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ABSTRACT
Gaze is an important non-verbal cue involved in many

facets of social interactions like communication, attentiveness
or attitudes. Nevertheless, extracting gaze directions visually
and remotely usually suffers large errors because of low res-
olution images, inaccurate eye cropping, or large eye shape
variations across the population, amongst others. This paper
hypothesizes that these challenges can be addressed by ex-
ploiting multimodal social cues for gaze model adaptation on
top of an head-pose independent 3D gaze estimation frame-
work. First, a robust eye cropping refinement is achieved
by combining a semantic face model with eye landmark de-
tections. Investigations on whether temporal smoothing can
overcome instantaneous refinement limitations is conducted.
Secondly, to study whether social interaction convention could
be used as priors for adaptation, we exploited the speaking
status and head pose constraints to derive soft gaze labels
and infer person-specific gaze bias using robust statistics.
Experimental results on gaze coding in natural interactions
from two different settings demonstrate that the two steps of
our gaze adaptation method contribute to reduce gaze errors
by a large margin over the baseline and can be generalized
to several identities in challenging scenarios.
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1 INTRODUCTION
Gaze and eye movements provide rich information about

a person’s attention and how he/she is attending the world
[3, 9, 27], and are non-verbal cues playing a major role in
human-human interactions (HHI) [8, 12]. They are highly
involved in communication for floor control management or
signaling addressees, and their occurrences are also depending
on higher level constructs, like thought process (eg it can
be characteristic of the cognitive load) or personality traits
(introversion, dominance), or autism. Thus, sensing gaze and
modeling gaze and attention behaviors is necessary for a
large range of applications, ranging from human interaction
analysis to human-computer interaction (HCI) or human-
robot interactions (HRI). It can be exploited for predicting
end of turns and next speakers [10], which could be useful
for improving dialog fluency in HCI/HRI. Or, analysing and
synthesizing gaze behaviors can improve HRI by both having
robots better understand human intentions and making their
actions more natural in a social context, allowing them to
appropriately answer humans [18] or improve the perception
toward the robot [1].

In this paper, we address gaze estimation for HHI and
HRI. This is a particularly challenging task where sensing
conditions are usually quite different than in screen-gazing
applications: higher pose variability (people do not face the
sensor), lower (eye) image resolution since the sensor need to
accomodate potentially larger user mobility or more people,
larger illumination variations, unknown user and absence
of user cooperation (no calibration data). Some of these
challenges are illustrated in Fig. 1.
Related Work. There exist many systems and methods to
track eye movements [4]. If we exclude electro-oculography,
sceleral search coil and infrared (IR) oculography which are
invasive and most suited for specific application, like sensing
eye movements while sleeping, the most recent ones rely
on computer vision by extracting gaze from an image, i.e.
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Figure 1: Data considered in this paper: interview (top) and
registration (bottom) scenarios [19].

without direct contact with the user. They can be classified
in two main categories: geometric based methods (GBM) and
appearance based methods (ABM) [17].

GBM approaches are the most precise ones and work by ex-
tracing local face and eye features and by mapping them into
gaze cues. Features either rely on IR illumination (corneal
glints), or on visual features (often the pupil center [11]). How-
ever, these methods require high resolution images, limiting
user mobility, can only handle limited head pose variations,
and are mainly targetting screen-gazing applications. As an
alternative to sparse feature extraction, [29] introduced a
dense 3D morphable model of the eye region, but the method
still required high resolution data, and outliers with extreme
error could be produced.

By directly learning a mapping from the eye image to the
gaze parameters and avoiding feature tracking, ABM methods
are more appropriate to handle lower image resolution and
to be applied in HRI and HHI. Most ABM methods in this
domain either assume a static head pose and train a user
specific gaze appearance model, or they rely on some form of
head pose dependent image rectification to crop the eye image
in a canonical reference frame [7, 14–16, 26]. For instance
[16] handles head movement by learning a head pose bias
due to deformations created by an eye image rectification
towards a user-specific reference pose, but the method needs
to be calibrated for each new user. Authors in [7] alleviate
this need by leveraging precise head pose estimation with a
3D Morphable Model (3DMM) facial mesh fitted onlineto
compute a frontal face (and eye) image allowing to train a
canonical appearance gaze model. Still, on their dataset, the
pose and person invariant model (ie handling an unknown
user) achieves an error of 6-12 degrees depending on the task,
compared to 2-6 degrees for a person specific gaze model.

