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Abstract. A family of effective equations for the wave equation in locally periodic media over long time is derived. In
particular, explicit formulas for the effective tensors are provided. To validate the derivation, an a priori error estimate between
the effective solutions and the original wave is proved. As the dependence of the estimate on the domain is explicit, the result
holds in arbitrarily large periodic hypercube. This constitutes the first analysis for the description of long time effects for the wave
equation in locally periodic media. Thanks to this result, the long time a priori error analysis of the numerical homogenization
method presented in [A. Abdulle and T. Pouchon, SIAM J. Numer. Anal., 54, 2016, pp. 1507–1534] is generalized to the case
of a locally periodic tensor.
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1. Introduction. The wave equation in heterogeneous media is used to model diverse multiscale appli-
cations in engineering such as seismic inversion, medical imaging or the manufacture of composite materials.
In such situations, the medium is described by a tensor aε, where ε > 0 denotes the characteristic length of
the spatial variation of aε and is assumed to be much smaller than the wavelength of the initial data and
the source term (ε ≪ 1). The displacement of the wave uε : [0, T ] × R

d → R is then characterized by the
equation

∂2t u
ε(t, x)−∇x ·

(

aε(x)∇xu
ε(t, x)

)

= f(t, x) in (0, T ]× R
d, (1.1)

where initial conditions for uε(0, x) and ∂tu
ε(0, x) are given. Before discretizing (1.1), we truncate the

space R
d to a sufficiently large hypercube Ω, so that the waves do not reach the boundary, and impose

periodic boundary conditions (Ω is called a pseudoinfinite domain). To approximate (1.1) accurately, standard
numerical methods such as the finite element (FE) method or the finite difference (FD) method require a
grid that resolves the whole domain at the microscopic scale O(ε). Hence, as T increases (i.e. Ω increases)
or as ε → 0, such methods have a prohibitive computational cost. Therefore, more sophisticated numerical
methods are needed.

The study of multiscale problems such as (1.1) is tied to homogenization theory (see [17, 42, 16, 35, 23,
38]). The general homogenization result for the wave equation in [19] provides the existence of a function
u0 such that the sequence {uε}ε>0 converges weakly in L∞(0, T ;Wper(Ω)) to u0 as ε → 0 (see below for
the definitions of the functional spaces). The homogenized solution u0 is characterized by the homogenized
equation

∂2t u
0(t, x)−∇x ·

(

a0(x)∇xu
0(t, x)

)

= f(t, x) in (0, T ]× Ω, (1.2)

where the initial conditions are the same as for uε. As the homogenized tensor a0 in (1.2) is obtained as
the so called G-limit of the sequence {aε}ε>0 (see [44, 24]), (1.2) does not depend on the microscopic scale
and is thus a good target for numerical methods. However, for a general tensor aε, a0 might not be unique
and no formula is available for its computation. Nevertheless, when the medium is locally periodic, i.e.,
aε(x) = a

(

x, xε
)

with y 7→ a(x, y) Y -periodic, such formula exists. Indeed, in this case a0(x) can be computed
at each x ∈ Ω via the solutions of d cell problems, which are elliptic partial differential equations (PDEs) in
Y (see e.g. [10, 22]).

In the past few years, several multiscale methods for the approximation of (1.1) have been developed.
The physical origin of (1.1) motivates the choice of an appropriate method. In particular, the problems are
divided in two classes, depending whether the medium has, or not, scale separation. Let us first mention
the methods available if the medium does not have scale separation. We refer to [6] for a detailed review.
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2 A. ABDULLE AND T. POUCHON

The methods defined in [39], [34, 33], [40] and [7] rely on multiscale FE spaces that have the same number
of degrees of freedom (DOF) as in a coarse FE method. However, the construction of these spaces involves
the solutions of global elliptic PDEs at the fine scale, which is computationally expensive and might be
prohibitive. To settle this issue, the elliptic PDEs are localized to small patches covering the domain, leading
to a process that can be parallelized. Let us then introduce the methods available when the medium has
scale separation. In such media, numerical methods can take advantage of the specific structure to reduce the
computational cost. To that purpose, the heterogeneous multiscale method (HMM) provides an appropriate
framework (see [2]). In the HMM, the effective datum is approximated with a sampling strategy by solving
local micro problems and is then used at the macro scale with a chosen numerical method. As the micro
scale is resolved only locally in small domains, the cost of the HMM is proportional to the number of DOF
at the macro scale. Furthermore, as the micro problems are independent, the sampling procedure can be
efficiently parallelized. Two HMMs are available to approximate (1.1). The FD-HMM, defined in [28] and
analyzed in [13], relies on a FD method at the macro scale. The effective flux is approximated by solving
micro problems in space-time sampling domains of size τ × ηd, where τ, η ≥ ε. The FE-HMM, defined and
analyzed in [3], relies on the FE method on a macro mesh to approximate the homogenized solution. The
homogenized tensor is approximated at the quadrature points by solving micro problems in spatial sampling
domains of size δd, where δ ≥ ε. In the case of a locally periodic tensor, the FD-HMM and the FE-HMM are
proved to converge to the homogenized solution u0.

When considering large timescales T = O(ε−2), uε develops macroscopic dispersive effects. As the
homogenized solution does not describe these effects, new numerical methods are needed for the long time
approximation of (1.1). In particular, we look for a new effective equation that captures the dispersion. In
the literature, several papers [43, 32, 31, 36, 25, 26, 9, 11, 8] investigated the research of long time effective
equations in the case of a uniformly periodic tensor, i.e., aε(x) = a

(

x
ε

)

with a(y) Y -periodic. In particular,
a recent result in [8] defines a family of effective equations whose elements are proved to approximate uε

at large timescales O(ε−2). The family is composed of equations of the form (we use the convention that
repeated indices are summed)

∂2t ũ(t, x) − a0ij∂
2
ij ũ(t, x) + ε2

(

a2ijkl∂
4
ijklũ(t, x)− b2ij∂

2
ij∂

2
t ũ(t, x)

)

= f(t, x) in (0, ε−2T ]× Ω, (1.3)

with the same initial conditions as for uε, where a0 is the homogenized tensor (constant in the uniformly
periodic case) and a2, b2 are non-negative tensors that satisfy a given constraint.

The two HMMs described above have been adapted to the long time approximation of (1.1). In [29], a
modification of the FD-HMM is built to capture the effective flux of an ill-posed effective equation derived
in [43]. However, to do so, the space-time sampling strategy requires larger sampling domains as ε → 0.
Furthermore, as it is build on an ill-posed model, a regularization step has to be performed. Nevertheless, in
one dimension and for uniformly periodic tensors, the method is shown in [12] to capture the effective flux of
the ill-posed model. In [5, 4], the FE-HMM was also generalized for long time approximation. The method,
called the FE-HMM-L, was analyzed over long time in [9]. In particular, in one dimension and for uniformly
periodic tensors, the method is proved to converge to an effective equation of the family (1.3).

In this paper, we generalize the family of effective equations from [8] to the case of a locally periodic
tensor. This analysis constitutes the first result in the study of long time wave propagation in locally periodic
media. The family consists of equations of the form

∂2t ũ(t, x)− ∂i
(

a0ij(x)∂j ũ(t, x)
)

+ εL1ũ(t, x) + ε2L2ũ(t, x) = f(t, x) in (0, ε−2T ]× Ω, (1.4)

with the same initial conditions as uε and where the operators L1 and L2 are given as

L1 = −∂i
(

a12ij (x)∂j ·
)

+ b10∂2t , L2 = ∂2ij
(

a24ijkl(x)∂
2
kl ·

)

− ∂i
(

b22ij (x)∂j∂
2
t ·

)

− ∂i
(

a22ij (x)∂j ·
)

+ b20∂2t .

The tensors amn, bmn are defined for all x ∈ Ω via the solutions of local cell problems and are linked by a
parameter. The main result of the paper ensures that any effective solution of the family (1.4) satisfies the
error estimate

‖uε − ũ‖L∞(0,ε−2T ;W ) ≤ Cε, (1.5)

where the norm ‖·‖W is defined in (1.8) and is equivalent to the L2 norm through the Poincaré constant. As
we track the dependency of the estimate on Ω, the result is valid in arbitrarily large hypercubes. Thanks to
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this result, we prove that, in the one-dimensional case, the FE-HMM-L converges to an effective solution in
the locally periodic case. In particular, the approximation uH satisfies the error estimate

‖uε − uH‖L∞(0,ε−2T ;W ) ≤ C
(

ε+ (h/ε2)2 +Hℓ/ε2
)

, (1.6)

where h is the micro mesh size, H is the macro mesh size, and ℓ is the macro FE degree. Note that, in the
last two terms, a factor ε−2 comes from the timescale O(ε−2). We emphasize that thanks to a new elliptic
projection, (1.6) can be used in arbitrarily large domain Ω. This result generalizes the long time a priori
error analysis of the FE-HMM-L performed in [9].

The paper is organized as follows. First, in Section 2, we present our main result: we define the family of
effective equations (1.4) and state the corresponding error estimate. Then, the derivation of the family and
the construction of the adaptation are presented in Section 3 and the proof of the main result is performed
in Section 4. In Section 5, we provide long time a priori error estimates for the FE-HMM-L in the locally
periodic case. Finally, we illustrate our theoretical results in numerical experiments in Section 6.

Definitions and notation. Let us give some definitions and the notation used in the paper. The
derivative with respect to the i-th space variable xi is denoted ∂i and the derivation with respect to any
other variable is specified. We denote the quotient space L2(Ω) = L2(Ω)/R and a bracket [v] is used to
denote the equivalence class of v ∈ L2(Ω) in L2(Ω). Equipped with the inner product

(

[v],[w]
)

L2(Ω)
=

(

v − 〈v〉Ω, w − 〈w〉Ω

)

L2(Ω)
=

(

v, w
)

L2(Ω)
− |Ω|〈v〉Ω〈w〉Ω ∀v, w ∈ L2(Ω),

L2(Ω) is a Hilbert space. Furthermore, we denote Wper(Ω) = H1
per(Ω)/R and a bold face letter v is used

to denote the elements of Wper(Ω). The space Wper(Ω) (resp. L2
0(Ω)) is composed of the zero mean repre-

sentatives of the equivalence classes in Wper(Ω) (resp. L2(Ω)). We define the following norm on Wper(Ω)

‖w‖W = inf
w=w1+w2

wi=[wi]∈Wper(Ω)

{

‖[w1]‖L2(Ω) + ‖∇w2‖L2(Ω)

}

∀w ∈ Wper(Ω), (1.7)

and the corresponding norm on Wper(Ω)

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{

‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}

∀w ∈ Wper(Ω). (1.8)

We verify that a function w ∈ Wper(Ω) satisfies ‖w‖W = ‖[w]‖W . Furthermore, using the Poincaré–
Wirtinger inequality, we verify that ‖ · ‖W is equivalent to the L2 norm (CΩ is the Poincaré constant)

‖w‖W ≤ ‖w‖L2(Ω) ≤ max{1, CΩ}‖w‖W ∀w ∈ Wper(Ω). (1.9)

We denote Tenn(Rd) the vector space of tensors of order n. In the whole text, we drop the notation of
the sum symbol for the dot product between two tensors and use the convention that the repeated indices are
summed. The subspace of Tenn(Rd) of symmetric tensors is denoted Symn(Rd), i.e., q ∈ Symn(Rd) satisfies
qi1···in = qiσ(1)···iσ(n)

for any permutation σ. Let Sn : Tenn(Rd) → Symn(Rd) be the symmetrization operator

defined as
(

Sn(q)
)

i1···in
= 1

n!

