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Abstract 

A material is intrinsically ductile under Mode I loading when the critical stress 

intensity KIe for dislocation emission is lower than the critical stress intensity KIc for 

cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a 

dependence on the elastic constants and the unstable stacking fault energy γusf for slip along 

the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc 

metals show that KIe is systematically larger (10-30%) than predicted. However, the critical 

(crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises 

because Mode I emission is accompanied by the formation of a surface step that is not 

considered in the Rice theory. A new theory for Mode I emission is presented based on the 

ideas that (i) the stress resisting step formation at the crack tip creates “lattice trapping” 

against dislocation emission such that (ii) emission is due to a mechanical instability at the 

crack tip. The new theory is formulated using a Peierls-type model, naturally includes the 

energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is 

small. The new theory predicts a higher KIe at a smaller critical shear displacement, 

rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for 

the simulated materials, usually requiring use of the measured critical crack tip shear 

displacement due to complex material non-linearity, show very good agreement with 

simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic 

elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice 

theory, and is used to understand differences between Rice theory and simulation in recent 

literature. The new theory highlights the role of surface steps created by dislocation emission 

in Mode I, which has implications not only for intrinsic ductility but also for crack tip 

twinning and fracture due to chemical interactions at the crack tip. 
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I. Introduction 

The heightened need for reduced energy consumption across many industries drives 

the search for improvement structural performance and reliability of materials. High 

structural performance and reliability are achieved with increased fracture toughness. A 

fundamental requirement for achieving high fracture toughness in crystalline metals is that a 5 

material be intrinsically ductile. A crystalline metal is intrinsically ductile if an atomically 

sharp crack in a loaded material emits dislocation(s) and blunts rather than cleaving and 

remaining sharp. Specifically, if the Mode I stress intensity factor for emission KIe is smaller 

than the Mode I stress intensity factor for cleavage KIc [1], then the material will emit 

dislocations, blunt, and eventually fail by mechanisms that absorb considerable energy. While 10 

the overall fracture toughness is governed by many larger-scale factors, materials that are 

intrinsically brittle, i.e. 𝐾𝐼𝑐 < 𝐾𝐼𝑒, often have insufficient toughness for failure-critical 

applications. Dislocation emission from the crack tip is thus a necessary precursor to crack tip 

blunting and toughening, while also representing one of the classical problems in the 

mechanics of materials.  15 

In light of its practical importance, a number of continuum mechanics models have 

been introduced to predict crack tip dislocation emission [2-6]. The most widely-used model 

is that by Rice, which is based on a cohesive model for slip displacement ahead of the crack 

[7]. Under Mode II (in-plane shear) loading, Rice showed that emission is controlled by an 

energy criterion involving the unstable stacking fault (USF) energy 𝛾𝑢𝑠𝑓. The USF is a saddle 20 

point on the generalized stacking fault energy surface associated with relative shear 

displacements of two rigid blocks of material. Under Mode I loading, the Mode II analysis 

does not apply directly, but Rice postulated that, at the point of emission, the slip profile 

along the slip plane is the same as that in Mode II. This yields a dependence of KIe on 𝛾𝑢𝑠𝑓 

and on the orientation of the slip plane relative to the crack front. 25 

Molecular statics and dynamics simulations provided a means by which to validate 

the Rice model. Early simulations [8, 9] showed that the Rice criterion gives accurate 

predictions for KIIe under Mode II loading, where the crack plane is coplanar with the slip 

plane. However, results for Mode I loading showed varying levels of agreement from 

material to material. It was recognized that deviations from the Rice criterion could be due to 30 

the creation of a surface step (surface ledge) during the Mode I nucleation process. Several 

authors thus tried to incorporate the additional energy of the surface step [10-13] into a Rice-

type analysis, but usually for one particular material with some approximations, and without 
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achieving significantly better results. In all of these models, the key Rice concept was 

maintained: the unstable stacking fault energy controls the dislocation nucleation with 35 

emission occurring when the slip displacement reaches the displacement corresponding to the 

unstable stacking fault displacement. Schoeck (2003) [14] considered a related continuum 

model, but with creation of a step introduced through an additional constant force acting at 

the crack tip. The resulting energy functional was then solved approximately using a 

variational method to obtain the slip distribution along the slip plane, and results were shown 40 

for simplified slip energy models. One conclusion of the Schoeck analysis is that, for low 

step energy, dislocation emission could occur below the Rice prediction, which is not 

generally supported by simulations in Mode II or Mode I for atomically sharp cracks and is 

difficult to rationalize physically. Schoeck was pursuing a valuable path that is echoed here, 

but with an approximate model. Zamora et al. [33] recently proposed a continuum approach 45 

that included extra energy for step formation near the crack tip and proposed a method for 

computing the step energy contribution, but they presented limited results for a specific 

system where the role of surface step creation was not clearly identified.   

Here, we approach the Mode I emission problem as a mechanical instability governed 

by a critical crack tip displacement. We show that, in contradiction to a key assumption in the 50 

Rice theory, the energy change at the crack tip due to relative slip is monotonically increasing 

with crack tip displacement, due to the energy cost of creating the step. Thus, the Rice theory 

simply cannot apply: there is no saddle point in the energy versus slip. We then develop a 

model that assumes all non-linear response to occur at the crack tip to demonstrate that, in the 

presence of the step, there exists a critical crack tip displacement at which mechanical 55 

instability occurs, i.e. the driving stress at the crack tip due to the applied field can no longer 

be balanced by the restoring stresses that resist step formation. The simple model rationalizes 

simulation trends and provides analytic results. We apply the model to 17 different fcc 

materials where, due to material non-linearities, we use the measured critical crack tip 

displacement in the theory and then predict KIe in very good agreement with the simulated 60 

values. The new theory captures all key aspects of the Mode I dislocation nucleation process, 

resolving the discrepancies of the Rice theory. A simplified analytic model is then presented 

that involves only easily-computable material properties yet shows excellent agreement with 

the simulations. The simplified model is also used to rectify previous discrepancies between 

Rice theory and atomistic simulations in other materials. 65 
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The remainder of this paper is organized as follows. In Section II, we give a more 

detailed exposition of the Rice theory and its predictions for KIe and the critical slip Δc for 

elastically anisotropic materials [15, 16]. In Section III, we first introduce 17 fcc materials 

that will be studied, we then carefully validate the Rice model for Mode II loading for these 

materials, and finally we present results for Mode I loading, with a slip plane inclined at an 70 

angle θ=70.53⁰ with respect to the crack plane, and show clear deviations from the Rice 

theory. In Section IV, we show that the energy change at the crack tip during the 

emission/slip process has contributions from the surface step energy as well as the stacking 

fault energy. In section V, we developed the new theory for crack tip dislocation emission 

based on a mechanical instability at the crack tip. In Section VI, we compare the new 75 

theoretical model for dislocation emission to simulations across a wide range of fcc materials. 

In section VII, we introduce an analytic criteria and show it to be in good agreement with the 

full model results. Implications of the new model are then discussed and our main results 

reiterated in Section VIII. 

 80 

II. Review of Rice criterion for dislocation emission 

Rice formulated a criterion for crack tip dislocation emission based on the Peierls 

concept [17]. This concept assumes the existence of a periodic energy functional Ψ𝑔𝑠𝑓 that is 

a function of the relative slip Δ between two rigid crystal blocks. The energy Ψ𝑔𝑠𝑓 is the so-

called generalized stacking fault energy (GSF energy) evaluated at relative slip 𝛥, with 0 ≤85 

𝛥 ≤ 𝑏 where b is the Burgers vector of the emitted dislocation. For fcc materials, the focus of 

the work here, the emitted dislocation is a partial dislocation with Burgers vector bp. The 

emission of the partial dislocation leaves behind a stable stacking fault as the dislocation 

glides away from the crack tip. A typical GSF energy function is shown in Figure 1, obtained 

from an atomistic simulation at T=0K for an fcc Ni EAM potential [19]. The unstable 90 

stacking fault is at Δ~bp/2 and the stable stacking fault 𝛾𝑠𝑠𝑓 is at Δ=bp. The GSF curve is a 

material property, independent of any crack geometry or mode of loading in a crack problem. 

