
ASSESSMENT OF A METAMATERIAL-INSPIRED ACTIVE 
ACOUSTIC LINER CONCEPT FOR APPLICATION 

TO AIRCRAFT ENGINE NOISE REDUCTION

MOTIVATION
Acoustic liners are a widespread solution for noise mitigation at aircraft engine level, thanks to lightweight 
and relatively small dimensions for integration within nacelles. 

However, their passive principle prevents the adaptation to varying engine speeds and therefore lowers their 
performance during flight, especially in the take-off and landing phases.
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ACTIVE ACOUSTIC LINER CONCEPT

PROTOTYPE EXPERIMENTAL ASSESSMENT

The Electroacoustic Absorber concept: 
loudspeaker acoustic impedance imposed 
through a “specific feedforward control”:
•	 pressure sensing
•	 current-driven control
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Limitations: Solution:
•	narrow-bandwidth (Helmholtz resonators)
•	too thick for low frequencies
•	not adjustable to engine regimes

•	 broadband absorber principle (Electroacoustic Absorber)
•	 subwavelength design
•	 active control
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This active acoustic liner concept surpasses 
conventional passive liners, both in terms of IL 
amplitude and frequency coverage:

•	 IL up to 15 dB at f0 
•	 tunable center frequencies, from f0/2 to 2.f0
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Driving the velocity/pressure response V(s)/P(s) to target (active) impedance:

Unit-cell 
(loudspeaker + microphones + cavity):

Overall dimensions:
l=50 mm, 
w=50 mm, 
t=25 mm

Front view (unit-cells + perforated panel) 
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Mobile equipment: Mms,Rms,Cms
Transduction factor: Bl
Volume: Vb, diaphram area: Sd
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Newton’s law :
Zms(s).V (s) = SdP(s) − Bl .I(s)

with control law :
I(s) = Hloc(s).P(s)

yields the control law:
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