimate and Ga to evaporate, they form extremely low density jets (molecular

beam) directed toward a heated growth substrate (see Fig. 1.1). The most important aspect of

MBE is the deposition rate, that allows the material to grow epitaxially. Indeed, lower growth

rates, resulting from lower beam fluxes, can ideally yield the creation of close-to-perfect

interfaces and extreme-purity materials. The beam flux can be controlled by a shutter and the

temperature of the effusion cells.

Figure 1.1 – Scheme of Molecular Beam Epitaxy, with the use directly of Gallium as a catalyst.

Nanowire growth by MBE relies on two main mechanisms: the selective area epitaxy (SAE),

involving a patterned mask deposited on a semiconductor substrate to ensure exclusive growth

of the exposed substrate, and the vapor-liquid-solid (VLS) growth. In the present work, VLS

mechanism has been used. This mechanism is mainly described by three stages, as reported

by Wagner and Ellis in 1964 [6] to explain the growth of silicon microwires from the gas phase,

catalyzed by gold particles placed upon a silicon substrate. The three main stages of VLS

growth are the following:

1. Gold droplets are deposited upon the wafer substrate from which the wires are to be

grown.

2. The substances to be grown are introduced as a vapor. The liquid surface of the droplet

absorbs the growth materials, which diffuse into the catalyst droplet.

3. When supersaturation level of growth elements in the catalyst droplet is reached, pre-
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cipitation occurs and crystal growth can subsequently take place from nucleated seeds

at the liquid–solid interface. Nanowire growth is then sustained by a constant feeding of

the materials through the catalyst, as well as through diffusion on the substrate or side

facets for certain species.

Even if gold is extensively used as the catalyst in nanowire growth for many compounds and

substrates, it can be deleterious if it comes to be incorporated in the semiconductor, either

during growth or afterward by diffusion. Indeed, in certain semiconductors, gold atoms act

as deep traps, scattering and non-radiative recombination centers for the electronic carriers.

For these reasons, gold is generally banned from growth process of nanowires requiring either

high carrier mobilities and/or high luminescence.

An alternative approach to prevent the inclusion of gold in GaAs nanowires is called self-

catalyzed growth, and takes advantage from the direct use of a group III (Ga or In) droplet to

absorb vapor phase particles. With respect to the Au-catalyzed growth method, this approach,

also known as catalyst-free or Ga-assisted growth. It guarantees no-gold incorporation, with

the aforementioned advantages in terms of mobilities and luminescence yield. In this case,

the growth substrate is formerly covered by a SiO2 layer. This coating does not allow As2/As4

adatoms to stick, but can traps Ga atoms. The accumulation of diffusing Ga adatoms on the

substrate leads to the formation of nanodroplets. Above a certain size, these droplets start

to absorb and include the arsenic molecules. Once arsenic concentration in the droplets

overcome its solubility, GaAs compounds precipitate to the bottom of the droplets and the

nanowires start to grow [17]. A diagram of this growth process is presented on Figure 1.2. Even

if the growth is a non-equilibrium process, an approximate value for the arsenic solubility can

be estimated from Ga-As phase diagram for a given temperature.

Figure 1.2 – VLS growth process of GaAs nanowires. In the first step droplets formation is
shown, followed by the nanowires growth and the termination phase.

Ga-droplets are formed and VLS (Vapor Liquid Solid) can be achieved in Ga-rich conditions.

By changing it to As-rich conditions and decreasing the temperature from 600-700◦C to 400-

500◦C, 2D growth typical for Molecular Beam occurs. In this condition, it is possible to grow

radial shell around the core.
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1.3 Review on Raman spectroscopy techniques applied on semicon-

ductor nanowires

Thanks to its non-destructive nature and spatial resolution, micro-Raman spectroscopy is

a powerful tool for the characterization of nanostructures. Raman scattering is widely used

for probing optical phonons at Γ point in semiconductors. It gives information about the

crystallinity, orientation, strain, size, chemical composition, electronic structure and tempera-

ture. Here, we review the main results of Raman scattering by optical phonons on nanowires.

We start by presenting the possibility of Raman spectroscopy to assess the crystal phase in

nanowires. III-As bulk materials exhibit a zinc-blende structure. However, nanowires can also

show a wurtzite structure, or a mixture of the two phases.

Figure 1.3 – Raman scan along a nanowire presenting zinc-blende and wurtzite structure with
light incident perpendicular to the nanowire axis.

Spatially resolved Raman spectroscopy experiments give information on the lattice structure.

For example, the presence of the peak at ∼258 cm−1 associated to the wurtzite structure in Ga

As can help to identify the corresponding domains [18]. As an illustration of this, Fig.1.3 shows

a Raman scan along a nanowire presenting both zinc-blende and wurtzite structure with light

incident perpendicular to the nanowire axis. In the lower part of the scan TO and LO mode of

zinc-blende GaAs are observed. The upper part of the scan is characterized by the presence of

a peak at lower frequency of TO mode, distinctive of the wurtzite phase.

Now, we discuss the effects on the Raman scattering as a function of the size of nanowires.

Usually, the phonon peaks in nanostructures are similar to the bulk. However, decreasing the

size to few nanometers, phonon modes get confined within the nanowire material. Due to

the uncertainty of the wavevector, the Raman lines get contribution of phonons away from

the center of the Brillouin zone. This results in the broadening and shift of the Raman peaks.
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Fig.1.4 shows a linescan of Raman spectra nanowire formed by a crystalline Ge core with

around an amorphous Ge shell [19]. The changes in intensity and energy of the main peak

related to crystalline germanium are associated to the confinement of phonons. In fact, the

diameter of the core varies along the nanowire, down to few nanometers.

Figure 1.4 – Raman scan along a thin Ge nanowire. Adapted from [20]

Apart from the phonon confinement, another effect of the reducing size is the appearance

of new modes, such as the surface optical modes. Surface optical modes originate at the

interface of materials with different dielectric constants. Thanks to the high surface-volume

ratio, several works report the presence of an extra-peak with frequency between TO and LO

phonon in nanowires [21, 22]. Their energy are dependent on the dielectric constant of the

medium surrounding the nanowire. Fig.1.5 shows the dependence with the dielectric constant
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of the medium of the surface optical mode for gallium phosphide nanowires [22]. We can

observe that the surface optical mode down shift, increasing the dielectric constant of the

medium.

Figure 1.5 – Raman spectra of GaP nanowires recorded in three different media with different
dielectric constants. Reprinted with permission from Ref. [22]. Copyright (2003) American
Chemical Society.

Moreover, the surface optical phonons are dependent on the diameter of the wire. The trend

of the position in function of the diameter can be observed in Fig.1.6, where Raman spectra

for GaAs nanowires with different diameters are shown [21]. As expected from theory (see Sec

2.6), surface optical mode shifts to higher wavenumber increasing the diameter.

Another phenomenon due to the longitudinal shape of the nanowires is the so-called "Raman

antenna effect": the enhancement response of the Raman scattering for light polarizations

along the nanowire axis [23, 24]. This enhancement is dependent on the diameter of the

wire and on the wavelength of the incident light. These features suggest a resonant nature.

This effect is extensively treated in Chapter 3. Here, it is also worth mentioning that Raman

spectroscopy can be used to demonstrate the localization of light by using a nanoscale bowtie

antenna array around the nanowire [25]. In this work, it was demonstrated that a highly dense

arrays of bow/tie antennas around a GaAs nanowire are able to modify the light polarization

response. Raman scans along the nanowire with antennas 1000 nm apart for longitudinal
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Figure 1.6 – Raman spectra of GaAs nanowires with two different diameters. Adapted from [20].

and transverse polarized light was used. For longitudinally polarized light, the TO peak is

homogeneous along the full nanowire. On the other hand, transverse polarization shows the

peaks of the Raman intensity between the nanoantennas. Because the Raman signal is directly

linked to the local internal field, the results show the ability of nanoantennas to modulate the

absorption inside the nanowire for light polarized perpendicular to the nanowire.

Figure 1.7 – Raman shift line scan along the GaAs nanowire with an array of bow tie antenna
with a distance of 1000 nm for parallel (a) and perpendicular (b) polarization at 647 nm
wavelength. From Supporting Informations of Ref. [25].

Raman spectroscopy was also used to probe the chemical composition of nanowires [26, 27].

For example, Raman spectroscopy can determine the composition of GaAs1−xSbx nanowires,

as shown in Fig. 1.8 [26]. The panel a) of Fig. 1.8 shows Raman spectra of GaAs1−xSbx nanowire

with different x composition. An increase of the fraction of antimony leads a shift of alloy

modes to lower wavenumber. The phonon energies of the modes are obtained from Lorentzian
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fits of each spectra and reported in the panel b) of Fig. 1.8. The phonon energies are com-

pared with the theoretical estimation of the alloy phonon modes. This comparison gives the

possibility to evaluate inhomogeneities in composition.

Figure 1.8 – a) Raman spectra of GaAs1−xSbx nanowires for different x content. b) Phonon
energies of alloy modes as a function of Sb content. Adapted from [26].

Resonant Raman scattering has also been used to investigate the electronic band structure in

nanowires [28, 29]. In fact, when the energy of the incident light approaches a real electronic

state, an enhancement of the Raman scattering occurs. Varying the excitation energy of light

or the energy of the electronic transition (for example with pressure or temperature) give

direct access to the energy of the electronic transition. By applying this technique, Ketterer et

al. [28] found that the band gap of wurtzite and zinc-blende GaAs is equivalent.

1.4 Electronic properties detected by Raman spectroscopy

The measurement of doping characteristics and electronic properties of a single nanowire is

a challenging task. In addition to crystallinity, orientation, size and chemical composition,

Raman spectroscopy can assess the type and concentration of dopants. Moreover, Raman

spectroscopy can detect free charge carriers in polar semiconductors. Thanks to its non-

destructive and contact-less nature, Raman spectroscopy is ideally suited for nanowire studies.

Local vibrational modes, detected by Raman spectroscopy, can give information about impu-

rity lattice sites. For example, Si and Be are widely used dopants to produce n-type or p-type

GaAs layes by molecular beam epitaxial growth. Both atoms are lighter than Ga and As, which

form the host lattice, and give rise to local vibrational modes (LVM) with frequencies higher

than those of intrinsic GaAs phonon modes. For a given dopant atom, the frequency and the

fine structure of the LVM indicates the lattice site occupied by the atom. This local vibrational
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mode spectroscopy became extremely important to understand and control the concentra-

tion and the position of dopants in the nanowire during growth. For example, combining

local vibrational mode spectroscopy with electrical measurements, it has been found that the

p-doping is governed by the incorporation of Si atoms from the side facets during the radial

growth of the GaAs nanowires(Fig. 1.9) [30].

Figure 1.9 – a)Raman spectrum of a single nanowires doped with Silicon. The Local Vibrational
mode at 393 cm−1 corresponds to the incorporation of Silicon in arsenic sites; b) Spatial de-
pendence of the intensity ratio between the LVM and TO modes along the nanowire. Reprinted
from [30], with the permission of AIP Publishing

The possibility to obtain information on the carrier concentration and mobility in polar

semiconductors, using Raman scattering comes from the interaction between collective carrier

oscillations (plasmon) and the electric field of the LO phonons. Because of this interaction, a

bound state of two elemental excited particles is formed, the LO phonon-plasmon coupled

modes, which have phonon-plasmon mixed character. Raman scattering by LOPCMs has

been studied by many authors in polar bulk semiconductors. In n-type III-V semiconductors,

two coupled modes appear in the spectrum [31]. For p-type III-V semiconductors, as a
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consequence of the lower mobility of holes, only one coupled mode LOPCM is observed in

the spectra with a position between LO and TO peaks [32]. Literature on Raman scattering

by LOPCMs in nanowires is less frequent. Ketterer et al. [33] were able to determine the hole

concentration and mobility using Raman spectroscopy in forward scattering geometry of GaAs

nanowires with different Si-doping concentration (Fig. 1.10).

Figure 1.10 – Room-temperature Raman spectra of p-type GaAs nanowires with different
doping concentration in cm−3 taken in forward scattering configuration with 520.8 nm laser.
Reproduced from [34].

1.4.1 Photoluminescence spectroscopy

Another non-destructive technique that gives access to the electronic properties of semicon-

ductors is Photoluminescence spectroscopy. This technique concerns the radiative recom-

bination paths of photoexcited electron-hole pairs. The photoluminescence emission can

be affected by many factors such as strain, impurities and charge carriers. The presence of

impurities creates states between the band gap, so the presence of them between the band

gap could results in emission between those levels. For example, in p-type GaAs doped with

Si, Kressel et al. have shown optical transitions between levels within the band gap [35].

The quantum efficiency depends on the relative magnitude of the radiative recombination

rate compared to non-radiative recombination rate. In semiconductors, surface or interface

states can become a source of non-radiative centers. Non-radiative recombination has a detri-

mental effect on the optical and electronic properties of semiconductor devices. In nanowire

structures, the large surface-to-volume ratio results in the presence of surface traps, offering
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easy access to non-radiative carrier recombination. The addition of a passivation AlxGa1-xAs

shell around a GaAs nanowires, the emission from the NW increases dramatically [36].

Recently, several groups have studied the photoluminescence emission as a function of the

shell thickness and the alloy concentration. Hocevar et al. [37] reported a systematic red

shift of the PL peak of GaAs/Al0.35Ga0.65As and of the absorption band edge with increasing

shell thickness (Fig. 1.11a,b,c). They have associated a part of such shift to a small tensile

strain imposed to the GaAs core by the AlGaAs shell. The blueshift of PL peak as a function

of the power suggests that also a piezoelectric field, which develops inside the core due to Al

fluctuations in the shell, contributes to the energy shift.

Figure 1.11 – a) PL spectra and b)PLE spectra of nanowire GaAs/Al0.35Ga0.65As ensembles with
shell thickness varying from 0 to 100nm. c) Shift of the band edge emission and absorption
photon energy versus shell thickness. Reprinted from Ref. [37], with the permission of AIP
Publishing.

Moreover, a blue-shift of the PL emission as a function of the power could also be a conse-

quence of a band bending at the core/shell interface due to the existence of impurities in

the shell. Increasing the photoexcitation intensity, the large concentration of electrons in the

conduction band screens the Coulomb interaction between photoexcited electrons and holes.

Therefore a reduction of the binding energy of the exciton occurs. Such an interpretation is

given by Dhaka et al. [38], who have studied the PL emission of the core of GaAs/AlxGa1-xAs

grown using metal-organic vapor phase epitaxy with Au as catalyst. They reported a red

shift with different magnitude in the PL emission of the nanowire core with the increase

of the aluminum concentration (x) in the shell, and a blue-shift as a function of the power,

saying that the band-bending that induces carriers confinement at the interface is due to Al

inhomogeneity and traps.

In a recent work [39], we have observed the same red-shift of GaAs nanomembrane capped

with AlGaAs shell. We have shown that this shift originates from oxygen contamination of
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aluminum.

1.4.2 TeraHertz spectroscopy

Optical pump-TeraHertz probe spectroscopy is a powerful tool to study charge carrier dynam-

ics in semiconductor nanostructures. In fact, Terahertz spectroscopy allows the characteriza-

tion of charge carriers not only under steady-state, but also in non-equilibrium conditions.

This is possible because the density of the carriers created with an optical pulse can be moni-

tored on a femtosecond time scale. By using such time-resolved TeraHertz spectroscopy setup,

Joyce et al. [40] have demonstrated that InP nanowires exhibit a very long photoconductivity

lifetime that is weakly dependent on their diameter. On the contrary, it is found [41] that carrier

lifetimes in GaAs nanowires are extremely short, because of the high surface recombination

rate.

The frequency-dependent conductivity, measured at a fixed delay after excitation, provides

information on the carrier properties such as the mobility and carrier densities. The THz

response of free carriers is generally described by a Drude model. In addition to the free

carriers response, a plasmon response is frequently observed for semiconductors in THz range.

Fitting the data with the expression for the complex photoconductivity of a free electron

plasma with a surface plasmon resonance, Joyce et al. have found that the mobility of GaAs

nanowires is a factor of 6 lower than typical mobilities in bulk GaAs [41].

Boland et al. [42] employed optical-pump TeraHertz probe spectroscopy to measure carrier

transport and dynamics at room temperature on modulation Doped nanowires. A Mmdulation

doped nanowire is a nanowire with a radial heterostructure, which allows the enhancement of

the electron mobility.

Figure 1.12 – The decay of photoconductivity with time for the modulation doped and undoped
reference nanowires as depicted in the left. From Ref. [42], Copyright 2015, American Chemical
Society.

Fig. 1.12 shows the decay of photoconductivity with time for the modulation doped and
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undoped reference nanowires. The photoconductivity lifetime for modulation doped nanowire

structure is found higher than the one of the reference sample. This has been interpreted as an

effect of the passivation of interfacial traps by donate electrons. In fact,in modulation doped

sample, a high electron concentration should be present at the interface of GaAs/AlGaAs. Part

of this electron polpulation has a passivation effect on interfacial traps.

Figure 1.13 – Conductivity spectra for the modulation doped and undoped reference nanowires
at different time after photoexcitation. From Ref. [42], Copyright 2015, American Chemical
Society.

Fig. 1.13 shows the photoconductivity spectra measured at different time after photoexcitation.

From the analysis of the data, the authors found an n-type extrinsic carrier concentration

in the order of ∼ 1016 cm−3. The electron mobility was found dependent on the electron

concentration. Boland et al. proposed that carrier-carrier interaction is the main mechanism

that governs the mobility in this system.
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1.5 Outlook of my thesis

The outline of this thesis is the following:

• Chapter I

Introduction

• Chapter II

In Chap. II the vibrational properties of wurtzite and zincblende and the theoretical

basis of Raman scattering are introduced. Moreover, the experimental set-up employed

for Raman scattering experiment is described.

