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To understand the behavior of composite fluid particles such as nucleated cells and double emulsions in
flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model
system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric
and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf
bifurcations. We present the loci of these solutions around the codimension-two point. We adopt a dynamic
system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the
flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet
interaction which gives rise to these bifurcations.

DOI: 10.1103/PhysRevLett.119.064502

Droplets, capsules, and vesicles in flow often exhibit
interestingly rich dynamics even in the linear shear flow
[1–9]. Despite substantial work on the dynamics of
these soft systems enclosing homogeneous fluids, limited
effort has been directed to studying their behavior when
they include an internal structure. However, such a con-
figuration is common in nature and engineering applica-
tions: cells like leukocytes and megakaryocytes contain a
nucleus of up to 50%–80% of themselves in volume [10];
double emulsions playing an important role in chemical
and pharmaceutical engineering are featured with a core-
shell geometry [11–13]; droplet-based encapsulation for
high-throughput biological assays utilizes droplets as
microchambers to compartment cells for analysis at the
single-cell level, where the cell size can be comparable to
the droplet size in certain applications [14–16].
These fluid particles are characterized by complex

hydrodynamic interactions between the internal structures
and the external interface. Few works conducted for
nucleated model cells in shear [17–20] all assumed their
compound structures to be concentric, preserving the
rotational symmetry of order 2 (C2) about the y axis
and reflection symmetry about the y ¼ 0 shear plane [see
Fig. 1(a)]. The symmetries do hold for a single shear-driven
deformable particle that attains a steady ellipsoidal shape
undergoing tank-treading motion [21–23]. Yet, they are not
guaranteed in the presence of an internal structure.
In this Letter we focus on the stability of the concen-

tricity of composite fluid particles. By considering a droplet
encaging a spherical particle as a model system, we
formulate the following questions: will the composite
structures remain concentric? How does the dynamics
depend on interfacial tension and particle size? What is
the role of the hydrodynamic interaction?
We begin our discussion by presenting 3D hydrody-

namic simulations of a compound particle droplet subjected

to unbounded shear U∞ ¼ G · x, in the creeping flow
regime, where the only nonzero component Gxz ¼ _γ
represents the shear rate [Fig. 1(a)]. The incompressible
Stokes equations are solved by a boundary integral method
[24]. The immiscible Newtonian fluids inside and outside
the droplet have the same viscosity η; its surfactant-free
interface has a uniform surface tension σ. The particle with
a no-slip surface freely translates and rotates, experiencing
zero hydrodynamic force and torque. The droplet interface
satisfies the standard stress balance condition [35,36]. The
radii of the particle and the undeformed droplet are a and R,
respectively; the size ratio is denoted by α ¼ a=R with
α ∈ ð0; 1Þ. The capillary number Ca ¼ η_γR=σ indicates the
ratio between viscous forces and capillary forces, limited to
the regime without droplet breakup. All length scales are
scaled by R.
We initially displace the particle away from the droplet

center by a perturbative offset d ¼ ðdx; dy; dzÞ, then focus-

ing on the time evolution of dy and dxz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2x þ d2z
p

representing the spanwise and in-plane displacements,

(a)

(b)

(c)

FIG. 1. (a) Sketch: a spherical particle moving inside a droplet
under shear. A snapshot of the composite system cut by the
y ¼ 0 (b) and x ¼ 0 (c) plane.
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respectively. Δy and Δxz denote their equilibrium values
when the system reaches a steady or time-periodic state.
We show the evolution of displacements in Fig. 2,

presenting three typical Ca-dependent scenarios for a
particle of size ratio α ¼ 0.4 (see Supplemental Material
videos [24]). When Ca ¼ 0.2, the in-plane displacement
dxz decays asymptotically to zero after a transient growth
while the spanwise offset dy increases to a saturated value
Δy ≈ 0.48 indicating the broken reflection symmetry. The
particle rotates steadily near the lateral edge of the droplet
interface [Fig. 2(b)]. Increasing Ca to 0.275, Δy decreases
to 0.21 approximately, while dxz reaches a time-periodic

equilibrium cycle with a maximum of Δmax
xz ≈ 0.11 and a

minimum of Δmin
xz ≈ 0.04. The particle follows an orbital

trajectory on the y ¼ Δy plane as it reaches a limit cycle
solution in the ðx; zÞ space [Figs. 2(d), 2(f)], implying that
the C2 symmetry and time invariance are also broken. At
Ca ¼ 0.29, the system recovers steadiness and concentric-
ity, Δy ¼ Δxz ¼ 0. These scenarios suggest the appearance
of bifurcating solutions by reducing Ca: above a critical
value CacðαÞ, the composite system stays concentric,
corresponding to a stable fixed point solution; it bifurcates
across CacðαÞ towards a steady spanwise migration (SM)
and/or in-plane orbiting (IPO) motion.
An investigation spanning the ðCa; αÞ space further