∑

σ∈Sn
qiσ(1) ···iσ(n)

. In the text,
(

Sn(q)
)

i1···in
is denoted as Sn

i1···in
{qi1···in}. For

q ∈ Ten4(Rd) and ξ, η ∈ Sym2(Rd), we denote the product qξ : η = qijklξijηkl. A tensor q ∈ Ten4(Rd) ismajor
symmetric if qijkl = qklij for all 1 ≤ i, j, k, l ≤ d and it is positive semidefinite if qξ : ξ ≥ 0 for all ξ ∈ Sym2(Rd).
For a major symmetric tensor q ∈ Ten4(Rd), there exists a bijective map ν : Sym2(Rd) → R

N(d), where
N(d) =

(

d+1
2

)

, and a matrix M(q) ∈ Sym2(RN(d)) such that (see e.g. [8] or [41, Chapter 4])

qξ : η =M(q)ν(ξ) · ν(η) ∀ξ, η ∈ Sym2(Rd). (1.10)

In particular, q is positive (semi)definite if and only if M(q) is positive (semi)definite.
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Settings of the problem. We assume that d ≤ 3 (note that the main result holds for d > 3, provided
higher regularity assumption of the tensor). Let aε(x) = a

(

x, xε
)

be a d × d symmetric locally periodic
tensor, i.e., a(x, y) is Y -periodic in y and Ω-periodic in x, where Ω, Y ∈ R

d are open hypercubes. We assume
that Ω is a union of cells of volume ε|Y |. More precisely, letting ℓ ∈ R

d be the period of y 7→ a(x, y) (i.e.,
a(x, y + k · ℓ) = a(x, y) for all (x, y) ∈ Ω × Y and k ∈ Z

d), we assume that Ω = (ωl
1, ω

r
1) × · · · × (ωl

d, ω
r
d)

satisfies

ωr
i − ωl

i

εℓi
∈ N>0 ∀i = 1, . . . , d. (1.11)

This assumption ensures that for any Y -periodic function γ, the map x 7→ γ
(

x
ε

)

is Ω-periodic (γ is extended
to R

d by periodicity). For T ε = ε−2T , we consider the wave equation: uε : [0, T ε]× Ω → R such that

∂2t u
ε(t, x) −∇x ·

(

a
(

x, xε
)

∇xu
ε(t, x)

)

= f(t, x) in (0, T ε]× Ω,

x 7→ uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(1.12)

where g0, g1 are given initial conditions and f is a source. The tensor a(x, y) is assumed to be uniformly
elliptic and bounded, i.e. there exists λ,Λ > 0 such that

λ|ξ|2 ≤ a(x, y)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ R
d for a.e. (x, y) ∈ Ω× Y. (1.13)

The well-posedness of (1.12) is proved in [37, 30]. If g0 ∈ Wper(Ω), g
1 ∈ L2

0(Ω), f ∈ L2(0, T ε; L2
0(Ω)),

then there exists a unique weak solution uε ∈ L∞(0, T ε;Wper(Ω)) with ∂tu
ε ∈ L∞(0, T ε; L2

0(Ω)) and ∂
2
t u

ε ∈
L2(0, T ε;W∗

per(Ω)).

2. Main result: definition of the family of effective equations and a priori error estimate.

In this section we present the main result of the paper. We define the family of effective equations and state
the a priori error estimate.

Let us first define the operators involved in the definition of the family of effective equations. For all
x ∈ Ω, let {χi(x)}

d
i=1, {θ

0
ij(x)}

d
ij=1, {θ

1
i (x)}

d
i=1 ⊂ Wper(Y ) be the zero mean solutions of the cell problems

(

a(x)∇yχi(x),∇yw
)

Y
= −

(

a(x)ei,∇yw
)

Y
, (2.1a)

(

a(x)∇yθ
0
ij(x),∇yw

)

Y
= −

(

a(x)eiχj(x),∇yw
)

Y
+
(

a(x)(∇yχj(x) + ej)− a0(x)ej , eiw
)

Y
, (2.1b)

(

a(x)∇yθ
1
i (x),∇yw

)

Y
= −

(

a(x)∇xχi(x),∇yw
)

Y
+
(

∇x · a(x)(∇yχi(x) + ei)−∇x · a0(x)ei, w
)

Y
, (2.1c)

for all test functions w ∈ Wper(Y ), where a0(x) is the homogenized tensor defined by

a0ij(x) =
〈

eTi a(x)(∇yχj(x) + ej)
〉

Y
. (2.2)

We define the differential operator

L1 = −∂i
(

ā12ij (x)∂j ·
)

+ b10∂2t , (2.3)

based on the following tensors

p13ijk(x) =
〈

a(x)(∇yχk(x) + ek) · ejχi(x)
〉

Y
,

q12ij (x) =
〈

a(x)(∇yχj(x) + ej) · ∇xχi(x)
〉

Y
,

ǎ12ij (x) = S2
ij

{

− ∂mp
13
mij(x) + ∂mp

13
jim(x)− ∂mp

13
imj(x) + 2q12ij (x)

}

,

b10 = max
x∈Ω

{

−
λmin(ǎ

12(x))

λmin(a0(x))

}

+

,

ā12ij (x) = ǎ12ij (x) + b10a0ij(x),

(2.4)

where we denoted {·}+ = max{0, ·}. Furthermore, we define the differential operator

L2 = ∂2ij
(

ā24ijkl(x)∂
2
kl ·

)

− ∂i
(

b22ij (x)∂j∂
2
t ·

)

− ∂i
(

ā22ij (x)∂j ·
)

+ b20∂2t , (2.5)
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defined upon the following tensors and functions

ǎ24ijkl(x) = S2,2
ij,kl

{

〈

a(x)χi(x)ej · χl(x)ek
〉

Y
−
〈

a(x)∇yθ
0
ij(x) · ∇yθ

0
kl(x)

〉

Y

}

,

A24(x) =M
(

ǎ24(x)
)

, A0(x) =M
(

S2,2
ij,kl

{

a0jk(x)a
0
il(x)

}

)

,

δ ≥ δ∗ = max
x∈Ω

{

−
λmin(A

24(x))

λmin(A0(x))

}

+

,

ā24ijkl(x) = ǎ24ijkl(x) + δS2,2
ij,kl

{

a0jk(x)a
0
il(x)

}

,

b22ij (x) =
〈

χi(x)χj(x)
〉

Y
+ δa0ij(x),

(2.6)

where S2,2
ij,kl{·} = S2

ij{S
2
kl{·}} and M(·) is given in (1.10) and

p23ijk(x) =
〈

a(x)ejχi(x) · ∇xχk(x)
〉

Y
−
〈

a(x)∇yθ
0
ji(x) · ∇yθ

1
k(x)

〉

Y
,

p22ij (x) =
〈

a(x)∇xχj(x) · ∇xχi(x)
〉

Y
−
〈

a(x)∇yθ
1
i (x) · ∇yθ

1
j (x)

〉

Y
, (2.7)

ǎ22ij (x) = S2
ij

{

− ∂mp
23
mij(x) + ∂mp

23
jim(x)− ∂mp

23
imj(x) + p22ij (x)

}

+ b10ǎ12ij (x) + δ∂na
0
mi(x)∂ma

0
nj(x) − δ∂m

(

a0mn(x)∂na
0
ij(x)

)

,

b20 = max
x∈Ω

{

−
λmin(ǎ

22(x))

λmin(a0(x))

}

+

,

ā22ij (x) = ǎ22ij (x) + b20a0ij(x).

(2.8)

Observe that the tensors of L2 are parametrized by δ ≥ δ∗. Let then ũ : [0, T ε]× Ω → R be the solution of

∂2t ũ(t, x) − ∂i
(

a0ij(x)∂j ũ(t, x)
)

+ εL1ũ(t, x) + ε2L2ũ(t, x) = f(t, x) in (0, T ε]× Ω,

x 7→ ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(2.9)

where the initial conditions g0, g1 and the source f are the same as in the equation for uε (1.12). It is known
that the homogenized tensor a0 is symmetric, uniformly elliptic, and bounded. Furthermore, note that by
definition, ā12, ā22, b22 are symmetric and positive semidefinite, b10, b20 are non-negative, and ā24 is major
symmetric (i.e. ā24ijkl = ā24klij) and positive semidefinite (see [8, Lemma 4.2] for a similar result). We verify

that if the tensor a(x, y) satisfies a ∈ C2(Ω̄; L∞(Y )), then a0, ā24, b22 ∈ C2(Ω̄), ā12 ∈ C1(Ω̄) and ā22 ∈ C0(Ω̄)
(see (4.2)). If, in addition, the data satisfy the regularity

g0 ∈ Wper(Ω) ∩H2(Ω), g1 ∈ L2
0(Ω) ∩H1(Ω), f ∈ L2(0, T ε; L2

0(Ω)),

then there exists a unique weak solution of (2.9) (see e.g. [41, Chapter 2]).
Definition 2.1. We define the family of effective equations E as the set of equations (2.9), where a0

is the homogenized tensor defined in (2.2) and L1, L2 are defined in (2.3) and (2.5) for some parameter
δ ≥ δ∗.

Remark 2.2. For uniformly periodic tensors, i.e. a(x, y) = a(y) ∀x ∈ Ω, the family E simplifies
to a parametrized subset of the family defined in [8]. Indeed, in that case we verify that L1 = 0 and
L2 = ā24ijkl∂

4
ijkl − b22∂2ij∂

2
t , where ā

24, b22 are constant and satisfy the constraint characterizing the family
from [8].

Our main result is the following theorem.
Theorem 2.3. Assume that the tensor a(x, y) satisfies

a ∈ C1(Ω̄;W2,∞(Y )) ∩ C2(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )).

Furthermore, assume that the solution ũ of (2.9), the initial conditions, and the right hand side satisfy the
regularity

ũ ∈ L∞(0, T ε; H5(Ω)), ∂tũ ∈ L∞(0, T ε; H4(Ω)), ∂2t ũ ∈ L∞(0, T ε; H3(Ω)),

g0 ∈ H4(Ω), g1 ∈ H4(Ω), f ∈ L2(0, T ε; H2(Ω)).
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Then the following estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(

‖g1‖H4(Ω) + ‖g0‖H4(Ω) + ‖f‖L1(0,T ε;H2(Ω))

+
∑5

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)

,
(2.10)

where C = C̃
(

‖a‖C1(Ω̄;W2,∞Y )) + ‖a‖C2(Ω̄;W1,∞(Y )) + ‖a‖C4(Ω̄;L∞(Y ))

)

and C̃ depends only on T , λ, Y , and δ,
(the norm ‖·‖W is defined in (1.8)).

We emphasize that the constant C̃ is independent of the domain Ω. Hence, if the different norms of the
data involved in the estimate are of order O(1), (2.10) ensures that ‖uε− ũ‖L∞(0,T ε;W ) = O(ε). In particular,
if the data have a spatial support of order O(1), a reasonable spatial variation, and if f has a temporal
support of order O(1), then ũ describes well uε over the long time interval [0, T ε].

3. Derivations of the adaptation operator and effective equations. In this section, we proceed
with the asymptotic expansion and construct the adaptation operator required in the proof of Theorem 2.3,
performed in the next section. As we will see, this construction is connected to the operators involved in the
family of effective equations defined in Definition 2.1.

The main result of this section is the following theorem.
Theorem 3.1. Let L1 and L2 be defined in (2.3) and (2.5), respectively. Then there exists an adaptation

of the form

Bεũ(t, x) = ũ(t, x) + εu1
(

t, x, xε
)

+ ε2u2
(

t, x, xε
)

+ ε3u3
(

t, x, xε
)

+ ε4u4
(

t, x, xε
)

+ ϕ(t, x), (3.1)

such that x 7→ Bεũ(t, x) is Ω-periodic and

(uε − Bεũ)(0) = O(ε), ∂t(u
ε − Bεũ)(0) = O(ε), (3.2a)

(∂2t +Aε)(uε − Bεũ)(t) = O(ε3) for a.e. t ∈ [0, T ε], (3.2b)

where we denoted Aε = −∇x ·
(

a
(

x, xε )∇x ·
)

.
Thanks to (3.2), under sufficient regularity assumptions, the adaptation can be proved to satisfy

‖[uε − Bεũ]‖L∞(0,T ε;W) = O(ε) and Theorem 2.3 is obtained with the triangle inequality (4.1) (this is
done rigorously in the next section). Let us note that the accuracy required on the adaptation in (3.2b) is
dictated by the order of the timescale T ε = O(ε−2) (see [8] or [41, Chapter 4]).