• Chapter III

Chapter III is devoted to the study of the effects of resonance modes in nanowires

on the Raman spectra, in terms of local probing and selection rules. In the first part,

we have investigated the possibility to use photonic modes in Raman scattering to

chemically characterize selective areas inside the nanowire. We have performed Raman

measurements GaAs/AlGaAs core/shell nanowires with different wavelength excita-

tions. Nanowires with different aluminum contents and different diameter and shell

thicknesses are also studied. In the second part, we have studied how it is possible to

modify the macroscopic Raman selection rules by changing the photonic environment,

i.e. by suspending the nanowire. This method is used to enhance the response of the

longitudinal optical and to probe free carrier in GaAs.

• Chapter VI

Chapter VI is devoted to the detection of free carriers by Raman spectroscopy in modu-

lation doping GaAs/AlGaAs core/shell and InAsSb nanowire. We have done a compari-

son study of the electronic properties of modulation doping GaAs/AlGaAs core/shell

nanowire respect to the corresponding non-doped reference. For the InAsSb nanowires,

the effects of the content of Antimony, the temperature and the passivation on the

electronic properties is presented.

• Chapter V

Chapter V summarizes the results of this thesis

1.6 Papers included in my thesis work

Parts of this thesis have been published in peer-reviewed journals. In Chap. 3, publications are

reproduced with permission of the corresponding publisher. I was the principal responsible for

the majority of the experimental work as well as data analysis and writing of the manuscript.

• Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy.

F. Amaduzzi, E. Alarcón-Lladó, E. Russo-Averchi, F. Matteini, M. Heiß, G. Tütüncüoglu,
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2 Raman scattering

When light interacts with a material several processes can occur, as reflection, refraction

absorption and scattering. The scattering process can be elastic or inelastic. The elastic

scattering is predominant and is called Rayleigh scattering. One type of inelastic scattering

was discovered by C.V. Raman, who named the phenomenon.

In the Raman scattering process, the photons are scattered by excitations that can be created

(Stokes process) or annihilated (AntiStokes process). Various type of excitations, like phonons

and plasmons (charge excitations) presents in a solid can participate in this process. In

addition, thanks to its non-destructive nature, Raman spectroscopy is a powerful tool to study

the spectrum of elementary excitations of semiconductors.

Raman scattering by phonon provides information on the structural properties of the material,

such as composition, phase, and crystal orientation. Moreover, Raman spectroscopy in polar

semiconductors can provide information on the carrier concentration and mobility thanks to

scattering by plasmons.

This chapter is dedicated to the theory of Raman scattering, and organized as follows. In the

first two sections of the chapter, the description of phonons in a zinc-blende and wurtzite

structures are introduced, as well as in the alloys. The section three and four are dedicated

to present the Raman theory based on classical and quantum mechanical treatments. Then,

the Raman selection rules for zinc-blende and wutzite structures are presented in the section

five, the surface optical modes in section six. Section seven illustrates the Raman scattering

mechanism by plasmons and its coupling with phonons, while the last section of the chapter

presents the experimental set-up used in our studies.
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Chapter 2. Raman scattering

2.1 Phonon dispersion in zinc-blende and wurtzite structures

A lattice constituted of N atoms has 3N normal modes of oscillation. The energy of a normal

mode is quantized in form of phonons. A phonon is a quasiparticle defined by its energy (ħω)

and wavevector (�k). The energy and the wavevector are related through the dispersion curve.

In a 3 dimensional lattice with N atoms per primitive basis, 3N branches exist. Three of these

are called acoustic and are characterized by having zero frequency for�k = 0. In contrast, the

optical branches are the remaining 3N -3 branches. They have no zero frequency at�k = 0 and,

in fact, atoms within the primitive cell move out of phase, even if the center of mass is fixed.

Phonons are also distinguished in transverse and longitudinal, depending if the vibration is

perpendicular or parallel to the propagation direction.

InAs and GaAs presents a cubic phase in bulk material. The cubic phase of these compounds is

the zinc-blende structure. Zinc-blende structure with two different atoms, as a primitive basis,

presents 3 acoustic mode and 3 optical modes. Despite the high symmetry of the structure,

there is no degeneracy at�k = 0. This is due to the additional restoring force, which arises from

the ionic displacement in the case of the longitudinal mode.

Figure 2.1 – Schematic representation of phonon dispersion of GaAs for zinc-blende and
wurtzite phase. The dispersion for the wurtzite phase is obtained by folding the zinc-blende
dispersion along Γ→ L

In nanowire form, the arsenide III-V compounds can also crystallize in a different crystal

phase from bulk, such as the hexagonal wurtzite structure. Wurtzite structures differ from the

zinc-blende one for the sequence of stacking of anion-cation planes. Zinc-blende presents an

ABCABC sequence along (111) direction, while Wurtzite shows an ABAB stacking sequence

in the correspondent (0001) direction. Furthermore, wurtzite structure has four atoms in the

primitive cell, which means that nine optical phonons are presents. Using group theory, the

optical phonons obtained are A1, E (2)
1 , 2E (2)

2 and 2B1 (where (2) means the double degeneracy).
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2.1. Phonon dispersion in zinc-blende and wurtzite structures

The atomic motion of A1 and B1 is along the c axis. Contrarily, the displacement for E1 and E2

is orthogonal to it. Group theory predicts whenever a mode is Raman active. Among them, all

the modes are Raman active except for B1, which is called silent because is not active both

for Raman and Infrared spectroscopy. The polar character of the A1 and E1 phonons lift the

degeneracy between the transversal and longitudinal modes.

The additional modes of wurtzite at the Γ point correspond to modes at the L point in zinc-

blende. This is because the extent of the Brillouin zone of zinc-blende, along (111) direction,

is twice the one of wurtzite along (0001). This allows us to fold the phonon dispersion of

zinc-blende along (111) direction, in order to deduce the phonon dispersion of wurtzite along

(0001) direction [18]. Fig. 2.1 shows the phonon dispersion of zinc-blende and wurtzite, as a

result of the zone folding of the zinc-blende dispersion along Γ→ L.

The frequencies of the zone center optical modes of the zinc-blende and wurtzite for GaAs and

InAs are listed in table 2.1 and 2.2 respectively. The wurtzite phonon frequencies are estimated

from the corresponding modes in zinc-blende at the Γ and L point, taken from Ref. [43] and

Ref. [44] for GaAs and InAs, respectively

Table 2.1 – Raman optical phonon modes in wurtzite GaAs estimated from the experimental
corresponding modes in zinc-blend at Γ and L point [43].

Structure Mode Position (cm−1)

zinc-blende
TO
LO

267.7
291.9

wurtzite

A1 (TO)
A1 (LO)
E1 (TO)
E1 (LO)

E2
h

E2
l

267.7
291.9
267.7
291.9
261.3
62.1

Table 2.2 – Raman optical phonon modes in wurtzite InAs estimated from the experimental
corresponding modes in zinc-blend at at Γ and L point [44]

Structure Mode Position (cm−1)

zinc-blende
TO
LO

217.3
238.6

wurtzite

A1 (TO)
A1 (LO)
E1 (TO)
E1 (LO)

E2
h

E2
l

238.6
217.3
226

238.6
216
44
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Chapter 2. Raman scattering

2.2 Phonon modes of ternary alloys

In the framework of this thesis, it is important to introduce the compositional dependence of

optical phonons at the Γ point of an alloy. Phonons of alloys show a specific trend. In ternary

semiconductors such as AxB1−xC, the optical phonons may exhibit a one-mode or two-mode

behavior.

One-mode behavior presents only one set of LO and TO phonons, with frequencies showing

an almost linear dependence from one end-member AC to the other BC. On the contrary, two-

mode behavior exhibits two sets of LO and TO phonons, whose frequencies vary continuously

from those of one end-member binary AC,BC to the impurity mode (Local Vibrational Mode)

in the other end-member binary BC:A and AC:B, respectively. The Local Vibrational Mode

arise from the presence of an impurity with different mass than the host atoms. and has

different frequency than the host’s vibrational frequency. The two-mode behavior is typical

of alloys in which the atoms occupying equivalent lattice sites have significantly different

masses. The REI (Random-Element-Isodisplacement) Model, proposed by Chen et al. [45],

explains the two mode behavior of mixed crystal systems. Most of III-V alloy systems show a

two mode behavior, as AlxGa1−xAs [46], GaP1−xAsx [47], GaxIn1−xSb [48], GaxIn1−xAs [49, 50],

InAs1−xSbx [50].

Fig. 2.2 shows the phonon frequency dependence as a function of the alloy composition for

AlxGa1−xAs semiconductor. In the graph, two set of optical modes are observed. The TO and

Figure 2.2 – The optical phonon energy of AlxGa1−xAs as a function of the Al content
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2.3. Macroscopic theory of Raman scattering

LO modes close to those of GaAs (AlAs) are called GaAs-like modes (AlAs-like modes). At the

end of the compositional range, GaAs-like modes tend to the Local Vibrational mode (LVM) of

Ga in AlAs material, inversely the AlAs-like modes to the LVM of Al in a GaAs matrix.

2.3 Macroscopic theory of Raman scattering

From a classical point of view, Raman scattering arises from the polarizability of the material

modulated by the vibrations, which causes the radiation of the induced dipole moment

at frequencies different from those of the incoming electric field [51]. The electric field
�E cos(�k ·�r −ωi · t ) causes an induced dipole moment �P , which is proportional to the electric

field �E through the susceptibility χ(ω,�k) of the crystal. The susceptibility can be expanded as

a power series of the atomic normal coordinates:

χ(ω,�k) =χ0(ω,�k)+ ∂χ(ω,�k)

∂�u
�u (2.1)

where �u =�u0 cos(�q ·�r −ωq · t ) is the atomic displacement. With the expansion of the suscepti-

bility in a Taylor series, the polarizability has the form of the sum of two terms as:

�P =χ0(ω,�k)�E cos(�k·�r−ωi ·t )+∂χ(ω,�k)

∂�u

�u0�E

2
(cos((�k+�q)·�r−(ωi+ωq )·t )+cos((�k−�q)·�r−(ωi−ωq )·t ))

(2.2)

The first term of the Eq. 2.2 represents the static polarizability and contributes to the elastic

scattering, while the second term takes into account the modulation of the atomic displace-

ment. The polarization resulting from this term oscillates at frequencies that are differents

with respect to the incoming one.

In particular, the cosine term containing the difference of the wavevector ((�k−�q)·�r ) represents

the excitation of a phonon, i.e. the Stokes process, while the cosine term containing the sum

of the wavevector ((�k +�q) ·�r ) represents the AntiStokes process, with the absorption of the

excitation. Moreover, the conservation of energy and momentum in the scattering process

are contained in the argument of the two cosines terms (�ks =�k ±�q and ωs =ωi ±ωq ). The

conservation of momentum yields the possibility to probe phonons only at Γ point due to the

small momenta of the light incident and scattered.

From the radiation emitted by an electric dipole vibrating in time, the intensity of the light

scattering in a direction ês is given by [52]:

Is ∝|ês · ∂χ(ω,�k)

∂�u
· êi |2 < u(q,ω)u∗(q,ω) > (2.3)
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Chapter 2. Raman scattering

The first term contains the Raman tensor (∂χ(ω,�k)
∂�u ) and is used to derive the Raman selection

rules. The second term is called the power spectrum of fluctuations and is calculated with the

dissipation-fluctuation theory. It is possible to demonstrate that the power spectrum given for

Stokes scattering by phonon is given by:

〈u(q,ω)u∗(q,ω)〉∝ ħ
2ωq

(n(ωq )+1)L(ωq ) (2.4)

where n(ωq ) is the Bose-Einstein distributions and L(ωq ) is the Lorentzian function.

2.4 Microscopic theory of Raman scattering

Within the quantum treatment, a first order process of scattering (with the excitation or the

annihilation of only one phonon) can be described as a three-step process. In fact, as a phonon

energy is significantly lower than the energy of photons of the exciting laser, the scattering

process happens by a virtual intermediate state that involves electrons. Feynman diagrams in

Fig. 2.3 represent the Stokes and the Anti-Stokes processes [53]. In each Feynman diagram the

dashed lines stand for the incoming and outgoing photons, while the wavy line represents

a phonon with e �q momentum. The Fermion loop represents the electron-hole pairs, while

the black dots and the black squares represented the electron-radiation and electron-phonon

interaction, respectively.

In a first step, the photon impinging the crystal excites an electron from a ground state to

a first intermediate state | a〉. The second step involves a transition from the first electron

intermediate state | a〉 to another state | b〉. As a consequence of this transition, a phonon is

created or annihilated. In the third step, a transition to the electron ground state leads the

emission of a photon. After the whole process, the electron state remains unchanged. By using

the time dependent perturbation theory, the Raman scattering probability may be calculated

as:

P f i =
2π

ħ | ∑
a.b

〈 f |He−R |b〉〈b|He−ph |a〉〈a|He−R |i 〉
(ħωi − (Ea −Ei ))(ħω f − (Eb −Ei ))

|2 δ(ħωi −ħωs −ħωph) (2.5)

where | i 〉 and | f 〉 are the initial and the final state, while He−R and He−ph represent the

electron-radiation and the electron-phonon Hamiltonian interactions.

Within the dipole approximation, the Hamiltonian representing the electron-radiation inter-

action is given by:

He−R = e

mc
�A ·�p (2.6)

where �p is the momentum operator and �A is the vector potential of the electromagnetic field.

In a polar semiconductor, we have to consider two types of electron-lattice interaction [54].
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2.4. Microscopic theory of Raman scattering

Figure 2.3 – Feynman diagram representing the first order Raman process.

The first one, called Deformation potential, is due to the effect that the relative ionic displace-

ment of phonons causes on the electronic energies. In fact the electronic energy will change

with the bond lengths and angles of atoms. In the case of crystal vibration, the interatomic

distance varies and the electronic energies are modulated. Due to its nature, it is a short-range

interaction. In fact electrons does not feel any long-range polar field, but only the modulation

of the ionic distance. Since is electronic energy are connected to the dielectric function and

then to the susceptibility, considering only the deformation potential, Eq. 2.5 and 2.3 are

equivalent.

For polar material, a second effect should be taken into account. In fact longitudinal optical

phonon cause a long-range dipole field with electrons interact. This effect is described by the

Frölich interaction and has two components: the allowed and the forbidden mechanisms. The

attribute allowed of forbidden are assigned whenever the mechanism has the same symmetry

or not of than that of the deformational potential. The allowed mechanism is �q independent

interband scattering, involving states in different bands. It is characterized by the electro-optic

tensor, which has the same symmetry as the corresponding to deformation potential. This

mechanism gives the difference between the intensity of the TO and LO modes. The relative
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Chapter 2. Raman scattering

strength between the deformation potential and the electro optic interaction connected by

the ratio between TO and LO intensities is given by the Faust Henry coefficient. Contrarily, the

forbidden term is due to the intraband scattering and has a vanishing contribution far from

the resonance condition (i.e. energies of photon close to the a transition ones.) In fact close to

the resonant condition, Raman scattering is dominated by the forbidden mechanism. The

contribution of the forbidden scattering to the Raman tensors is represented by a diagonal

matrix.

2.5 Raman selection rules in zinc-blende and wurtzite structures

As stated in Eq. 2.3, by knowing the scattering geometry and the Raman tensor, the Raman

selection rules can be obtained. The scattering geometry is often indicated by using the

Porto notation. In this notation the directions wavevectors k̂i and k̂s , and the polarizations êi

and ês of light incident and scattered, are specified with respect to an orthogonal system as:

k̂i (êi ês)k̂s . The Raman tensor (R = ∂χ(ω,�k)
∂�u ) depends on the crystal symmetry.

For a zinc-blende GaAs structures, the Raman tensors for deformation potential and allowed

scattering mechanisms, are usually given in the base ê1 = (1,0,0), ê2 = (0,1,0) and ê3 = (0,0,1)

by [51]:

Rê1 =

⎛
⎜⎝

0 0 0

0 0 a

0 a 0

⎞
⎟⎠ Rê2 =

⎛
⎜⎝

0 0 a

0 0 0

a 0 0

⎞
⎟⎠ Rê3 =

⎛
⎜⎝

0 a 0

a 0 0

0 0 0

⎞
⎟⎠ (2.7)

Each Raman tensor corresponds to an oscillation polarized along the respective directions.

Considering the geometry of the nanowires, it is convenient to transform the Raman tensor

into the basis of the relevant crystallographic axis, which correspond to the directions x=(1,-

1,0), y=(1,1,-2) and z=(1,1,1).

Meanwhile in wurtzite structure, choosing x,y, and z as the high symmetry axis of the structures,

(c-axis as z=(0,0,0,1) and x=(1,-1,0,0) and y=(1,1,-2,0) in the hexagonal plane) the Raman tensor

can be expressed as:

RE1
x =

⎛
⎜⎝

0 0 0

0 0 c

0 c 0

⎞
⎟⎠ RE1

y =

⎛
⎜⎝

0 0 −c

0 0 0

−c 0 0

⎞
⎟⎠ RA1

z =

⎛
⎜⎝

a 0 0

0 a 0

0 0 b

⎞
⎟⎠ (2.8)
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Table 2.3 – Selection rules for zinc-blende and wurtzite structures in backscattering. x(i , j )x̄
and z(i , j )z̄ configuration corresponds to a backscattering configuration for a nanowires lying
down or standing on a substrate

Configuration zinc-blende wurtzite
z(y, y)z̄ TO, LO E2, A1 (LO)
z(y, x)z̄ TO E2

x(y, y)x̄ TO E2, A1 (TO)
x(y, z)x̄ TO E1 (TO)

RE2
x =

⎛
⎜⎝

d 0 0

0 −d 0

0 0 0

⎞
⎟⎠ RE2

z =

⎛
⎜⎝

0 d 0

−d 0 0

0 0 0

⎞
⎟⎠ (2.9)

Table 2.3 summarizes which modes are allowed or not, in different conditions for a backscat-

tering configuration of a nanowires lying down or standing on a substrate. Both the cases are

schematically represented in Fig. 2.4.