reveals that these two modes, i.e., SM and IPO, appear
spontaneously through supercritical pitchfork and Hopf
bifurcations, respectively. To study the evolution of the two
modes individually, we perform decoupled simulations
with kinematic constraints of either dxz ¼ 0 (pure SM)
or dy ¼ 0 (pure IPO). Their corresponding equilibrium

displacements ~Δy and ~Δmin =max
xz are shown in Fig. 3. For all

α, we observe ~Δy decreases with Ca, becoming zero when

Ca exceeds a critical value CacðαÞ, so does ~Δmin =max
xz . They

both vary quadratically in the vicinity of their correspond-
ing CacðαÞ. This is confirmed by the linear fitting of ~Δy

and, ~Axz ¼ ~Δmax
xz − ~Δmin

xz indicating the oscillating ampli-
tude, versus ½CacðαÞ − Ca�1=2 [Fig. 3(d)], where CacðαÞ is
obtained simultaneously. The successful fitting passing
through the origin verifies the emergence of the two
bifurcations. It is worth pointing out that broken reflection
symmetry by SM is indeed the signature of pitchfork
bifurcation, so as broken time invariance by IPO is of Hopf
bifurcation.
Let us return to the constraint-free cases, where the

nonlinear interaction of the two modes results in a more
complex dependence of the equilibrium solutions on Ca
and α (Fig. 3). For α ¼ 0.3, the in-plane amplitudes (cyan)
reach their maxima around Ca ¼ 0.3, from where they
decrease almost linearly (quadratically) with decreasing
(increasing) Ca. In their quadratic parts, the coupled (cyan)
and decoupled (green) amplitudes overlap in the vicinity of
their common critical point. In contrast, the spanwise
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FIG. 2. Evolution of the in-plane and spanwise displacements
dxz (green) and dy (red) between the centers of particle (blue) and
droplet (pink), for size ratio α ¼ 0.4 and Ca ¼ 0.2 (first row),
0.275 (second row), and 0.29 (third row). The second (third)
column shows the profile of the composite system at equilibrium,
cut by x ¼ 0 (y ¼ 0) plane. The particle position is shown at
different instants within a period for Ca ¼ 0.275, the insets of (d)
and (f) display the limit cycle solution.
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FIG. 3. Equilibrium displacements Δy, Δ
min =max
xz versus Ca for α ¼ 0.3 (a), 0.4 (b), and 0.5 (c); ∼ denotes their counterparts of the

decoupled simulations. (d) Linear fitting of ~Δy and ~Axz ¼ ~Δmax
xz − ~Δmin

xz versus ½CacðαÞ − Ca�1=2.
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offsets (purple) are larger than those of the decoupled cases
(red). For α ¼ 0.4, the spanwise offsets coincide precisely
with the decoupled counterparts for all Ca, while the in-
plane amplitudes exhibit nonmonotonic Ca dependence as
for α ¼ 0.3 and they are below the decoupled values. For
α ¼ 0.5, perfect coincidence between the spanwise offsets
also holds as in the α ¼ 0.4 case, whileΔmin =max

xz ≡ 0 for all
Ca; i.e., the Hopf bifurcation is inhibited.
The complexity is better unraveled by the parametric

portrait quartering the ðCa; αÞ parameter space into the
following solution types (Fig. 4): “concentric” implying the
absence of both modes, “pure IPO,” “pure SM,” and
“mixed” indicating the coexistence of both modes. A
codimension-two point ðCa�; α�Þ ≈ ð0.286; 0.4Þ is pin-
pointed at the intersection of the two marginal curves H�

1

(circle) and P�
2 (triangle) which correspond to the Hopf and

pitchfork bifurcations, respectively. Other branches bifur-
cating from this point are T1 separating pure SM and mixed,
T2 separating pure IPO andmixed. Note þ and − denote the
upper and lower branches of the marginal curves.
We now interpret the bifurcation in the neighborhood of

the codimension-two point ðCa�; α�Þ based on a normal-
form analysis. By coupling the amplitude equations of the
Hopf and pitchfork bifurcations, we obtain a normal form
similar to that of the Hopf-Hopf bifurcation in Ref. [37]
where the amplitudes are independent of phase evolution.
Denoting the square of the in-plane and spanwise ampli-
tudes by ρ1 ¼ ðΔmax