In the rest of the section, we proceed with the construction of the adaptation Bεũ and of the effective
equations. In particular, we need to define the functions uk and ϕ in (3.1) so that (3.2) holds. We will see
that the definitions of L1 and L2 enable the definitions of u3 to u4, respectively.

Before entering into technical details, let us present a plan of the construction. First, we formulate the
ansatz that an effective equation has the form (2.9), where a0(x) is the homogeneous tensor (defined in (2.2))
and L1, L2 are ε-independent differential operators to be defined. To emphasize that L1, L2 are unknown at
this point, let us denote them as L̃1 and L̃2. We then expand Rε = (∂2t +Aε)(uε − Bεũ)(t) with the aim to
attain the accuracy (3.2b). Canceling one after another the terms of Rε of order O(ε−1) to O(ε2), each uk

takes the form

uk(t, x, y) =

k
∑

ℓ=1

ck,ℓi1··ik−ℓ+1

(

x, xε
)

∂k−ℓ+1
i1··ik−ℓ+1

ũ(t, x),

where the corrector ck,ℓi1··ik−ℓ+1
(x, ·) solves a cell problem in Y (i.e., an elliptic PDE with periodic boundary

conditions). The well-posedness of these cell problems imposes quantitative constraints on L̃1 and L̃2. We
then design L̃1 and L̃2 so that these constraints are satisfied and (2.9) is well-posed. In what follows, we

require the correctors ck,ℓi1··ik−ℓ+1
(x, ·) to have zero mean. While this is a priori not necessary, it is a natural

choice and simplifies the computations.
Let us now present the technical details of the derivation. We introduce the differential operators

Ayy = −∇y ·
(

a(x, y)∇y ·
)

, Axy = −∇y ·
(

a(x, y)∇x ·
)

−∇x ·
(

a(x, y)∇y ·
)

, Axx = −∇x ·
(

a(x, y)∇x ·
)

.
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For a sufficiently regular function ψ(x, y), we verify that Aεψ
(

x, xε
)

=
(

ε−2Ayy + ε−1Axy + Axx

)

ψ
(

x, xε
)

.
Hence, using (1.12), (2.9) and (3.1), we obtain the development

Rε = (∂2t +Aε)(Bεũ− uε)(t, x) = ∂2t B
εũ(t, x) +AεBεũ(t, x)− f(t, x)

= ε−1
(

Ayyu
1+Axyũ

)

+ ε0
(

Ayyu
2+Axyu

1+Axxũ + ∂i(a
0
ij∂j ũ)

)

+ ε1
(

∂2t u
1 +Ayyu

3+Axyu
2+Axxu

1 − L̃1ũ
)

+ ε2
(

∂2t u
2 +Ayyu

4+Axyu
3+Axxu

2 − L̃2ũ
)

+(∂2t +Aε)ϕ+O(ε3),

(3.3)

where the ui are evaluated at
(

t, x, y = x
ε

)

. We then look for u1, . . . , u4 and ϕ such that the terms of order
O(ε−1) to O(ε2) in (3.3) vanish. Note that the uk are set to cancel the terms containing ũ and ϕ are set to
cancel the terms containing f (that will appear).

3.1. Canceling the ε−1, ε0 and ε terms and derivation of the constraints defining L̃1. To cancel
the term of order O(ε−1) in (3.3), it is sufficient to define

u1(t, x, y) = χi(x, y)∂iũ(t, x), (3.4)

where, for all x ∈ Ω and 1 ≤ i ≤ d, χi(x) ∈ Wper(Y ) solves the cell problem

ε−1 :
(

a(x)∇yχi(x),∇yw
)

Y
= −

(

a(x)ei,∇yw
)

Y
, (3.5)

for all test functions w ∈ Wper(Y ). To prove the well-posedness of (3.5), we apply Lax–Milgram theorem.
In particular, we must verify that the right hand side belongs to W∗

per(Ω). To do so, we need the follow-

ing characterization (consequence of Riesz representation theorem): a functional F ∈ [H1
per(Y )]

∗
, given by

〈

F,w
〉

=
(

f0, w
)

Y
+
(

f1
k , ∂kw

)

Y
, for some f0, f1

1 , . . . , f
1
d ∈ L2(Y ), belongs to W∗

per(Y ) if and only if f0 is zero
mean, or equivalently

(

f0, 1
)

Y
= 0. (3.6)

Using the characterization (3.6), we verify that the right hand side of (3.5) belongs to W∗
per(Y ) and the

equation is thus well-posed in Wper(Y ). The equation obtained by canceling the term of order O(1) in (3.3)
reads now

−∇y · (a∇yu
2) =

(

∇y · (eiχj) + eTi a(∇yχj + ej)− a0ij
)

∂2ij ũ

+
(

∇y · (∇xχi) +∇x · a(∇yχi + ei)−∇x · (a0ei)
)

∂iũ.

Compared to the uniformly periodic case in [8], we observe that a supplementary term coming from the
variation x 7→ a(x, y) appears in this equation. To satisfy this equality, it is sufficient to define

u2(t, x, y) = θ0ij(x, y)∂
2
ij ũ(t, x) + θ1i (x, y)∂iũ(t, x), (3.7)

where, for all x ∈ Ω and 1 ≤ i, j ≤ d, θ0ij(x), θ
1
i (x) ∈ Wper(Y ) satisfy

ε0 :
(

a(x)∇yθ
0
ij(x),∇yw

)

Y
= −

(

a(x)eiχj(x),∇yw
)

Y
+
(

a(x)(∇yχj(x) + ej)− a0(x)ej , eiw
)

Y
, (3.8a)

(

a(x)∇yθ
1
i (x),∇yw

)

Y
= −

(

a(x)∇xχi(x),∇yw
)

Y
+
(

∇x · a(x)(∇yχi(x) + ei)−∇x · (a0(x)ei), w
)

Y
, (3.8b)

for all test functions w ∈ Wper(Y ). To verify that the right hand sides of these PDEs belong to W∗
per(Y ), we

check that they satisfy (3.6). Thanks to the definition of the homogenized tensor a0 in (2.2), the right hand
side of (3.8a) satisfies (3.6) for all x ∈ Ω. Furthermore, we have

(

∇x · a(∇yχi + ei)−∇x · (a
0ei), 1

)

Y
= |Y |∂m

(

〈

eTma(∇yχi + ei)
〉

Y
− a0mi

)

= 0,
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and the right hand side of (3.8b) also satisfies (3.6). Hence, both cell problems in (3.8) are well-posed. At
this point, we have defined an adaptation such that Rε = O(ε), which would be sufficient for a timescale
O(1). As the timescale is of order O(ε−2), we need the accuracy Rε = O(ε3) in (3.2b), and we thus continue
to cancel the higher order terms in (3.3). We begin with the terms containing ũ. Taking into account the
definitions of u1 and u2 and the effective equation (2.9), we have

∂2t u
1 = χi∂i∂

2
t ũ = χi∂if + χi∂im(a0mn∂nũ)− εχi∂iL̃

1ũ+O(ε2),

∂2t u
2 = θ0ij∂

2
ij∂

2
t ũ+ θ1i ∂i∂

2
t ũ = θ0ij∂

2
ijf + θ1i ∂if + θ0ij∂

3
ijm(a0mn∂nũ) + θ1k∂km(a0mn∂nũ) +O(ε).

Plugging these equalities in (3.3), we obtain

Rε = ε
(

Ayyu
3 +Axyu

2 +Axxu
1+χi∂

2
im(a0mn∂nũ)− L̃1ũ

)

+ ε2
(

Ayyu
4 +Axyu

3 +Axxu
2+ θ0ij∂

3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)−χi∂iL̃

1ũ− L̃2ũ
)

+(∂2t +Aε)ϕ+ εχi∂if + ε2(θ0ij∂
2
ijf + θ1i ∂if)+O(ε3).

(3.9)

We are now looking for u3 such that the O(ε) order term in (3.9) cancels. We thus define

u3(t, x, y) = κ0ijk(x, y)∂
3
ijk ũ(t, x) + κ1ij(x, y)∂

2
ij ũ(t, x) + κ2i (x, y)∂iũ(t, x), (3.10)

where κ0ijk(x), κ
1
ij(x) and κ

2
i (x) are solutions of cell problems to be defined. We now need to design L̃1 such

that these cell problems are well-posed. The first idea is to set L̃1 = a13ijk(x)∂
3
ijk −a

12
ij (x)∂

2
ij +a

11
i (x)∂i and to

define the tensors a13, a12, a11 using the constraints imposed by the solvability of the cell problems. However,
we also have to ensure the well-posedness of the effective equation (2.9). We will see that a13ijk(x)∂

3
ijk = 0.

Nevertheless, for the operator −εa12ij (x)∂
2
ij not to deteriorate the ellipticity of −∂i(a

0
ij∂j ·), a

12 has to be non-
negative. This condition can not be ensured in general by the tensor involved by the obtained constraint.
We thus apply a Boussinesq trick: adding the term b10∂2t in L̃1, we observe that if we formally substitute
∂2t ũ = f + ∂i(a

0
ij∂j ũ) in L̃

1ũ, the constraint imposed by the well-posedness of the cell problem for κ1ij applies

on a12ij − b10a0ij . As a0 is positive definite, note that we can then find non-negative b10, a12 that satisfy the
constraint. Let then

L̃1 = a13ijk(x)∂
3
ijk − a12ij (x)∂

2
ij + a11i (x)∂i + b10(x)∂2t . (3.11)

Using the effective equation, we obtain

L̃1ũ = L̃1,xũ+ b10∂m(a0mn∂nũ) + b10f + εb10L̃1ũ+O(ε2), (3.12)

where we denoted L̃1,x = L̃1 − b10(x)∂2t , the spatial part of L̃1. Hence, we rewrite (3.9) as

Rε = ε
(

Ayyu
3 +Axyu

2 +Axxu
1 +χi∂

2
im(a0mn∂nũ)− L̃1,xũ− b10∂m(a0mn∂nũ)

)

+ ε2
(

Ayyu
4 +Axyu

3 +Axxu
2 + θ0ij∂

3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)

−χi∂i(L̃
1ũ) + b10L̃1ũ− L̃2ũ

)

+(∂2t +Aε)ϕ+ εχi∂if + ε2(θ0ij∂
2
ijf + θ1i ∂if)− εb10f +O(ε3).

(3.13)

Recalling the definition of u3 in (3.10), the cancellation of the O(ε) order term in (3.13) leads to the following
cell problems: for all x ∈ Ω and 1 ≤ i, j, k ≤ d, κ0ijk(x), κ

1
ij(x), κ

2
i (x) ∈ Wper(Y ) satisfy (for readability we do

not specify the evaluation in x)

ε1 :
(

a∇yκ
0
ijk,∇yw

)

Y
=−

(

aeiθ
0
jk,∇yw

)

Y
+
(

a(∇yθ
0
jk + ejχk), eiw

)

Y
−
(

a0ijχk, w
)

Y
+
(

a13ijk, w
)

Y
, (3.14a)

(

a∇yκ
1
ij ,∇yw

)

Y
=−

(

a(∇xθ
0
ij + eiθ

1
j ),∇yw

)

Y
+
(

∇x · a(∇yθ
0
ij + eiχj), w

)

Y

+
(

a(∇yθ
1
j +∇xχj), eiw

)

Y
−
(

χi∂ma
0
mj + χm∂ma

0
ij , w

)

Y
−
(

a12ij − b10a0ij , w
)

Y
,

(3.14b)

(

a∇yκ
2
i ,∇yw

)

Y
=−

(

a∇xθ
1
i ,∇yw

)

Y
+
(

∇x · a(∇yθ
1
i +∇xχi), w

)

Y
−
(

χm∂
2
mna

0
ni, w

)

Y

+
(

b10∂ma
0
mi + a11i , w

)

Y
,

(3.14c)
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for all test functions w ∈ Wper(Y ). These cell problems are well-posed if their right hand sides satisfy (3.6).