Figure 2.4 – Schematic representation of the backscattering configuration for a nanowire
standing on a substrate or lying down

2.6 Surface optical modes

The finite size of an object plays a key role on the Raman scattering. In fact, by reducing the size

of the structures, bulk modes can change their position because of the phonon confinement

effect. Moreover, new modes can appear such as the surface optical modes. The surface

optical phonons are generated at the interface between different materials, for example at the
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air-semiconductor interface.

In nanowires, the presence of a peak with a frequency between TO and LO modes, associated to

the Surface Optical mode is often observed. The position of the Surface Optical mode depends

on the dielectric constant of the surrounding medium and the diameter of the nanowire.

Using the approximation of an infinitely long cylinder, the position of Surface Optical phonon

can be predicted by using the following equation: [22]

ε(ω)+εm f (qr ) = 0 (2.10)

where f (qr ) is given by:

f (qr ) = I0(qr )K1(qr )

I1(qr )K1(qr )
(2.11)

where q is the phonon wavevector, r the nanowire radius and Ii (qr ) and Ki (qr ) the modified

Bessel functions. For a finite long cylinder, the frequency of the Surface Optical phonon ωs is

represented by:

ω2
s =ω2

s +
ω2

p

ε∞+ε∞ f (qr )
(2.12)

where ωp is the screened ion plasma frequency ω2
p = ε∞(ω2

LO−ω2
T O) and ε∞ the high frequency

dielectric function of the material.

Fig. 2.5 shows the dispersion of the SO modes. We can observe that the position of the SO

mode depends on the external medium and on the size of the wire [22, 55, 21].

2.7 Raman scattering by LO phonon-plasmon coupled modes

During the Raman scattering process, light can be scattered by free carriers present in semicon-

ductor that can be created via doping or thermal and optical excitations. Collective excitations,

such as charge-density excitation usually referred as plasmons, and single-particle excitations

can be observed [56, 57, 58, 59]. Plasma excitations can interact with the macroscopic lon-

gitudinal electric field of LO polar phonons, giving rise to the LO phonon-plasmon coupled

modes (LOPPCM). The first observation of LOPPCM was reported by Mooridian and Wright in

n-type GaAs [31]. Thanks to the scattering by LOPPCM, Raman spectroscopy can be used as a

contact-less tool to probe carrier concentrations as well as their mobilities.

We proceed now to the explication of the plasmon modes. In semiconductors, electrons

located in the conduction band can be represented by an electron gas in a solid, formed

by fixed and opposite positive charge of the ion core. If it is displaced with respect to their
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Figure 2.5 – Calculated position of the SO mode for GaAs nanowire embedded in air.

equilibrium position, the electron gas oscillates with a natural frequency, given by:

ω2
p = 4π

ε∞
N0e2

m∗ (2.13)

withN0 the free-electron concentrations. Throughout this thesis, we will use the cgs units,

because they are most-often used in the literature.

Since this oscillation is longitudinal, as it is the case for the LO phonon modes in polar

semiconductors, the LO mode interacts with the macroscopic electric field of the plasmon.

The position of the resulting coupled modes can be obtained from the zero of the dielectric

function according to the Maxwell‘s equations for a longitudinal waves. Then, the dielectric

function, which includes both the lattice and the carriers contribution, has the form:

ε(ω) = ε∞+4π(χI (ω)+χe (ω)) (2.14)

with the ionic χI (ω) and free carrier χe (ω) susceptibility.

As for the undoped semiconductors, the Raman line shape can be evaluated using the dissipa-

tion fluctuation theorem. With the presence of carriers in the formalism of Hon and Faust, the

Raman cross-section by coupled modes assumes the form:

∂2σ

∂ω∂Ω
∝ (n(ω)+1)I [

1

ε(ω)
[
ε∞
4π

+2AχI (ω)− A2χI (ω)(1+ 4π

ε∞
χe (ω))]] (2.15)

where n(ω) is the Bose-Einstein distribution of phonons, A is defined as A =ω2
T OC /(ω2

LO−ω2
T O)

with C being the Faust-Henry coefficient, and ω2
T O and ω2

LO are the frequencies of TO and LO
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Figure 2.6 – Frequency position of the coupled modes obtained from the zeros of the dielectric
permettivity.

modes respectively.

The ionic contribution to the susceptibility is given by:

χI (ω) = ε∞
4π

ω2
LO −ω2

T O

ω2
T O −ω2 − iωΓi

(2.16)

with Γi the phonon damping constant.

For the calculation of the electronic susceptibility, we consider the Drude and the Hydrody-

namical model, both within a classical treatment. The Drude model is the simplest model one

can use, which does not take into account the effects of the temperature, of the dispersion of

the conduction band and of the wavevector of the plasmon.

Solving the dynamical equation of electrons, the electronic susceptibility derived by the Drude

model is:

χe (ω) =−ε∞
4π

ω2
p

ω2 − iωΓp
(2.17)

where ωp is the plasma frequency and Γe is the damping constant related to the mobility of

the plasmon.

Neglecting the ionic and the electronic damping constant, it is possible to obtain the frequency

of the coupled mode, L+ andL− from the zeros of the dielectric permittivity.

Fig. 2.6 shows the dependence of the frequency position of the coupled modes in function
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of the carrier concentration. We can observe that at low carrier concentration regime, the

L− follows the position of the plasmon mode and L+ is at the position of the LO mode. On

the contrary, for high carrier concentration, the frequency of the L+ becomes closer to the

plasmon mode and the frequency of the L− tends to the position of TO mode. The high

concentration of carrier screens the extra Coulomb force induced by the LO longitudinal field.

When the temperature effect and the wavevector dependence should be considered, Hydro-

dynamical model can be used [60]. This model introduce an extra term in the dynamical

equation of electrons (−(1/Ne )�∇P), related to the pressure P of the electron gas. The pres-

sure of the electron gas is defined as the sum of the forces of all electrons striking the wall

of the solid per unit area. According to the kinetic theory, the pressure can be expressed as

P = −(1/3)Ne m∗ < v2 > where< v2 > is the electron mean square velocity. This gives as a

results the following expression for the electronic susceptibility:

χe =−ε∞
4π

ω2
p

ω2−< v2 > q + iωΓe
(2.18)

The electron mean square velocity can be calculated knowing the band energy dispersion

with:

< v2 >=− 1

ħNe

∫∞

0
(
∂E

∂k
)2nF D g (E)dE (2.19)

where nF D is the Fermi Dirac distribution, and g (E) is the density of states.

The coupled-mode with their dispersion are well defined by Hydrodynamical model in the

regime in which Landau damping is negligible. Landau damping occurs when the phase

velocity of the electromagnetic wave is closed to the velocity of the electrons in a plasma. The

Lindhard-Mermin model, which is based on a quantum approach, interprets successfully

coupled modes at all wavevectors [61].

2.8 Raman spectroscopy set-up

Raman spectroscopy is the main experimental technique used in this thesis. The scheme of

the experimental set-up used to carry out all the Raman measurements of this thesis is shown

in Fig. 2.7. All the components are placed on an optical table with pneumatic legs.

The light source is produced by an Argon-Krypton laser. This allows to provide several char-

acteristics spectral lines in the visible range. To avoid the plasma background, the laser light

is spectrally filtered with a grating and a subsequent aperture. A series of various optical

devices are presents in order to control the light polarization. Among them, a polarizer, a

quarter-waveplate λ/4 (to generate a circularly polarized light) and half-waveplate λ/2 (to

rotate the polarization) are used.
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Figure 2.7 – Raman setup.

A beam splitter is applied to split the light in a reflected part and a transmitted part. In order

to control the power of the light sent to the sample, the transmitted light is monitored by a

power meter. The reflected light is focused on the sample by an objective lens of 0.75 N.A.

(Numerical Aperture). The spot size is determined by the diffraction limit, according to the

relation d = (1.22 ·λ)/N .A., where d is the spot’s diameter. The objective lens is mounted

on a piezo-scanner controlled by a LabView routine, which allows to scan the surface with

a precision of 2 nm. To carry out measurements at different temperatures, within the range

4.2 K - 300 K, the sample is placed inside a temperature-controlled liquid helium cryostat. This

cryostat system consists in a window assess open circuit cryostat. The sample is cooled by

adirect contact with Helium vapour provided by an external dewar and the temperature is

measured by a resistor mounted close to the sample.

The same objective lens is used to collect the scattered light, which is collected by the Trivista

555 triple spectrometer. Inside the spectrometer, a set of three grating is used for the dispersion

of the light. Different grating periods from 900 to 1800 l/mm can be choose for different

applications. Trivista 555 triple spectrometer can operate in an addictive or subtractive

configuration. In additive mode, gratings on all 3 stages contribute to disperse light. This

mode gives high spectral resolution. In subtractive mode, the first grating is used to disperse

light and the second one to recombine the dispersed light. Between them, the slit cut out a

desirable portion of spectrum.This allowed to block the wavelengths close to the laser line

inside the first spectrometer. In this context, we used only the subtractive configuration, with
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the first two gratings employed in an opposite mode. The light, dispersed again by the third

grating, is then collected by a charge coupled device detector which is cryogenically cooled

with liquid nitrogen.
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3 The role of Photonic modes in
nanowires in Raman scattering

The high shape anisotropy and the small dimensions of nanowires impact the interaction

of nanowire with light. Arising from these features, the differences in the optical properties

of nanowires structures and bulk material have fascinated the scientific community, which

is studying their fundamental aspects. The spectral dependence of light absorption on the

nanowire diameter is one of them. It presents some peaks at certain wavelengths, related to

the photonic interaction.

The aim of this chapter is to investigate how the photonic properties of the nanowires affect

Raman spectroscopy measurements. In particular, we will outline how the way light gets

trapped and/or propagates through the nanowire structure affects the excitation of different

parts and/or the macroscopic selection rules.

The results presented in the following sections have been published in peer-reviewed journals.
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3.1 Introduction

Raman scattering in nanowires has shown some differences with respect to the bulk or thin

films [62]. Raman scattering signal in bulk material is subjected to certain selection rules,

which depend on the light direction and polarization of the incoming and scattered light, as

well as the symmetry of the vibrational mode. The bulk Raman selection rules in nanowires are

masked due to the photonic properties of nanowires [63]. Cao et al. [24] have demonstrated a

strong enhancement of the spontaneous Raman scattering from individual Silicon nanowires

as a function of the diameter, excitation wavelength and incident polarization state.

Moreover, despite the light absorption as a function of the wavelength has a smooth trend in

bulk material, it has been observed the presence of peaks at certain wavelength in nanowire

structure. The position of these peaks also depends on the nanowire diameter. Fig. 3.1 shows

the measured spectra of the absorption efficiency for individual Ge nanowires having different

diameters (Brongersma Group). The spectra were obtained through the measurement of the

photocurrent.

Figure 3.1 – Measured spectra of the absorption efficiency of individual Ge nanowires having
different diameters. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials
(Ref. [64]), Copyright 2009

These results were explained by computing how light interacts with nanowires. In fact, due

to the high-refractive-index of III-V semiconductors, nanowires may form a cavity in which

light can circulate by multiple total internal reflections from the boundaries. As a back of the

envelope calculation, a "resonance" occurs when the path length covered by the light is any

multiple of the half wavelength. For the wavelengths where a photonic mode can be coupled

and exist inside the nanowire, absorption is largely enhanced.

In 1908, Mie [65] developed a theory to explain the absorption and the scattering of light

by particles with dimension comparable to the incident wavelength. Following Mie theory,

it is possible to calculate analytically the absorption for an infinite cylinder, surrounded by
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an homogeneous medium, with a light incident perpendicularly to the nanowire axis. The

starting point of the model is the solution for the internal field at the exciting frequency in the

nanowire. This is obtained by solving Maxwell’s equations and by applying the appropriate

boundary conditions in cylindrical polar coordinates.

Figure 3.2 – Calculated absorption efficiency as a function of wavelength and radius of a Ge
nanowire, for a planar wave directed perpendicularly to the nanowire axis. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials (Ref. [64]), Copyright 2009

Fig. 3.2 shows the two-dimensional plot of calculated absorption efficiency as a function of

wavelength and radius of the nanowire. The visible branches represent the resonance modes.

We can observe that the increase of the diameter leads to an increase of the wavelength at

which the resonance occurs. Moreover, we remark that the observed peaks in the absorption

arise from different resonant modes at the same wavelength. Good agreement between the

calculated and the measured absorption efficiency was found. The diameter dependence has

been studied by J.Lopez et al. [66]. They have performed Raman scattering measurements

along the length of a tapered Silicon nanowire. To validate the experimental results, they also

performed Finite-Time Difference Domain simulation of a cylindrical nanowire on a substrate.

Indeed, to consider the effect of the substrate, numerical calculations are required, as Mie

theory is not valid anymore.
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Figure 3.3 – The diameter dependence of the analytical solution (black line) and Finite Differ-
ence Time Domain simulation for cylinder with (red circle) and without the Au substrate (blue
circle). Reprinted with permission from Ref.[66]. Copyright 2012, American Chemical Society.

The Fig. 3.3 shows the diameter dependence of the analytical solution (black line) and Finite

Difference Time Domain simulation for cylinder with (red circle), and without the Au substrate

(blue circle). The presence of the substrate shift the position of the peaks toward longer wave-

lengths. The cross-sectional maps of calculated electric field intensity squared for different

diameters are shown in Fig. 3.3b-f. We remark that by increasing the diameter, the presence of

photonic modes with higher order are observed.

Lopez et al. [66] performed measurements at different scattering geometries and compared the

experimental data with the calculated Raman intensities. Raman intensities were calculated

by using the internal field components at the excitation frequency inside the nanowire, as

obtained from the simulation. A good agreement with experiments was found for three of the

four configurations studied. Their results suggest that not only the light is locally enhanced in-

side the nanowire, but also, the local field might have a very different polarization with respect

to the macroscopic incoming field, resulting into a Raman signal strongly dependent on NW

diameter and excitation wavelength. Effectively, this leads a breakdown of the macroscopic

selection rules in bulk material.

In this thesis, we have studied the effect of the photonic properties of nanowires on the Raman

spectra, focusing on the local probing and change of the macroscopic Raman selection rules.

We have shown the possibility to use these photonic modes in Raman scattering to chemically

characterize selective areas inside the nanowire, by performing Raman measurements on

nanowire core-shell GaAs/AlxGa1−xAs with different wavelength excitations. The results are

reported in the first paper reproduced in this Chapter.
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A second paper is devoted to the study of the effects of the change of the local field with

respect to the incident field, on the macroscopic Raman selection rules. The dependence of

these effects on the environment is used to enhance the longitudinal optical phonon of GaAs

nanowires. This mode can be used for the characterization of the density and mobility of free

carriers.
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3.2 Probing inhomogeneous composition in core/shell nanowires

by Raman spectroscopy.

F. Amaduzzi, E. Alarcón-Lladó, E. Russo-Averchi, F. Matteini, M. Heiß, G. Tütüncüoglu, S.

Conesa-Boj, M. de la Mata, J. Arbiol, and A. Fontcuberta i Morral

Reproduced by permission of the of AIP Publishing. The paper was reformatted for uniformity

and the references integrated into the thesis bibliography, but otherwise the content remains

unchanged.

3.2.1 Abstract

Due to its non-destructive and its micro-spatial resolution, Raman spectroscopy is a powerful

tool for a rapid structural and compositional characterization of nanoscale materials. Here, by

combining the compositional dependence of the Raman peaks with the existence of photonic

modes in the nanowires, we address the composition inhomogeneities of AlxGa1−xAs/GaAs

core/shell structures. The experimental results are validated with complementary chemi-

cal composition maps of the nanowire cross-sections and Finite-Difference Time-Domain

simulations of the photonic modes.

3.2.2 Introduction

Semiconductor nanowires are filamentary crystals with a tailored diameter between few and

few hundred nanometers. Thanks to their geometry, they have inspired new avenues in a

large variety of applications [67, 10, 68, 69, 70, 71, 72, 73, 74, 75]. In principle, nearly any

material can be synthetized in a bottom-up manner in the nanowire form following the vapor-

liquid-solid mechanism or similar [76, 19, 77, 78, 79, 17]. Nanowire-based structures can be

further sophisticated by producing heterostructures in the axial, radial and branched direc-

tions [80, 81, 82, 83, 84, 85, 86, 87]. One of the most interesting challenges in the synthesis of

nanowires is the fabrication of ternary and quaternary alloys. Being the surface-to-volume

ratio enhanced, capillary forces, adatom diffusivities and surface energies amplify alloy segre-

gation processes [88, 89]. The composition control at the atomic and nanoscale of ternary and

quaternary materials in the form of nanowire has not yet reached maturity. In order for this

area to progress, techniques that enable a fast and accurate assessment of the composition

and its homogeneity are needed. Extremely precise but yet costly techniques such as atom

probe tomography provide three dimensional information on the nanowire composition down

to 0.01 % [90]. Less costly techniques include high resolution EELS (Electron Energy Loss

Spectroscopy) and EDX (Energy Dispersive X-Ray Spectroscopy) in a transmission electron

microscopy. One inconvenience of these techniques is that they destroy the specimen and

probe only a small fraction of it. An alternative non-destructive technique which allow multi-

ple nanowire sampling in a fast manner is the measurement of the phonon spectra by Raman

spectroscopy [91, 92, 26].
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The optical phonons in a ternary AlxGa1−xAs alloy exhibit a two-mode behavior. Two sets of

longitudinal optical (LO) and transversal optical (TO) phonons are observed. Their frequencies

vary continuously from those of GaAs(AlAs) to the impurity mode in the other end-member

binary AlAs(GaAs), respectively. The random-element-isodisplacement model proposed by

Chen et al. [45] explains this two mode behavior. Parayanthal et al. [91] used it to characterize

both the epitaxial layer and the interface of AlxGa1−xAs/GaAs heterojunctions, to obtain in-

formation on Al composition of AlxGa1−xAs/GaAs from the frequency position of the phonon

peaks. In this way Raman frequencies of phonon modes can be used to monitor the compo-

sition in a complicated multilayer structure, and that the relative Raman intensities can be

related to variations in composition [93].