Very recent works started to exploit Deep Neural Networks
(DNN) or CNN (Convolutional NN) to regress gaze from eye
appearance directly. Zhang et al. [31, 32] collected a large
dataset of eye images under diverse illumination conditions
used for training a gaze estimation CNN, showing promising
cross-dataset generalization capacity. Krafka et al. [13] had
exploited a similar idea, collecting 2.5M frames from 1474
subjects to learn fixation points in a smartphone or tablet.
Differently from [31], they trained and fused through fully
connected layers parallel CNNs for each eye, the entire face,

and the facial image location. Limitations include no access
to 3D gaze information, as required for social scene analysis,
and the use of high resolution eye images. To alleviate the cost
of data collection, several works have proposed synthesized
datasets for appearance based learning [25, 28].
Motivation. When handling unknow users, the above meth-
ods face several limitations. First, to crop the eye image in
a canonical reference frame, most method rely on an eye
alignment step. This alignment either rely on a semantic
model (eg when fitting faces with known landmarks). [5, 7],
or more often on explicit eye landmark (usually eye corners)
localization [16, 22], even when using DNN models [13, 31].
However, such localization is usually ill-defined (the loca-
tion of the visual ’eye corners’ changes depending on the
opening of the eyelids) and difficult and inaccurate (even for
humans) given the low resolution encountered in HRI/HHI
settings. Moreover, given the low resolution, a few pixel shifts
in localization quickly result in high gaze errors. Since such
localization might be user specific, this may result in a sys-
tematic bias, which also explains partially why individual
gaze models work better. Secondly, while user-specific models
are usually better, user adaptation often rely on a manual
calibration requiring user cooperation or manual data pro-
cessing [5]. Unsupervised methods based on visual saliency
have been considered, but they are mainly restricted to screen
gazing application [24].
Approach and Contribution. In this paper, we address gaze
and attention estimation in human communication contexts.
We rely on the head-pose independent gaze estimation frame-
work of [7] and address the eye alignment and user adaptation
issues through the following contributions.
Landmarks. we investigate the use of landmarks for gaze
correction, a standard method used in most papers. More
precisely, we show that frame-based alignment, although de-
sirable, has limitations when dealing with non high-resolution
images or people not only looking to the front, and investigate
whether temporal averaging can overcome them.
Social cues for automatic gaze correction. It is well known
that human follow conventions for smooth interactions and
improve communication, as discussed earlier. For instance
people nod, use audio backchannels, or look at speakers to
show their attentiveness [20]. Our goal is thus to investigate
whether such conventions can be used as prior (i.e. soft
labels) for user gaze model adaptation. In our case, this will
be achieved through the automatic selection of frames with
high probability of looking at a target (a speaker), and by
using these frames to correct user-specific gaze biases.

Experiments on 16 persons from 8 interactions in two
challenging settings (see Fig. 1) demonstrate the rational of
our approach. In the following, we first introduce the overall
gaze and attention framework in Section 2, then present our
contributions (Section 3) and experiments (Section 4), before
discussing and concluding the paper.
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Figure 2: Gaze and attention framework [7]. a) The 3DMM
mesh (adapted online to the specific user) is robustly fitted
to the RGB-D data to estimate the head pose p = (R, t). b)
The frontal face image is computed by rotating and projecting
the textured mesh (depth + rgb image). c) An eye cropping 𝒞
region is defined to align the eye images from the frontal face
into a canonical frame. d) The gaze angles g in the HCS are
estimated from the eye images. e) The gaze g and head pose
p are used to estimate the gaze direction v in the 3D space.
f) The angle error 𝑒 between the vector pointing to the target
u𝑡 and the gaze vector v of the eye closest to the camera is
compared to a threshold 𝜏 to decide whether the person is
looking at the target.

2 HEAD-POSE INDEPENDENT GAZE
ESTIMATION FRAMEWORK

We use a method similar to the one in [7], whose main
elements are summarized in this section. It takes as input the
data provided by several RGBD cameras (eg two cameras
in our setups, Fig. 1), which can be seen as textured 3D
meshes once both RGB and depth camera are calibrated [5],
computes the head pose and gaze of subjects, and decides
whether people look at targets (other persons). We assume a
calibrated set-up, so that observations (positions, vectors) can
be expressed either in world coordinate system (WCS), the
camera coordinate systems, or the head coordinate system
of people (HCS) once their head pose is estimated.