This is the case if and only if the tensors of L̃1 satisfy the following constraints (recall that
〈

χk(x)
〉

Y
= 0):

|Y |a13ijk = −
(

a(∇yθ
0
jk + ejχk), ei

)

Y
, (3.15a)

|Y |(a12ij − b10a0ij) =
(

∇x · a(∇yθ
0
ij + eiχj), 1

)

Y
+
(

a(∇yθ
1
j +∇xχj), ei

)

Y
, (3.15b)

|Y |a11i = −
(

∇x · a(θ1i +∇xχi), 1
)

Y
− |Y |b10∂ma

0
mi. (3.15c)

We emphasize that the constraints (3.15) must hold for each x ∈ Ω. These expressions are simplified in the
following lemma.

Lemma 3.2. The constraints on a13, a12, b10 and a11 defined in (3.15) can be rewritten for all x ∈ Ω as

a13ijk(x) = (p13ijk − p13kji)(x), p13ijk =
〈

a(∇yχk + ek) · ejχi

〉

Y
, (3.16a)

(a12ij − b10a0ij)(x) = −∂ma
13
mij(x) + p12ij (x), p12ij =

〈

a(∇yθ
1
j +∇xχj) · ei

〉

Y
, (3.16b)

a11i (x) = −∂mp
12
mi(x) − b10∂ma

0
mi(x). (3.16c)

Furthermore, p12(x) satisfies

p12ij (x) = −∂mp
13
imj(x) + q12ij (x) + q12ji (x), q12ij =

〈

a(∇yχj + ej) · ∇xχi

〉

Y
. (3.16d)

Proof. Let us denote (·, ·)Y as (·, ·) and 〈·〉Y as 〈·〉. We first prove (3.16a). Using (3.5) with the test
function w = θ0jk and (3.8a) with w = χi, we have

−
(

a(∇yθ
0
jk + ejχk), ei

)

=
(

a∇yθ
0
jk,∇yχi

)

−
(

aejχk, ei
)

= −
(

aejχk,∇yχi + ei
)

+
(

a(∇yχk + ek), ejχi

)

,

which, thanks to the symmetry of a(x, y) proves (3.16a). Let us now prove (3.16b). Thanks to (3.15a), the
first term of (3.15b) is

(

∇x · a(∇yθ
0
ij + eiχj), 1

)

= ∂m
(

a(∇yθ
0
ij + eiχj), em

)

= −|Y |∂ma
13
mij ,

and thus (3.15b) can be rewritten as (3.16b). To rewrite a11i as in (3.16c), we simply note that −
(

∇x ·a(∇yθ
1
i +

∇xχi), 1
)

= −|Y |∂mp
12
mi. Finally, let us prove (3.16d). Using (3.5) with the test function w = θ1j and (3.8b)

with w = χi, we have
(

a(∇yθ
1
j +∇xχj), ei

)

= −
(

a∇yθ
1
j ,∇yχi

)

+
(

a∇xχj , ei
)

=
(

a∇xχj ,∇yχi + ei
)

−
(

∇x · a(∇yχj + ej), χi

)

.

Furthermore, the last term satisfies

−
(

∇x · a(∇yχj + ej), χi

)

= −∂m
(

a(∇yχj + ej), emχi

)

+
(

a(∇yχj + ej),∇xχi

)

= |Y |(−∂mp
13
imj + q12ij ).

Combining the two last equalities gives (3.16d) and the proof of the lemma is complete.
In the following proposition, we verify that the two operators L̃1 and L1 coincide.
Proposition 3.3. Let ā12 and b10 be the tensors defined in (2.4) and assume that ā12 ∈ C1(Ω̄). Let

also L̃1 and L1 be the operators defined in (3.11) and (2.3), respectively. Then L̃1v = L1v for any v ∈
L∞(0, T ε; H3(Ω)) with ∂2t v ∈ L∞(0, T ε; L2(Ω)).

Proof. First, note that thanks to (3.16a), we have S3
ijk{a

13
ijk} = 0 and thus a13ijk∂

3
ijkv = 0. Furthermore,

thanks to (3.16a), (3.16b), and (3.16d), we verify that S2
ij{a

12
ij } = ā12ij . Hence, we have

L̃1v − b10∂2t v = −S2
ij{a

12
ij }∂

2
ijv + a11i ∂iv = −∂i

(

ā12ij ∂jv
)

+
(

a11i + ∂m(S2
mi{a

12
mi})

)

∂iv. (3.17)

We claim that a11i + ∂m(S2
mi{a

12
mi}) = 0. To prove it, note that as b10 is constant, using (3.16b) and (3.16c),

we have

a11i + ∂m(S2
mi{a

12
mi}) =

1
2∂m

(

p12im − p12mi

)

− 1
2∂

2
mn

(

a13nmi + a13nim
)

.

Using then (3.16a) and (3.16d), we verify that

a11i + ∂m(S2
mi{a

12
mi}) =

1
2∂

2
mn

(

− p13inm + p13mni − p13nmi + p13imn − p13nim + p13min

)

= 0,

and the claim is proved. Combined with (3.17), the claim concludes the proof of the lemma.
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3.2. Canceling the ε2 term and derivation of the constraints defining L̃2. We now come back to
the asymptotic expansion. The next step is to cancel the O(ε2) order term containing ũ in (3.13). Following
the same reasoning as for u3, we define u4 as

u4(t, x, y) = ρ0ijkl(x, y)∂
4
ijkl ũ(t, x) + ρ1ijk(x, y)∂

3
ijkũ(t, x) + ρ2ij(x, y)∂

2
ij ũ(t, x) + ρ3i (x, y)∂iũ(t, x), (3.18)

for some ρ0, ρ1, ρ2, ρ3 to be defined. The ansatz on the form of L̃2 could be ∂2ij(a
24
ijkl∂

2
kl)+ a23ijk∂

3
ijk − a22ij ∂

2
ij +

a21i ∂i. However, as for L̃1, this choice does not allow the well-posedness of the effective equation (2.9). We
thus apply Boussinesq tricks. First, similarly as for L̃1, we add the operator b20∂2t in L̃2 in order to obtain a
constraint on the difference a22ij − b20a0ij . Second, inspired by the uniformly periodic case in [8], we add the

term −∂i(b
22
ij ∂j∂

2
t ·) in order to obtain a constraint on a24ijkl − a0jkb

22
il . Finally, for the operator of order 3, we

will see that we can find a tensor a23 that satisfies the constraint and a23ijk∂
3
ijk = 0. We thus define

L̃2 = ∂2ij(a
24
ijkl(x)∂

2
kl·)− ∂i(b

22
ij (x)∂j∂

2
t ·) + a23ijk(x)∂

3
ijk − a22ij (x)∂

2
ij + a21i (x)∂i + b20(x)∂2t , (3.19)

and, using (2.9), we verify that

L̃2ũ = L̃2,xũ− ∂i(b
22
ij ∂

2
jk(a

0
kl∂lũ)) + b20∂m(a0mn∂nũ)− ∂i(b

22
ij ∂jf) + b20f +O(ε), (3.20)

where L̃2,x = L̃2 + ∂i(b
22
ij ∂j∂

2
t ·)− b20∂2t is the spatial part of L̃2. Let us rewrite the following terms of (3.13)

taking into account the definition of L̃1 and using (2.9):

χi∂i(L̃
1ũ) = χi∂i(L̃

1,xũ) + χi∂i(b
10∂m(a0mn∂nũ)) + χi∂i(b

10f) +O(ε),

b10L̃1ũ = b10L̃1,xũ+ (b10)2∂m(a0mn∂nũ) + (b10)2f +O(ε).

Therefore, using the definitions of the uk, and (3.20), we rewrite the O(ε2) order term in (3.13) and obtain

Rε = ε2
(

Ayyu
4 +Axyu

3 +Axxu
2+ θ0ij∂

3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)− χi∂i(L̃

1,xũ)

+ χi∂i(b
10∂m(a0mn∂nũ))− b10L̃1,xũ+ (b10)2∂m(a0mn∂nũ)

− L̃2,xũ+ ∂i(b
22
ij ∂

2
jm(a0mn∂nũ))− b20∂m(a0mn∂nũ)

)

+ ε(χi∂if − b10f)+ ε2
(

θ0ij∂
2
ijf + θ1i ∂if − χi∂i(b

10f) + (b10)2f + ∂i(b
22
ij ∂jf)− b20f

)

+(∂2t +Aε)ϕ+O(ε3).

(3.21)

We thus obtain the following cell problems: for x ∈ Ω and 1 ≤ i, j, k, l ≤ d, ρ0ijkl(x), ρ
1
ijk(x), ρ

2
ij(x),

ρ3i (x) ∈ Wper(Y ) satisfy

ε2 :
(

a∇yρ
0
ijkl ,∇yw

)

Y
=−

(

aeiκ
0
jkl,∇yw

)

Y
+
(

a(∇yκ
0
jkl + ejθ

0
kl), eiw

)

Y

+
(

a13jklχi − a0ijθ
0
kl, w

)

Y
+

(

a24ijkl − a0jkb
22
il , w

)

Y
,

(3.22a)

(

a∇yρ
1
ijk,∇yw

)

Y
=−

(

a(eiκ
1
jk +∇xκ

0
ijk,∇yw

)

Y
+
(

∇x · a(∇yκ
0
ijk + eiθ

0
jk), w

)

Y

+
(

a(∇yκ
1
jk +∇xθ

0
jk + ejθ

1
k), eiw

)

Y

+
(

χm∂ma
13
ijk + (b10a0ij − a12ij )χk − θ0ij∂ma

0
mk − θ0mi∂ma

0
jk − θ0im∂ma

0
jk − a0ijθ

1
k, w

)

Y

+
(

∂m(a24imjk + a24mijk − b22mka
0
ij)− b22im∂ma

0
jk − b22ij ∂ma

0
mk − b10a13ijk + a23ijk, w

)

Y
,

(3.22b)
(

a∇yρ
2
ij ,∇yw

)

Y
=−

(

a(eiκ
2
j +∇xκ

1
ij),∇yw

)

+
(

∇x · a(∇yκ
1
ij +∇xθ

0
ij + eiθ

1
j ), w

)

Y

+
(

a(∇yκ
2
j +∇xθ

1
j ), eiw

)

Y

+
(

χm∂m(b10a0ij − a12ij ) + b10χi∂ma
0
mj + a11i χj

− θ1i ∂ma
0
mj − θ1m∂ma

0
ij − (θ0im + θ0mi)∂

2
mna

0
nj − θ0mn∂

2
mna

0
ij , w

)

Y

+
(

∂2mna
24
mnij − ∂m(b22mi∂na

0
nj)− ∂m(b22mn∂na

0
ij)− b22im∂

2
mna

0
nj

+ b10(a12ij − b10a0ij)− (a22ij − b20a0ij), w
)

Y
,

(3.22c)
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(

a∇yρ
3
i ,∇yw

)

Y
=−

(

a∇xκ
2
i ,∇yw

)

Y
+
(

∇x · a(∇yκ
2
i +∇xθ

1
i ), w

)