xz − Δmin
xz Þ2 and ρ2 ¼ Δ2

y, the truncated
amplitude system is expressed as

_ρ1 ¼ ρ1ðμ1 þ p11ρ1 þ p12ρ2Þ;
_ρ2 ¼ ρ2ðμ2 þ p21ρ1 þ p22ρ2Þ; ð1Þ

where μi represent the linear growth rates of the individual
modes and pij the nonlinear coupling coefficients. Because

of the supercritical nature of the two bifurcations, p11 < 0
and p22 < 0. Physically, the amplitudes tend to asymptotic
values with decreasing Ca (see Fig. 3) owing to the
confinement of droplet. Because p11p22 > 0, our problem
is in the category of the so-called simple cases, for which
we have neglected ρ1ρ

2
2 and ρ2ρ

2
1 without changing the

bifurcation topology [37]. By introducing new phase
variables ξ1 ¼ −p11ρ1 and ξ2 ¼ −p22ρ2, we obtain

_ξ1 ¼ ξ1ðμ1 − ξ1 − θξ2Þ;
_ξ2 ¼ ξ2ðμ2 − δξ1 − ξ2Þ; ð2Þ

where θ ¼ p12=p22 and δ ¼ p21=p11. Applying at leading
order the affine transformation

μ1 ¼ k1ðCa − Ca�Þ − ðα − α�Þ;
μ2 ¼ C½k2ðCa − Ca�Þ − ðα − α�Þ�; ð3Þ

in the vicinity of ðCa�; α�Þ, we map the parameter space
from ðCa; αÞ to ðμ1; μ2Þ [inset of Fig. 4(b)], where k1 ≈
−2.3 and k2 ≈ −40 denote the slope of H1 and P2 curves at
ðCa�;α�Þ, with C ≈ 0.043 derived from the growth rate of
ρi. The slopes of T1 and T2 further determine θ ≈ 0.71 and
δ ≈ −0.69. The parametric portrait, therefore, corresponds
to case III described in Ref. [37], characterized by six
regions: ① corresponding to concentric; ② to pure IPO; ③
and ④ to mixed separated by Pþ

2 ; ⑤ and ⑥ to pure SM
separated by Hþ

1 [24].
The parametric portrait and normal form both reveal

nonlinear mode interactions as a fingerprint of the present
bifurcation. In the absence of SM, IPO appears stably in
regions ②–⑤ but it is suppressed due to the nonlinear
interaction with SM, as reflected by the phase portraits of
③–⑤ all including an unstable saddle-node equilibrium
ðμ1; 0Þ, as well as by the sign of θ. Consequently, pure IPO
only survives in ②. Besides, without IPO, pure SM is stable
in regions④–⑥, while IPO promotes SM to expand its locus
further to ③ that indeed involves a stable equilibrium
ðμ1; μ2Þ. This promotion results from the sign of δ.
We next reveal the mechanisms underlying the bifurca-

tions, first focusing on H1 and P2 separately. The shear
flow can be decomposed into a rotational and extensional
part, and we found that the former alone does not contribute
to the particle’s cross-stream motions. The eccentricity is
mostly driven by the extensional part U∞

E ðxÞ ¼ E · x with
Exz ¼ Ezx ¼ _γ=2. For a system with imposed concentricity
in U∞

E ðxÞ, Fig. 5 displays the droplet-induced disturbance
flows ûd on y ¼ 0 (a) and x ¼ z (b) plane, which preserve
reflection symmetries about each other. The major and
minor axis of the ellipsoid-shaped droplet lies on the x ¼
�z plane. The disturbance flow is induced to satisfy zero
normal velocities on the interface. On the shear plane, it
approaches (leaves) the origin along the major (minor) axis.
It resembles the stagnation point flow, where the origin is
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FIG. 4. (a) Parametric portrait displaying the loci of four
solution types in the ðCa; αÞ space. (b) Close-up of (a) in the
vicinity of the codimension-two point ðCa�; α�Þ from where six
bifurcation curves originate. The inset shows the bifurcation
topology in the ðμ1; μ2Þ space.
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kinematically unstable. This initiates the in-plane motion
and indeed the particle moves along the minor axis and
eventually touches the droplet for any Ca if we free its in-
plane motion. This scenario is altered by the rotational flow,
which relocates the particle between the two axes cycli-
cally. Consequently, it is centralized (decentralized) by the
inward (outward) flow after every relocation. The inward
and outward flows roughly balance at Ca ¼ 0.1, while the
former dominates the latter at Ca ¼ 0.2, hence overcoming
the kinematic instability and leading to a concentric
preference. This might explain the quenching of IPO when
Ca increases across the marginal H1 curve. On the x ¼ z
plane [Fig. 5(b)], the flow resembles a parallel compres-
sional flow that reaches the maximum strength at y ¼ 0 and
weakens in the �y directions. When the particle undergoes
a spanwise dy perturbation (say dy > 0), it experiences the
strongest compression on its lower part and the y gradient
of that compressional flow will produce a viscous shear
force in the spanwise direction (see discussion below)
which further amplifies this perturbation, triggering the
pitchfork bifurcation. Note that the flow on the x ¼ −z
plane may conversely help centralize the particle, yet, it is
weaker for any Ca > 0. Moreover, we conduct simulations
fixing a certain spanwise offset dfixy > 0 with dx ¼ dz ¼ 0