Rice formulated the problem of dislocation emission ahead of a semi-infinite crack 

under pure Mode II loading as a Mode II cohesive zone problem where the GSF energy 

defines the (continuum) cohesive response ahead of the crack tip via the material shear 95 

resistance as 𝜏 = 𝑑Ψ𝑔𝑠𝑓 (∆) 𝑑⁄ 𝛥. The cohesive model eliminates the elastic stress singularity 

at the crack tip in analogy to a cohesive/bridging/Dugdale zone in the Mode I fracture 

problem. Since the GSF curve includes the elastic response of the material that is already 
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contained in the elastic field, Rice introduced the displacement discontinuity 𝛿, which is the 

inelastic slip, i.e. the additional slip beyond that predicted by elasticity. He then showed that 100 

𝛿 = 𝛥 − ℎ𝜏(𝛥)/𝜇, where h is the atomic inter-planar spacing and 𝜇 is the shear modulus 

(along the plane of sliding). Rice then introduced the inelastic potential Φ(δ) for the energy 

associated with the inelastic slip, given by  

Φ(𝛿) = Ψ𝑔𝑠𝑓(Δ) − ℎ𝜏2(Δ)/2𝜇, (1) 

Within the framework of the cohesive model, the path-independent J-integral can be 

applied. In isotropic elasticity, the J-integral along a contour far from the crack is 105 

 𝐽𝑓𝑎𝑟 = (1 − 𝜈) 𝐾𝐼𝐼
2 2⁄ 𝜇 = 𝐺 where G is the macroscopic energy release rate. The J-integral 

along a crack face contour around the cohesive zone is given by 

𝐽 = − ∫ 𝜏
∞

0

𝜕𝛿

𝜕𝑥
𝑑𝑥 = ∫ 𝜏

𝛿𝑡𝑖𝑝

0

(𝛿)𝑑𝛿 ≡ Φ(𝛿𝑡𝑖𝑝), (2) 

Path independence of the J-integral leads to the result 
 

𝐺 ≡ (1 − 𝜈) 𝐾𝐼𝐼
2 2⁄ 𝜇 = Φ(𝛿𝑡𝑖𝑝) (3) 

An incipient dislocation (partial slip distribution along the slip plane) loses stability when the 

slip discontinuity at the crack tip reaches the critical unstable stacking fault position, 

 𝛿𝑐
𝑡𝑖𝑝 = ∆𝑢𝑠𝑓, at which point δ and Δ are equal, 𝛿𝑐

𝑡𝑖𝑝 = ∆𝑐
𝑡𝑖𝑝= ∆𝑢𝑠𝑓. At this point, the inelastic 110 

slip energy is a maximum and equal to 𝛾𝑢𝑠𝑓, and so G is also a maximum and corresponds to 

the point of dislocation emission. Within isotropic elasticity, the corresponding critical stress 

intensity factor for dislocation emission is then 

𝐾𝐼𝐼𝑒 = √2𝜇 𝛾𝑢𝑠𝑓 (1 − 𝜈)⁄ . 

 
(4) 

For Mode I loading, where the slip plane is inclined at some angle 𝜃 to the crack 

plane, there is no exact solution. The crack tip geometry is not self-similar and the J-integral 115 

concept does not apply. Rice proposed that, at the point of emission, the distribution of shear 

slip along the slip plane is the same in Modes I and II. This allows the result for Mode II to be 

used to estimate emission for Mode I by computing the effective Mode II loading along the 

slip plane, leading to  

𝐾𝐼𝑒 = √2𝜇 𝛾𝑢𝑠𝑓 (1 − 𝜈)⁄ /𝑐𝑜𝑠2(𝜃/2)sin (𝜃/2) 

 

(5) 
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with emission again occurring when ∆𝑐
𝑡𝑖𝑝= ∆𝑢𝑠𝑓. The isotropic results of Eqs. 4 and 5 were 120 

generalized to full anisotropic elasticity [15] with the result  

𝐾𝐼𝐼𝑒 = √𝛾𝑢𝑠𝑓𝑜(𝜃, 𝜙) 

 

     (6a) 

𝐾𝐼𝑒 = √𝛾𝑢𝑠𝑓𝑜(𝜃, 𝜙)/𝐹12(𝜃) 

 

(6b) 

 

 where 𝑜(𝜃, 𝜙) is function of the slip plane angle θ and the angle φ between the dislocation 

Burgers vector and the crack front direction in the slip plane (see Appendix A) and F12(θ) is 

related to the angular distribution of shear stress at the crack tip. 

 125 

 

III. Rice theory versus atomistic simulations 

III.1 Materials studied  

The crack tip dislocation emission is analyzed for 17 different fcc materials. To 

describe Aluminum interatomic interactions we use two different EAM potentials developed 130 

by Mishin et al. [19] and Ercolessi and Adams [20]. Mishin EAM potentials were also used to 

describe Ni [19] and Copper [21] while the Adams et al. [22] EAM potentials were used to 

describe Gold, Silver and Palladium. A set of effective alloy potentials, labeled Cr10-Cr100, 

were derived using a homogenization procedure [24] based on an Fe-Ni-Cr EAM ternary 

system developed by Bonny [23]. The homogenization procedure enables the creation of a set 135 

Figure 1: Generalized stacking fault energy computed in Nickel at T=0K. 
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of single-atom materials with continuous property variations by continuous change of the 

underlying alloy composition. The Cr10-Cr100 materials are a discrete set of materials of 

compositions CrxFe1-x/2Ni1-x/2 that have a smooth variations in material properties over some 

range. It so happens that these materials have nearly constant (111) surface energies while the 

stacking fault energies, GSF curves, slip Δ𝑢𝑠𝑓 at the unstable stacking fault, and anisotropic 140 

elastic properties vary significantly. The relevant properties for each material, as computed in 

atomistic simulations using the above EAM potentials, are presented in Appendix A.  

 

III.2 Mode II loading 

To validate the Rice criterion for crack tip dislocation emission in Mode II, we 145 

perform molecular statics simulations using the molecular dynamics code LAMMPS [25] as 

follows. We simulate a semi-infinite crack under plane strain loading conditions, with the 

crack in the x-z plane, and crack tip at y=0 with the crack line along z. The simulation cell 

has dimensions of approximately 150 x 150 x 1 nm with periodic boundary conditions along 

the crack line direction (see Figure 2). Because we simulate emission at T=0K and in 150 

homogeneous atomic systems, results are independent of the sample length along the crack 

line direction. The crack is loaded incrementally by applying increments of anisotropic 

displacement based on linear elastic fracture mechanics as 

∆𝑢𝑥 = ∆𝐾𝐼𝐼√
2𝑟

𝜋
𝑅𝑒 [

1

𝑎1 − 𝑎2
(𝑝2√𝑐𝑜𝑠𝜃 + 𝑎2𝑠𝑖𝑛𝜃 − 𝑝1√𝑐𝑜𝑠𝜃 + 𝑎1𝑠𝑖𝑛𝜃)]

∆𝑢𝑦 = ∆𝐾𝐼𝐼√
2𝑟

𝜋
𝑅𝑒 [

1

𝑎1 − 𝑎2
(𝑞2√𝑐𝑜𝑠𝜃 + 𝑎2𝑠𝑖𝑛𝜃 − 𝑞1√𝑐𝑜𝑠𝜃 + 𝑎1𝑠𝑖𝑛𝜃)]

 (7) 

where a1 and a2 are roots of the characteristic equation and p1, p2, q1 and q2 depend on the 

material compliance tensor and a1 and a2; for more details see Appendix A. After each 155 

increment of displacement, atoms within 2𝑟𝑐 (rc = cut-off distance of the interatomic 

potential) of the outer boundary of the simulation cell (green atoms in Figure 2) are held fixed 

at the elastic displacement solution and all other atoms are relaxed to minimize the total 

energy of the system using the conjugate gradient method. The load is incrementally 

increased in steps of ∆𝐾𝐼𝐼 = 0.001𝑀𝑃𝑎√𝑚. The simulation is terminated when the first 160 

partial dislocation is emitted from the crack tip. 
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Figure 2: Crack geometry in Mode II loading formed by a) deleting the interatomic interactions 

between the crack surfaces (yellow and blue atoms, respectively) and denoted as “screening” and 

b) removing one layer of atoms and then screening the remaining atoms (yellow and blue, 

respectively) and denoted as “blunting”. For both (a) and (b), the crack geometry is shown (i) at zero 

load, (ii) at the critical load for dislocation emission, and (iii) after dislocation emission. The 

triangles are the basic structural units through which the shear displacement along the plane of 

emission are analysed, as indicated. Atoms are visualized using OVITO [26]. 
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The above description is general. For pure Mode II loading, the fcc crystal is oriented 

with X=[1 1 2], Y=[1 1 1̅], Z=[1̅ 1 0], creating a crack with a slip plane coplanar with the 165 

crack. A Mode II crack in an atomistic simulation cannot be created naturally – the traction-

free surface of the idealized Mode II crack cannot simply be imposed on atoms. We use two 

approaches to simulate a Mode II crack. In the first approach (Figure 2a), called “screening”, 

we eliminate all inter-atomic forces between atoms on either side of the initial crack surfaces 