Y

+
(

χm∂ma
11
i + χm∂m(b10∂na

0
ni)− θ0mn∂

3
mnpa

0
pi − θ1m∂

2
mna

0
ni, w

)

Y

+
(

b20∂ma
0
mi − b10(b10∂ma

0
mi + a11i )− ∂m(b22mn∂

2
npa

0
pi) + a21i , w

)

Y
,

(3.22d)

for all test functions w ∈ Wper(Y ). The cell problems (3.22) are well-posed if their right hand sides satisfy

(3.6). This is the case if and only if the tensors of L̃2 satisfy the following constraints (χi(x), θ
0
ij(x) and θ

1
i (x)

have zero mean):

|Y |(a24ijkl − a0jkb
22
il ) = −

(

a(∇yκ
0
jkl + ejθ

0
kl), ei

)

Y
, (3.23a)

|Y |a23ijk = −
(

∇x · a(∇yκ
0
ijk + eiθ

0
jk), 1

)

Y
−

(

a(∇yκ
1
jk +∇xθ

0
jk + ejθ

1
k), ei

)

Y

+ |Y |
(

b22im∂ma
0
jk + b22ij ∂ma

0
mk + b10a13ijk + ∂m(b22mka

0
ij − a24imjk − a24mijk)

)

,
(3.23b)

|Y |(a22ij − b20a0ij) =
(

∇x · a(∇yκ
1
ij +∇xθ

0
ij + eiθ

1
j ), 1

)

Y
+
(

a(∇yκ
2
j +∇xθ

1
j ), ei

)

Y

+ |Y |
(

∂2mna
24
mnij − ∂m(b22mi∂na

0
nj)− ∂m(b22mn∂na

0
ij)− b22im∂

2
mna

0
nj

+ b10(a12ij − b10a0ij)
)

,

(3.23c)

|Y |a21i = −
(

∇x · a(∇yκ
2
i +∇xθ

1
i ), 1

)

Y
+ |Y |

(

b10(b10∂ma
0
mi + a11i )− b20∂ma

0
mi + ∂m(b22mn∂

2
npa

0
pi)

)

, (3.23d)

for all x ∈ Ω. These expressions are simplified in the following Lemma (we refer to [41, Lemma 6.2.8] for the
proof).

Lemma 3.4. Denote Rij(x) = b22ij (x) −
〈

χj(x)χi(x)
〉

Y
. Then the constraints on a24, b22, a23, a22, b20

and a21 given in (3.23) can be rewritten as

a24ijkl =
〈

ajkχlχi

〉

Y
−
〈

a∇yθ
0
kl · ∇yθ

0
ji

〉

Y
+ a0jkRil, (3.24a)

a23ijk = p23ijk − p23kji + b10a13ijk − ∂m(a0mjRik) + ∂ma
0
mkRij + ∂ma

0
jkRmi, (3.24b)

p23ijk =
〈

aejχi · ∇xχk

〉

Y
−
〈

a∇yθ
0
ji · ∇yθ

1
k

〉

Y
, (3.24c)

a22ij − b20a0ij = ∂m(p23jim − p23mij − p23imj) + p22ij + b10(a12ij − b10a0ij)

+ ∂2mn(a
0
niRmj)− ∂m(∂na

0
njRmi)− ∂m(∂na

0
ijRmn)− ∂2mna

0
njRim,

(3.24d)

p22ij =
〈

a∇xχj · ∇xχi

〉

Y
−
〈

a∇yθ
1
i · ∇yθ

1
j

〉

Y
, (3.24e)

a21i = ∂2mnp
23
mni − ∂mp

22
mi + b10(b10∂ma

0
mi + a11i )− b20∂ma

0
mi + ∂m(∂2npa

0
piRmn). (3.24f)

We then verify that the two operators L̃2 and L2 coincide.
Proposition 3.5. Let ā24, b22, ā22 be the tensors defined in (2.6) and (2.8) and assume that ā24 ∈ C2(Ω̄)

and b22, ā12 ∈ C1(Ω̄). Let also L2 be the operator defined in (2.5) and L̃2 be the operator defined in (3.19) with
the tensors given in (3.24) where Rij = δa0ij for some δ ∈ R. Then L̃2v = L2v for any v ∈ L∞(0, T ε; H4(Ω))

with ∂2t v ∈ L∞(0, T ε; H2(Ω)).
Proof. First, inserting Rij = δa0ij in (3.24d) and using (3.16a), we verify that S3

ijk{a
23
ijk} = 0 and

thus a23ijk∂
3
ijkv = 0. Second, using (3.24d), (2.4), and the definition of Rij , we verify that S2

ij{a
22
ij } = ā22ij .

Furthermore, it holds S2,2
ij,kl{a

24
ijkl} = ā24ijkl. Hence, denoting L̃

2,x = L̃2 + ∂i
(

b22ij ∂j∂
2
t ·

)

− b20∂2t , we have

L̃2,xv = ∂2ij
(

ā24ijkl∂
2
klv

)

− ∂i
(

S2
ij{a

22
ij }∂jv

)

+
(

a21i + ∂m(S2
mi{a

22
mi})

)

∂iv. (3.25)

We claim that a21i + ∂m(S2
mi{a

22
mi}) = 0. Indeed, using (3.24d), the form of Rij , and the symmetry of p22

and a0, we compute

S2
ij{a

22
ij } = S2

ij

{

∂n(p
23
jin−p

23
nij −p

23
inj)

}

+p22ij + b
10S2

ij{a
12
ij }− (b10)2a0ij + δ∂na

0
pi∂pa

0
nj − δ∂p

(

a0pn∂na
0
ij

)

+ b20a0ij .

Note that we have seen in the proof of Proposition 3.3 that a11i + ∂m(S2
mi{a

12
mi}) = 0. Using then (3.24f),

direct computations lead to

a21i + ∂m(S2
mi{a

22
mi}) = δ∂m

(

∂2npa
0
pia

0
mn

)

+ δ∂m
(

∂na
0
pm∂pa

0
ni

)

− δ∂2mp

(

a0pn∂na
0
mi

)

= 0,
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which proves the claim. Combined with (3.25), the claim concludes the proof of the lemma.

3.3. Including a non-zero right hand side. To reach the accuracy Rε = O(ε3) in (3.21), we still
have to remove the terms coming from the right hand side f . To do so, we let ϕ in (3.1) belongs to the
unique class of solution ϕ of the equation

(∂2t +Aε)ϕ(t) = −S
εf(t) in W∗

per(Ω) for a.e. t ∈ [0, T ε],

ϕ(0) = ∂tϕ(0) = [0],
(3.26)

where, denoting χε
i = χi

(

·, ·
ε

)

, θ0εij = θ0ij
(

·, ·
ε

)

, θ1εi = θ1i
(

·, ·
ε

)

,

S
εf = [ε(χε

i∂if − b10f)+ ε2(θ0εij ∂
2
ijf + θ1εi ∂if − χε

i∂i(b
10f) + (b10)2f + ∂i(b

22
ij ∂jf)− b20f)].

We verify that ϕ ∈ L∞(0, T ε;Wper(Ω)), ∂tϕ ∈ L∞(0, T ε;L2(Ω)) and ∂2tϕ ∈ L2(0, T ε;W∗
per(Ω)). Furthermore,

the standard energy estimate for the wave equation ensures that

‖ϕ‖L∞(0,T ε;W) ≤ ‖∇xϕ‖L∞(0,T ε;L2(Ω)) ≤ Cε‖f‖L1(0,T ε;H2(Ω)), (3.27)

where C depends only on

λ,Λ, ‖χi‖C0(Ω̄;C0(Y )), ‖b
22
ij ‖C1(Ω̄), |b

10|, |b20|, ‖θ0ij‖C0(Ω̄;C0(Y )), ‖θ
1
i ‖C0(Ω̄;C0(Y )).

3.4. Proof of Theorem 3.1. To conclude this section, let us prove Theorem 3.1. The adaptation Bεũ
is defined by (3.1), where u1, . . . , u4 are defined in (3.4), (3.7), (3.10), and (3.18), and ϕ ∈ ϕ solves (3.26).
Then, combining Lemma 3.2 with Proposition 3.3, we verify that L1ũ = L̃1ũ, where the tensors involved
in the definition of L̃1ũ satisfy the constraints (3.15). Hence, the cell problems (3.14) are well-posed and
u3 is well defined. Similarly, combining Lemma 3.4 with Proposition 3.5, we verify that L2ũ = L̃2ũ and
the definition of L̃2 ensures that u4 is well defined. Note that thanks to assumption (1.11), we verify that
x 7→ Bεũ(t, x) is Ω-periodic. This proves the existence of the adaptation Bεũ. By construction (see (3.3)),
Bεũ satisfies the properties (3.2) and the proof of the theorem is complete.

4. Proof of the main result. In this section, we prove the main result of the paper, Theorem 2.3. The
proof is structured as follows. First, we use the correctors introduced in Section 3 to define the adaptation
operator Bε. This operator satisfies Bεũ(t) = [Bεũ(t)], where Bεũ is defined in (3.1) and [·] denotes the
equivalence class in Wper(Ω) = H1

per(Ω)/R. We emphasize that in the proof, we work in the quotient Wper(Ω)
because Bεũ(t) does not have zero mean (alternatively, we can normalize all the non zero mean terms in
Bεũ(t) and work in Wper(Ω)). Next, using that uε − ũ ∈ Wper(Ω), we split the error as

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−B
εũ‖L∞(W), (4.1)

and estimate both terms. In particular, we prove that B
εũ satisfies the same equation as [uε] up to a

remainder of order O(ε3) (Lemma 4.1).
Consider the correctors

χi(x), θ
0
ij(x), θ

1
i (x), κ

0
ijk(x), κ

1
ij(x), κ

2
i (x), ρ

0
ijkl(x), ρ

1
ijk(x), ρ

2
ij(x), ρ

3
i (x) ∈ Wper(Y ),

defined as the solutions of the cell problems (3.5), (3.8), (3.14) and (3.22), and let ϕ be the solution of
(3.26). Propositions 3.3 and 3.5 ensure that L1ũ = L̃1ũ and L2ũ = L̃2ũ, where the definitions of the tensors
in L̃1 (resp. L̃2) guarantee the well-posedness of the cell problems (3.14) (resp. (3.22)). Let us investigate
the regularity of the correctors. Using regularity results for elliptic PDEs (see e.g. [18]), we can prove the
following implications, for n ≥ 0, m ≥ 0 (see [41, Chapter 6]):

χi, θ
0
ij , κ

0
ijk, ρ

0
ijkl ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄;Wm,∞(Y )),

θ1i , κ
1
ij , ρ

1
ijk ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄;Wm,∞(Y )) ∩ Cn+1(Ω̄;W{m−1}+,∞(Y )),

κ2i , ρ
2
ij ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩2

k=0C
n+k(Ω̄;W{m−k}+,∞(Y )),

ρ3i ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩3
k=0C

n+k(Ω̄;W{m−k}+,∞(Y )), (4.2)
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a0ij , ā
24
ijkl, b