Raman spectroscopy has also recently been used for the characterization of crystal phase

and chemical composition of III-V nanowires. [18, 26, 94, 95]. Due to the one-dimensional

geometry of the nanowire and the dielectric mismatch with the surrounding medium, the bulk

Raman selection rules are slightly modified leading to a strong dependence on the polarization

angle between the incident electric field and the nanowire axis [63]. In particular, the intensity

of the scattered mode is higher for incident and scattered light with polarization parallel to the

nanowire axis. This effect is often called antenna effect [96]. It is also observed in absorption

and luminescence studies [97, 98, 99]. Recently, resonant photonic effects leading to increased

absorption have been demonstrated in nanowires [64, 10, 100]. These optical resonances

in nanowires have shown to play an important role in the non-linear optical properties of

nanowires, such as Raman scattering and second harmonic generation [24, 66, 101, 102, 103].

As an example, Cao et al. [24] have demonstrated a strong enhancement of the spontaneous

Raman scattering from individual silicon nanowires, which depends in a very strong manner

on the diameter, excitation wavelength and incident polarization.

In this work we investigate the use of Raman spectroscopy to determine the chemical com-

position of GaAs/AlxGa1−xAs core/shell nanowires. As a consequence of the wavelength

dependence of photonic modes, incident light probes different regions of the structure in a

non-intuitive manner and Raman spectra strongly depend on the excitation wavelength. This

demonstrates the importance of theoretical simulations on the distribution of the electromag-

netic field inside the nanowires for the understanding of Raman spectroscopy experiments on

nanowires.

3.2.3 Experiment

The GaAs/AlxGa1−xAs nanowire core/shell structures were grown by molecular beam epitaxy

in a DCA P600 MBE machine on a 2-inch Si (111) substrate. The core was obtained by the

Gallium-assisted method as reported in Ref. [104, 105]. After stopping the axial growth, the

conditions were switched from axial to radial growth in order to obtain an AlxGa1−xAs shell

with different thickness and nominal Al composition of x=25%, 50% and 70%, as described in

Ref. [106, 89]. The AlxGa1−xAs shell was capped with 5nm of GaAs to prevent oxidation upon
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exposure to air. The exact growth protocol is reported in the Appendix A.

Compositional mappings of the nanowires were performed on cross-sections prepared by

microtomy [107, 88]. The structure and composition was characterized by combining high-

angle annular dark field scanning transmission electron microscopy (STEM) and Energy

Dispersive X-Ray Spectroscopy (EDS or EDX) in Figure 3.4. From the different contrast we

can distinguish between the GaAs regions (lighter contrast) and AlxGa1−xAs regions (darker

contrast). In the rightmost image, the contrast is not uniform because the cross-section lamella

was thinner than for the other samples. The embedding resin in the thinner lamellas are more

susceptible to beam-induced heating.Heating of the resin can result in slight tilting of the

sample and thus a distorted contrast due to additional backscattering. The nanowires exhibit a

hexagonal cross-section with side facets pertaining to the {110} family. Al inhomogeneities are

deduced from the presence of dark stripes at the corners. This has been previously observed

and reported in other works [89, 88, 108].

Figure 3.4 – High-angle annular dark field STEM micrographs of GaAs/Alx Ga1−x As core/shell
nanowires in cross-section. From left to right, x = 25%, 50% and 70%. The darkest regions
near the edges correspond to Al-rich areas. In each of the images, we indicate the Al content in
some representative regions as determined using energy-dispersive X-ray spectroscopy (EDX).

The Raman scattering measurements were performed on single nanowires at room tempera-

ture. The 488.0, 520.8 and 647.1 nm lines of an Ar-Kr+laser were used as excitation. The laser

light incident with a power of ≈ 300 μW was focused on the nanowire with a microscope objec-

tive with numerical aperture N A = 0.75. The scattered light was analyzed by a TriVista triple

spectrometer and detected by a liquid nitrogen cooled multichannel charge-coupled-device

(CCD) detector. The nanowires were lying on a silicon substrate and probed in back-scattering

geometry as depicted schematically in the inset of Figure 3.5. In order to obtain a high signal

intensity, the incident light was polarized along the nanowire axis. The scattered light was

not analyzed for its polarization. According to Raman selection rules, in the back-scattering

configuration on {110} surfaces the longitudinal optical (LO) phonon is forbidden, while the

transverse optical (TO) phonon is allowed. Finite-difference time-domain simulations of

the electromagnetic field distribution in the nanowires were performed with the simulation

package Meep [109]. We have considered the hexagonal geometry of the nanowires and the

different dielectric constants of the core and shell, taken from Ref. [110].

44



3.2. Probing inhomogeneous composition in core/shell nanowires by Raman
spectroscopy.

Figure 3.5 – Raman spectra of GaAs/AlxGa1−xAs core/shell nanowires with x = 25%, 50% and
70% by using three different excitation wavelengths. The dotted (solid) lines correspond to the
frequency position expected for the core (shell) modes. Silicon second order peak is indicated
by a star.[111]

3.2.4 Results and Discussion

Raman spectra of GaAs/AlxGa1−xAs core/shell nanowires with x=25%, 50% and 70% are re-

ported in Figure 3.5. Peaks corresponding to the optical phonons of the GaAs core and

AlxGa1−xAs shell are identified. The TO mode from the GaAs core is at 265 cm−1, in good

agreement with the bulk value [51]. Due to the large mass difference between Al and Ga, two

sets of alloy modes are given for the AlxGa1−xAs shell, whose frequency depends on the Al

content. The GaAs-like modes lie very close to those from GaAs, while the AlAs-like are within

the range of the 350 and 400 cm−1. The alloy-related peaks are broader than those from GaAs,

reflecting a higher degree of disorder. At a first glance, one can see that spectra of all samples

are dependent on the excitation energy. Among the differences we find changes in the relative

intensities between the peaks and the frequency position of the AlAs and GaAs-like modes.

We start reporting on the relative changes in the intensity of the TO and LO modes. As

mentioned above, following the Raman selection rules the LO-related peaks should not be

observed. In agreement with this, the LO mode from GaAs barely appears in all spectra, while

this is not the case for the alloy-related LO modes. The shorter-range nature of alloy modes can

contribute into a partial breaking in the selection rules. One should also consider that when

the excitation source is close to the energy band-gap of the material, the exciton becomes

the real intermediate state in the Raman process. This condition leads to resonant scattering

and the intensity is enhanced. The enhancement is more important for the LO phonons as a

consequence of the preferential interaction between the exciton and the longitudinal electric

field induced by LO phonons. In general, we can see a higher ratio of the LO/TO intensities for

conditions close to such a resonance. We can see this effect when measuring nanowires with

AlxGa1−xAs shells containing x≈ 25% and x≈ 70% with respectively 647.1 nm and 520.8 nm
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Table 3.1 – Optical phonon energies as obtained from fits to the spectra in Fig.3.5 and the
relative alloy composition obtained from the expression given by Adachi. The fitting error
was smaller than the experimental one (0.7 cm−1), except for the frequencies marked with a
star. In such cases, the signal was weak and the error in the Al content is calculated from the
fitting error. Otherwise it was obtained by using the experimental value. LVM stands for local
vibrational mode

λ 25% Al 50% Al 70% Al
(nm) Peak Mode Al% Peak Mode Al% Peak Mode Al%

(cm−1) (cm−1) (cm−1)

647.1 262.2 TO,GaAs-like 38±6 255.1* TO,GaAs-like 81±3 248.5* GaAs-like LVM
276.0 LO,GaAs-like 27±2 260.7 TO,GaAs-like 49±5 261.3 TO,GaAs-like 45±5
285.6 LO,GaAs-like 7±1 273.4 LO,GaAs-like 33±2 278.0 LO,GaAs-like 23±1
361.7 LO,AlAs-like 7±1 355.3 TO,AlAs-like − 285.6 LO,GaAs-like 7±1
373.5 LO,AlAs-like 26±1 372.0* LO,AlAs-like 23±3 356.9 TO,AlAs-like −

377.4 LO,AlAs-like 33±1
389.9 LO,AlAs-like 60±2

520.8 258.0* TO,GaAs-like 66±4 256.7 TO,GaAs-like 73±4 243.2* GaAs-like LVM
265.3 TO,GaAs core 265.9 TO,GaAs core 257.3 TO,GaAs-like 70±4
276.3 LO,GaAs-like 27±2 358.9 TO,AlAs-like − 265.3 TO,GaAs core
286.7 LO,GaAs-like 5±1 383.8 LO,AlAs-like 46±1 358.6 TO,AlAs-like −
358.0* TO,AlAs-like − 383.3 LO,AlAs-like 45±1
373.4* LO,AlAs-like 26±4 389.8 LO,AlAs-like 60±2

488.0 266.1 TO,GaAs core 265.0 TO,GaAs core 247.0* GaAs-like LVM
358.2* TO,AlAs-like − 257.3 TO,GaAs-like 70±4

265.7 TO,GaAs core
359.6 TO,AlAs-like −
363.7* LO,AlAs-like 10±1
389.9* LO,AlAs-like 60±2
393.6 LO,AlAs-like 71±2

wavelength, corresponding to 1.92 and 2.38 eV .

We now turn to the differences of intensity between the GaAs (core) and AlxGa1−xAs (shell)

related peaks, as well as to the frequency position of the latter when probing with different

excitation wavelengths. The Raman peaks were fitted with convoluted Lorentzian functions.

The corresponding frequencies extracted from the fits are reported in Table 3.1. For the AlAs

and GaAs-like peaks we also report on the corresponding aluminum composition, as obtained

from the expression given by Adachi [112]. Due to the flat dispersion for the AlAs-like TO

mode, we do not deduce any Al concentration from it.

Let us describe the spectra obtained for the nanowire with a 25% Al in the shell. When we

excite with 488.0 nm, only the TO mode of GaAs is present. The spectrum does not show the

existence of an AlxGa1−xAs shell. For longer wavelengths, other peaks appear, revealing the

existence of the shell. This is a non-intuitive result, as in thin films one would expect to excite

the parts closer to the surface with the shorter wavelengths. Exciting with 520.8 nm, two peaks

are observed: the most intense one corresponds to the TO mode of GaAs (core), while the
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less intense peak corresponds to a TO GaAs-like mode from the shell. There is an interesting

change of the spectrum for the excitation with 647.1 nm. Here the AlAs and GaAs-like modes

appear with a remarkably higher intensity. This increased scattering intensity is explained

by approaching the resonance conditions. In fact, this excitation wavelength corresponds

to the resonance condition of AlxGa1−xAs with x≈ 35%. The positions of the LO GaAs and

AlAs-like peaks are consistent with an Al composition of 26-27%, while the TO GaAs-like peaks

suggest a higher Al composition (38%). As a general trend, the Al content obtained from TO is

higher than LO. We attribute this to a slight difference in the dependence of the TO and the LO

GaAs-like modes as a function of the stoichiometry of the AlxGa1−xAs.

We turn now to the nanowires with 50% Al in the AlxGa1−xAs shell. Also here, the signal from

the GaAs core is mostly prominent when probed with the short wavelength (488.0 nm). The

spectrum obtained with 520.8 nm excitation contains information on the core and the shell.

In contrast, when we excite with 647.1 nm, mostly only the TO peaks related to the shell are

present. Here, the TO GaAs-like peaks suggest an Al concentration around 50%. Interestingly,

we observe a peak consistent with 33% Al when exciting with 647.1 nm. We attribute this to

the existence of inhomogeneities in the shell as reported in Figure 3.4 and in agreement with

what has been found in the past in similar structures.Indeed, previous studies [89] have shown

that there is segregation of Al in {112} apex of hexagonal section. Moreover, in the facets {110},

there is an additional variation in composition at the nanometer scale. Even though these

regions are in the order of few nanometers, the resonance conditions enable us to detect them

in an enhanced manner.

To complete the picture, we comment on the measurements performed on the nanowire with

an AlxGa1−xAs shell of x=70% Al. In addition to the variation of the signal intensity between

core and shell as a function of excitation wavelength, we also observe a marked change in the

frequency position of the shell related peaks. Since it is difficult to distinguish the GaAs-like

TO and LO modes, we consider not appropriate to extract the concentration from one of the

two curves, while it is possible to fit one peak, revealing their character of localized mode

of an isolated Ga atom in AlAs. The position of the LO AlAs-like peak is consistent with an

aluminium concentration x=70%, in the spectrum obtained with 488.0 nm wavelength, while

we find the LO AlAs-like mode corrisponding to 60% Al content when probed with 520.8 nm.

In fact this is consistent with the 520.8 nm wavelength being in resonance with an AlxGa1−xAs

of x≈ 65%. The spectra obtained with the 647.1 nm wavelength are richer in peaks. The

different observed peaks are consistent with different Al concentrations between 7% and

60%. Similar concentrations are obtained for both the GaAs and AlAs-like modes. As for the

previous nanowires, the different Al concentration are attributed to the fluctuation of the Al

composition in the shell.

Finally, we address the differences in the spectra as a function of the excitation wavelength by

considering the distribution of the photonic modes within the nanowire as a function of the

excitation wavelength. It is well-known that the Raman scattering intensity is directly linked

to the local internal electric field of the excitation [24]. In order to assess the distribution of
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Figure 3.6 – Simulated cross-sectional maps of the internal field energy density distribution
given by a top plane wave incoming onto GaAs/AlxGa1−xAs core/shell nanowire system, as
described in the manuscript. From bottom to top, the fields correspond to a excitation
wavelength of 488.0, 520.8 and 647.1 nm, respectively.

the radiation in the nanowires, we have performed Finite-Difference Time-Domain (FDTD)

simulations considering the exact hexagonal geometry of the nanowire and the dielectric

constants of the core and shell. We have simulated a plane wave polarized along the nanowire

axis. We have reported in Appendix A an animation of the electric field energy density as

a function of the time under periodic steady state. Figure 3.6 shows the cross-sectional

maps of the time-averaged electric field energy density obtained for a nanowire lying on a

Si/SiO2substrate during illumination from a top monochromatic light source. Clearly, light

distributes unevenly across the nanowire cross-section. The simplest case corresponds to the

nanowires with a 25% of Al in the shell. The simulations show a gradual increase of the field

in the shell by increasing the wavelength. However, the field in the core is always the most

intense. This is because of the small size of the nanowire. The simulations match well with

the experiments, where an increase of the peaks related to the shell is observed by increasing

the wavelength. We must note here, that for the 647.1 nm excitation probing the Raman,

intensities of the peaks related to the shell are also intensified because of the near resonance

conditions.

In the case of the nanowires with 50% Al shell, the light field is more intense in the core (GaAs)

for an incoming wavelength of 488.0 nm, while light becomes distributed around the shell

when using longer wavelengths. These results are in excellent agreement with our experiments,

where the core-related Raman signal mostly not present when exciting with the 647.1 nm

wavelength. Finally, in the nanowire with x=70% , there is no obvious trend. It must be noted
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that at short wavelength, the local field energy around the shell is confined at the edges of the

nanowire cross-section where the Al content is found the largest. This would be in agreement

with the observation of an increasing Al content from Raman spectra with excitation energy.

However for this sample the photonic effects are in harmony with an increase of the Raman

intensity of area with high Al content due to selective resonance. Consequently, we cannot

discern the two effects here.

3.2.5 Conclusion

As a conclusion, we have shown that a complete chemical characterization of core-shell

nanowire structures requires the probing with different wavelengths as well as simulations of

the photonic modes existing in the nanowires for the different excitation wavelengths. The

multi-spectral characterization enables the probing of different parts of the cross-section as

well as the local inhomogeneities in chemical composition.
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3.3 Tuning the response of non-allowed Raman modes in GaAs nanowires

Francesca Amaduzzi1, Esther Alarcón-Lladó1, Hubert Hautmann1, Rawa Tanta2, Federico

Matteini1, Gözde Tütüncüoǧlu1, Tom Vosch3, Jesper Nygard2, Thomas Jespersen2, Emanuele

Uccelli4 and Anna Fontcuberta i Morral1

3.3.1 Abstract

We report on the use of photonic resonances in Raman spectroscopy on single nanowires

for the enhancement of forbidden modes and the study of the interaction of phonons with

free-carriers. This is achieved by suspending nanowire over a trench and detecting Raman

scattered light with light polarized along the radial direction. Thanks to the photonic nature of

the light-nanowire interaction, light polarization inside the nanowire is modified. This results

in the excitation of LO modes, forbidden on {110} surfaces. We apply this new configuration to

the measurement of carrier concentration on doped GaAs nanowires. These results open new

perspectives for the study of the interaction of free-carriers or plasmons with optical phonons

in nanostructures.