(yellow and blue atoms, respectively). Because realistic interatomic potentials are multi-body 170 

potentials, “screening” influences the behaviour of all the atoms at the crack tip, and so 

deviations from the ideal Mode II crack can arise. In the second approach (Figure 2b), called 

“blunting”, we remove one or more rows of atoms to create crack surfaces. The finite 

distance between the remaining atoms on either side of the crack behind the crack tip leads to 

reduced interactions between these atoms, approaching the desired traction-free condition. 175 

However, this approach creates a slightly blunted crack, and so deviations from the ideal 

perfectly sharp Mode II crack can again arise. Here, we consider both “screening” and a 

combination of “blunting” by removal of one atomic row of atoms plus “screening” of the 

remaining atoms across the crack surfaces. Simulations show that these two cases give quite 

similar results for Mode II and also bracket the predictions of the Rice theory. 180 

Figure 3 shows the results for the critical stress intensity factor KIIe and crack tip 

relative slip at the point of emission, as simulated for 17 different EAM potentials [19-24] 

and as predicted by the Rice theory. Figure 3a shows that the Rice prediction for the critical 

stress intensity KIIe for emission is in very good quantitative agreement with the simulation 

values, although there are larger deviations for the “screening” case for the Cr60 - Cr100 185 

potentials, which have rather asymmetric GSF curves (see below). Overall, the Rice 

prediction for KIIe is generally between the two simulation results, which is the best possible 

agreement we could expect given the uncertainty in setting the atomistic crack tip conditions. 

Figure 3b shows the crack tip shear displacement just before emission, as measured in 

the simulations and as predicted by the Rice theory. We measure the shear displacement 190 

along the slip plane as the shear deformation of the atomic triangular structural units 

indicated in Figure 2. The shear displacement of the crack tip structural unit can be measured 

as the difference in displacement between the atoms marked by 1’ and 0, ∆1
′ = 𝑢1

′ − 𝑢0, or 

between the atoms marked by 1’ and 1, ∆1= 𝑢1
′ − 𝑢1, where 𝑢𝑖 is the displacement of an 

atom i in the [112] slip direction (see initial crack in Figure 2). Under pure shear, these two 195 

values are identical, ∆1
′ = ∆1, and we find only very small differences between Δ1 and Δ1’ in 
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the simulated Mode II loading, as expected. The shear displacement shown in Figure 3 is ∆1. 

In the screening case (Figure 2a), the atomic unit immediately behind the crack tip does not 

fully satisfies the condition of a traction free crack surface and so we also show the shear 

deformation Δ0 immediately behind the crack tip, and expect Δ0 and Δ1 to bracket the true 200 

value. Overall, the Rice prediction is slightly higher than simulation results, but in broad 

agreement. There are few cases (the Cr70-Cr100 potentials) where the Rice prediction is 

notably higher than the simulations results, and for the same potentials we find a larger 

discrepancy in the prediction of the critical KIIe. A possible reason for this discrepancy is 

mentioned in Section V.  205 

 

We conclude that, within the limitations of the ability to simulate an ideal Mode II crack, the 

Rice model is accurate, qualitatively and quantitatively, in its prediction of dislocation 

emission under Mode II. Since the Rice theory is intended for Mode II, and since no step is 

formed during the emission, the agreement is not surprising. However, it is important to 210 

demonstrate this level of agreement between simulation and theory in Mode II because it 

highlights the clear differences that will arise in Mode I. 

 

III.3  Mode I loading  

 We now examine the Rice criterion for crack tip dislocation emission in Mode I 215 

loading, performing molecular statics simulations as follows. We simulate semi-infinite crack 

Figure 3: Results of simulations under Mode II loading for both “screening” and “blunting” models: 

a) Critical stress intensity factor KIIe for crack-tip dislocation emission; b) Relative shear 

displacement of the structural units at the crack tip and, for “screening” only, immediately 

behind the crack tip. In both (a) and (b), light blue symbols show the predictions of the Rice 

model. 
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under plane strain loading conditions. We use the same boundary conditions, crack tip 

position and simulation cell size as in the simulations of Mode II loading. Here, the crystal is 

oriented with X=[1̅ 1̅ 2], Y=[1 1 1], Z=[1 ̅ 1 0], forming a crack with a slip plane inclined at 

an angle θ=70.53⁰ to the crack plane (see Figure 4). The crack is, once again, loaded by 220 

applying increments of the anisotropic displacement field corresponding to increments of the 

applied stress intensity factor KI given by 

∆𝑢𝑥 = ∆𝐾𝐼√
2𝑟

𝜋
𝑅𝑒 [

1

𝑎1 − 𝑎2
(𝑎1𝑝2√𝑐𝑜𝑠𝜃 + 𝑎2𝑠𝑖𝑛𝜃 − 𝑎2𝑝1√𝑐𝑜𝑠𝜃 + 𝑎1𝑠𝑖𝑛𝜃)]

∆𝑢𝑦 = ∆𝐾𝐼√
2𝑟

𝜋
𝑅𝑒 [

1

𝑎1 − 𝑎2
(𝑎1𝑞2√𝑐𝑜𝑠𝜃 + 𝑎2𝑠𝑖𝑛𝜃 − 𝑎2𝑞1√𝑐𝑜𝑠𝜃 + 𝑎1𝑠𝑖𝑛𝜃)] .

 (8) 

 

After each increment of loading ∆𝐾𝐼 = 0.001𝑀𝑃𝑎√𝑚, the boundary atoms (within 2rc of the 

outer boundary; green atoms in Figure 4) are held fixed at the elastic displacement solution. 225 

All other atoms are then relaxed using the conjugate gradient method and the simulation is 

terminated when the first partial dislocation is emitted. To prevent crack closure, which will 

occur at loads below KIc, we use (i) “screening” between the yellow and blue atoms (Figure 

4a), or (ii) “blunting” by deletion of three layers of atoms (Figure 4b).  

The critical stress intensity factor KIe for emission under Mode I loading is shown in 230 

Figure 5a. The Rice theory gives fair quantitative predictions for KIe, but is almost always 

lower than simulations for both “screening” and “blunting”. Some differences are large, up to 

20-50% (see also Table 1). Results here are consistent with other results on specific systems 

scattered through the literature. The second observation is that, as in Mode II, the simulated 

KIe is usually slightly larger for “screening” as compared to “blunting”. There is no clear 235 

interpretation of this difference in Rice theory. Beltz and Rice noted that the Rice theory for 

Mode I does not account for the opening displacement normal to the slip plane, which is 

expected to reduce the slip energy and thus reduce KIe below the Rice theory; such effects 

would increase the discrepancy between the theory and simulations. 

 240 
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Figure 4: Crack geometry in Mode I loading formed by a) deleting the interatomic interactions between the 

crack surfaces (yellow and blue atoms, respectively) and denoted as “screening” and b) removing three 

layer of atoms and denoted as “blunting”. For both (a) and (b), the crack geometry is shown (i) at zero 

load, (ii) at the critical load for dislocation emission, and (iii) after dislocation emission. The triangles are 

the basic structural units through which the shear displacement along the plane of emission are analysed, 

as indicated. 
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More importantly, Figure 5b and Table 1 show the simulated and predicted results for 

the critical crack tip shear displacement under Mode I loading. Here, we measure the shear 245 

deformation of the crack tip unit as ∆1 (see the initial crack in Figure 4). Due to very high 

normal stresses in the slip direction in Mode I, there can be some difference between Δ1 and 

Δ1
′  for some materials; physical aspects of this difference are explained in Appendix B. In 

Mode I loading, the difference between the Rice theory and simulation is notable: the 

Figure 5: Results of simulations in Mode I for both “screening” and “blunting” models: a) Critical 

stress intensity factor KIe for crack-tip dislocation emission; b) Relative shear displacement of 

the structural units at the crack tip. In both (a) and (b), light blue symbols show the 

predictions of the Rice theory. 
 