Fig. 2 presents the framework. Note that all steps can be
performed on-line, without previous knowledge of the person.
We provide below further details about them.
Head Pose. It is extracted by fitting the Basel Face 3D mor-
phable model (3DMM) mesh [21] to the depth data, using
a variant of the iterative closest point (ICP) method and
further depth and visual processing to obtain an accurate
head pose even in case of difficult poses which are common
in our setup [30]. Note that the mesh is adapted online to
the specific user using a multi-instance fitting approach.
Frontal Face. The textured 3D mesh is rotated using the
head pose parameters to obtain a frontal representation of
the head. The texture can further be projected into into a
2D plan, resulting in a frontal face image independent of
the initial head pose. The image will only suffer from some
local deformations caused by the rotation and white spaces
denoting an absence of data due to eventual self occlusions or
lack of depth data (eg sometimes around frames of glasses).
Eye Alignment and Cropping. To estimate the gaze in the
frontalized image, we crop the eye region. In the baseline

approach, the cropping 𝒞𝑏 is defined by relying on the theoret-
ical positions of the eyes and eye corners which are known on
the 3DMM and whose projections are used to crop canonical
images of 75x60 pixels for both the left and right eye.
Gaze Estimation. The eye image is then used to estimate the
gaze direction using an appearance gaze model. Following [7],
we rely on Support Vector Regression (SVR) applied to multi-
level Histogram-of-Gradients (HoG) features derived from
the eye images. The model is trained on the Eyediap dataset
[6]. It estimates for each eye the gaze direction g = (𝜑, 𝜃)
(in HCS, i.e. implicitly for a frontal face) defined by their
yaw (𝜑) and tilt (𝜃) angles. These angles g can be mapped
into a corresponding gaze direction unitary vector though a
transform denoted Φ, i.e. we have v = Φ(g).
Attention Decision. Thanks to the 3D approach and since we
know the eye locations and the target location (a person) in
the 3D space, deciding whether a person looks at a target
can simply be done by comparing the gaze direction to the
direction u𝑡 associated to looking at the target, as shown
in Fig. 2f. More precisely, as gaze information, we rely on
the measure obtained from the eye that is the closest to the
camera chosen because it is usually the most visible and thus
less prone to occlusions and deformations from the rotation
compared to the other eye, resulting in more precise and
stable estimations. Then, to compare the gaze direction v of
this eye with the target direction u𝑡, we compute their angle
difference and compare it to a threshold according to:

𝑒 = arccos (Φ(g + b) · u𝑡) < 𝜏. (1)

Thus, if 𝑒 < 𝜏 , one consider that the subject is looking to
the considered visual target. In the above, b is a gaze bias
which can be added to the gaze estimate (see next section)
and which is set to 0 in the baseline. To set the threshold 𝜏 ,
we must account for both uncertainties in the gaze direction
estimates and the fact that visual targets are usually not a
single point in space (e.g. the face of a person). A value of
𝜏 = 10∘ is usually fine, and corresponds roughly to a distance
of 35cm at a distance of 2m, which is a typical distance
between people in our setting.

3 ONLINE ADAPTATION APPROACH
While the baseline approach provides an interesting head-

pose independent 3D gaze estimation framework, it suffers
from some limitations which can adversely affect the outputs,
as discussed in the introduction. First, the 3DMM model
fitted online to the individual may not represent well her/his
actual head shape, either because the eigenshapes in the
BFM model are not rich enough, or due to an inaccurate
fitting (eg due to the fact that the person is only seen from a
45∘to profile side during most of the video). As a result, the
baseline eye cropping 𝒞𝑏 may not be accurate, as illustrated
in Fig. 3, resulting in erroneous gaze estimates.

Secondly, the person eye shapes might not be well repre-
sented in the gaze estimation training data, and this may
result in noisy estimates biased towards some direction. In
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Figure 3: Baseline alignment issues. Yellow dots represent
the 3DMM mesh, the red-green-blue coordinate system rep-
resents the head pose, and the blue (looking at other per-
son) and orange (not looking) arrays represent the estimated
gaze direction originating from the 3D eye ball centers. The
cropped frontalized eye images are shown on the top of each
result. Right: correct outcome. Left: due to a slightly inaccu-
rate (user) 3DMM fit, cropped eyes are lower and to the right,
resulting in an under-estimated gaze elevation 𝜃.

a) b)
Figure 4: a) Dlib’s facial landmarks extraction applied on the
frontal face image. b) Zoomed sampled results illustrating er-
roneous detections (left column) and variability in eye corner
localization in function of the eyelid opening (right column)
as the person look to the front (top), to the side (bottom left)
or down (bottom right image).

addition the two effects could be combined. Below, we de-
scribes the two methods proposed to address these issues: the
use of landmarks, and the estimation of a gaze bias based on
social interaction priors and robust statistics.