3.3.2 Introduction

Raman spectroscopy is a widely used non-destructive technique used for the characterization

of phonon spectra in materials [113, 114, 115]. The position and intensity of the Raman modes

is related to the composition, crystal structure, lattice parameters and carrier density [92,

91, 56, 116]. From the birth of nanotechnology, this technique has also been applied to

the characterization of nanostructures [24, 117, 118, 119, 26, 18, 94]. In particular Raman

spectroscopy is a promising technique for the detection of free carriers in nanowires [120]. In

fact, contactless techniques, such as Terahertz [41, 121] and Raman [120, 33] spectroscopies,

have obvious technological advantages over traditional electrical measurements. In particular,

thanks to its local nature, Raman spectroscopy is a suitable tool for the detection of free carriers

in a single nanowire [33]. This is possible in polar semiconductors through the coupling of the

longitudinal optical phonons with the longitudinal plasma oscillations of the free carriers.

For nanowires lying down on a substrate, the LO mode cannot be accessed with backscattering

configuration. In fact, the intensity of Raman scattering follows certain selection rules. These

depend on the direction of propagation and polarization of incident light as well as on the

symmetry of the scattered mode [51]. Forward scattering geometry has to be set to access the

LO mode [33]. However, the forward scattering geometry is not straightforward to implement.

Alternatively, one could use resonant Raman scattering conditions to observe LO and LO-

coupled modes in backscattering conditions, provide one uses a laser energy close to the

bandgap [122]. On the other hand, it has been shown that the Raman scattering spectra follow

different patterns when the dimension of the crystal size becomes of the order of the excitation

wavelength [62, 64]. In particular, it has been shown that photonic resonances lead to the
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enhancement of the local electric fields, similar to Mie scattering in dielectric spheres, and

severely affect the response of the material [24, 65].

The intensity of Raman scattering follows certain selection rules. These depend on the di-

rection of propagation and polarization of incident light as well as on the symmetry of the

scattered mode [51]. In nanostructures such as nanowires, the presence of photonic modes

produces not only a local enhancement of the light intensity inside the nanostructure, but

also results in a modification of its direction and polarization [24, 123]. In an effective man-

ner, this leads the breakdown of the selection rules from a macroscopic point of view: the

Raman intensity of the modes is no longer directly linked to the characteristics of the incident

and scattered light nor from the incident facets. In this work we show how it is possible

to modify the macroscopic Raman selection rules by changing the photonic environment,

i.e. by suspending the nanowire. We demonstrate the enhancement of longitudinal optical

phonon mode, which is generally used for the characterization of free-carriers (plasmons)

in semiconductors. This work opens new avenues for the use of Raman spectroscopy as a

characterization tool in doped and high mobility nanowire heterostructures [124].

3.3.3 Experiment

In this work we use undoped and p-type doped GaAs nanowires obtained by molecular beam

epitaxy (MBE) by the gallium assisted method as described in the references [105, 30]. The

catalyst-free grown GaAs nanowires exhibit a hexagonal cross-section. According to the

growth conditions, we expect the nanowires to have a zinc-blende structure and with side

facets pertaining to the {110} family. The undoped nanowires present an average diameter

of 88 nm and an average length of 12 μm. For the p-type GaAs nanowires, different doping

concentrations were achieved by adding an additional source of Silicon during the axial

growth of the nanowires [33]. This silicon flux leads respectively to a total Si concentration

of 5.5×1018 cm−3, 1.4×1019 cm−3 and 4.0×1019 cm−3 in a thin film grown at the same rate.

The p-type nanowires present an average diameter of 150 nm and an average length of 15 μm.

The nanowires were mechanically transferred onto new substrates. Two different kinds of

substrates were used: bare silicon and 2 μm wide and 500 nm deep trenches opened on silicon

wafers with 1 μm thick thermal oxide fabricated by photolitography and etching processes.

Similar results were also obtained for trenches 200 nm high.

The trenches allowed the Raman scattering measurements on freely suspended nanowire

segments. Raman scattering measurements were performed on single nanowires at room

temperature. The 488.0 nm line of an Ar-Kr+laser was used. The laser with a power of ≈ 100 μW

was focused on the nanowire with a microscope objective with numerical aperture N A =
0.75. The nanowires were probed in back-scattering configuration. The polarization of the

incident light was controlled with a polarizer. All scattered light was detected regardless of the

polarization. The spectra of the scattered light were recorded by a TriVista triple spectrometer

and a liquid nitrogen cooled multichannel charge-coupled-device (CCD) detector.
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Three-dimensional finite-element in frequency domain simulations of the electromagnetic

field distribution inside the nanowires were performed with the simulation package COMSOL

Multiphysics.

3.3.4 Results and Discussion

Fig. 3.7 a and b show typical Raman spectra of a single GaAs nanowire for the two different

substrate configurations and for two different incident polarizations: parallel to the nanowire

axis and perpendicular (cross-polarization configuration).

Figure 3.7 – Raman spectra of GaAs nanowires a) on silicon and b) freely suspended with
incident light polarized perpendicular and parallel to the nanowire axis. Silicon second order
peak is indicated by a star [111]. Each spectrum is normalized to the first order Raman mode
of reference sample of Silicon. Plot depicting the TO intensity in parallel configuration c) and
the ratio ILO/IT O for perpendicular configuration d) of individual wires on silicon and freely
suspended.
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To avoid artifacts from slight differences in set-up alignment, we have adjusted the spectra

intensities to a Silicon reference. Two main peaks are identified at 265 cm−1 and 289 cm−1,

associated with the transverse optical (TO) and longitudinal optical (LO) phonons of GaAs,

respectively. These values are in good agreement with the reported bulk values for GaAs [51].

We do not detect any of the peaks related to the wurtzite phase [18], indicating a good crystal

purity. The scattering intensity is higher for the incident polarization parallel to the nanowire.

This is due to the much higher absorption cross-section for this configuration and also called

antenna effect [96]. The intensity of the TO mode is significantly higher than the LO mode. This

difference can be attributed to the fact that only the TO mode is allowed in the backscattering

configuration on {110} surfaces. Interestingly, the LO mode unexpectedly emerges when the

light is polarized perpendicularly to the nanowire axis. The observation of symmetry forbidden

peaks, with an increase of the peaks width, is often associated to the existence of impurities

and reduced crystal quality [125, 126]. Due to the small width of the TO mode and the absence

of polytypism, we expect neither of these effects to play a role here.

The Raman spectra obtained on the suspended GaAs nanowires present some different char-

acteristics. First, the spectrum obtained with light polarized along the nanowire axis exhibits

an extra peak slightly overlapping to the TO mode. We attribute this peak to the surface

optical (SO) mode, typically detected in nanowires due to the high surface to volume ratio [21].

Interestingly, also a significant increase of the Raman scattering intensity is observed when the

nanowire is suspended. We can observe that the intensity of the TO mode of the suspended

nanowire is about twice the intensity of the TO mode of the one on the silicon. The same trend

is observed with incident light polarized perpendicular to the nanowire axis. Finally, we see

how the ILO/IT O ratio is also larger for the suspended configuration than for the nanowire on

silicon, especially in cross-polarization configuration. In order to illustrate in a more represen-

tative manner the increase in intensity between two configurations, we have measured several

nanowires (Fig 2c/d). We can observe a clear trend, where suspending the nanowire not only

provides higher signal but also higher ILO/IT O ratio. This constitutes an optimal configuration

for the assessment of the phonon-plasmon interaction to assess the density of free-carriers.

In order to further illustrate the dependence of the Raman intensity on the scattering geometry,

polarization-dependent measurements were performed for the two different substrates, using

the scattering configuration as shown in Fig. 3.8a. In Fig. 3.8c and d polar plots of the TO and

LO intensities, normalized to the highest intensity value of TO mode of each plots, as well

as the ILO/IT O ratio are reported as a function of the polarization angle of the incident light.

As a reference, we show the polarization dependence expected from bulk material based on

the Raman selection rules for back-scattering configurations in Fig. 3.8b, mentioned before.

Only TO mode is allowed in the backscattering configuration on {110} surfaces. By comparing

the theoretical plot to the experimental, we can observe that the experimental TO polar plot

is slightly tilted with respect to theory, probably due to the antenna effect. Additionally, the

ILO/IT O ratio shows an increased value in the case of cross-polarization configuration.

As it will be illustrated in the following, the differentiated Raman response of the suspended
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Figure 3.8 – a) Schematic diagram of the experimental scattering geometry. b) Calculated
intensity polar pattern of the unpolarized scattered light as a function of the incident polar-
ization respect to the wire axis for backscattering configurations. c) and d) Polar plots for the
TO and LO modes and for ILO/IT O ratio intensities versus the angle of the polarization of the
incident light respect to nanowire axis for a wire lying on Silicon and on air respectively. The
lines are guides to the eyes.

nanowires can be ascribed to changes of local polarization within the nanowire core. This is

the consequence of the photonic nature of the light-nanowire interaction. It is well known

that the Raman scattered intensity is proportional Is ∝|êi ·R · ês |, where R is the Raman tensor

which depends on the crystal symmetry and (êi ) and (ês) are the polarization of the incoming

and scattered light respectively.

For zinc-blende GaAs, the Raman tensors and bases can be found in Ref. [51, 18]. Using the

bulk Raman selection rules, we have calculated the ILO/IT O ratio in function of the angle

β with respect to the direction of the light incident respect to the one in backscattering

(β=0◦)(Fig. 3.9). The scattered photon direction is maintained. In this case, the polarization

of the incident light is perpendicular to the nanowire axis. As expected, the LO mode is not

allowed in back-scattering (0◦). At 90◦ scattering LO is allowed and the ILO/IT O ratio becomes

1. In forward scattering this ratio achieves the highest value, 3.

In the body of the nanowire, the wavevector and the polarization of the local field can differ

significantly from the incident macroscopic ones [123]. We have calculated the polarization

and direction of the internal electric field inside the nanowires by using the software COMSOL

Multiphysics, with the electromagnetic waves module and the frequency domain model based

on Maxwell’s equations. We have considered a plane wave incident from the top and polarized

along and perpendicularly to the nanowire axis in the two cases considered here: lying on a

silicon substrate and freely suspended. In Fig. 3.10, the cross-sectional maps of the electric
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Figure 3.9 – Calculated LO/TO ratio using the Raman selection rules in function of the angle
drawn by the direction of the light incident from back scattering configuration (β=0◦) to
forward configuration (β=180◦).

field intensity squared inside the nanowire are presented. The cones inside the nanowire

represent the direction of the wavevector and the polarization. The electric field intensity

squared is color-coded.

We find that the distribution of the electric field intensity squared, the direction and polar-

ization of the light depends on the incident polarization and on the photonic environment.

For the two cases, the incident light polarized along the nanowire keeps to a high degree its

polarization inside the nanowire. In general, the direction of the light propagation remains

unchanged and one expects macroscopic-like selection rules. The situation is significantly

different in the case of polarization perpendicular to the nanowire axis. Here, the propagation

direction and the polarization change to a very high extent and depend on the environment.

The propagation direction tends to point from the facets to the center of the nanowire. Light

polarization inside the nanowire close to the facets is parallel to them and perpendicular to

the nanowire axis. Thus, for the nanowires lying on silicon, light enters the nanowire from all

facets, except from the one in contact with the substrate. With most of the light entering from

the side, the scattering is now at ∼90◦ scattering, for which the presence of LO is allowed. This

is consistent with the observed increase of the ILO/IT O intensity ratio with the cross-polarized

configuration. In the case of the nanowire freely suspended with perpendicular polarization,

light also enters from the bottom facet. As a result almost the forward configuration can be

achieved. With this one would expect a higher ILO/IT O ratio, as observed in the experimental

data, i.e. the increase in the ILO/IT O intensity ratio of wire freely suspended compared to the

one on substrate.

The existence of photonic resonances in nanowire structures can also explain the higher

Raman signal in the case of suspended nanowires. In this case, light is confined in the high-

refractive index material (for GaAs n=4.39 [127] at the wavelength of 488 nm).When the

nanowire lies on the silicon light can drain through the substrate, which has almost the same
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Figure 3.10 – Calculated electric field intensity squared maps for a wire lying on silicon and
freely suspended for light parallel and perpendicular to the nanowire axis. The cones represent
the direction (top) and the polarization (bottom) of the light.
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refractive index (n=4.37 [128] at the wavelength of 488 nm). This results in a lower light

absorption and extraction with respect to the suspended case.

Figure 3.11 – Raman spectra of p-type GaAs nanowires taken in backscattering configuration.
The polarization of the incident light is chosen perpendicular to the nanowire axis. The
nominal Si concentration of the different samples is 5.5×1018 cm−3, 1.4×1019 cm−3 and
4.0×1019 cm−3. Silicon second order peak is indicated by a star. The intensity of each spectrum
has been renormalized with respect to the TO.The dashed lines are fits of the coupled-mode
obtained using Eq. 3.

Finally we turn to the application of this method to the measurement of coupling the LO

mode with the plasmons generated by the free-carriers. This enables a quantification of the

mobility and carrier density. For this, we have used GaAs nanowires with three different p-type

doping concentrations which had been fully characterized in a previous study [33]. In this

case the nanowires have a slightly larger diameter: 150 nm. While one expects photonic effects

to play a less significant role in selection rules for larger diameters, this is still not the case.

Fig. 3.11 shows the Raman spectra of GaAs nanowires with three increasing p-type doping

concentrations. The measurements are performed in the best condition, thus with the light

polarized perpendicular to the nanowire axis. We have probed nanowires on a silicon substrate

and freely suspended to illustrate the potential of our technique. As expected, the LO signal

is much better observed when the nanowires are suspended. In the case of the suspended

nanowires (right), we observe a decrease of the intensity and a broadening of the LO mode,

in excellent agreement to the previous work performed on the same nanowires in forward

scattering configuration [33].
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For nanowires lying on silicon (left), we observe a low intensity of the LO mode, only for the

nanowire with the lowest doping concentration. For the other two samples it is not possible to

recognize the LO mode. We have fitted the LO mode shape and position from the spectra of the

suspended nanowires to determine the concentration and the mobility of free holes. For this,

we have considered the standard dielectric theory in the formalism of Hon and Faust [129].

The differential Raman cross-section from coupled phonon-plasmon modes has the form:

∂2σ

∂ω∂Ω
∝ (n(ω)+1)I [

1

ε(ω)
[
ε∞
4π

+2AχI (ω)− A2χI (ω)(1+ 4π

ε∞
χe (ω))]] (3.1)

where ε(ω) = ε∞ + 4π(χI (ω) +χe (ω)) is the dielectric function that is written as a sum of

the ionic χI (ω) and free carrier χe (ω) contributions, n(ω) the Bose-Einstein distribution,

A = ω2
T OC /(ω2

LO −ω2
T O) with C being the Faust-Henry coefficient and ω2

T O and ω2
LO are the

frequencies of TO and LO modes respectively. The ionic contribution to the susceptibility is

given by:

χI (ω) = ε∞
4π

ω2
LO −ω2

T O

ω2
T O −ω2 − iωΓi

(3.2)

with Γi the phonon damping constant.

For a concentration of carriers in the range considered here, the free-carrier susceptibility can

be calculated using the Drude model [130]:

χe (ω) =−ε∞
4π

ω2
p

ω2 − iωΓp
(3.3)

where ωp is the plasma frequency: ω2
p = 4π

ε∞
pe2

m∗ with p the free-hole concentrations and Γp is

the damping constant related to the mobility and the lifetime of the plasmon (Γp = 1
τ = e

μm∗ ).

We have summarized the input parameters for the coupled phonon-plasmon modes Raman

cross-section in Table 1.

From the expression of the density of states, the ratio between the concentration of light holes

and heavy holes is (mlh/mhh)3/2. As a result the light hole population is one order of magni-

tude smaller than the heavy holes. Most of holes are in the heavy-hole bands with an effective

mass value of 0.51me [132]. In spite of that, we have included the contribution of light holes

with effective mass of 0.082me [132] in the calculation of susceptibility. Because the main

scattering process is due to the presence of the ionized impurities [133, 134, 135], we consider

the heavy and light holes have a similar lifetime, so they can be fitted with the same damping

constant. The coupled-mode fits to the spectra are displayed in Fig. 3.11 as a dashed lines

superimposed to the corresponding Raman spectra. We extract the following free-hole con-

centrations: 5.5×1017 cm−3, 2.6×1018 cm−3 and 7.3×1018 cm−3 for the samples with nominal
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Table 3.2 – Input parameters for the coupled phonon-plasmon modes Raman cross section.

Symbol Description Value Ref.
ωLO LO,GaAs 288 cm−1 *
ωT O TO, GaAs 266 cm−1 *
Γi GaAs phonon damping constant 5 cm−1 *
C GaAs Faust-Henry coefficient -0.55 [131]
m∗

hh heavy hole effective mass 0.51 [132]
m∗

l h light hole effective mass 0.082 [132]
ε∞ GaAs high-frequency dielectric constant 10.9 [132]

* present work

Silicon concentrations of respectively 5.5×1018 cm−3, 1.4×1019 cm−3 and 4.0×1019 cm−3. If all

Silicon atoms are active, the nominal holes concentrations are : 1.9×1018 cm−3, 3.2×1018 cm−3

and 5.5×1018 cm−3 for the sample from the lowest to highest value of doping respectively,

which are in agreement with the values extracted by the coupled-mode fits.

As expected, the mobility of heavy (light) holes decrease from 47 (300) cm2/V sec to 12 (76)

cm2/V sec when the doping increases. As a result, we are able to probe the concentration and

free-carrier density without complication of forward-scattering in the optical set-up. This con-

figuration also enables a relatively straight forward measurement at cryogenic temperatures,

which is much more challenging in the case of forward-scattering.

3.3.5 Conclusion

In conclusion, we have shown how Raman selection rules in nanowires can be modulated by

making use of the photonic modes of freely-suspended nanowires. We have justified this in

terms of the changes in the direction and the polarization of the field inside the nanowires.