Δusf/bp Ksim/KRice Δ1/bp Δ2/bp Ksim/KRice Δ1/bp Δ2/bp Δ'1/bp Δ'2/bp

Al Mishin 0.70 0.92 0.395 0.279 0.87 0.348 0.241 0.461 0.323

Al Ercolessi 0.68 1.18 0.368 0.258 1.12 0.368 0.280 0.484 0.356

Au 0.50 1.45 0.509 0.366 1.07 0.340 0.248 0.398 0.291

Ag 0.50 1.2 0.459 0.334 1.07 0.365 0.268 0.447 0.334

Cu 0.53 1.28 0.450 0.330 1.15 0.380 0.287 0.497 0.349

Pd 0.51 1.45 0.497 0.365 1.19 0.406 0.311 0.483 0.366

Ni 0.52 1.03 0.430 0.302 1.03 0.318 0.226 0.385 0.272

Cr10 0.51 0.97 0.392 0.267 1.00 0.234 0.165 0.335 0.234

Cr20 0.51 1.03 0.386 0.269 1.07 0.252 0.182 0.353 0.249

Cr33 0.50 1.12 0.384 0.277 1.16 0.281 0.209 0.380 0.273

Cr40 0.51 1.16 0.366 0.266 1.19 0.279 0.211 0.375 0.271

Cr50 0.53 1.2 0.361 0.266 1.21 0.299 0.232 0.393 0.288

Cr60 0.55 1.22 0.349 0.259 1.21 0.301 0.237 0.395 0.291

Cr70 0.59 1.21 0.349 0.261 1.19 0.319 0.255 0.406 0.301

Cr80 0.64 1.13 0.341 0.257 1.12 0.320 0.256 0.410 0.302

Cr90 0.68 1.05 0.351 0.267 1.05 0.326 0.258 0.417 0.307

Cr100 0.70 0.96 0.322 0.243 0.98 0.315 0.249 0.409 0.296

Material

Screening Blunting

Table 1: Positions of the γusf, along with the simulation results in Mode I for screening and blunting given 

as the ratios of simulation KIe and Rice prediction for KIe, and measured shear displacements of the 

first and second structural units at the point of emission (see Figure 4).  
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simulated instability point is often far below the value postulated by Rice, with differences of 250 

typically up to 40%. From an energetic point of view, the energy release rate at displacements 

below ~bp/2 is simply far too low to provide the unstable stacking fault energy necessary to 

nucleate a dislocation according to the Rice mechanism. Examining the results in Figure 5 

further, we see that the screening case shows a critical slip at emission that is closer to the 

Rice prediction, but these cases also have a critical KIe that is much larger than the Rice 255 

prediction. For instance, in Au, Pd, and Ag, the critical slip at the crack tip in the “screening” 

case is almost equal to the slip at the unstable stacking fault energy (the Rice prediction), but 

the KIe is ~50% higher than the Rice prediction. Since the energy and the crack tip 

displacement are intimately coupled in the Rice theory, there is a fundamental problem with 

the Rice theory for Mode I loading. As we show in the next section, the problem lies in the 260 

fact that the Rice theory does not account for the creation of the surface step that 

accompanies dislocation emission in Mode I. 

 

IV. Energy due to surface step creation during dislocation emission 

When a dislocation nucleates under Mode I loading, a surface step is created, as 265 

indicated in Figure 4. Figures 4a(ii),b(ii) are at the point of nucleation and, while the final 

state (Figures 4a(iii),b(iii)) clearly shows the creation of a surface step, there is a nascent 

surface step and an associated partial step energy at the point of emission. The energy to 

create the emerging surface step is an additional energy cost for dislocation emission. 

However, as seen previously in Figure 5b, the critical displacement at the point of dislocation 270 

emission is usually well below the Rice prediction. The energy of the inelastic slip along the 

stacking fault is therefore much lower than 𝛾𝑢𝑠𝑓. The total energy at the critical displacement 

in Mode I is thus some fraction of 𝛾𝑢𝑠𝑓 plus some fraction of the step energy. The critical 

displacement at the emission point is also not at the instability point predicted by the Rice 

theory and so a simple incorporation of a step energy into the Rice model, as done in early 275 

attempts to include the step [10-13], is not accurate. The dislocation nucleation differs 

significantly from the mechanism envisioned in the Rice theory, requiring an entirely new 

theory. 

The first step toward a new theory involves investigation of the energy versus slip 

displacement as the actual nucleation process takes place, including the energy associated 280 

with the emerging surface. We proceed in direct analogy to the usual computation of the GSF 

curve, using a method similar to that presented by Zamora et al. [33]. First, we create a non-
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orthogonal simulation cell, oriented with X = [1̅ 1̅ 2], Y = [1 1 1], Z = [1̅ 1 0]. The simulation 

cell size is 6√6𝑎0 x 8√3𝑎0 x 2√2𝑎0 A. We apply periodic boundary conditions in [1 1 2] 

direction, while in [1 1 1̅] we apply free boundary conditions (see Figure 6a, b). Two 285 

identical crystal parts are defined and depicted as blue and red atoms, respectively. The 

interface between the blue and red atoms represents the slip plane. The initial crack tip 

geometry (blunting or screening) is created by (i) increasing of the simulation box size in 

[1̅ 1̅ 2̅]  direction and (ii) deleting extra atoms, as depicted in Figure 6a, b. We then rigidly 

slide the left crystal domain (blue atoms) relatively to the right crystal domain (red atoms). 290 

As in a standard GSF computation, relaxation is permitted only in the direction normal to the 

slip plane. We then compute energy change over a domain which includes three atoms on 

either side of the slip plane plus the crack tip atoms. The domain size in the [1 1 2] direction 

is sufficiently long so that atoms far from the crack tip are essentially bulk atoms. Figure 6c 

shows the energy change of each atom after slip of one partial Burgers vector (the final state 295 

after emission); the energy changes of the atoms just at the crack tip dominate the overall 

energy change. Along the slip plane away from the crack tip atoms, the energy is intrinsic 

stacking fault 𝛾𝑠𝑠𝑓 but this energy is not visible in Figure 6c because it is overwhelmed by the 

energy of the crack tip atoms. At any slip displacement 𝛥, we measure the energy change 

local to the crack tip atoms by subtracting the energy associated with the bulk GSF over all 300 

atoms in the domain except those at the crack tip, as outlined by the green line in Figures 

6a,b. The remaining energy is the total energy, due to both the stacking fault and the step, 

associated with the slip of the atoms that define the crack tip structural unit. We divide this 

energy by the atomic spacing √6 𝑏𝑝 4⁄  along the [112] direction to obtain the crack tip slip 

energy (per unit area), which we call the nucleation energy, defined as  305 

Ψ𝑛𝑢𝑐(𝛥) = Ψ𝑠𝑡𝑒𝑝(Δ) + Ψ𝑔𝑠𝑓(Δ),  

where Ψ𝑠𝑡𝑒𝑝(Δ) is the energy associated with step creation at the crack tip and Ψ𝑔𝑠𝑓(Δ) is the 

bulk GSF energy contribution in the crack tip unit. Note that the two contributions in Eq. 9 

are not independently separable in the simulations but we write Eq. 9 to indicate that, in the 

absence of any step, the nucleation energy should still include the GSF energy. Figure 7b 310 

shows Ψ𝑛𝑢𝑐(Δ) along with the standard GSF curve for the case of fcc Ni. Figure 7 exhibits 

several crucial features. First and foremost, unlike the GSF curve, there is no maximum in 

Ψ𝑛𝑢𝑐(Δ) at any slip 𝛥 < 𝑏𝑝. The absence of a maximum immediately precludes application of 

the Rice theory, which is based on a maximum energy (𝛾𝑢𝑠𝑓) at which point the material 

offers no resistance to further slip. Second, the total crack tip energy is significantly larger 315 

(9) 
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than the GSF energy. This is not surprising because the free surface energy is typically much 

larger than the unstable stacking fault energy. Third, the final value of the nucleation energy 

Ψ𝑛𝑢𝑐(𝛥 = 𝑏𝑝), which we call the surface step energy 𝛾𝑠𝑡𝑒𝑝, is slightly lower than the flat 

surface energy 𝛾𝑠 of the exposed crystalline facet. This difference is due to the local atomic 

structure of the crack tip. For all 17 potentials studied here, this ratio is 320 

 𝛾𝑠𝑡𝑒𝑝/𝛾𝑠 ≈ 0.7 ± 0.05. We can further verify that the surface step creation has no influence 

further along the slip plane away from the crack tip by analysing the energy changes of each 

triangular structural unit along the slip plane as a function of the relative slip Δ (see Figure 

7a). Figure 7b shows that, even in unit 2 adjacent to the crack tip unit, the energy is nearly 

identical to the GSF energy. Therefore, the step energy is localized to the structural unit at the 325 

crack tip. This conclusion holds for every material studied here and will be used to develop a 

new theory for dislocation emission in the next section. The nucleation energy Ψ𝑛𝑢𝑐(Δ) and 

GSF energy Ψ𝑔𝑠𝑓(Δ) are computed for all materials studied here as shown in Figures 8a,b for 

both “screening” and “blunting” crack geometry; the conceptual points observed for Ni are 

valid in all cases. The small differences between “screening” and “blunting”, not visible in 330 

Figures 8a,b, give rise to differences in the simulated KIe, as we will see below.  