for the shear flow, recording the spanwise hydrodynamic
forces FY ¼ Fp

Y þ Fη
Y on the particle [Fig. 5(c)], where Fp

Y

(Fη
Y) represents the pressure (viscous) contribution which

centralizes (decentralizes) the particle. As shown, the
viscous shear force Fη

Y js accounts for the major contribu-
tion to Fη

Y , supporting the above arguments of compres-
sion-induced viscous destabilization. The pressure force
becomes stronger with Ca and dominates the viscous part
when Ca exceeds a critical value. In fact, the droplet with
larger Ca displays a lateral protrusion accompanying a local
curvature increase [Fig. 5(e)], generating a stronger pres-
sure to center the particle. This clarifies why SM vanishes
when Ca crosses the P2 curve. Upon having elucidated H1

and P2 bifurcations individually, we comment on T1 and T2

which involve mode interactions. The trajectory of IPO lies
on y ¼ Δy plane, hence bounded within a circular orbit of
radius ð1 − Δ2

yÞ1=2 − α approximately, because the particle
simply cannot penetrate the droplet. The SM mode hence
suppresses the IPO mode due to the confinement; a larger
Δy and/or α naturally shrinks the orbital displacement Δxz

to be zero, when entering ⑤ across T1. On the contrary, the
emergence of T2 reflects the promotive effect of IPO on
SM. Regarding this, we may surmise that when the particle
starts orbiting on the y ¼ 0 plane, it comes closer to the
droplet interface; therefore, it suffers a greater compres-
sional flow [as indicated by Fig. 5(b)] which results in
stronger destabilizing viscous shear forces.
In summary, we have presented in this Letter hydro-

dynamic-interaction-meditated dynamics of a particle
inside a droplet in steady shear flow. We have numerically
discovered several equilibrium solutions where the
composite system exhibits spontaneous symmetry breaking
and unsteady dynamics rising through supercritical pitch-
fork and Hopf bifurcations; the particle can execute
spanwise migratory and/or in-plane orbital movement.
The bifurcations are partially attributed to the droplet-
induced disturbance flow characterized by a kinematically
unstable stagnation point. We have performed a normal-
form analysis to delineate the interplay between bifurca-
tions, revealing the suppression of the Hopf bifurcation by
migration and promotion of the pitchfork bifurcation by
orbital motion. The interplay can be rationalized by the
geometric confinement and the disturbance flow.
It is worth pointing out that the bifurcation dynamics

might not be directly generalized to the two commonly
adopted models of cells, capsule, and vesicle featured with
elastic membranes. The in-plane elastic stresses developed
on the interface might considerably suppress the interior
flow that influences the inclusion dynamics.
We envision that our results might potentially inspire

new approaches of “hydrodynamic centering” composite
systems like emulsions to obtain a uniform shell in addition
to electric centering methods [38,39], or vice versa, using
the hydrodynamic effect to generate emulsions with pre-
designed nonuniform shell thickness [40] for programmed
release of substances. We hope our study will motivate
experiments in these directions. We plan to address in our

(c) (d)

(e)

(a) (b)

FIG. 5. Droplet-induced disturbance flow ûd of concentric
systems in the extensional flow, shown on the y ¼ 0 (a) and
x ¼ z (b) plane, for α ¼ 0.5, Ca ¼ 0.1 and 0.2. (c) Hydrodynamic
force FYðCaÞ exerted on the particle with a fixed offset
ð0; dfixy > 0; 0Þ inside the droplet under shear; Fp

Y and Fη
Y denote

the pressure and viscous parts of FY , respectively, and Fη
Y js the

shear force of Fη
Y . The composite profile is shown on the z ¼ 0

plane for Ca ¼ 0.15 (d) and 0.325 (e).
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future work the influences of nonuniform shear, geometric
features, and confinement of the setup, which are all
relevant for practical applications.
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