We have applied this method to the determination of carrier concentration and mobility in

p-doped GaAs nanowires. This opens the path to the contact-less assessment of high mobility

carriers in nanowire heterostructures.
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4 Determination of electronic proper-
ties with Raman spectroscopy

Semiconductor nanowires can be very attractive materials for certain nanoscale photonic and

electronic devices, such as lasers, detectors and solar cells. In order for these future technolo-

gies to become a reality, a good understanding of their electronic properties is fundamental.

Traditionally, the electronic properties are determined with electrical measurements. For this,

time consuming, costly and complex clean-room processes are required. In this regard, thanks

to its contact-free nature, micro-Raman spectroscopy is a powerful tool for the detection of

free carriers in polar semiconductor. This is possible thanks to the coupling of plasmon with

longitudinal optical modes.

In this chapter, we will assess the viability of the Raman spectroscopy as a non-destructive

technique to obtain carrier densities and mobilities of two different type of nanowires.

Firstly, after a review of modulation doping in bulk materials, the electronic properties of

modulation-doped GaAs-Al1−xGaxAs nanowires as a function of the temperature will be evalu-

ated. Next, we will study InAs1−xSbx nanowires and the coupling between its LO phonons and

carriers. In addition, we will investigate the dependence of the antimony content in InAsSb on

the Sb content, and assess the role of the temperature sample and of the wire-passivation in

the mobility.
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4.1 Modulation-doped structures

4.1.1 Introduction

The term "low dimensional system" refers to a system, where the charge carriers are confined

within a barrier potential in one or more dimensions, which restricts their free movement. One

of the major developments in the semiconductor history was the implementation of 2DEG

(2 Dimension Electron Gas). One of the most common system to obtain a 2DEG is the GaAs-

Al1−xGaxAs interface. The possibility to control the band gap by replacing Ga atoms with Al in

Al1−xGaxAs, without suffering from strain and dislocation at the GaAs-Al1−xGaxAs interface, is

a great advantage to grow heterostructures with such materials. In fact, Al1−xGaxAs exhibits

almost the same lattice parameter the GaAs. In this section, we address doped structures of

particular interest to electronics, the so-called modulation doped structures, which enable

the presence of a 2DEG. Fig. 4.1 shows a scheme of a typical band alignment in a GaAs-

Al1−xGaxAs 2DEG structure. Modulation doped heterostructures consist in general of a type I

heterostructures, where the material with the larger bandgap is doped at certain distance from

the interface, for example with donors. In order to maintain a constant chemical potential

throughout the two materials, electrons will flow towards the material with lower band gap.

This causes the band edge to bend at interface (band-bending) and thus, the electrons are

confined by an approximately triangular potential near the interface in the form of a two

dimensional electron gas. This 2D electron gas is physically separated from the ionized

impurities. This enables the increase in mobility thanks to the reduction of impurity scattering

mechanism. Moreover, the confinement in a triangular potential lead to energy levels called

energy subband.

The first reported work on GaAs-Al1−xGaxAs Modulation-doped GaAs-Al1−xGaxAs system [136]

showed an increase of the low-temperature mobility of GaAs. Fig. 4.2 shows how the im-

provement of the mobility has continued over the years, producing an increase of four order

Figure 4.1 – Diagram showing the bending of the conduction band for GaAs-Al1−xGaxAs
modulation doped heterojunction. The positions of the confined electrons and of the Si-
doped atoms are indicated.
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Figure 4.2 – Temperature dependence of the Hall mobility achieved during the years of the
history of modulation-doped structures. Reprinted from Ref. [137], with the permission of
AIP Publishing.

of magnitude for a thin film mobility. One of the major contributions for scattering at low

temperature is due to the ionized impurities unintentionally or intentionally implemented

in the material. Decreasing the sample temperature below 50K the effects of optical and

acoustic phonons scattering fall rapidly and the ionized impurity scattering becomes dom-

inant. In fact, the low-temperature mobility in modulation-doped system can increase by

orders of magnitude since the impurities content can be decreased indefinitely. Therefore,

at low temperature, samples of different quality can be discriminated easily. Contrarily, at

high temperature, polar optical scattering dominate the mobility and a dramatic decrease of

mobility happens reaching the value of bulk mobility.

In a modulation-doped system, additional scattering mechanism, which are absent in bulk

materials can be relevant. In the following, we review the scattering mechanisms that play a

role in these samples:

• Alloy scattering

Alloy scattering is present in Al1−xGaxAs system due to the alloy disorder. This mecha-

nism is not really relevant since electrons are confined in GaAs material and only the

tail of electron wave-function falls inside the alloy material.
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• Interface scattering

Interface surface roughness constitutes a scattering source because the periodicity of

the lattice is interrupted by it.

• Background impurities scattering

This scattering mechanism is due to the presence of unintentional impurities incorpo-

rated during the growth. This can be decreased growing cleaner sample.

• Remote donors scattering

Intentional dopants are located at certain distance from the carriers but they can still be

source of scattering. The influence of this scattering mechanism become larger reducing

the distance between dopants and carriers. Ideally, one could increase the distance to

increase the mobility limited by this scattering mechanisms, but the spacer thickness

cannot be increased indefinitely as this would reduce the electron density at the GaAs

interface.

Figure 4.3 – Significance of different scattering mechanisms in modulation doped system.
Reprinted figure with permission fromRef. [138]. Copyright 2014 by the American Physical
Society.

Fig. 4.3 highlights the relevance of the different scattering mechanisms in modulation doped

system GaAs-Al1−xGaxAs. Alloy and interface roughness scattering are considered irrelevant
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for extremely clean samples. Depending on the distance between dopants and carriers and on

the concentration of background impurities, the saturation of mobility at low temperature

can be related to the density of background impurity or remote donors scattering.

4.1.2 Inelastic light scattering in modulation-doped structures

Inelastic light scattering gives direct access to the elementary excitations of low-dimensional

systems. The collective excitations are the so-called spin density excitation (SDE) and charge-

density excitation (CDE). In the CDE the electrons are oscillating in phase. On the contrary, in

the SDE, electrons with opposite spins are oscillating out of phase. At microscopic level, the

charge density excitation consists of non-spin-flip transitions between subband states, cou-

pled by Coulomb interactions, whereas the spin density excitation consists in intersubband

spin-flip and non-spin-flip transitions, coupled by the exchange interaction [139]. The ener-

gies of the intersubband excitation are shifted from subband spacing by two effects associated

with electron-electron interaction: an upward shift for CDE by the direct coulomb interaction

and a downshift for SDE by the exchange interaction. Moreover, due to polarization selection

rules, it is possible to separate the charge density excitation and the spin density excitation in

different spectra, using different scattering geometries.

In 1978 Burnstein proposed the possibility to observe electronic excitations in a 2-dimensional

systems, under resonant conditions [140]. For the first time in modulation-doped GaAs-

AlGaAs heterostructures, the Raman scattering lines by 2 dimension electron system were

observed [141, 142]. Fig. 4.4 [143] shows spectra of modulation doped GaAs-Al0.18Ga0.82As

super lattice quantum well. The well thickness were 204 Å and 202 Å. The inset shows the

band bending of the conduction band and the subbands within the well. For this specific

structure, only the lowest subband is occupied by carriers. The Raman scattering geometry for

each spectrum is given by the Porto notation. The z direction corresponds to (001) normal to

the plane, while x and y correspond to the (110) and (1-1011̄0) respectively, both lying in the

plane of the layers. Both spectra are recorded in back scattering geometry with light directed

along z. Instead, the polarization of the light incident and scattered is different between the

spectra. In z(y x)-z spectrum, with the incident and scattered light polarizations perpendicular

to each other (polarized configuration), we observe a single peak. This is associated with the

spin-flip intersubband transition (SDE) between the lowest subband 0 to the higher subband

1, labeled as E01. In addition to the LO1 and LO2 phonons of AlGaAs, the depolarized spectrum

z(xx)-z displays two more modes, labeled as I− and I+. These modes (I− and I+) are assigned

to the coupled modes, resulting from the coupling between the LO phonon and the charge

density intersubband transition (CDE) from subband 0 to subband 1. This is similar to the

coupling between collective excitation of bulk electron plasma with the LO phonon in polar

semiconductor.

As we stated, the energy excitations differ from the subband spacing for exchange interaction

in case of SDE and for direct Coulomb interaction for CDE. Moreover, the coupling with the
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Figure 4.4 – Light scattering spectra of modulation doped quantum well GaAs-AlGaAs het-
erostructures. The lowest quantum-well states, the band bending and the fermi energy are
showed in the inset. Reprinted from Ref. [143], Copyright (1980), with permission from Elsevier

longitudinal optical phonon with CDE is an additional contribution in changing the energy

position of CDE. Because the exchange interaction effects are considered small, the SDE

excitation is assumed to be the spacing between subbands. A quantitative analysis for the

calculation of coupled modes energy have been used with success. Similar to the LO phonon

plasmon coupled mode described in Sec. 2.7 for a 3Dimensional plasma, the coupling between

collective intersubband excitations is determined by the dielectric function of the material.

For example, we report the analysis of couple modes, I− and I+, shown in the depolarized

spectra z(xx)-z of Fig. 4.4. Within this analysis, only the coupling with the lowest subbands

transition excitations are considered, since the other subbands are well separated in energy.

The coupled mode energies ω± are the solutions of :

1−
(
ω2

TO −ω2
±

ω2
LO −ω2

±

)
·
(

ω2
P

ω2
±−ω2

01

)
= 0 (4.1)

where ω01 is the intersubband energy, ωTO and ωLO the TO and LO phonon frequency respec-
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tively while ωP is the effective plasma frequency, which has the form of:

ω2
P = 8πNse2ω01L01

ε∞
(4.2)

where Ns is the 2 dimension concentration of electrons. L01 is the matrix element of the direct

Coulomb interaction of a length given by [144]:

L01 =
∫d1

0
d z

[∫z

0
d z′ξ1(z′)ξ0(z′)

]2

(4.3)

where ξ0(z) and ξ1(z) represents the envelope function of the two lowest states . The Coulomb

matrix element L01 is the adjustable parameter. The value obtained from the analysis of the

spectrum in Fig. 4.4 is 15 Å. This analysis, used in many studies of light scattering spectra

[145, 146, 143], provides values of L01 in good agreement with those calculated by means of

subband envelope function obtained from simple model calculation.

An interesting point is the relation of light scattering spectroscopy of intersubband excita-

tions to electronic properties of 2 dimensional systems. Pinczuk et al. [147] have outlined a

correlation between lineshapes in resonant light scattering spectra and the mobilities of 2Di-

mension electron system [147]. This study was carried out on four similar modulation-doping

GaAs/AlGaAs quantum well with different spacer thickness, the distance between the dopants

and the GaAs interface. As expected, Hall measurements showed an increase of mobility with

the spacer thickness. They found a decrease of the widths of the intersubband transition

observed from inelastic light spectra with the spacer thickness, and then with the mobility.

This work represents an indication that inelastic light scattering can be used to characterize

the electronic properties of modulation-doped GaAs/AlGaAs systems.

4.1.3 Nanowires with a modulation-doped structure

Inspired from the structures that led to record mobilities in planar III-V samples, modulation

doping in nanowire radial heterostructures have been proposed. Fig. 4.5 shows the scheme

of modulation doped nanowire radial heterostructures. A GaAs core nanowire is covered by

an Al1−xGaxAs shell, which presents at certain distance from the core a δ Silicon layer. An

additional GaAs capping layer is grown to prevent oxidation. Electrons coming from the Si

impurities migrates to the lower energy potential of GaAs core.

Theoretical calculations were performed by Bertoni et al. [148]. Simulating the charge carrier

distributions, they found different localization and symmetries of it in function of doping

density and gate potential. In particular, the 1D electron channel formed at the edge of the
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Figure 4.5 – Typical scheme of modulation-doped nanowires

core could give a better performance of such structure. For this reason, a great interest has

been stimulated in the growth and characterization of them.

The doping in modulation-doping nanowire structures has been more challenging to realize

than the one in layered samples, due to the inhomogeneous doping and compensation in

(110) surfaces, which constitute the nanowire facets [149, 30]. In the last years, the growth of

such structures have seen further progresses [150]. The assessment of the electron density

and mobility is necessary for these structures. Contact-less techniques, such as Terahertz

and Raman spectroscopy are suitable for the detection of electronic properties as electrical

contacts are especially challenging in this kind of structure.

To the best of our knowledge, the use of Raman scattering to study modulation doping

nanowires is only reported by Funk et al. [124]. They synthesized a different type of modula-

tion doped core-shell nanowires as reported in Fig. 4.6. This structure presents a multishell,

resulting in the confinement of electrons in the hexagonal-shaped coaxial quantum wells in

the shell, and not in the core as for the typical modulation-doped. Since in such a structure

electrons are confined in a quantum well, we can suppose they have lower mobility than

electrons confined in the core of the typical structure depicted in Fig. 4.5. Indeed, we know

that the mobility limited by interface scattering is predicted to be higher in a triangular shaped

quantum well formed by AlGaAs/GaAs single heterojunction, as in the case of the confinement

in the core, than in a square-shaped quantum well formed by AlGaAs heterojunction, as for

the multishell nanowire structure [151].

Fig. 4.6 shows the density distribution of electrons, as obtained from self-consistent simula-

tions by Funk et al. [124]. These simulations show a two-dimensional confinement at the facets

and a one-dimensional at the corner. Authors performed polarized resonant inelastic light

scattering measurements on modulation doped and the correspondent undoped structures.
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Figure 4.6 – Structure of the modulation doped core-multishell GaAs-AlGaAs with the distribu-
tion of electrons in the quantum well shell. Inelastic light spectrum of a single modulation
doped multishell nanowires in the polarized configuration and calculations of Spin Density
Excitations. Reprinted with permission from Ref. [124], Copyright 2013, American Chemical
Society.

The two different back-scattering geometries used in the work were the polarized geometry

(polarization of light incident parallel to the nanowire axis and the polarization of the light

scattered perpendicular to it), and the depolarized one (polarizations of light incident and

scattered both parallel to the nanowire axis).

Compared with undoped nanowires, Funk et al. observed additional broad features in both the

polarized and the depolarized spectra. Fig. 4.6 shows the spectrum obtained in the polarized

configuration for modulation doped structure. In this case, authors associated the broad

peaks observed in the polarized spectrum to the spin density excitations, whereas the peaks

observed in the depolarized spectrum were linked to the charge density excitations. They also

performed calculations of the energies and intensities of SDE and CDE, by considering them

as transitions from occupied to unoccupied subband states. Funk et al. conclude their work,

by presenting the best match between simulations and data of the SDE and CDE, represented

for SDE by the red line in the graph of Fig. 4.6, which is used to estimate the carrier density

and the mobility.

However, though the work produced by Funk et al. is qualitative respectable, it is my opinion

that the conspicuous mismatch between the simulations and data shown in Fig. 4.6 cannot

provide a reliable quantitative evaluation of carrier density and mobility.

Moreover, Boland et al. [42] presented first Terahertz measurements on modulation doped

nanowires, found a higher lifetime for modulation-doped sample respect to GaAs. Here, we

compare electronic properties of GaAs-Al1−xGaxAs radial heterostructures nanowires with

the corresponding n-type modulation-doped nanowires by LO phonon-plasmon coupled

modes Raman scattering. The modulation-doped sample is the same investigated by Boland

et al. [42].
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4.1.4 Simulations

In order to design the structure of the nanowires, we have simulated the electron density of

modulation doped structure by solving Poisson and Schrödinger self-consistently calculations

with the software nextNano. Fig. 4.8 shows the electron density as a function of doping layer.

At low doping level (2 · 1018 cm−3), the electron distribution is homogeneous in the core.

Increasing the doping, the electrons show localization effect. In particular, at higher doping

level, charges have an isotopic cylindrical distribution, with a localization at GaAs/Al1−xGaxAs

interface. At highest doping level (7·1018 cm−3), a 6-fold symmetry 1D gas at the core hexagonal

edges is observed. The absolute value of electron density also increases with the doping

concentration. In order to have a density concentration of∼ 1017 cm−3, a doping concentration

of 5 ·1018 cm−3 is necessary.

Ketterer et al. [30] showed that compensation effects affect doping concentration of < 3 ·
1018 cm−3, limiting the free carrier concentration. Another parameter that changes the elec-

tron density is the the distance (d) between the doped layer and the GaAs/Al1−xGaxAs interface.

We have to consider that increasing this distance a high mobility could be reached, but a de-

crease in carrier concentration occurs. To balance this effect, a distance of 15 nm is used [138].

Figure 4.7 – Simulation of the electron density in modulation nanowires with a doping con-
centration of 2·1018 cm−3, 4·1018 cm−3 and 7·1018 cm−3.

4.1.5 Experimental

The GaAs-Al1−xGaxAs radial heterostructures nanowires were grown using an MBE machine

with vapor-liquid-solid mechanism for the core and vapor-solid mechanism for the shell.

Vertical GaAs nanowire grown on a p-type Si wafer presents a diameter of 50 nm. Then, a

40 nm of Al0.33Ga0.67As is grown around the GaAs core. Finally, the shell is capped with 5 nm

of GaAs layer to prevent the oxidation of the wire in air. Modulation-doped nanowire presents

a silicon doping layer at a distance of 12 nm from GaAs/AlGaAs interface, with 4·1018 cm−3

dopant density. With this structure, simulations show that electron density is in a three
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dimensions regime (fig. 4.8).

Raman scattering measurements are performed in back-scattering geometry configuration

under 520.8 nm excitation wavelength laser. The laser beam with a power of 200 μW was

focused through an objective of N.A. 0.75 on the growth sample with free-standing nanowires.