 

 

 

Figure 6: Computation of the nucleation energy a) for “blunting” crack geometry; b) for “screening” 

crack geometry; and c) energy change per atom in the blunting case after full slip (one partial 

Burgers vector) for Nickel.  
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 335 

 

 

 

V. New theory for crack tip dislocation emission 

 340 
Since the nucleation energy Ψ𝑛𝑢𝑐(Δ) does not have a maximum, we deduce that 

emission must correspond to a local mechanical instability at the crack tip. Due to the high 

energy cost of shearing associated with step formation, the dislocation is “trapped” at the 

crack tip in a manner reminiscent of “lattice trapping” of a cleavage crack [18]. In “lattice 

trapping” for the cleavage crack problem, the precise force-displacement behavior of the 345 

crack-tip bond can restrain crack opening until the crack tip bond is mechanically unstable.  

Figure 7: Slip energy change versus slip displacement, for successive atomic structural units 

along the slip plane computed for fcc Ni [19]; only the energy for the structural unit 

at the crack tip deviates significantly from the bulk GSF energy.  

Figure 8: GSF energy (red lines) and nucleation energy (blue lines) versus relative slip for all fcc 

materials studied here: a) screening; b) blunting. GSF energies are identical in both figures. 
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At this point, the applied load KI exceeds the thermodynamic Griffith value KIc. In the 

dislocation emission problem here, the shear stress needed to shear the crack tip unit up to the 

unstable point of dislocation emission is higher than that corresponding to the GSF energy.  

Once the shear of the crack tip unit reaches a critical level at which the crack tip unit becomes 350 

unstable, the dislocation then move away unstably along the slip plane. The weaker restoring 

stresses further along the slip plane, due only to the GSF energy, are unable to impede the 

dislocation nucleation. 

While the new theory will be fundamentally different from the Rice theory, we retain 

key assumptions consistent with the Rice analysis (see Figure 9). Most importantly, we 355 

assume that (i) only the shear resistance along the slip plane controls the nucleation process, 

(ii) all non-linear behavior is confined to the slip plane, and (iii) that the shear displacement 

distribution Δ1, Δ2,… along the slip plane is the same in Modes I and II. This last assumption 

has been explicitly verified as shown in Appendix C, where we demonstrate that, for a 

specified displacement Δ1 at the crack tip, the remaining displacements Δ2, Δ3,… along the 360 

slip plane are essentially the same in Mode I and Mode II loadings. The main difference 

between the new theory and the Rice theory will be in the crack tip constitutive behavior, i.e. 

the resistance of the crack tip structural unit to shearing due to the emergence of the step in 

Mode I but not in Mode II, as shown already in Figure 7b. The other difference with Rice 

analysis will be that we deal only with the total shear displacements Δ; we find no need to 365 

introduce the inelastic slip measure δ and in this aspect we are consistent with the analysis of 

Schoeck [14].  

We start by analyzing the case with zero step energy; this analysis thus also applies to 

Mode II and will reveal the Rice solution from a different perspective. For zero step energy, 

the energy versus slip is only the GSF energy. The corresponding GSF “restoring” shear 370 

stress 𝜏𝑟𝑒𝑠 across the slip plane is the derivative of the energy. We use a sinusoidal Peierls 

model so that 𝜏𝑟𝑒𝑠 = 𝜏𝑔𝑠𝑓 = (𝜇𝑏𝑝/2𝜋ℎ) sin(2𝜋Δ/𝑏𝑝), as shown in Figure 10a. We now 

focus on the crack tip structural unit and assume that all non-linear behavior is confined to 

this crack tip structural unit, i.e. shear deformations further along the slip plane remain in the 

(nearly) linear domain of the Peierls curve. Then, a remote applied KI generates a shear 375 

stress 𝜏𝑎𝑝𝑝,0 on the crack-tip unit that is linear in KI. As the shear displacement ∆ of the 

crack tip unit increases, the applied shear decreases linearly as 𝜏𝑎𝑝𝑝 = 𝜏𝑎𝑝𝑝,0 − 𝜇∆/ℎ(𝛽 − 1), 

as indicated in Figure 10a. Here, the constant 𝛽 is the crack-tip Green’s function for shear in 

the lattice; 𝛽 = 2 for an isotropic continuum and varies between 1.4 and 2.3 for the 

anisotropic fcc materials studied here (see Appendix D). 380 
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Figure 9: a) Linear elastic body with semi-infinite crack under pure Mode I loading surrounding the 

dislocation emission plane that is characterized by atomic structural units along the slip plane; 

b) Local stresses acting on the crack tip structural unit: an applied stress due to the remote 

applied K load and a restoring stress due to the shear resistance of the crack tip structural unit, 

which together determine the local equilibrium shear deformation (dashed lines).  
 

Figure 10: Graphical construction for the equilibrium shear displacement Δ1 of the crack tip unit in Mode II 

loading or in Mode I loading when no step is present, for several different far-field loadings. Solid 

blue line: crack tip restoring stress versus crack tip shear displacement due to GSF energy only; Red 

lines: crack tip applied shearing stress versus shear displacement. b) Critical shear displacements Δ1, 

Δ2, …. along the slip plane at the point of dislocation emission, with critical energy release rate 

corresponding to the shaded area. 
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At any given applied KI, and thus any given 𝜏𝑎𝑝𝑝,0, the equilibrium crack tip 385 

displacement ∆1 is given by the condition 𝜏𝑎𝑝𝑝 = 𝜏𝑟𝑒𝑠, as shown graphically in Figure 10a 

for several values of 𝜏𝑎𝑝𝑝,0 with 𝛽 = 2. For the sequence of applied stresses (𝜏𝑎𝑝𝑝,0
′ , 

𝜏𝑎𝑝𝑝,0
′′ …), the corresponding equilibrium shear displacements (∆1

′ , ∆1
′′,  …) are stable 

equilibrium points because 𝑑𝜏𝑎𝑝𝑝/𝑑∆ < 𝑑𝜏𝑟𝑒𝑠/𝑑∆ for all 0 < ∆< 𝑏𝑝/2. There is no 

mechanical instability until ∆1= ∆1
𝑐= 𝑏𝑝/2. The stress 𝜏𝑎𝑝𝑝,0

𝑐  at this instability is then 390 

proportional to KIe. The assumption of linearity for all units ahead of the crack tip unit is not 

really true: in the more general case, the crack tip units deform stably along the GSF curve 

until the crack tip unit becomes unstable. The instability could then occur prior to 

 ∆1= 𝑏𝑝/2; in other words, some lattice trapping can occur in Mode II even without the step, 

and this can account for the deviation in predicting KIIe in the Cr60-Cr100 potentials. 395 

However, the spatial range of the GSF stress versus displacement corresponds, in the 

language of the “lattice trapping” cleavage problem [18], to a relative long-range force law 

with very small lattice trapping. The instability thus usually occurs very near, or at, 

 ∆1= ∆1
𝑐= 𝑏𝑝/2, with ∆2

𝑐  , ∆3
𝑐… as shown in Figure 10b, and hence trapping is generally 

small in Mode II. At the instability point, all atoms move forward to the next stable position, 400 

such that ∆2
𝑐→ ∆1

𝑐, ∆3
𝑐→ ∆2

𝑐 , … The total energy required to reach the instability point is then 

equal to the energy required to take the crack tip unit from ∆1= 0 to ∆1= ∆1
𝑐= 𝑏𝑝/2. This 

energy is equal to the area under the 𝜏𝑔𝑠𝑓 curve, which in turn is precisely 𝛾𝑢𝑠𝑓, as indicated 

in Figure 10b. This construction is the discrete analog to the continuous cohesive zone model 

that is implicit in the Rice theory, but using the total shear displacement ∆ and GSF energy 405 

Ψ𝑔𝑠𝑓(Δ) rather than the displacement discontinuity δ and energy Φ(δ). 

We now use the same general analysis to consider the case of dislocation emission 

when a surface step is created. Again, we assume that only the crack tip deforms non-linearly. 