22
ij ∈ Cn(Ω̄) ⇐ a ∈ Cn(Ω̄; L∞(Y )),

ā12ij ∈ Cn(Ω̄) ⇐ a ∈ Cn+1(Ω̄; L∞(Y )),

ā22ij ∈ Cn(Ω̄) ⇐ a ∈ Cn+2(Ω̄; L∞(Y )),

where {·}+ = max{0, ·}. In particular, under the assumption of Theorem 2.3, all the correctors belong to
C1(Ω̄; H3(Y ))∩C2(Ω̄; H2(Y )). As d ≤ 3, the Sobolev embedding H2

per(Y ) →֒ C0
per(Ȳ ) holds and the correctors

belongs to C1(Ω̄; C1
per(Ȳ ))∩C2(Ω̄; C0

per(Ȳ )). Hence, the following estimates hold (needed in the proof of Lemma
4.1 below)

max
ijkl

{

‖χi‖C0(C0), ‖θ
0
ij‖C1(C1), ‖θ

1
i ‖C0(C0), ‖κ

0
ijk‖C2(C0), ‖κ

1
ij‖C2(C0),

‖κ2i ‖C2(C0), ‖ρ
0
ijkl‖C1(C1), ‖ρ

1
ijk‖C1(C1), ‖ρ

2
ij‖C1(C1), ‖ρ

3
i ‖C1(C1),

‖ā12ij ‖C2 , |b10|, ‖ā24ijkl‖C3 , ‖b22ij ‖C2 , ‖ā22ij ‖C2 , |b20|
}

≤ C1(a, λ, Y ) + δC2(a, λ, Y ), (4.3)

where Ci(a, λ, Y ) depend only on λ, Y , ‖a‖C1(W2,∞), ‖a‖C2(W1,∞), and ‖a‖C4(L∞), and δ is the parameter.
Let us introduce the following useful application of the Green formula (see [8] for a proof): for c ∈

[W1,∞
per (Ω)]d, v ∈ H1

per(Ω), and w ∈ Wper(Ω), we have

(

[cm∂mv],w
)

L2 = −
(

[∂mcmv],w
)

L2 −
(

cm, ∂mw
)

L2 , (4.4)

where we recall that ∂mcm =
∑d

m=1 ∂mcm. In order to shorten the notation, we define the following functions
of C1

per(Ω̄): χ
ε
i = χi

(

·, ·
ε

)

, θ0εij = θ0ij
(

·, ·
ε

)

, θ1εi = θ1i
(

·, ·
ε

)

, and similarly κ0εijk, κ
1ε
ij , κ

2ε
i , ρ

0ε
ijkl , ρ

1ε
ijk, ρ

2ε
ij , ρ

3ε
i . We

define then the operators Bε
i : H

3
per(Ω) → W∗

per(Ω) for v ∈ H3
per(Ω) as

〈

B
ε
0v,w

〉

=
(

[v],w
)

L2 ,
〈

B
ε
1v,w

〉

=
(

ε[χε
i∂iv],w

)

L2 ,
〈

B
ε
2v,w

〉

=
(

ε2[(−∂mθ
0ε
mi + θ1εi )∂iv],w

)

L2 −
(

ε2θ0εmi∂iv, ∂mw
)

L2 ,
〈

B
ε
3v,w

〉

=
(

ε3[κ0εijk∂
3
ijkv + κ1εij ∂

2
ijv + κ2εi ∂iv],w

)

L2 ,
〈

B
ε
4v,w

〉

=
(

ε4[(−∂mρ
0ε
mijk + ρ1εijk)∂

3
ijkv + ρ2εij ∂

2
ijv + ρ3εi ∂iv],w

)

L2 −
(

ε4ρ0εmijk∂
3
ijkv, ∂mw

)

L2 ,

where 〈·, ·〉 denotes the dual evaluation 〈·, ·〉W∗

per,Wper . The adaptation operator is then defined as

B
ε : L2(0, T ε; H3

per(Ω)) → L2(0, T ε;W∗
per(Ω)), v 7→ B

εv(t) =
4
∑

i=0

B
ε
i (v(t)) +ϕ(t). (4.5)

Note that if v ∈ L2(0, T ε; H1
per(Ω)∩H5(Ω)), then B

εv(t) ∈ Wper(Ω) and, using (4.4), we verify that Bεũ(t) =

[Bεũ(t)], where Bεũ is defined in (3.1) (with {uk}4k=1 defined in (3.4), (3.7), (3.10), and (3.18)). For
Aε = −∇x ·

(

aε(x)∇x ·
)

, we thus define

〈

Aε
B

εũ(t),w
〉

W∗

per,Wper
=

〈

Aε[Bεv(t)],w
〉

W∗

per,Wper
.

Remark that the definition of Bε in (4.5) allows to consider functions with lower regularity than Bε. In
particular, B

ε(∂2t ũ) is well-defined, as ∂2t ũ ∈ L∞(0, T ε; H3
per(Ω)). This is needed to prove the following

lemma.
Lemma 4.1. Under the assumptions of Theorem 2.3, Bεũ satisfies

(∂2t +Aε)Bεũ(t) = [f(t)]+R
εũ(t) in W∗

per(Ω) for a.e. t ∈ [0, T ε],

where the remainder R
εũ ∈ L∞(0, T ε;W∗

per(Ω)) is given as

〈

R
εũ(t),w

〉

W∗

per,W
∗

per
=

(

(Rεũ)0(t),w
)

L2 +
(

(Rεũ)1(t),∇xw
)

L2 ,
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with the bound

‖(Rεũ)0‖L∞(0,T ε;L2(Ω))+‖(Rεũ)1‖L∞(0,T ε;L2(Ω))

≤ Cε3
(

∑5
k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)

,

for a constant C that depends only on λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ.
Proof. Let us denote 〈·, ·〉Wper,Wper as 〈·, ·〉. For a fixed t ∈ [0, T ε], we compute the remainder Rεũ(t) =

(∂2t +Aε)Bεũ(t)−[f(t)]. Let us first compute explicitly the first term, ∂2tB
εũ(t). For the sake of clarity, we

drop the notation of the evaluation in t. From the definition of Bε in (4.5), it holds ∂2tB
εũ =

∑2
i=0 B

ε
i∂

2
t ũ+

∂2tϕ+R
ε
1ũ, where R

ε
1ũ =

∑4
i=3 B

ε
i∂

2
t ũ, i.e.,

〈

∂2tB
εũ,w

〉

=
(

[∂2t ũ],w
)

L2 +
(

[εχε
i∂i∂

2
t ũ+ ε2(−∂mθ

0ε
mi + θ1εi )∂i∂

2
t ũ],w

)

L2

−
(

ε2θ0εmi∂i∂
2
t ũ, ∂mw

)

+
〈

∂2tϕ+R
ε
1ũ,w

〉

. (4.6)

We rewrite the three first terms of the right hand side. Note that thanks to the regularity of ũ and the
effective equation (2.9), we have the following equalities

∂2t ũ = f + ∂m(a0mn∂nũ)− εL̃1ũ− ε2L̃2ũ in L2
0(Ω), (4.7)

∂i∂
2
t ũ = ∂if + ∂2im(a0mn∂nũ)− ε∂i(L̃

1ũ)− ε2∂i(L̃
2ũ) in L2(Ω). (4.8)

Using (4.7), we rewrite the first term of (4.6) as

[∂2t ũ] = [f]+ [∂m(a0mn∂nũ) + ε
(

− L̃1,xũ− b10∂m(a0mn∂nũ)
)

+ ε2
(

− L̃2ũ+ b10L̃1ũ
)

]

+ [−εb10f + ε3b10L̃2ũ],

where L̃1,x = L̃1 − b10∂2t . Using the definitions of L̃1 and L̃2 and (4.7), we have

ε2
(

[−L̃2ũ+ b10L̃1ũ],w
)

L2

= ε2
(

[−L̃2,xũ− b10L̃1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ)],w
)

L2

− ε2
(

b22mi∂i∂
2
t ũ, ∂mw

)

L2 + ε2
(

[((b10)2 − b20)(f + εL̃1ũ+ ε2L̃2ũ)],w
)

L2 ,

where L̃2,x = L̃2 + ∂i(b
22
ij ∂j∂

2
t ·)− b20∂2t . We thus obtain

(

[∂2t ũ],w
)

L2 =
(

[f]+ [∂m(a0mn∂nũ) + ε
(

− L̃1,xũ− b10∂m(a0mn∂nũ)
)

+ ε2
(

− L̃2,xũ+ b10L̃1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ)],w
)

L2

−
(

ε2b22mi∂i∂
2
t ũ, ∂mw

)

L2 +
(

S
ε
1f +R

ε
2ũ,w

)

L2 , (4.9)

where

S
ε
1f = [−εb10f + ε2((b10)2 − b20)f],

R
ε
2ũ = [ε3b10L̃2ũ+ ε3((b10)2 − b20)(L̃1ũ+ εL̃2ũ)].

Next, we use (4.8) and then (4.7) to write the second term of (4.6) as

[εχε
i∂i∂

2
t ũ] = [εχ

ε
i∂

2
im(a0mn∂nũ)− ε2χε

i∂i(L̃
1,xũ)− ε2χε

i∂i(b
10∂m(a0mn∂nũ))]+ S

ε
2f +R

ε
3ũ, (4.10)

where

S
ε
2f = [εχε

i∂if − ε2χε
i∂i(b

10f)],

R
ε
3ũ = [−ε3χε

i∂i(L̃
2ũ) + ε3χε

i∂i(b
10(L̃1ũ+ εL̃2ũ))].

Furthermore, using (4.8) and formula (4.4), we rewrite

−
(

[ε2∂mθ
0ε
mi∂i∂

2
t ũ],w

)

L2 −
(

ε2(θ0εmi + b22mi)∂i∂
2
t ũ, ∂mw

)

L2

=
(

[ε2θ0εij ∂
3
ijm(a0mn∂nũ) + ∂i(b

22
ij ∂

2
jm(a0mn∂nũ))],w

)

L2 +
〈

S
ε
3f +R

ε
4ũ,w

〉

. (4.11)
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where

〈

S
ε
3f,w

〉

=
(

ε2[θ0εij ∂
2
ijf + ∂i(b

22
ij ∂jf)],w

)

L2 ,
〈

R
ε
4ũ,w

〉

=
(

ε3[∂mθ
0ε
mi∂i(L̃

1ũ+ εL̃2ũ)],w
)

L2 +
(

ε3(θ0εmi + b22mi)∂i(L̃
1ũ+ εL̃2ũ), ∂mw

)

L2 ,

and, using (4.8), we rewrite

[ε2θ1εi ∂i∂
2
t ũ] = [ε

2θ1εi ∂
2
im(a0mn∂nũ)]+ S

ε
4f +R

ε
5ũ, (4.12)

where Sε
4f = [ε2θ1εi ∂if] and R

ε
5ũ = [ε3θ1εi ∂i(L̃

1ũ+ εL̃2ũ)]. Combining equalities (4.6), (4.9), (4.10), (4.11)
and (4.12), we finally obtain

∂2tB
εũ =[f]+ [∂m(a0mn∂nũ)]+ ε[χi∂

2
im(a0mn∂nũ)− L̃1,xũ− b10∂m(a0mn∂nũ)]

+ ε2[θ0εij ∂
3
ijm(a0mn∂nũ) + θ1εi ∂

2
im(a0mn∂nũ)− χε

i∂i(L̃
1,xũ)− χε

i∂i(b
10∂m(a0mn∂nũ))

− L̃2,xũ+ b10L̃1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ) + ∂i(b
22
ij ∂

2
jm(a0mn∂nũ))]

+ ∂2tϕ+
∑4

i=1 S
ε
i f +

∑5
i=1 R

ε
i ũ. (4.13)

For the second term, Aε
B

εũ(t), we have (the correctors and a are evaluated at
(

x, y = x
ε

)

)

Aε
B

εũ =

[ ε−1
(

−∇y · (a(∇yχi + ei))
)

∂iũ

+ ε0
(

−∇y · (a(∇yθ
0
ij + eiχj))− eTi a(∇yχj + ej)

)

∂2ij ũ

+ ε0
(

−∇y · (a(∇yθ
1
i +∇xχi))−∇x · (a(∇yχi + ei))

)

∂iũ

+ ε1
(

−∇y · (a(∇yκ
0
ijk + eiθ

0
jk))− eTi a(∇yθ

0
jk + ejχk)

)