Measurements at different temperature of the sample are performed using a temperature

controlled helium cryostat. Details of the set-up for Raman experiments can be found in

Section § 2.8. The polarization of the incident light, which is perpendicular to the NW axis, is

controlled, whereas the polarization of the scattered light, which is in the same plane, is not

investigated. According to Raman selection rules, in the back-scattering configuration from a

{111} face of a zincblende crystal (up-configuration) both transverse and longitudinal optical

modes are allowed, even if the TO mode is more pronounced than the LO one. The intensity

of TO and LO modes are independent on the incident polarization.

4.1.6 Results

Fig. 4.8 shows spectra of modulation-doped and undoped GaAs-Al1−xGaxAs radial heterostruc-

tures nanowires recorded at room temperature and at 14 K. We remind that Raman spectra

of Al1−xGaxAs show a two mode behavior, (see Section § 2.2) with two different set of modes,

GaAs-like and AlAs-like modes. In the spectral range reported here, we identify peaks related

to the pure GaAs (TO and LO) and the GaAs-like peaks (TO and LO) of the shell. The four

spectra present significant differences. We distinguish difference in the frequency position

and in the relative intensities of the peaks.

We start by reporting the differences of the spectra recorded at different temperature. In the

spectra at low temperature, the most dominant peaks are the GaAs TO and GaAs-like TO and

LO phonon modes, respectively at 269 cm−1, 263 cm−1 and 280 cm−1 . The alloy related peaks

exhibit a broad nature, due to the alloy disorder. In addition, we find the contribution of the

GaAs LO peak at 293 cm−1. The spectra at room temperature is dominated only by GaAs TO

mode at 264.5 cm−1.

At first glance, we observe that the peaks shift to lower energies respect to the spectrum

of lower temperature. This is a common mark when decreasing the temperature and is a

signature of the variation in lattice parameter. We can also observe differences in intensity

between the GaAs TO mode and Al1−xGaxAs related modes: for low temperature the relative

intensities of the shell for spectrum recorded at low temperature is higher than the one at

room temperature. This can be explained with the fact that decreasing the temperature, the

band-gap of Al0.33Ga0.67As is approaching the near resonance condition with the 520.8 nm

wavelength.

We turn now to the differences due to the presence or not of doping in the shell. The presence

of doping affects only the spectra at higher temperatures. We can observe a decrease and

a broadening of the GaAs LO mode for the spectra of modulation-doped nanowire. The
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Figure 4.8 – Raman spectra of un-doped and modulation-doped nanowires recorded at 14 K
and at room temperature.

decreasing of the LO phonon peak can be attributed to the LO phonon-plasmon coupled

mode due to the presence of carriers. In bulk material, for n-type GaAs material two different

coupled modes are expected. In order to explain the absence of the low frequency coupled

mode, we have to consider a relevant reduction of the electron mobility for the material in

nanowire form. At low electron mobilities in n-GaAs, similar spectral features, i.e. only one

damped coupled mode, is expected as in p-type GaAs material [152].

We calculate the Raman line shapes by using the fluctuation-dissipation formalism of Hon and

Faust and the Drude model (see Section § 2.7 and Subsection § 3.4.4 for details), with the aim

to evaluate the carrier concentration and the mobility. Then, the calculated Raman lineshapes

are fitted to the experimental Raman spectra. For the TO of GaAs and the alloy-related peaks,

a Lorentzian profile is used. For the fit, the input parameter depending on the temperature

(phonon frequency and phonon damping constant) are taken from Ref. [153] and the carrier

concentrations Ne and the electronic damping constant Γe , both of which enter the electric

susceptibility of the electron gas, are taken as free parameters.

In Fig. 4.9 and Fig. 4.10, we plot the electron concentration and the mobility extracted from

the fits as a function of the temperature. The observed temperature dependence of electron

concentration for modulation doped nanowires exhibit an abrupt increase beyond 14 K,

followed by a less sharp increase from 50 to 293 K. Contrarily, the electron concentration of

the undoped nanowires slightly increases within all the range of temperature, even if its value

is lower than the modulation doped-sample. The increase of the carrier concentration for
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Figure 4.9 – The evolution with temperature of the electron concentration of undoped and
modulation-doped nanowire extracted from the Raman fits.

Figure 4.10 – The evolution with temperature of the electron mobility of undoped and
modulation-doped nanowire extracted from the Raman fits.

modulation-doping sample at low temperature is due to the temperature-induced ionization

of dopants atoms in Al0.33Ga0.67As shell. The high value of carrier density respect to the

expected intrinsic one for the undoped sample could be explained by the lightly presence of

spurious impurities.

Fig. 4.10 shows the evolution of the mobility in function of the temperature for the undoped

and doped nanowires. For both the samples, the mobility decreases moving from low to

high temperature. At 14 K the mobility of modulation-doped nanowire is comparable with

the undoped one. Then, we can observe an abrupt decrease in the mobility at 50 K for

modulation doped nanowire with increasing temperature. On the contrary, the mobility of the

undoped nanowire does not show a transition, and decreases slightly. Among the scattering
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mechanisms, the phonon scattering gives rise to a decrease of mobility with the temperature.

However, the low mobility found here cannot be explained by this typical bulk scattering

effect.

Interestingly, we observe a decrease of mobility in function of carrier concentration, which

could suggest that the main scattering mechanism is linked to carrier-carrier interaction.

However, the low mobility recorded at low temperature indicates that the scattering at interface

of this structure plays a role in the degradation of the electron mobility. Moreover, we can

consider that the band-edge profile changes with the temperature. This gives rise to a change

of the density-distribution inside the core. We have performed simulations of electron-density

profile at different temperatures.

Fig. 4.11 shows the line-scan of the simulated electron density distribution for different tem-

peratures. In addition to an increase of the carrier concentration, we observe a shift of the

density-distribution from the center of the core to the edge at increasing temperature. This

leads to higher possibility of the scattering with the interface, and could result in a decrease of

the mobility with the temperature.

Figure 4.11 – Horizontal linescan of the electron density distribution through the nanowire
center for different temperature, assuming a nominal doping concentration of4·1018 cm−3 and
an activation energy of 6 meV. [154]. The vertical lines represent the GaAs/AlgaAs interfaces.
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4.2 InAs-InAsSb nanowires

4.2.1 Introduction

As we stated in the Introduction chapter, III-V nanowires are suitable candidates for the

future electronics, optics and quantum devices [155, 156]. Among them, InAs nanowires

have attracted particular interest due to their properties, such as small band-gap and high

mobility [157, 158]. Nanowires can grow either in zinc-blende either in wurtzite structures

or, more often, in a mixture of the two. The presence of different polytytes modify the elec-

tronic properties [159, 160, 161]. Pure ZB or WZ phases InAs nanowires can be grown us-

ing gold as catalyst [162, 163]. To avoid metal contamination, a gold-free growth is desir-

able [164, 165]. The incorporation of Sb could represent one pathway to achieve highly

uniform nanowires [166, 167, 168]. The presence of Sb could change the electronic properties

of nanowires. Here, we use Raman spectroscopy by LO-phonon plasmon coupled mode to

study the effect of antimony on the electronic properties of InAs1−xSbx nanowires.

4.2.2 Raman scattering by LOPPCM in InAs and InAs1−xSbx bulk material

After the discovery of LO phonon-plasmon coupled mode (LOPPCM) By Mooradian and

Wright [31], many studies are reported on this interaction in n-type and p-type GaAs. Literature

on Raman scattering by LO phonon-plasmon coupled modes is less frequent in InAs. First

Raman results were reported by Patel and Slusher [169] for n-InAs sample. They observe the

low frequency coupled mode branch below the LO phonon mode. Raman studies on n-InAs

were extended by Buchner and Burnstein [170] to higher carrier concentration. They were

able to observe only one mode in the range between LO and TO mode,as shown in Fig. 4.12.

Only later, Li et al. [171] could observe also the presence of the high frequency mode in n-type

InAs sample with carrier concentration up to 4 ·1019 cm−3.

To the best of our knowledge, no reports of LOPPCM scattering in InAs1−xSbx exist. However,

Raman scattering by coupled modes are widely studied in other different ternary alloys [172,

173, 174, 175, 176]. As explained in Sec. § 2.2, usually III-V ternary alloy shows the two-mode

behavior, with two set of optical phonon frequencies close to the ones of the sublattices. This

is also the case of InAs1−xSbx [177]. We also show the two-mode behavior of phonon modes

for a ternary alloy. In presence of carriers, the presence of two longitudinal phonon modes

gives rise to an additional coupled mode (L0) in addition to the low (L−) and the high (L+)

frequency modes. This could be observed in Fig. 4.13, where three modes are observed in

Al1−xGaxAs [172]. The character of these modes depends on the carrier concentration. As for

the binary compounds, at low concentration regime L− has a plasmon-like character and

L+ a phonon-like one. In the opposite limit, they present a reversed character. Contrarily

L0 is confined between the frequency gap of the two optical phonon branches and it has

plasmon-like character in both limits, i.e. high and low carrier concentration. It presents

plasmon-like behavior only when it exhibits a frequency close to the plasmon.
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Figure 4.12 – Raman spectra in back scattering geometry of n-type (100) InAs with different
doping concentration. Reprinted figure with permission from Ref. [170]. Copyright (1974) by
the American Physical Society.

4.2.3 Theory of LO phonon plasmon coupled mode in a ternary alloy

We turn now to the description of the theory of coupling of the longitudinal optical modes with

plasmon for binary compounds. For ternary alloy, the Raman cross-section from Coupled-

modes scattering has to consider the contribution of the two different sublattices. Considering

the standard dielectric theory in the formalism of Hon and Faust [129], the differential Raman

cross-section from coupled phonon-plasmon modes of a doped two mode ternary alloy

AxB1−xC has the form [116]:

∂2σ

∂ω∂Ω
∝ (nω+1)ℑ

{ −1

ε(ω, x)

[
1

4π
+2

A1

ε∞,1
χ1(ω, x)+2

A2

ε∞,2
χ2(ω, x)

−4π

(
A1

ε∞,1
− A2

ε∞,2

)2

χ1(ω, x)χ2(ω, x)

−
(
1+ 4π

ε∞(x)
χe (ω)

)
ε∞(x)

[(
A1

ε∞,1

)2

χ1(ω, x)+
(

A2

ε∞,2

)2

χ2(ω, x)

]]}
(4.4)

where nω is the Bose-Einstein distribution, ε(ω, x) = ε∞(x) +4π(χ1(ω, x)+χ2(ω, x)+χe (ω)) is

the dielectric function of the alloy, with ε∞(x) = xε∞,1+ (1−x)ε∞,2 the average high-frequency

dielectric function, χi (ω, x) = xi
ε∞,i

4π

(ω0
LO,i )2−(ω0

T O,i )2

(ω2
T O,i−ω2−iωΓi )

the i-sublattice contribution to the sus-
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Figure 4.13 – Raman spectra of n-type Al1−xGaxAs with x= 0.75. The three coupled mode
are labeled with L1, L2 and L3. The LO GaAs-lke and AlAs-like are labeled with L01 and L02,
respectively. Reprinted from Ref. [172], with the permission of AIP Publishing.

ceptibility, where Γi is the phenomenological damping constant, ω0
T O,i and ω0

LO,i are the

frequencies of TO and LO modes of the pure end-member compounds, whereas the ωT O,i

is the TO phonon frequency of the alloy i-sublattice, χe is the electronic susceptibility con-

tribution, and Ai = C 0
i

ω2
T O,i

(ω0
LO,i )2−(ω2

T O,i )2 with C 0
i being the Faust-Henry coefficient for the pure

member compound.

We calculate the electronic susceptibility using the Hydrodynamical model [60]:

χe =−ε∞
4π

ω2
p

ω2 −〈v2〉q + iωΓe
(4.5)

where ωp is the plasma frequency (ω2
p = 4π

ε∞
Ne2

m∗ ), Γe is the damping constant related to the life-

time of the plasmon,〈v2〉 the electron mean square velocity and q the wavevector. Considering
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the low band gap energy of InAsSb, we expect that the non-parabolicity of the conduction

band is not negligible. For this reason, we use the Kane two-band model to calculate the

electronic dispersion [60]:

E(k) = EG

2

[√
1+ 4

EG

ħ2k2

m∗ −1

]
(4.6)

We summarized the input parameters for the LOPCM line-shape model discussed above for

InAs1−xSbx with x = 0.35, in Table 4.1.

Table 4.1 – Input parameters for the LOPCM line-shape model for InAs0.65Sb0.35. a Present
work; b Reference [171]; c Reference [116]; d Reference [178];

Symbol Description Value

ω0
LO,In As LO,InAs 235 cm−1[a]

ω0
T O,In As TO,InAs 214 cm−1[a]

ω0
LO,InSb LO,InSb 191 cm−1[b]

ω0
T O,InSb TO,InSb 180 cm−1[b]

ωT O,In As TO,InAs-like 211 cm−1[a]
ωT O,InSb TO,InSb-like 180 cm−1[b]
ΓIn As InAs phonon damping constant 4 cm−1[c]
ΓInSb InSb phonon damping constant 12 cm−1[c]
C 0

In As InAs Faust-Henry coefficient -0.61[c]
C 0

InSb InSb Faust-Henry coefficient -0.36[c]
m∗(x) electron effective mass 0.023-0.039x+0.03x2[a]
ε∞,In As InAs high-frequency dielectric constant 12.2[c]
ε∞,InSb InSb high-frequency dielectric constant 15.7[c]

EG (x) Energy bandgap 0.41− 3.410−4T2

210+T −0.876 V+
+0.70x2 +3.4∗10−4xT(1−x) eV [d ]

The position of the coupled modes depends not only on the carrier density and the mobility

but also on the alloy concentration (x). In Fig. 4.14 the maxima of the Raman lineshapes of

coupled mode are plotted versus the concentration of electrons fixing the x=0.35 and the

mobility at 14000 cm2/(Vs). The graph shows the trend of the high, middle and low frequency

modes as a function of the concentration of electrons.

4.2.4 Experiment

Raman measurements are performed both on pristine and Al2O3 coated InAs1−xSbx nanowires.

InAs1−xSbx nanowires studied here are grown vertically with a catalyst-free growth process. In

order to obtain InAs1−xSbx nanowires with different Sb concentration, the antimony flux is

changed meanwhile the rest of the growth parameters are taken constant. Details of the growth

process are reports in the paper of Potts et al. [179]. Increasing Sb concentration, nanowires
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Figure 4.14 – Coupled-modes frequencies versus electron density in InAs1−xSbx with x =0.35.
The dotted lines indicate the frequencies of InAs-like and InSb-like TO and LO modes.

showed an increase of the diameter and a decrease of the length. Moreover, regarding the

crystal structures, an increase of antimony showed a significant decrease in the density of

defects. Raman measurements were done using the 488 nm line of Ar-Kr+ for excitation. The

laser with power of 250 μW was focused on each nanowire with a microscope objective with

numerical aperture N.A.=0.75. The scattered light was collected by a TriVista spectrometer

and detected by a CCD camera. The measurements were realized in back-scattering geometry

with the nanowires suspended over a trench, in order to enhance the response of the longi-

tudinal optical phonon mode [180]. The temperature measurements are performed using a

temperature controlled helium cryostat.

4.2.5 Effect of Sb concentration

Fig. 4.15 shows the Raman spectra of pristine InAs and InAsSb with different percentage

of antimony nanowires. In the spectra, LO and TO phonons frequencies, as well as the SO

(surface optical modes) typically detected in nanowires, are indicated. In the case of InAs, TO

and LO modes of zinc-blende phase are present, and no modes related to wurtzite crystal

phase are observed. In the case of InAsSb, the position of the TO and LO modes are consistent

with the composition, and follow a two mode model of ternary alloys. Raman modes of InAs

and InSb are present, being the position and intensity weighted by the composition.

The Raman spectra show additional spectral features in the LO region for the InAs and in the

InAs-like TO mode region for InAs1−xSbx, which are not related to the composition, crystal
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Figure 4.15 – Raman spectra of InAs1−x Sbx nanowires for x=0, 0.16,0.21 and 0.35. Black lines
show the convolution of the ternary modes with a Lorentzian profile and the coupled modes
lineshape obtained by fitting the model. Red lines show the coupled modes obtained by the
fitting.

phase, or shape of the nanowires. We attribute these additional peaks to the interaction of the

carriers with the polar phonons. With free carriers, the unscreened LO mode and plasmon

mode are replaced with coupled modes with mixed character. The coexistence of the peak

at the LO phonon frequency and the coupled modes is observed in bulk material [181]. The

peak LO-phonon frequency is associated from scattering of unscreened LO phonon in the

low-density carrier area, usually the depleted region near the surface. Contrarily, the coupled

modes originate from the region where the carrier concentration reach the bulk value.

The frequency position and the width of the coupled modes are related to the plasmon (carrier)

density and the lifetime (mobility). We fitted the whole spectra by modeling both the modes

related to the composition and to the presence of free carriers. A Lorentzian profile was used

for the TO and LO modes, whereas the line shape of the coupled modes included the effect

of damping (mobility) with the model described above. The electron concentration and the

mobility extracted from the fits are reported in Fig. 4.16 versus the concentration of antimony.

In general, the mobility and of the carrier concentration are found to be higher for antimony

containing wires.

In order to understand the origin of the carriers and the region where carriers are present, a

study as a function of the temperature and as a function of passivation with Al2O3 is performed.
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Figure 4.16 – Electrons concentration and mobility extracted from the fits of the Raman
lineshapes of coupled modes at room temperature for InAs1−x Sbx (cf. Fig. 4.15). The error in
the mobility is the fitting error, instead the error in electrons concentration is calculated by
using the experimental error(1 cm−1)

4.2.6 Effect of the temperature

Fig. 4.17 shows normalized Raman spectra of InAs and InAs1−xSbx with x=0.35 recorded at

temperature in the range between 14-293 K range. At first glance, we observe that the different

modes broaden and shift to lower frequencies as temperature increases. It is expected that with

the temperature Raman shift, width and intensities vary. The common mark when increasing

the temperature are the broadening and the shift of Raman lines: for Stokes scattering a blue

shift is expected and a red shift for Anti-Stokes lines [182]. The anharmonic forces in the

crystal lattice and the thermal expansion of it can explain this effect.