Due to the step creation, the energy of the crack tip unit is Ψ𝑛𝑢𝑐(𝛥) = Ψ𝑠𝑡𝑒𝑝(Δ) + Ψ𝑔𝑠𝑓(Δ) 

and the restoring stress is 𝜏𝑟𝑒𝑠 = dΨ𝑛𝑢𝑐(𝛥)/𝑑Δ. Figure 11 shows the restoring stress for a 410 

Peierls model of the nucleation energy, Ψ𝑛𝑢𝑐(Δ) and 𝜏𝑟𝑒𝑠 = 𝑔(𝜇𝑏𝑝/2𝜋ℎ)sin(2𝜋𝛥/𝑏𝑝), 

where 𝑔 = 𝜏𝑟𝑒𝑠/𝜏𝑔𝑠𝑓 is the factor by which the restoring stress with the step exceeds the 

restoring stress when there is no step creation. However, the surrounding material remains 

elastic. Therefore, the applied stress remains exactly the same as before, 

𝜏𝑎𝑝𝑝 = 𝜏𝑎𝑝𝑝,0 − 𝜇∆/ℎ(𝛽 − 1). With increasing applied stress 𝜏𝑎𝑝𝑝,0, the stable equilibrium 415 

shear displacement ∆1 of the crack tip unit evolves stably as shown in Figure 11. A 

mechanical instability, corresponding to dislocation nucleation, then occurs at the applied 
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stress 𝜏𝑎𝑝𝑝,0
𝑐,𝑠𝑡𝑒𝑝

 where the equilibrium shear displacement becomes metastable, i.e. when 𝜏𝑎𝑝𝑝 =

𝜏𝑟𝑒𝑠 and 𝑑𝜏𝑎𝑝𝑝/𝑑∆ = 𝑑𝜏𝑟𝑒𝑠/𝑑∆, as indicated in Figure 11. When 𝑔 > 1.5, and for β=2, the 

instability occurs at ∆1
𝑐≪ 𝑏𝑝/2 and the shear displacements ∆2

𝑐  , ∆3
𝑐… ahead of the crack tip 420 

remain (nearly) in the linear range of the GSF stress curve, as indicated in Figure 12a. The 

ratio of the remote applied stress intensity at the instability point for the step case (Mode I) to 

that of the no-step case (the Rice model) is equal to the ratio of the critical stresses,  

𝜏𝑎𝑝𝑝,0
𝑐,𝑠𝑡𝑒𝑝 𝜏𝑎𝑝𝑝,0

𝑐⁄ = 𝐾𝐼𝑒,𝑠𝑡𝑒𝑝 𝐾𝐼𝑒,𝑅𝑖𝑐𝑒⁄  

As seen graphically in Figure 11, the fractional increase in the remote stress intensity factor is 425 

larger than, but not significantly larger than, the Rice value. The “trapping” of the nucleating 

dislocation at the crack tip due to the extra energy of the step thus leads to a critical shear 

displacement instability that is lower than the Rice value but at a KIe that is larger than the 

Rice value. 

 430 

The graphical analysis using the Peierls representation, as shown in Figure 11, can be 

executed numerically for any desired values of the two relevant material parameters 𝛽 and 𝑔. 

Table 2 shows computed results for a range of typical values in real materials. At fixed 𝛽, 

increasing the step energy (increasing 𝑔) leads to increasing critical stress intensity for 

emission and decreasing critical crack tip shear displacement. These results are broadly 435 

consistent with the Mode I simulation results. Three important aspects merit comment. First, 

Figure 11:  Graphical construction for the equilibrium shear displacement Δ1 of the crack tip unit when a 

step is created during emission in Mode I loading and all other displacements Δ2, Δ3, … remain in 

the linear regime, for several different far-field loadings. Solid blue line: crack tip restoring stress 

versus shear displacement including the step energy; Red lines: crack tip applied shearing stress 

versus shear displacement; for reference, dashed blue line shows the crack tip restoring stress 

versus shear displacement due only to the stacking fault energy. 

 

(10) 
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the theory predicts a continuous transition from emission controlled by 𝛾𝑢𝑠𝑓 (Rice theory) to 

emission controlled by the step energy. Second, as seen for the case of 𝑔 = 1.5, the increase 

in KIe above the Rice value is quite small even when the step energy is an appreciable fraction 

of 𝛾𝑢𝑠𝑓. Third, the analysis is independent of the slip plane inclination angle θ because the 440 

same nominal step is created at any θ ≠ 0⁰ and rotation of the stress field accounts for all 

differences in the “applied” stresses (see Appendix E).  

 

In realistic cases, the slip displacements away from the crack tip can again become 

(slightly) non-linear. In this case, the system softens and the simple graphical analysis based 445 

on non-linearity only at the crack tip is insufficient. However, at the instability point, the 

shear displacements again simply shift as ∆2
𝑐→ ∆1

𝑐, ∆3
𝑐→ ∆2

𝑐 , etc. So, even when non-linearity 

extends beyond the crack tip structural unit, the energy that must be provided by the applied 

field to reach the point of instability is computed as the area under the curve shown in Figure 

12a. The critical energy for emission can thus be computed in terms of the critical 450 

displacements ∆1
𝑐 , ∆2

𝑐 . There are two contributions, one from the crack tip unit that follows 

Ψ𝑛𝑢𝑐 and another from all other units that follow the Ψ𝑔𝑠𝑓 energy function, so that 

𝐽 = ∫ 𝜏𝑟𝑒𝑠𝑑𝛥

𝛥1
𝑐

𝛥2
𝑐

+ ∫ 𝜏𝑔𝑠𝑓𝑑𝛥

𝛥2
𝑐

0

, (11) 

which yields 

 

𝐽 = Ψ𝑛𝑢𝑐(Δ1
𝑐 ) − Ψ𝑛𝑢𝑐(Δ2

𝑐 ) + Ψ𝑔𝑠𝑓(Δ2
𝑐 ) ≡ 𝐺𝐼𝑒 (12) 

  

as shown graphically in Figure 12. The critical stress intensity factor is then computed using 455 

the standard relationship between K and G, 

 

𝐾𝐼𝑒 = √𝐺𝐼𝑒𝑜(𝜃, 𝜙) 𝐹12⁄ (𝜃) (13) 

KIe,step/KIe,Rice Δc KIe,step/KIe,Rice Δc KIe,step/KIe,Rice Δc

1.5 1 0.5 1.01 0.42 1.09 0.36

2 1 0.5 1.09 0.36 1.22 0.33

2.5 1.03 0.4 1.18 0.33 1.36 0.31

3 1.09 0.36 1.29 0.32 1.5 0.3

β =1.5 β =1.75 β =2

g

Table 2: Ratio of critical stress intensity factors with (KIe,step) and without (KIe,Rice) the surface step, for 

various values of the 𝑔 = 𝜏𝑟𝑒𝑠/𝜏𝑔𝑠𝑓 and crack tip Green’s function parameter β, as computed 

using the Peierls model of Figure 11. 
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The analysis thus resembles the Rice theory, but emission is controlled by reaching a critical 

crack tip displacement associated with a mechanical instability due to the step formation.   460 

Furthermore, if the maximum crack tip restoring stress is skewed toward higher 

displacements (see Figure 12b), which arises in some of the atomistic systems (derivatives of 

curves shown in Figure 8), then the instability can be shifted toward larger displacements, 

even reaching Δ1
𝑐 ~𝑏𝑝/2, but then with a much greater energy and hence a much greater KIe. 

Such a situation prevails in materials such as Au and Pd (see Figure 5). So, a measurement of 465 

emission at ~bp/2 does not at all imply that the Rice model is applicable.  

 

 

 

VI. Validation of the new theory 470 

 The previous section presented an analytical model that highlights the controlling 

physics/mechanics of the crack tip dislocation emission, and clearly rationalizes the origins of 

the deviations from the Rice theory. The analysis predicts the critical crack tip shear 

displacement ∆1
𝑐 but assumes non-linearity to exist only in the crack tip unit. Even with some 

non-linearity away from the crack tip unit, the new model can predict the critical shear 475 

displacement ∆1
𝑐 and the critical energy release rate 𝐺𝐼𝑒 (as shown in Figure 12) for some 

Figure 12: a) Critical shear displacements Δ1, Δ2, … along the slip plane at the point of dislocation 

emission, for the realistic case corresponding to some non-linearity in Δ2, Δ3, … beyond the crack-

tip structural unit. b) Critical shear displacements Δ1, Δ2, … along the slip plane at the point of 

dislocation emission, when the crack tip restoring stress is skewed toward higher displacement. In 

both figures the associated critical energy release rate corresponds to the shaded area.  
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simulated materials (Ni, Cu and Cr10-Cr40) in very good agreement with simulation results. 

However, in most of the simulated materials, the non-linear shear displacements further along 

the slip plane do not allow for direct application of the analytic theory. While non-linear 

behavior in the second structural unit could be included, such a complication is beyond the 480 

scope of this paper. Instead, we validate the new theory for KIe by using the simulated values 

of the critical shear displacement (see Table 1) as input to compute GIe, as shown in Figure 

12. While not a fully independent prediction of both ∆1
𝑐 and KIe, this approach nonetheless 

quantitatively demonstrates key aspects of the theory. 

 First, we assess the accuracy of the new theory for cracks formed by “screening”. 485 

Figure 13a shows the critical stress intensity factor 𝐾𝐼𝑒 as predicted using the new theory 

(Eqs. 11-13); also shown are the simulation results and the Rice predictions. The predictions 

of the new theory are in excellent agreement with simulations, and generally better than, or 

comparable to, the Rice predictions. The new theory always predicts slightly higher results 

than found in the simulations, which likely reflects the limits of all models that use elasticity 490 

plus a non-linear slip model only along the slip plane. The overestimations found for Cr10 

and Cr20 are cases with high normal stresses at the crack tip where opening softening may be 

more important (see below). 