3.1 Eye Cropping Alignment Using Landmarks
Since the semantic information from the 3DMM mesh

might not be enough to obtain a precise eye localization and
cropping, we also resort to landmark detection. Note that
[7] evaluated different alignment methods, but they were
not improving much the results, maybe because experiments
did not involve much cross-dataset (or setting) situations.
In addition, the best performing method (’SICPA’) required
labeled frames for user adaptation.

To detect landmarks, we relied on the Dlib1 library. We
applied the 68 facial landmarks extractor to the rectified
frontal face image. This led to much more robust and stable
1Dlib C++ library: http://dlib.net/

results, esp. in the desk scenario where due to the much
less frontal poses, landmark detection completely failed when
dealing with the original images (more than 20% of the time).
Alignment Procedure. Given an estimate of the eye corner
locations, we simply compute the alignment translation that
minimizes the discrepancy between the aligned corners (after
translation) and their expected location in the canonical
frame which was used to train the appearance model.
Eye Corner Estimates. Two approaches were tested.
∙ Frame alignment Lm. In most gaze estimation system,
the eye corner positions detected at each frame are used to
perform the alignment, and we evaluated this approach. Such
strategy might be desirable as it can not only correct for an
overal cropping bias, but also for per frame mis-alignment due
for instance to inaccurate pose estimation. However, while
it might be working well for people looking to the front (i.e
with dominantly open eyes), high eye image resolution, and
near frontal pose, as is typical of screen looking applications,
the situation is much worse in HRI or HHI where one or
several of these characteristic is not met. This is illustrated
in Fig. 4. Considering the low resolution, missing pixels due
to occlusions, it is sometimes difficult to correctly place the
landmarks, like in the left bottom parts of the examples
displayed in Fig. 4. Also, a major problem arises when the
subject is looking down. In that case, the eyelids are close
to each other and the detected ’visual’ eye corners do not
match their counterparts in other situations.
∙ Running average alignment AvgLm. To handle the above
noise issues, we also evaluated a simple method averaging the
frame-level translation correction over the last 30 frames. This
appeared to remove most of the observed erroneous estimates
and to produce better and more consistent stabilized eye
sequences, which should be important for the next step.

3.2 Robust Gaze Bias Estimation From
Interaction Prior Soft Labels

Even if landmark alignment provides some normalization
of the input images, there are several factors that may still
result in gaze estimation errors. In particular, eye and iris
sizes, or eye shape variations may result in an unusual eye
corner estimate, or a biased gaze estimate (e.g. a different
correlation between eyelid opening and gaze direction, as
such correlation play an important role when looking down)
or both. Below we propose a simple adaptation method to
correct such errors, assuming that they are consistent, i.e.
they result in a systematic bias.

If the algorithm would know where the subject is looking,
it could compute a gaze error and perform some on-line
calibration. In our case, as part of the error seems to be a
constant bias, even a few frames should be enough to compute
it and compensate for it. In this view, the problem can then
be separated in two aspects: (1) selecting 𝑁 frames with high
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probability of looking at a known target and (2) computing
the bias based on those frames.
Interaction Prior Based Frame Selection. In dyadic or multi-
party interactions, other people are the most predominant
targets and we would like to select frames with high prob-
ability of looking at any of the participant. In absence of
any knowledge about the specific interaction, we resort to
the conversational dynamics and the fact that people usually
follow some (implicit) rules when behaving in a social context.
In multiparty interaction, such a rule is that people tend
to look at the speaker (eg to show attentiveness or look for
facial expressions) [12]. For instance, in [2], it is shown that
in 4-party meetings involving slide presentations, people look
45% of the time at other people. However, there are 5 to 8
times more chances to look at a speaking person than at a
non speaking one. Thus, the speaking status of a partner can
be used to gather frames where the subject under study is
looking with high probability at that partner.