∂3ijk ũ

+ ε1
(

−∇y · (a(∇yκ
1
ij +∇xθ

0
ij + eiθ

1
j ))−∇x · (a(∇yθ

0
ij + eiχj))− eTi a(∇yθ

1
j +∇xχj)

)

∂2ij ũ

+ ε1
(

−∇y · (a(∇yκ
2
i +∇xθ

1
i ))−∇x · (a(∇yθ

1
i +∇xχi))

)

∂iũ

+ ε2
(

−∇y · (a(∇yρ
0
ijkl + eiκ

0
jkl))− eTi a(∇yκ

0
jkl + ejθ

0
kl)

)

∂4ijklũ

+ ε2
(

−∇y · (a(∇yρ
1
ijk +∇xκ

0
ijk + eiκ

1
jk))−∇x · (a(∇yκ

0
ijk + eiθ

0
jk))

− eTi a(∇yκ
1
jk +∇xθ

0
jk)

)

∂3ijkũ

+ ε2
(

−∇y · (a(∇yρ
2
ij +∇xκ

1
ij + eiκ

2
j))−∇x · (a(∇yκ

1
ij +∇xθ

0
ij + eiθ

1
j ))

− eTi a(∇yκ
2
j +∇xθ

1
j )
)

∂2ij ũ

+ ε2
(

−∇y · (a(∇yρ
3
i +∇xκ

2
i ))−∇x(a(∇yκ

2
i +∇xθ

1
i ))

)

∂iũ ]

+Aε
ϕ+R

ε
6ũ+R

ε
7ũ, (4.14)

where, defining the following functions of (x, y),

R0
ijkl = a(∇yρ

0
ijkl + eiκ

0
jkl), R1

ijk = a(∇yρ
1
ijk +∇xκ

0
ijk + eiκ

1
jk),

R2
ij = a(∇yρ

2
ij +∇xκ

1
ij + eiκ

2
j), R3

i = a(∇yρ
3
i +∇xκ

2
i ),

the remainders Rε
6ũ and R

ε
7ũ are given by

R
ε
6ũ = ε3[eTmR

0
ijkl∂

5
mijklũ+∇x ·R0

ijkl∂
4
ijklũ+ eTmR

1
ijk∂

4
mijk ũ+∇x ·R1

ijk∂
3
ijk ũ

+ eTmR
2
ij∂

3
mij ũ+∇x · R2

ij∂
2
ij ũ+ eTmR

3
i ∂

2
miũ+∇x · R3

i ∂iũ],
〈

R
ε
7ũ,w

〉

= ε4
(

eTma(∇xρ
0
ijkl∂

4
ijklũ+∇xρ

1
ijk∂

3
ijkũ+∇xρ

2
ij∂

2
ij ũ+∇xρ

3
i ∂iũ, ∂mw

)

L2

+ ε4
(

amnρ
0
ijkl∂

5
nijklũ+ amnρ

1
ijk∂

4
nijk ũ+ amnρ

2
ij∂

3
nij ũ+ amnρ

3
i ∂

2
niũ, ∂mw

)

L2 .

Combining now (4.13) and (4.14), and using cell problems (3.5), (3.8), (3.14), (3.22), and the definition of ϕ

in (3.26) (verify that
∑4

i=1 S
ε
i f = S

εf ), we obtain the remainder Rεũ =
∑7

i=1 R
ε
i ũ. Using (4.3),we verify

that Rεũ satisfies estimate (4.6) and the proof of the lemma is complete.
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Let us recall the following error estimate, proved in [8].
Lemma 4.2. Assume that η ∈ L∞(0, T ε;Wper(Ω)), with ∂tη ∈ L∞(0, T ε;L2(Ω)), ∂2t η ∈

L2(0, T ε;W∗
per(Ω)) satisfies

∂2t η(t) +Aε
η(t) = r(t) in W∗

per(Ω) for a.e. t ∈ [0, T ε],

η(0) = η
0, ∂tη(0) = η

1,
(4.15)

where η
0 ∈ Wper(Ω), η

1 ∈ L2(Ω), and r ∈ L2(0, T ε;W∗
per(Ω)) is given as

〈

r(t),w
〉

W∗

per(Ω),Wper(Ω)
=

(

r0(t),w
)

L2(Ω)
+
(

r1(t),∇xw
)

L2(Ω)
,

with r0 ∈ L2(0, T ε;L2(Ω)) and r1 ∈ [L2(0, T ε; L2(Ω))]d. Then the following estimate holds

‖η‖L∞(0,T ε;W) ≤ C(λ)
(

‖η1‖L2(Ω) + ‖η0‖L2(Ω) + ε−2T
(

‖r0‖L∞(0,T ε;L2(Ω)) + ‖r1‖L∞(0,T ε;L2(Ω))

)

)

, (4.16)

where C(λ) depends only on the ellipticity constant λ and the norm ‖ · ‖W is defined in (1.7).
We now have all the tool to prove the theorem.
Proof of Theorem 2.3.
Let us estimate the two terms of the right hand side in (4.1). First, note that η = [uε]− B

εũ satisfies
(∂2t + Aε)η(t) = R

εũ(t) in W∗
per(Ω) for a.e t ∈ [0, T ε], where R

εũ is defined in Lemma 4.1. Hence, using
Lemma 4.2, the first term in (4.1) satisfies

‖[uε]−B
εũ‖L∞(W) ≤ Cε

(

‖g1‖H4 + ‖g0‖H4 +
∑5

k=1 |ũ|L∞(Hk) + ‖∂2t ũ‖L∞(H3)

)

, (4.17)

where C depends on T , λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ. Next, using the
definition of Bε (4.5) and the estimates (3.27) and (4.3), the second term of (4.1) satisfies

‖Bεũ− [ũ]‖L∞(W) ≤ Cε
(

∑5
k=1 |ũ|L∞(Hk) + ‖f‖L1(H2)

)

, (4.18)

where C depends on λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ. Combining (4.1),
(4.17), and (4.18), we obtain (2.10) and the proof of the theorem is complete. �

5. A priori error analysis of the FE-HMM-L in locally periodic media. The FE-HMM-L is a
numerical homogenization method for the long time approximation of the wave equation introduced in [5, 4].
In [9], a priori estimates for the long time error between uε and the approximation uH were proved in one
dimension for uniformly periodic tensors. In this section, thanks to Theorem 2.3, we provide a complement
to this analysis as we present error estimates that hold in the locally periodic case (again in one dimension).
This result is valid in small domains. In addition, we prove a new a priori error estimate that holds in
arbitrarily large domain.

Let us first express the family of effective equation in the specific one-dimensional case. Let x ∈ Ω be
fixed and recall that 〈χ(x)〉Y = 0. As a(x, ·)(1 + ∂yχ(x, ·)) ∈ H(div, Y ), using integration by parts and
equation (2.1a), we obtain for any y1, y2 ∈ Y ,

a(x, y)(∂yχ(x, y) + 1)
∣

∣

∣

y2

y=y1

= −

∫

Y

(

Hy2(y)−Hy1(y)
)

∂y
(

a(x, y)(∂yχ(x, y) + 1)
)

dy = 0,

where Hy is the Heaviside step function centered in y. Hence, the function y 7→ a(x, y)(∂yχ(x, y) + 1) is
constant. The definition of a0 in (2.2) then implies that

a(x, y)(∂yχ(x, y) + 1) = a0(x) ∀(x, y) ∈ Ω× Y. (5.1)

A similar argument, using (2.1b), (2.1c), and the fact that a0(x) = 1/
〈

1/a(x, ·)
〉

Y
, leads to

a(x, y)
(

∂yθ
0(x, y) + χ(x, y)

)

= 0, a(x, y)
(

∂yθ
1(x, y) + ∂xχ(x, y)

)

= 0 ∀(x, y) ∈ Ω× Y. (5.2)
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Thanks to (5.1), we verify that the coefficients defined in (2.4) satisfy p13(x) = q12(x) = 0 and thus ā12(x) =
b10 = 0. Similarly, using (5.2) in (2.6) and (2.8), we verify that ǎ24(x) = p23(x) = p22(x) = 0. Hence, in one
dimension, the family E (Definition 2.1) is constituted of the equations

∂2t ũ− ∂x(a
0∂xũ) + ε2

(

∂2x(a
24∂2xũ)− ∂x(b

22∂x∂
2
t ũ)− ∂x(a

22∂xũ) + b20∂2t ũ
)

= f,

where the coefficients are defined for some parameter r ≥ 0 as

a24(x) = ra0(x)2, b22(x) =
〈

χ(x)2
〉

Y
+ ra0(x),

b20 = rmaxx∈Ω{∂
2
xa

0(x)}, a22(x) = −ra0(x)∂2xa
0(x) + b20a0(x).

(5.3)

In particular, the equation corresponding to the choice r = 0 involves the single correction −ε2∂x(b
22∂x∂

2
t ·).

This is precisely the effective model on which the FE-HMM-L relies (see [5, 4, 9]).
Let us briefly recall the definition of the FE-HMM-L. Let TH be a partition of Ω of size H . For ℓ ∈ N>0,

the macro finite element space is defined as

VH(Ω) = {vH ∈ Wper(Ω) : vH |K ∈ Pℓ(K) ∀K ∈ TH}, (5.4)

where Pℓ(K) is the space of polynomials on K of degree at most ℓ. Let {ω̂j, x̂j}
J
j=1 and {ω̂′

j, x̂
′
j}

J′

j=1 be the
quadrature formulas used for the construction of the stiffness and mass matrices, respectively. We assume
that these formulas satisfy the requirements that ensure the optimal convergence rates of the FEM with
numerical quadrature (see [21, 20] or [1]). For every macro element K ∈ TH and every j ∈ {1, . . . , J}, we
define the sampling domain Kδj = xKj

+ δY , where δ ≥ ε. Each sampling domain Kδj is discretized into a

partition Th of size h. For q ∈ N>0, the micro finite element space is defined as

Vh(Kδj) = {zh ∈ Wper(Kδj) : zh|Q ∈ Pq(Q) ∀Q ∈ Th}. (5.5)

We define the following bilinear forms: for vH , wH ∈ VH(Ω),

AH(vH , wH) =
∑

K∈TH

J
∑

j=1

ωKj

|Kδj |

∫

Kδj

a
(

xKj
, xε

)

∂xvh,Kj
(x)∂xwh,Kj

(x) dx, (5.6)

(

vH , wH

)

Q
=

(

vH , wH

)

H
+
(

vH , wH

)

M
, (5.7)

(

vH , wH

)

H
=

∑

K∈TH

J′

∑

j=1

ω′
Kj
vH(x′Kj

)wH(x′Kj
), (5.8)

(

vH , wH

)

M
=

∑

K∈TH

J
∑

j=1

ωKj

|Kδj |

∫

Kδj

(

vh,Kj
− vlinH,Kj

)(

wh,Kj
− wlin

H,Kj

)

(x) dx, (5.9)

where the piecewise linear approximation of vH (resp. wH) around xKj
is given by

vlinH,Kj
(x) = vH(xKj

) + (x− xKj
)∂xvH(xKj

),

and the micro functions vh,Kj
for vH (resp. wH) are the solutions of the following micro problems in Kδj :

find vh,Kj
such that (vh,Kj

− vlinH,Kj
) ∈ Vh(Kδj) and

(

a
(

xKj
, ·
ε

)

∂xvh,Kj
, ∂xzh

)

L2(Kδj)
= 0 ∀zh ∈ Vh(Kδj). (5.10)

We emphasize that in (5.6) and (5.10), the tensor is collocated in the slow variable, i.e., aε(x) = a
(

xKj
, xε

)

∀x ∈ Kδj . The approximation of the FE-HMM-L is uH : [0, T ε] → VH(Ω) such that

(

∂2t uH(t), vH
)

Q
+AH

(

uH(t), vH
)

=
(

f(t), vH
)

L2 ∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ε],

uH(0) = IHg
0, ∂tuH(0) = IHg

1,
(5.11)
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where IH is an interpolation operator onto VH(Ω) satisfying the optimal convergence rates (e.g. the nodal
interpolation operator defined in [20]).