Next, we examine the accuracy of the new theory for cracks formed by blunting. Note 

that the Rice theory does not distinguish between these two cases, aside from approximate 495 

attempts to deal with elliptical crack tips [27]. Figure 13b shows that the predicted KIe value 

is very close to the Rice value, with overall comparable agreement (sometimes slightly better, 

sometimes slightly worse) than the Rice prediction. Only Cr10 and Cr20 are notably off from 

the simulations. Recall, however, that the critical crack tip shear for blunting is much smaller 

than the Rice prediction, so that the physical model associated with the new theory is much 500 

more accurate overall than the Rice model. The present model thus also accounts for the 

differences in both KIe and ∆1
𝑐 between “screening” and “blunting”. As shown in Figure 14 

for the specific cases of Ni and Cu (and also for both Al, Au, Ag, Pd, Cr100 and Cr90 

potentials in Figure 8), the restoring stress for “blunting” is shifted to slightly lower shear 

displacements as compared to “screening”, leading to smaller predicted KIe and ∆1
𝑐. 505 
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The deviation of the new theory from the simulations for the Cr10-Cr80 potentials lies 

in the fact that the crack tip shearing energy is strongly affected by the normal stress parallel 

to the slip plane. The measured critical ∆1
𝑐 for these potentials is actually below the 510 

displacement at the maximum restoring stress, and so there cannot be an instability based on 

∆1
𝑐 alone. In these cases, the normal stress acting at the crack tip stretches the crack tip unit 

(see Appendix B) so that Δ1 is not an accurate measure of the average crack tip shear. Instead, 

the shear displacement ∆1
′  better reflects the shearing of the crack tip unit. In addition, the 

restoring stress for these potentials (shown in Figure 14 for the specific case of Cr50) is not 515 

affected by the crack geometry and so crack geometry does not influence the simulated KIe 

(see Figure 5a), and thus Δ1 in the screening case is very close to ∆1
′  in the blunting case (see 

Figure 13: a) Critical stress intensity factor for dislocation emission (Theory: orange; Simulation: red; 

Rice: blue line) for a) cracks formed by “screening”; b) cracks formed by “blunting”. Orange 

dashed line computed with Δ1’ crack tip displacement. 

 

Figure 14: Crack tip restoring stress for crack formed by screening (solid lines) and for crack formed by 

blunting (dashed lines) in Ni, Cr50 and Cu. 
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Table 1). As shown in Figure 13b by the dashed line, predictions of the theory using the 

measured ∆1
′  and the same Ψnuc(Δ) are in very good agreement with the simulations. This 

difference shows that the precise deformation at the crack tip structural unit affects the 520 

critical stress intensity for emission by modest amounts, but these amounts can explain the 

differences between sharp “screened” cracks and “blunted” cracks, a feature absent in the 

Rice theory. 

 

VII. Approximate model for prediction of the crack-tip dislocation emission 525 

The analysis in the previous section demonstrates the quantitative success of the 

conceptually new model. However, the predictions in Figures 13a,b use the simulation values 

for the critical shear displacement. Unlike the simple Peierls model (Figures 10, 11), the 

instability point 𝛥1
𝑐  has not been predicted; the effects of non-linearities and the precise shear 

vs. displacement behaviour beyond the maximum shear resistance preclude analytic analysis. 530 

Furthermore, we seek an analytic model that does not require direct atomistic simulations of 

the crack problem since there is no need for a model if one only needs to execute a standard 

molecular statics crack simulation. Thus, we aim for simplified models that predict KIe in 

terms of only the easily-computable (i) GSF curve Ψgsf and nucleation energy curve Ψnuc or 

(ii) unstable stacking fault energy 𝛾𝑢𝑠𝑓 and surface energy 𝛾𝑠. 535 

For the simplified model which involves only Ψgsf and Ψnuc it is necessary to 

determine the critical crack tip shear displacements ∆1
𝑐 , ∆2

𝑐 . The analytical model of Section 

V, along with the results given in Table 2, shows that the critical value ∆1
𝑐 is weakly 

dependent on the step energy once the step energy is somewhat larger than the GSF energy. 

These results are also consistent with the simulations. Based on these observations we deduce 540 

that single value of ∆1
𝑐 is sufficient for any material and can be used in the approximate 

model. Analyzing the critical crack tip shear displacements shown in Table 1, we can estimate 

𝛥1
𝑐 ≈ 0.39𝑏𝑝 for “screening” and 𝛥1

𝑐 ≈ 0.33𝑏𝑝 for “blunting”, which are the averages across 

the entire set of simulation results for “screening” and “blunting”, respectively. For both 

crack configurations we find 𝛥2
𝑐 /𝛥1

𝑐 ≈ 0.7; this is not surprising because the ratio Δ2
𝑐 Δ1

𝑐⁄  is 545 

determined mainly by elasticity and so is not strongly dependent on Δ1
𝑐  nor crack geometry. 

Using these pairs of values for all materials, and Ψnuc and Ψgsf for each specific material, we 

compute 𝐾𝐼𝑒 via Eqs. 12-13 and obtain the results shown in Figures 15a,b. This approximate 

solution is again in very good agreement with the simulations across the entire range of 

materials. This estimate works well even when the 𝛥1
𝑐  deviates from the above estimated 550 
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value because (i) there is some cancellation of errors, (ii) 𝛥2
𝑐 /𝛥1

𝑐 ≈ 0.7 is retained, and (iii) 

KIe scales only with the square root of the critical energy. 

 

The above approximation still requires computation of Ψ𝑛𝑢𝑐(Δ) for the specific crack 

tip geometry. A simpler model that depends only on the unstable stacking fault energy 𝛾𝑢𝑠𝑓 555 

and surface energy 𝛾𝑠 is very valuable since these quantities are easily computed via first-

principles methods using simple periodic-cell geometries. We first recall that 

 𝛾𝑠𝑡𝑒𝑝 ≈ 0.7𝛾𝑠. Then, the values 𝛥1
𝑐 = 0.36𝑏𝑝, 𝛥2

𝑐 /𝛥1
𝑐 ≈ 0.7 (and so 𝛥2

𝑐 = 0.25𝑏𝑝) capture 

both “screening” and “blunting” well, for most of the studied materials.  

From Eq. 12 and a simple Peierls model, the contribution from the GSF energy is then 560 

Ψ𝑔𝑠𝑓(0.25𝑏𝑝) = 0.5𝛾𝑢𝑠𝑓. Again using a simple Peierls model, the contribution from the 

crack tip unit is Ψ𝑛𝑢𝑐(0.36𝑏𝑝) − Ψ𝑛𝑢𝑐(0.25𝑏𝑝) = 0.7𝛾𝑠𝑡𝑒𝑝 − 0.5𝛾𝑠𝑡𝑒𝑝 = 0.14𝛾𝑠. Therefore, 

a good analytic estimate of the critical energy release rate at the point of dislocation 

emission is 𝐺𝐼𝑒 = 0.14𝛾𝑠 + 0.5𝛾𝑢𝑠𝑓. A small correction to this estimate precisely captures the 

average 𝐺𝐼𝑒 across the entire set of simulations, 565 

𝐺𝐼𝑒 = 0.145𝛾𝑠 + 0.5𝛾𝑢𝑠𝑓,  (14) 

Eq. 14 applies to systems with high step energies (the dominant case in real materials). The 

full model reduces to the Rice model as the step energy decreases, 𝐾𝐼𝑒 →  𝐾𝐼𝑒,𝑅𝑖𝑐𝑒 as 

 𝛾𝑠𝑡𝑒𝑝 → 𝛾𝑢𝑠𝑓 with 𝛾𝑠 ≈ 𝛾𝑢𝑠𝑓/0.7 (see Peierls analysis and Table 2). Eq. 14 does not capture 

this limit, and should not be used when the surface energy/step energy are small. An analytic 

model that captures the correct limit is thus  570 

 

Figure 15: Critical stress intensity factor for dislocation emission for all materials studied here; 

Simulations (red), full theory (orange); approximate model (purple) for a) screening and  

b) blunting. 
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𝐺𝐼𝑒 = 0.145𝛾𝑠 + 0.5𝛾𝑢𝑠𝑓, 𝛾𝑠 > 3.45 𝛾𝑢𝑠𝑓 

𝐺𝐼𝑒 = 𝛾𝑢𝑠𝑓, 𝛾𝑠 < 3.45 𝛾𝑢𝑠𝑓 

 

Figure 16 shows the predictions of Eq. 15 for GIe along with the simulation results (screening 575 

and blunting). Also included are additional simulations and predictions for a family of pair-

potentials having fixed 𝛾𝑠 and varying 𝛾𝑢𝑠𝑓 [28], using full anisotropy not included in Ref. 