Secondly, we use the head pose information to further
increase the precision of the selection, that is, the chances that
frames correspond to actual looking event (and exclude for
instance moments looking at table, slide). More precisely, our
pose-compatibility strategy simply verifies that the subject
can physically look at the person. We thus remove frames
for which the angular distance between the head direction
and the direction to the visual target is more than 30∘as this
would lead to a really uncomfortable gaze behavior [23].

Finally, in our data, valid frames according to the above
criteria are collected during the first minute of the interaction,
out of which up to 𝑁 are randomly selected to define the
frame sample set ℱ .
Robust Bias Estimation. As the frameset ℱ is expected to
contain frames with wrong labels, we resort to a robust
estimator, the Least Median of Squares (LMedS) to estimate
the bias b = (b𝜑, b𝜃 ). More precisely, denoting by 𝑜𝑖 the
angular difference between the estimated gaze and the angular
value of the direction to the visual target, we optimize

b𝑚𝑒𝑑
= min

b
Median

𝑖∈ℱ
𝑟2

𝑖 , with 𝑟𝑖 = ‖𝑜𝑖 − b‖. (2)

As there is no closed form solution, the method resorts by
setting b to each value of 𝑜𝑖 and ranking the residuals 𝑟𝑖

to measure the median. The value for which this median is
minimum is our estimate b𝑚𝑒𝑑. To improve the estimation
efficiency of the LMedS estimator, we use as our final bias
estimate b̂ the mean of the 0.5𝑁 errors 𝑜𝑖 which were closest
to b𝑚𝑒𝑑. Thus, with this estimator, the implicit hypothesis
is that subjects look at their partner half the time when
this one speaks. Finally, the estimated bias b̂ can be used to
derive the attention as given by Eq. 1.

4 EXPERIMENTS
In this Section, we first present our experimental protocol

before discussing the results and approaches.

4.1 Study Case and Experimental Protocol
Dataset. We perform our experiments on the UBImpressed
dataset [19], which involves students from an hosteling school
participating in two different dyadic interaction scenarios,
whose setup (samples images) are illustrated in Fig. 1.
Interview scenario. The applicant and the interviewer are
sitting in front of each other at a distance of around 2 me-
ters. It represents a formal type of social interaction, with
constrained behaviors and rather frontal faces.
Desk scenario. In this role simulation, the students plays a
receptionist having to deal with the complains of a difficult
client. Persons are standing and talk to each other in more
open and animated fashion. There are also moments when
the receptionist use the phone or discuss a bill and hotel
rates on the desk with the client. Due to the setup (see the
typical viewpoint in Fig. 1) and scenario, this creates a larger
diversity of challenging body and head movements as well as
gazing behaviours.

The videos are acquired with two Kinect 2 sensors at
30 fps. The camera is set about one meter away from the
persons and are not totally in front of them. For each session,
two cameras are used, each one recording a different person.
The Fig. 1 presents typical images of the dataset. For our
experiments, we worked with 8 interactions (16 videos in
total): 4 interviews and 4 desk scenarios.
Ground Truth (GT) Annotations. Our goal is to automatically
detect if the subject is looking at the other person or not
using the classification process described in Sections 2 and
3, with the target being the other person represented by the
middle point between her two eyes. To compute a correction
bias and assess methods, we annotated whether the subject
is looking at the partner or not (binary annotation) for each
frame (i.e. every 33ms) of several segments of the videos. We
annotated the first minute (ignoring the first 10 seconds of
each video), and then 10 seconds every minute over 5 minutes,
allowing to see how the error evolves over time under more
head pose and gaze variations. For the 16 videos, it gives a
total of over 42000 annotated frames (2643 annotations on
average per video, some videos being shorter than others),
with 52% of the frames with the “gazing” label (looking at the
other person) and 48% with the “not gazing” one. The frames
where a person is blinking or where the class is ambiguous
were excluded from evaluation, but not from the automatic
frame selection methods for computing the bias.

Moreover, for each interaction, the sound was synchronously
recorded by a microphone array automatically detecting in
a robust and precise fashion the beginning and end of the
utterance segments of each person. Thus, we know for each
gaze annotated frame the looking and speaking status.
Performance Measures. To compare methods, we use two
metrics: the average gaze angular error and the classification
accuracy. The gaze angular error is simply the angle difference
𝑒 introduced in Section 2. That is, for frames for which the
subject is looking to the partner according to the GT, the
angle between the gaze vector and the direction to the middle
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of the partner’s eyes is our estimation error. Although people
might look at other parts of the face we use the middle of
the eyes for simplicity, as it is more or less at the center of
the head, and people tend to look at the others’ eyes during
interactions. The average angular error is thus the average of
the per-subject mean angular error computed over all frames
annotated as ’gazing’ after the first minute. Then, as final
score, we computed the average of these mean angular errors.