In the spectra, we observe also the features associated with the presence of carriers for all the

temperatures both for InAs and InAs1−xSbx with x=0.35. The coupled modes also change their

position and width with the temperature. In order to discriminate the effect of the temperature

in the Raman scattering itself with the changes of the carries and mobility as a function of the

temperature, the model presented above is used. The input parameters depending on the

temperature, i.e. phonon frequencies and ionic damping constant, are taken into account.

The carrier concentrations as function of the temperature are plotted in Fig. 4.18 for InAs and

InAs0.65Sb0.35, respectively nanowires.

As we can observe, the carrier concentration in InAs and InAs0.65Sb0.35 nanowires was almost

constant within the range of temperatures, even if it differs by one order of magnitude between

the two samples. As a consequence, impurities or surface states, from which carriers come
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Figure 4.17 – Raman spectra of InAs and InAs1−xSbx with x=0.35 recorded at temperature in
the range between 14 K and 293 K.

from, are completely ionized. The temperature dependence of mobility is also reported

in Fig. 4.18. InAs nanowire shows a characteristic temperature dependence of mobility. It

initially increases, reaching the maximum at ∼ 50 K and then gradually decreases. Contrarily

InAs0.65Sb0.35 nanowire shows a negative slope within the all range of temperatures.

4.2.7 Effect of surface passivation

Fig. 4.19 shows a comparison of the Raman spectra obtained on alumina coated and uncoated

InAs and InAs0.65Sb0.35 nanowires at temperature of 14 K and 293 K. At first sight, we can

observe a downshift of the surface optical modes respect to the uncoated modes. In fact, SO

mode position depends on the dielectric constant of the medium surrounding the wires and

the diameter.

For InAs0.65Sb0.35 nanowires, the spectra do not show any other differences. Both samples
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4.2. InAs-InAsSb nanowires

Figure 4.18 – Electron concentration and mobility extracted from the fits of the Raman
lineshapes of coupled modes reported in Fig. 4.17 for different temperature for InAs and
InAs0.65Sb0.35.

exhibit a similar concentration and mobility of the electrons, as reported in Fig. 4.20. For

InAs nanowires, in addition to the shift of the SO position, we observe that the high frequency

coupled mode disappears. This peak is not visible also outside the range reported here. This

suggests that a decrease of carriers occurs.In fact at lower concentration of carriers, coupled

modes are not detected in Raman spectra.

4.2.8 Discussion: origin of carrier and scattering mechanism

We interpret the presence of the unscreened LO mode and the coupled modes, in both InAs

and InAs1−xSbx nanowires, with the existence of two regions. A first region with low carrier

concentration is responsible of the unscreened LO mode. The second region, with higher

carrier concentration, is related to the existence of LOPPCM. Considering the geometry of the

nanowire, naturally we can suppose that the two regions consist of the inner part (the core)

and the outer part (the shell) of the wire.

The trend of the mobility, together with the effect of the capping, can give information to

discriminate from which region the carriers are originated. In general, considering the de-

crease of the effective mass for InSb with respect to InAs, the increase of the mobility with

percentage of antimony content is expected, and it is in agreement with field-effect transistor

device measurements [160, 179].

We move now to the discussion of the origin of the carrier and the scattering mechanism for

InAs nanowires. For pristine InAs nanowires, the fits of the coupled modes of the spectra
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Figure 4.19 – Raman spectra of InAs and InAs1−xSbx with x=0.35 pure and coated with Al2O3,
recorded at temperature of 14 and 293 K.

recorded at room temperature allowed us to estimate a carrier concentration of 3.9·1016 cm−3.

This value is higher than the intrinsic carrier concentration of the material. Instead, for the

mobility, we found 3300 cm2/(Vs), which is value lower than the mobility expected in the bulk.

From Raman measurements as a function of the temperature, we observe a slight decrease of

the concentration with the decrease of the temperature. On the contrary, mobility increases

with a temperature for temperatures below ∼ 50 K, whereas a decrease of the mobility with

the temperature is found above ∼ 50 K . The dual behavior of the mobility as a function of the

temperature is in agreement with other reports for InAs nanowires [183]. Contrarily, nanowires

covered with Al2O3 do not exhibit the coupled mode, indicating a possible decrease of carrier

density.

The interpretation of the results is based on the actual knowledge presented in the literature.

In bulk material, InAs presents an accumulation layer at the surface, due to the Fermi level

pinning. It is known that Fermi level pinning occurs in oxide free polar (100) and (111) InAs

surfaces [184]. Dangling bonds at the surface act as donor states. Contrarily, no Fermi-pinning

exists for (110) InAs surface without a native oxide [184].
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Figure 4.20 – Electron concentration and mobility extracted from the fits of the Raman
lineshapes of coupled modes reported in Fig. 4.17 for different temperature for InAs and
InAs0.65Sb0.35 coated with Al2O3.

However, a native oxide film is usually formed on the surface of the nanowire. For a native oxide

(110) surface, the presence of a Fermi level pinning has been shown [185, 186]. It is related

to the creation of donor states due to the preferentially formation of arsenic-oxygen bonds.

Moreover, it is shown that electrons in the accumulation layer have higher concentration and

lower mobility than the values obtained in bulk, because of the scattering at the surface [187].

This suggests that electrons detected by the coupled modes in pristine InAs nanowire come

from the presence of states at the surface, and are located in the accumulation layer at the

surface of the nanowire. Such an interpretation is in agreement with the disappearance

of coupled modes for the Al2O3-coated nanowires. In fact, it is known that Al2O3 presents

negative charge surface states at the interface [188]. This results in a decrease of electron

concentration in the accumulation layer. To support the hypothesis that electrons are confined

in the accumulation layer, we can look at the decrease of the mobility for temperatures below

∼ 50 K, which is typically due to impurities or surface scattering, and that indicates the

proximity of carriers to the surface. On the contrary, the increase of the mobility with the

temperature above ∼ 50 K is the trend expected to be limited by acoustic or optical phonon

scattering in bulk materials. However, the mobility resulting from these scattering effects

should be two order of magnitude higher than the experimental value [189]. To explain such a

discrepancy, we need consider additional scattering mechanisms.

The limitation in the mobility can be assigned to the carrier-carrier interaction. Gupta et

al. [183] provided an interesting interpretation for the trend in temperature, as well as values

similar to our results for the mobility of InAs nanowires. The authors showed that the trend of

mobility with the temperature, characterized by a peak at around ∼ 50 K, could be ascribed to
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the Coulomb scattering from ionized surface states. With the constant number of scatters, the

probability of scattering with the ionized states decreases with the temperature, leading to an

increase of the mobility. However, by increasing the temperature, an increase of the scatters

occurs due to the thermally activation, together with a decrease of the mobility. The balance of

these two effects can give rise to an initial increase and a subsequent decrease of the mobility

with the temperature.

We turn now to InAs1−xSbx nanowires. The carrier concentration extracted from the fits of Ra-

man spectra slightly increase with the temperature, reaching a value of 1.6·1017 cm−3 at room

temperature. This value is lower than with respect to the intrinsic one (∼ 1016 cm−3) [190]. On

the contrary the mobility decrease with the temperature, passing from a value of 17500 cm2/(Vs)

at 14 K to a value of 8300 cm2/(Vs) at room temperature. The presence of Al2O3 does not

change the Raman spectra, and consequently the extracted mobility and concentration.

In fact, due to the strong dependence of the Fermi level pinning on the surface preparation

and reconstruction, this effect depends also on the material composition. The presence of

antimony indicates a difference in surface Fermi level pinning position, as demonstrated in

InAs1−xSbx nanowires [191]. Moreover, we expect that also Al2O3 modifies the Fermi level

pinning, as in the case of InAs. We suppose that the carriers are located in the inner part of the

nanowire, and originate from spurious impurities, probably due to the presence of the alloying

elements. This is consistent with the fact that the carrier concentration and the mobility are

not influenced by the presence of Al2O3 capping layer.

The observed trend of the mobility with the temperature is consistent with the calculated

mobility considering all the possible scattering mechanism in an alloy system [192]. However,

in InAs1−xSbx bulk material a decrease of the mobility with the temperature is found [193]. In

thin films, this trend is explained by the presence of dislocation scattering effect due to the

growth of InAs1−xSbx on InAs, GaAs, InSb substrate [192]. However, in our nanowires there are

no dislocations owing to geometries stand relaxation.

Despite that the calculated trends of the mobility as a function of the temperature in bulk

material and in nanowires are similar, the absolute values are not of the same order. The

mobilities observed here in nanowires are lower than the theoretically predicted value and

measured one for bulk material (30000 cm2/(Vs) at room temperature for n 1017 cm−3 [194]).

Other scattering mechanisms should be proposed in order to explain this. Among them,

scattering due to alloy inhomogeneity could act as a limiting mechanism in the mobility. In

fact, InAs1−xSbx nanowire presents an antimony content homogeneous in the core, but slightly

lower content of antimony in the shell and anti-segregation of antimony at the six corners of

the hexagonal cross section [179], as a consequence of the radial growth.

In addition, considering the dimension and the morphology of nanowires, surface scattering

may play a relevant role in limiting the mobility. In order to determine the influence of surface

scattering, a systematic study on a series of nanowires with different diameter should be

performed.
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5 Conclusions and Outlook

In this thesis, we investigated the functional properties of Nanowires by Raman spectroscopy.

Thanks to its non-destructive and spatial resolution, micro-Raman spectroscopy is a powerful

contact-less tool for the characterization of semiconductor nanowires.

The first part of the thesis was dedicated to the study of the relation between the photonic

properties of nanowires and the effect on the Raman spectroscopy measurements.

We have studied the effects on the Raman spectra, in terms of spatial selectivity and macro-

scopic selection rules. At the beginning, we have performed Raman spectroscopy with dif-

ferent wavelength on GaAs/AlGaAs core-shell nanowires, grown by self-catalyzed molecular

beam epitaxy. Nanowires with different Aluminum contents and different diameter and shell

thicknesses were also grown. We have used Raman spectroscopy to determine the chemical

composition of GaAs/AlGaAs core-shell nanowires. We have found that the Raman spectra are

dependent on the the excitation energy in a non-intuitive way, compared to what expected

dependences in thin films.

By considering the distribution of the photonic modes within the nanowire as a function

of the excitation wavelength, we were able to address the differences in the Raman spectra

as a function of the excitation wavelength. FDTD simulations for the distribution of the

electric field inside the nanowire were performed to validate the results. Effectively, photonic

modes allow to selectively probe different areas in the nanowires, by using the appropriate

wavelength.

Furthermore, we have taken advantage of the photonic nature of the light-nanowire inter-

action, to enhance the response of the longitudinal optical modes. Through the coupling

of plasmon, longitudinal optical mode is usually used to characterize free-carrier by Raman

spectroscopy. Raman scattering signal in bulk material is subject to certain selection rules,

which depend on the light direction and polarization of the incoming and scattered light, as

well as on the symmetry of the vibrational modes.

Raman selection rules predict that the LO mode is forbidden in back-scattering configuration
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on (11̄0) surface in a zinc-blende structure. Therefore, nanowires with (11̄0) facets that are

horizontally lying on a substrate are not expected to show the coupled mode. Polarized Raman

scattering was performed both on nanowires lying down on the substrate and on nanowires

freely suspended over a trench. In the freely suspended nanowire, higher signal and higher

intensity ratio between LO and TO modes were observed, especially for the perpendicular po-

larization. We explained this behavior in terms of the changes in the direction and polarization

of the internal field inside the nanowire. The results were validated with FDFD simulations for

the local direction and polarization of the light.

Cross-polarized configuration on freely-suspended nanowires was used to detect the coupling

of LO phonon with the free carriers, in p-type GaAs nanowires. From the coupling, we quan-

tified the carriers concentration and the mobility of the nanowire. This method can be also

applied to other systems, as we did for InAs and InAsSb nanowires.

The second part of the thesis concerned the assessment of carrier concentration and mobility

in expected high mobility system, such as GaAs/AlGaAs modulation doping and InAsSb

nanowires, by Raman spectroscopy.

One of the most promising possibilities that nanowires enable is modulation doping, as

inspired from the structures that led to record high mobilities in planar III-V samples. A GaAs

nanowire core is coated with an AlGaAs shell containing a delta-doping structure. Doping in

the shell at a certain distance from the core provides carriers in the GaAs core, while reducing

drastically impurity scattering at low temperatures. Overall, this should lead to the increase in

carrier mobility by various orders of magnitude.

Raman measurements were performed on GaAs/AlGaAs modulation Si doped and undoped

samples, as a function of the temperature. Modulation doping samples showed a decrease

and a broadening of the LO mode of GaAs with the temperature. This mode was identified as

a LO phonon-plasmon coupled mode.

Afterwards, we analyzed the LO phonon-plasmon couple modes (LOPPCM), obtaining the

carriers concentration and the mobility. We have found that in modulation doped samples,

the dopants are almost completely ionized for temperature above 50 K. Moreover, a decrease

of mobility with the temperature and a dependence with the electron concentration were

observed. We found a mobility of 2750 cm2/(Vs) in modulation doped nanowire at low

temperature. We believe that the main mechanism limiting mobility is the interface scattering.

This hypothesis is supported by simulations of carrier density distribution, which show a shift

from the center of the core to the edge for increasing temperature. As a consequence, we

believe that an improvement of the interface characteristics may increase the mobility.

Finally, we analyzed InAs and InAsSb nanowires by Raman spectroscopy. The high-frequency

coupled mode for InAs, and the low-frequency and the intermediate-frequency coupled mode

(typical of ternary alloy) for InAsSb, were identified. Fitting the LOPPCM spectra, we estimated

the concentration and the mobility of electrons in the systems. An increase of both the mobility
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and the concentration with the antimony content was found.

Measurements as a function of the temperature were carried out on pristine InAs and InAsSb

nanowires, and on coated with Al2O3 InAs and InAsSb nanowires. These measurements aimed

to understand the origin of the carriers and the region where they are. The presence of the

coated Al2O3 layer around the nanowire causes the disappearance the high frequency mode

in InAs, meanwhile leave unchanged the spectra of InAsSb. Our results suggest that electrons

in InAs are located in the accumulation layer, being originated from the Fermi level pinning.

On the contrary, electrons in InAsSb are presents in the inner part of the nanowire and are

originated from spurious impurities. We discussed the possible scattering mechanisms which

governed the mobility in these system, as alloy inhomogeneities and surface scattering.

In conclusion we applied Raman Spectroscopy as a non-destructive tool to study the functional

properties of III-V semiconductor nanowires. This technique allowed to determine optical and

electrical properties of nanowire. We can expect that from the study of the effects of photonic

modes on the Raman spectra, strong implications for the use of Raman spectroscopy as local

chemical characterization technique will follow. Moreover, we believe to have found a fast

and accurate method to assess carriers in GaAs nanowire, without having to implement more

difficult Raman configurations. This method can be also applied to other systems, as we did

for InAs and InAsSb nanowires. The knowledge gained from the study of Modulation doped

nanowires can be be used for the design of future high mobility nanoscale devices. At the

moment, the application of modulation doping scheme looks very promising also on other

systems such as nanomembranes. Preliminary simulations reveal the possibility to obtain 1D

channel. These systems can benefit of their defect-free nature. Finally, we believe that our

work on InAsSb yields an important contribution to the understanding of the carrier system on

nanowire. For the future, it would be interesting to study the influence of surface scattering by

performing a systematic study of nanowires having different diameters. The work on InAsSb

also points the way for other studies, aiming the characterization of more complex structures,

as InAs/GaSb core-shell nanowires.
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A Supporting Information

A.1 Growth protocol

Self-catalyzed GaAs/AlxGa1−xAs core/shell nanowires have been grown on undoped 2”Si(111)

substrate by using a DCA P600 molecular beam epitaxy machine. The nanowire core structures

have been grown under a flux of Ga equivalent to a planar growth rate between 0.26 and

0.28 Å/s, a V/III ratio between 45 and 60, at a temperature of 625◦C and under a rotation of

7 r.p.m. After the growth of the core, the conditions were then switched from axial to radial

growth by lowering the substrate temperature and increasing the As pressure up to 1.2·10−5

Torr. AlxGa1−xAs shells have been grown with Al compositions x=0.25, 0.50 and 0.70 and

capped with a 5 nm thick GaAs shell to prevent oxidation. For clarity the growth conditions

are summarized in Fig. A.1.

Figure A.1 – Ga equivalent growth rate, V/III ratio and substrate temperature used for the
growth of the nanowire core of the different samples studied in the paper. Thickness and
aluminum concentration of the relative AlxGa1−xAs shells.

A.2 Movie

The electric field energy density in the nanowires is calculated with Meep by using FDTD

(Finite Difference Time Domain) method. A time domain electromagnetically simulation

simply takes Maxwell’s equations and evolves them over time within some finite computation
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Appendix A. Supporting Information

regime. In FDTD methods the time and the space are divided into a rectangular grid. After a

certain initiation time, the system reaches a steady state: the steady state is not really stationary

but shows a periodicity. Attached are the animated gif of the periodic steady state for GaAs/

AlxGa1−xAs core/shell nanowire with x=50% when excited by a top plane wave of 488.0 nm

(A.2a) and 647.1 nm (A.2b) wavelengths.

Figure A.2 – Evolution in time of the electric energy density for GaAs/Al0.5Ga0.5As core/shell
nanowire when excited by a top plane wave of 488.0 nm (a) and 647.1 nm (b) wavelength
(enhanced online).
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