Let us now combine Theorem 2.3 with the a priori error analysis from [9]. Assume that δ/ε ∈ N>0, q = 1,
and that the data are sufficiently regular. Then the following a priori error estimate holds:

‖uε − uH‖L∞(0,T ε;L2(Ω)) ≤ C

(

ε+

(

h

ε2

)2

+
Hℓ+1

ε2
+
Hℓ

ε

)

4
∑

k=0

‖∂kt ū‖L∞(Hℓ+1), (5.12)

where C is independent of H , h, ε, and δ but depends on Ω.
Note that the dependence of the constant on the domain Ω is an issue when the method is used in

pseudoinfinite domains. Indeed, as we consider timescales O(ε−2), a pseudoinfinite domain must have a
diameter of order O(ε−2) (if the homogenized wave speed is of order O(1)) and (5.12) can not be used. This
issue is settled by the following new result.

Theorem 5.1. Let ū denote the effective solution in the family that corresponds to the parameter
r = 0 in (5.3). Assume that δ/ε ∈ N>0, h ≤ ε, and q = 1. If a ∈ Cℓ(Ω̄; L∞(Y )) ∩ C0(Ω̄;W1,∞(Y )) and
∂kt ū ∈ L∞(0, T ε; Hℓ+1(Ω)) for 0 ≤ k ≤ 4, then the error e = ū− uH satisfies the estimate

‖∂te‖L∞(L2) + ‖∇xe‖L∞(L2) ≤ C

(

edataH1 +

(

h

ε2

)2

+
Hℓ

ε2

)(

ℓ+1
∑

σ=1
|ū|L∞(Hσ) +

4
∑

k=1

‖∂kt ū‖L∞(Hℓ+1)

)

, (5.13)

where edataH1 = |g0 − IHg
0|H1(Ω) + ‖g1− IHg

1‖H1(Ω) and C = C̃
(

‖a‖Cℓ(L∞) + ‖a‖C0(W1,∞)

)

with C̃ independent
of ε, H and Ω.

We emphasize that the constant C̃ is independent of Ω. Hence, combining Theorems 2.3 and 5.1, we
obtain (if the data are sufficiently regular and have a spatial support of order O(1))

‖uε − uH‖L∞(0,T ε;W ) = O

(

ε+

(

h

ε2

)2

+
Hℓ

ε2

)

, (5.14)

where the norm ‖·‖W is defined in (1.8). In particular, estimate (5.14) can be used in pseudoinfinite domains.
To discuss the computational cost of the FE-HMM-L, let us compare it with a standard P1-FEM ap-

proximation of uε, denoted uh. As argued in [9] (see also [7]), the optimal error estimate for uh is given by
(if the initial data are well-prepared)

‖uε − uh‖L∞(0,T ε;L2(Ω)) ≤ C
h

ε3
. (5.15)

Note that in (5.15), the constant C depends on the domain (through the Poincaré constant and the constant
in the elliptic regularity estimate). Hence, in a large domain of diameter O(ε−2), (5.15) scales worse with
respect to ε. On the contrary, we emphasize that (5.14) holds independently of the domain. For the sake
of comparison, let us then consider a small domain of diameter O(1). We fix an order of tolerance τ for
the error and, based on the corresponding error estimate, we compute the cost of each method. Let us
denote cost(∆t, N) the cost per time-step of the time integration of a second order ODE of dimension N .
From (5.15), it follows that the cost of the P1-FEM is cost(∆t, ε−3τ−1). The cost of the FE-HMM-L, based
on (5.14), is cost(∆t, ε−2/ℓτ−1/ℓ), to which we add the offline cost of the resolution of the micro problems,
H−1(ε/h) = ε−1−2/ℓτ−1/2−1/ℓ. Hence, the FE-HMM-L offers a significant reduction of the computational
cost. Furthermore, note that in the FE-HMM-L, the macro FE degree ℓ can be increased to reduce the cost.
This is not the case for the fine scale FEM as higher order FE do not improve (5.15) (negative powers of ε
appear from the higher derivatives of uε).

Let us prove Theorem 5.1 (a detailed proof is provided in [41, Chapter 7]). We follow the technique of
elliptic projection as done in [27, 14, 15]. We split the error as

ū− uH = (ū− πH ū)− (uH − πH ū) = η − ζH , (5.16)

where πH ū is a new elliptic projection. The following definition of πH ū : [0, T ε] → VH(Ω) is the key to avoid
the dependence of the constant on Ω: for a.e. t ∈ [0, T ε], πH ū(t) ∈ VH(Ω) satisfies

(

πH ū(t), vH
)

Q
+AH

(

πH ū(t), vH
)

=
(

f(t), vH
)

L2 −
(

IH∂
2
t ū(t), vH

)

Q
+
(

IH ū(t), vH
)

Q
, (5.17)
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for all test functions vH ∈ VH(Ω). Using the same technique as in [9], we prove the following lemma.
Lemma 5.2. Assume that ∂kt ū, ∂

k+2
t ū ∈ L∞(0, T ε; Hℓ+1(Ω)) for k ≥ 0. Then ∂kt πH ū ∈ L∞(0, T ε; H1(Ω))

and η = ū− πH ū satisfies

‖IH∂
k
t η‖L∞(H1) + ‖∂kt η‖L∞(H1)

≤ C
(

(

(h/ε)2 +Hℓ
)
∑ℓ+1

σ=1 |∂
k
t ū|L∞(Hσ) +

(

ε(h/ε)2 +Hℓ
)

‖∂k+2
t ū‖L∞(Hℓ+1)

)

,
(5.18)

where C = C̃
(

‖a‖Cℓ(L∞) + ‖a‖C0(W1,∞)

)

with C̃ independent of H, ε, and Ω.
In [9, Lemma 3.11], a similar estimate is proved, with the major difference that the constant involved

in the estimate depends on the Poincaré constant. In the proof of Lemma 5.2, the need of the Poincaré
inequality is avoided thanks to the definition of the new elliptic projection πH ū in (5.17).

The following lemma is proved in [9].
Lemma 5.3. The following estimate holds for ζH = uH − πH ū,

‖∂tζH‖L∞(L2) + ‖∇xζH‖L∞(H1) ≤ C
(

edataH1 + ‖η‖L∞(H1) + ‖∂tη‖L∞(H1)

+ ε−2‖IHη‖L∞(H1) + ε−2‖IH∂
2
t η‖L∞(H1)

)

,
(5.19)

where edataH1 = |g0 − IHg
0|H1 + ‖g1 − IHg

1‖H1 and C is independent of H, ε and Ω.
The splitting (5.16) combined with Lemmas 5.2 and 5.3 proves Theorem 5.1.

6. Numerical experiments. In this section, we illustrate numerically our main result. We consider
a one-dimensional example and compare the heterogeneous solution with several effective solutions of the
family E , the homogenized solution, and the approximation of the FE-HMM-L.

Let us fix the initial data and the right hand side for the test problem as g0(x) = e−20x2

, g1 = 0, f = 0,
and consider the locally periodic tensor given by

a
(

x, xε
)

= 249
419 + 1

6 sin(2πx) +
1
6 sin

(

2π x
ε

)

, (6.1)

with ε = 1/20. We compute explicitly a0(x) = 1
/〈

1/a(x, ·)
〉

Y
and χ(x, y) = a0(x)

∫ y
1/a(x, z) dz−y+C0(x),

where C0 ensures that 〈χ(x)〉Y = 0 ∀x ∈ Ω. We verify that
∫

Ω

√

a0(x) dx ≈ 3/4. We let T ε = ε−2 = 400,
and compare uε, u0 and effective solutions ũr in the family, where the subscript r specifies the dependence
of ũ on the parameter r in (5.3). For the waves not to reach the boundary, we consider the pseudoinfinite
domain Ω = (−301, 301). To approximate uε, we use a spectral method on a grid of size href = ε/25 and
the leap frog scheme for the time integration with time step ∆t = href/50. To approximate u0 and ũr, the
same methods are used with h = ε/4 and ∆t = h/50. Note that the second order ODE obtained after the
space discretization of ũr is implicit. To solve it, we use a gradient method at each time iteration of the
leap frog scheme. In Figure 6.1, we display the frontal right going wave of uε, u0, and ũr for several values
of r ∈ [0, 0.1] at t = ε−2 = 400. We observe that the macroscopic behavior of uε is not well described
by u0. On the contrary, ũr describes well uε for every value of the parameter r, as predicted by Theorem
2.3. Let us now compare the L2 error between uε(t) and u0(t), ũr(t). We denote the normalized error as
err(v)(t) = ‖(uε − v)(t)‖L2(Ω)/‖u

ε(t)‖L2(Ω). In Figure 6.2, we display err(u0)(t) and err(ũr)(t). We note that
the error of the homogenized solution increases quickly with respect to t, confirming that at long times u0

does not describe well uε. Next, we see that the error of ũr increases notably as r increases. As Figure 6.1
showed, the frontal wave is well captured for all the values of r, hence the error for the large values of r is
located elsewhere. In fact, we verify that away from the frontal wave ũr drives away from uε as r increases.
Hence, we conclude that the smaller r is the more accurate ũr is.

Next, we compute the approximation provided by the FE-HMM-L, denoted by uH , for the model problem.
We let the macro FE degree be ℓ = 3, the micro FE degree be q = 1, and δ = ε. Referring to (5.14), we
set H = ε and h = ε5/2. In Figure 6.1, we observe that the approximation uH approximates accurately the
macroscopic behavior of uε. In particular, uH captures accurately the long time dispersive effects of uε.
Acknowledgements. This work was partially supported by the Fonds National Suisse, project No. 200021
150019.
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[25] Tomáš Dohnal, Agnes Lamacz, and Ben Schweizer, Bloch-wave homogenization on large time scales and dispersive

effective wave equations, Multiscale Model. Simul., 12 (2014), pp. 488–513.
[26] , Dispersive homogenized models and coefficient formulas for waves in general periodic media, Asymptot. Anal., 93

(2015), pp. 21–49.
[27] Todd Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal., 10

(1973), pp. 880–889.
[28] Björn Engquist, Henrik Holst, and Olof Runborg, Multi-scale methods for wave propagation in heterogeneous media,

Commun. Math. Sci., 9 (2011), pp. 33–56.
[29] , Multiscale methods for wave propagation in heterogeneous media over long time, in Numerical analysis of multiscale

computations, vol. 82 of Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2012, pp. 167–186.
[30] Lawrence C. Evans, Partial differential equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical

Society, Providence, RI, 1998.
[31] Jacob Fish, Wen Chen, and Gakuji Nagai, Non-local dispersive model for wave propagation in heterogeneous media:

multi-dimensional case, Internat. J. Numer. Methods Engrg., 54 (2002), pp. 347–363.
[32] , Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case, Internat. J. Numer.

Methods Engrg., 54 (2002), pp. 331–346.
[33] Lijian Jiang and Yalchin Efendiev, A priori estimates for two multiscale finite element methods using multiple global

fields to wave equations, Numer. Methods Partial Differential Equations, 28 (2012), pp. 1869–1892.
[34] Lijian Jiang, Yalchin Efendiev, and Victor Ginting, Analysis of global multiscale finite element methods for wave

equations with continuum spatial scales, Appl. Numer. Math., 60 (2010), pp. 862–876.
[35] Vasilii V. Jikov, Sergei M. Kozlov, and Olga A. Oleinik, Homogenization of differential operators and integral

functionals, Springer-Verlag, Berlin, Heidelberg, 1994.
[36] Agnes Lamacz, Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., 21

(2011), pp. 1871–1899.
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