The classification accuracy is measured at the frame level,
i.e. as the percentage of gazing/not gazing frames classified
correctly, using as threshold 𝜏 = 10. The reported accuracy
is the mean of per subject mean accuracy.
Evaluated Methods. The 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the results obtained
from the framework presented in Section 2 without modifi-
cation. We then compare methods relying on either of the
eye alignment methods presented in Section 3.1, denoted 𝐿𝑚
(alignment based on per-frame detected eye corner locations)
and 𝐴𝑣𝑔𝐿𝑚 (alignment based on a running average over 1s
of these frame-based locations), the latter allowing to find
a stable point much less affected by blinks and short looks
down.

For the bias correction presented in Section 3.2 we evalu-
ated the following aspects:

∙ Speech based (𝑆𝑝𝑘) frame selection with exclusion of
high head pose - target direction discrepancy, as de-
scribed in Section 3.2, collected over the first minute
of the video.

∙ Ground truth (𝐺𝑇 ) frame selection, where frames for
bias computation are randomly selected among the
ones that are manually annotated as "gazing" in the
first minute of the video. It allows to see how the
method can work in presence of an ’oracle’, and the
maximum gain we could obtain.

∙ Mean (𝑀𝑒𝑎𝑛) bias estimation: computing the bias as
the mean of the error on 𝑁 of the selected frames.
In practice, we found that 𝑁 higher than 20 only
marginally improve the gaze estimation, so we used 𝑁
=20 in experiments.

∙ Median (𝑀𝑒𝑑) bias estimation. As described in Sec-
tion 3.2, the bias is computed as the mean of the error
over the 𝑁

2 frames resulting from applying the LMedS
estimator on 𝑁 frames selected using the 𝐺𝑇 or 𝑆𝑝𝑘
criteria. For this method, we used 𝑁 = 40, so that the
number of frames remaining after exclusion of the 50%
outliers thanks to the LMedS is 20, the same number
used in the 𝑀𝑒𝑎𝑛 method.

4.2 Quantitative Results
Results - Eye Alignment. The Tab. 1 presents the results for
the different methods (different combination of processing),
for each scenario (desk and interview) and altogether.

As can be seen, the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 has difficulties to handle our
data, with more than 23∘errors. The landmarks alignment
improves the performances significantly, making it a better
method than estimating the eye position from the 3DMM
information. One can notice that averaging the landmarks

Table 1: Mean angular error (in degree) and classification ac-
curacy (in percent) depending on the scenario

Interviews Desk Overall
Method error accuracy error accuracy error accuracy
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 21.04 0.53 26.19 0.59 23.62 0.56
𝐿𝑚 10.41 0.72 15.24 0.62 12.82 0.67
𝐴𝑣𝑔𝐿𝑚 9.79 0.67 13.72 0.66 11.76 0.67
𝐺𝑇 -𝑀𝑒𝑎𝑛 7.42 0.75 10.31 0.75 8.86 0.75
𝐺𝑇 -𝑀𝑒𝑑 7.53 0.75 10.45 0.74 8.99 0.74
𝑆𝑝𝑘-𝑀𝑒𝑎𝑛 8.49 0.66 10.59 0.74 9.54 0.70
𝑆𝑝𝑘-𝑀𝑒𝑑 9.58 0.68 10.25 0.75 9.91 0.72
𝐿𝑚 + 𝐺𝑇 -𝑀𝑒𝑎𝑛 5.61 0.85 8.85 0.82 7.23 0.84
𝐿𝑚 + 𝐺𝑇 -𝑀𝑒𝑑 5.67 0.84 8.94 0.82 7.30 0.83
𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑎𝑛 7.92 0.73 9.26 0.80 8.59 0.77
𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑 6.25 0.82 9.03 0.81 7.64 0.82
𝐴𝑣𝑔𝐿𝑚 + 𝐺𝑇 -𝑀𝑒𝑎𝑛 6.08 0.82 9.34 0.80 7.71 0.81
𝐴𝑣𝑔𝐿𝑚 + 𝐺𝑇 -𝑀𝑒𝑑 6.44 0.82 10.26 0.78 8.35 0.80
𝐴𝑣𝑔𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑎𝑛 8.39 0.72 10.65 0.74 9.45 0.73
𝐴𝑣𝑔𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑 6.66 0.82 9.49 0.79 8.07 0.80

over time results in a better alignment and gaze estimation
accuracy (with 1∘of error lower than 𝐿𝑚), but this does not
bring a better accuracy overall. However, the performance is
more regular across scenarios and 𝐴𝑣𝑔𝐿𝑚 performs better
in the Desk scenario where more extreme head poses are
present.
Results - Bias Correction. Applying the bias correction alone
also improves the results even more than the eye alignment.
This shows that the errors are not random, but really results
from some user specific cropping or eye shape that generate
a coherent bias (see also below and Fig. 7).
Results - Alignment and Bias Correction. Interestingly, we can
note that both eye alignment and bias correction improve the
results, but that their combination works even better, showing
their complementarity. It can be explained by the difficulty
to accurately place landmarks and specific eye shapes which
affect the gaze and which needs to be corrected afterwards.
Furthermore, we can see that in general, this reduction in
error from the bias correction does not apply mainly to
the short time after the correction, but last throughout the
interactions, as shown by Fig. 5.

Also, surprisingly, after applying bias correction, higher
results are reached when 𝐿𝑚 was used rather than 𝐴𝑣𝑔𝐿𝑚.
Our hypothesis is that despite being less efficient in itself to
correct the error, 𝐿𝑚 provides in average more stable eye
images to the gaze estimator, making it easier to correct the
remaining bias afterwards.

One can notice that the 𝑀𝑒𝑑 brings nothing compared to
𝑀𝑒𝑎𝑛 when using GT frames, which was to be expected since
samples are all valid. However, it becomes extremely useful
when using other clues (like speech in our case) to sample the
frames where people look at partners with high probability
since erroneous guesses are expected and can badly affect the
bias computation.

Finally, it is not surprising to see the 𝐺𝑇 -𝑀𝑒𝑎𝑛 (with 𝐿𝑚)
correction obtaining the bests results, but the 𝑆𝑝𝑘-𝑀𝑒𝑑 one
is not far behind, giving a good hope for on-line experiments.
Impact of the Threshold. Fig. 6 presents the classification
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(a) 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (b) 𝐿𝑚 (c) 𝐿𝑚 + 𝑆𝑝𝑘- 𝑀𝑒𝑑

Figure 6: Classification accuracy for different thresholds (bold black line: mean accuracy)

Figure 5: Error evolution over time. Average gaze error for
each segments, where each segment happens x minutes after
the first interaction minute where the bias is computed.

accuracy on each video depending on the chosen threshold.
In the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 condition, no threshold is really suitable for
all videos, as all peaks are at different places. It is highlighted
by the mean accuracy over all videos, which is rather flat
and only reaches 63% accuracy. It means that an adaptation
of the threshold for each subject is needed to obtain the
best results, which might be quite hard, and in any case just
denote the erroneous gaze predictions.

Fig. 6b,c) show the same plots after 𝐿𝑚 and 𝐿𝑚 + 𝑆𝑝𝑘-
𝑀𝑒𝑑. Clearly, the peaks tend to gather and an optimal thresh-
old appears. In the 𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑 case, all accuracies for a
10∘threshold are between 70% and 95%, which is far better
than the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. It shows that the alignment and correc-
tion do not only improve performance, but also make the
gaze estimation quality more uniform across videos.
Bias Analysis. Fig. 7 presents the mean angular error obtain
on each video in term of (𝜑, 𝜃). For the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, the errors
have a general tendency to the bottom, but the variance
is high. After applying the 𝐿𝑚 alignment, errors are closer
to zero, the range of error is similar on both axis, the desk
scenario is more challenging. It is consistent with previous
results, showing that landmarks improve gaze estimation but
that enhancement is still possible.

After the 𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑 correction, mean angular errors
are packed around zero and do not exceed 10∘on both axis.
This shows that the bias was well estimated for each subject.

These plots give also some hints on how this two step
correction work: landmarks alignment acts as a normalization,
making the eye images more uniform before passing them to

Figure 8: Qualitative comparison between three methods.
From left to right: 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝐿𝑚, 𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑. Gaze
arrays: blue if classified as "gazing", red otherwise.

the appearance model. Then, the bias correction is able to
more efficiently compensate errors made by the model and
provides some adaptation to each subject.

4.3 Qualitative Results
Fig. 8 presents a typical comparison between three meth-

ods on the same frame. More example are shown in the
supplementary material video. In our dataset, one generally
notice that 𝐿𝑚 lacks of robustness when the head is not
aligned with the gaze direction and more importantly when
the face has occlusions like for large head poses. Results are
also dependend on subject. In a few cases, 𝐿𝑚 gives similar
or even higher accuracy than 𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑, but in other,
the 𝐿𝑚 perform can be bad, reaching even an accuracy as
low as 40% in one case. Moreover, as previously mentioned,
consistency across subjects and situation is a critical feature
to build automatic gaze estimation systems, which is achieved
by our system.

5 DISCUSSION
The 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 performance are very low compared to those

of the paper describing the method [7]. However we are fac-
ing a more challenging situation: the setup and illumination
conditions are different, subjects are not facing the camera
and behave freely in the frame of the given scenarios. Never-
theless, after having applied our method, t he angular error
are comparable with [7], and are rather small if we consider
the difficulty of the task.

There are two main limitations to the proposed approach.
The first one is that although we make the assumption that
the bias is time, head pose and target independent, the
variability in our data does not allow to fully test the validity
of this hypothesis: the interviews are rather constrained, with
a relatively constant head pose-target configuration. The desk
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(a) 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (b) 𝐿𝑚 (c) 𝐿𝑚 + 𝑆𝑝𝑘-𝑀𝑒𝑑

Figure 7: Per person average gaze error (in degrees) for each person in (𝜑, 𝜃) representation.

Figure 9: Probability that a subject looks at her partner be-
fore and after she ends (top right) or starts (three others) to
speak. Statistics taken for all person (top), applicants (bottom
left) and interviewers (bottom right)

situation already offers much more variability, but further
validation in other scenarios, eg in multiparty situations with
people looking at different sides, are needed to get a full
(empirical) proof. More complex models taking into account
these elements might be needed and more effective at reducing
the gaze angular error, e.g. by computing another type of
correction like an affine transform in function of the pose, or
by using an online selection/adaptation scheme.

The second limitation is the need for frames where a subject
looks at a known person (ie. with its location). Currently,
the speaking status is used as a relatively high prior of being
looked at. However, this assumption may not hold in presence
of artefacts: listeners tend to look more at the artefacts/object
than at the speaker. Currently, such situations are handled by
the frame selection removal relying on non-compatible head
pose for looking at the person. Other interaction settings,
and especially multi-party situations, may also result in a
weaker prior of looking at the speaker.

Using social interaction conventions as weak prior for adap-
tation may thus require more complex and subtle situation-
based models. For instance, we started to study the relation
between gaze and speaking turns, since it has been shown
that people tend to look at the current or next speakers near

a turn to potentially grab or acknowledge a floor change. We
first computed the average probability that a subject looks at
his partner when this one speaks, obtaining a result of 57%
justifying the validity of our approach. We also computed
the frame-based temporal evolution of the probability that a
subject looks at his partner near speaker turn events (start
or end of speaking turn). Some results are shown in Fig. 9.
As can be seen, no clear trend for all people emerge, as the
gaze probability seems to depend on the role of the person
(compare applicants and interviewers). Nevertheless, these
patterns show some tendencies which could be exploited as
prior for adaptation if more strongly validated and combined
within a more complex adaptation scheme with other multi-
modal cues like head pose, body pose, head gestures (nods),
the gaze itself, and situational information (dialog act).

6 CONCLUSION
We presented methods to improve gaze estimation based on

appearance based approached, methods that do not require a
person-specific calibration phase, is robust to head movements
and enables gaze estimation in a large field of view.

Our contributions consist of improving the eye cropping
step using facial landmarks, and removing person and in-
teraction specific errors by automatically estimating a gaze
bias, relying on speaking turns information and head pose
compatibility for looking at the person target, providing clues
on whether the subject is looking at the speaker. These clues
provide weak labels on the gazing direction of the subject,
allowing to compute and compensate a gaze estimation bias.

The final multimodal method reaches a mean angular error
of 7.64∘and a mean classification accuracy of 82% for the 16
studied subjects, in two different scenarios. As it does not
need any calibration, it is applicable on-line, providing an
automatic adaptation to persons.

Future work will consist to test our method on different
datasets, with different scenario including for example more
people in the discussion.
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