[28]. The agreement is very good across the entire spectrum of materials. The single 

analytical formula of Eq. 15, with KIe following from Eq. 13, is thus a suitable analytic 

replacement for the Rice model that incorporates the effect of the step energy and is based on 580 

a deeper understanding of the crack tip processes controlling dislocation nucleation. 

 

 

VIII. Discussion 

The Rice theory is an elegant, long-standing, and well-accepted model for the 585 

approximate analysis of dislocation emission at a crack tip under Mode I loading. However, 

we have shown that a new model is necessary for three important reasons. First, the Rice 

theory predictions for KIe and ∆1
𝑐 are inconsistent with detailed molecular simulations: the 

predicted KIe is too low while the predicted ∆1
𝑐 is too high, and these two deviations cannot be 

reconciled within the context of the Rice theory. Second, the Rice theory neglects entirely the 590 

energy associated with formation of the surface step upon emission, and simulations 

demonstrate clear that such a step exists and that the energy cost is high compared to the 

Figure 16: Critical energy release rate GIe as a function of the materials surface energy γs normalized by 

γusf for all materials studied here; Simulations - screening (red diamonds), Simulations - blunting 

(orange squares), Simulation results from [28] (open red diamonds), Analytical model Eq. 15 

(purple line); Rice theory (black dashed line). 
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unstable stacking fault energy. Third, explicit computation of the energy versus shear 

displacement at the crack tip shows no energy maximum, yet a maximum is required in the 

Rice analysis since the maximum sets the point of emission. 595 

The new theory is based on the recognition that the crack tip structural unit is impeded 

from shearing by the energy cost of the step. The nascent dislocation is thus “trapped” by the 

lattice and can only be emitted when the crack tip structural unit reaches a point of 

mechanical instability. This instability is fundamentally different from the Rice concept, 

which envisions a continuous cohesive zone behaviour with no “trapping”. We have 600 

demonstrated the physical behaviour, and rationalized the simulation results, using a Peierls 

model for the nucleation energy at the crack tip and for the generalized stacking fault energy 

along the remainder of the slip plane. We can then compute the critical energy release rate at 

the emission instability, from which we can find KIe. The simple Peierls model produces the 

trends seen in simulations and reduces to the Rice model when the step energy is zero. We 605 

have shown that the new theory, a simplified approximation, and an analytic model (Eq. 15), 

are in very good agreement with simulation results across 17 different fcc materials 

(interatomic potentials). 

Several extensions of the present analysis are necessary. First, dislocation nucleation 

is a thermally activated process at finite temperatures. Computing the energy barrier for 610 

nucleation at loads KI < KIe is required, and the step energy will contribute an important 

component to this energy barrier. Second, further dislocation emission events are important, 

especially the second partial emission that determines whether there is crack tip twinning or 

formation of a full dislocation that can glide away from the crack tip [29]. The transition from 

twinning partial emission to trailing partial emission at finite T is controlled by thermal 615 

activation and the Rice theory is not fully consistent with simulations [29, 30]. We will report 

on these issues in future work. 

The new theory has implications for chemical effects on dislocation nucleation.  

Chemical species adsorbed at the crack tip can change the step energy, and thus alter the load 

needed for dislocation emission. The Rice theory accommodates chemistry only through the 620 

influence of chemical species on 𝛾𝑢𝑠𝑓. Based on the ratio 𝛾𝑢𝑠𝑓/𝛾𝑠 = 0.18 ± 0.05 for 

materials studied in this work, the current theory shows that the step energy contributes ~65% 

of the critical energy release rate, and hence will predict different trends for emission versus 

specific chemical environment then the standard model. The role of local chemical transport 

at the crack tip, and hence kinetic effects, then also becomes important in determining 625 
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emission just as in cleavage [31]. There is some experimental evidence for hydrogen-

enhanced dislocation emission that may be consistent with effects predicted by extension of 

the present model [32] while coupled Quantum/Continuum methods show that the precise 

position of an H impurity relative to the slip plane determines whether KIe is increased or 

decreased [36]. Thus, behaviour at the step will influence chemical embrittlement, i.e. the 630 

transition from emission (ductile behaviour) to cleavage (brittle behaviour) in the presence of 

a chemical environment around the crack. 

The present analysis fundamentally changes the dependence of the ductile-to-brittle 

transition on underlying material properties. A material is brittle when 𝐾𝐼𝑐 < 𝐾𝐼𝑒. The 

standard analyses use the Griffith model 𝐾𝐼𝑐 = √2𝛾𝑠𝑜′, where o’ is a material property for 635 

Griffith cleavage under mode I and use the Rice model 𝐾𝐼𝑒 = √𝛾𝑢𝑠𝑓𝑜(𝜃, 𝜑)/𝐹(𝜃)12. The 

new analysis here shows that 𝛾𝑠,𝑒 (surface energy along the emission plane) also enters into 

the emission criterion. Using our simple analytic model (Eq. 15), the analysis predicts 𝐾𝐼𝑒 =

√(0.5𝛾𝑢𝑠𝑓 + 0.145𝛾𝑠,𝑒)𝑜(𝜃, 𝜑)/𝐹(𝜃)12 for 𝛾𝑠/𝛾𝑢𝑠𝑓 > 3.45. Thus, decreasing the surface 

energies of a material decreases both KIc and KIe, making embrittlement less likely. 640 

The new model recently resolves a discrepancy found between molecular simulations 

and predictions of the standard brittle/ductile analysis in Mg [34]. In the standard analysis, 

cases involving slip along the basal plane of hcp Mg are predicted to emit dislocations (𝐾𝐼𝑐 >

𝐾𝐼𝑒) but which are observed to cleave in simulations. Although Mg has an hcp crystal 

structure, with a different elastic anisotropy, and although the fracture planes and slip planes 645 

differ, the present model remains applicable. Here, we apply the analytic model of Eq. 15 to 

compute 𝐾𝐼𝑒 including the surface energy cost along the slip plane. The necessary energies 

are reproduced in Table 3. Predictions of 𝐾𝐼𝑒 using the Rice analysis (see Ref. [34]) and the 

present model (Eq. 15) are also shown in Table 3, along with the simulation results for sharp 

cracks. In contrast to the standard analysis, the new model now correctly predicts all the 650 

observed cleavage cases 𝐾𝐼𝑐 ≤ 𝐾𝐼𝑒, and retains the previous prediction of emission for the 

case where 𝐾𝐼𝑐  is only slightly larger than 𝐾𝐼𝑒. Eq. 15 remains imperfect, and the competition 

between cleavage and emission in Mg is rather subtle, but nonetheless the incorporation of 

the surface/step energy into the analysis leads to predictions that are consistent with 

simulations. This demonstrates that the model is valuable for better assessment of brittle vs. 655 

ductile behaviour. 

This is a post-print of the following article: Andric, Predrag; Curtin, W. A. Journal Of The Mechanics And Physics Of Solids 2017,, 23.
315-337.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2017.06.006 © 2017. This manuscript version is made
available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2017.06.006


30 
 

 

In summary, a new model for emission based on a local crack tip mechanical 

instability has been shown to explain, conceptually and quantitatively, the crack tip emission 

process including the role of step formation at the crack tip. The model has been 660 

painstakingly validated across a wide range of fcc materials. Of great practical importance, 

we have provided an accurate analytic model (Eq. 15) that requires only easily-computable 

material parameters as input. In addition to its new insights into the physical origin of 

dislocation emission, this model provides a path for (i) designing new materials that exhibit 

the desired ductile behaviour (dislocation emission), which is a necessary precursor to ductile 665 

fracture, and (ii) better understanding of chemical embrittlement due to a change in crack tip 

behaviour from emission (ductile) to cleavage (brittle) behaviour. We will report on research 

examining these and other implications in the near future. 

 

 670 

Acknowledgements: This work was supported by the European Research Council through the 

Advanced Grant ``Predictive Computational Metallurgy'', ERC Grant agreement No.339081 - 

PreCoMet.  

 

 675 

 

 

 

 

 680 

 

Table 3: Crack tip cleavage/emission competition in magnesium as predicted from (i) Rice theory, 

 (ii) The new theory for dislocation emission, and (iii) as observed in atomistic simulations. The 

values of material properties and simulations results are taken from [34].  

Crack

 plane 

Orientation

 (n)[l]

γs

(mJ/m
2
)

Slip 

plane

γs,e

(mJ/m
2
)

γusf 

(mJ/m
2
)

KIc

(MPa m
1/2

)

KIe,Rice

(MPa m
1/2

)

KIe,new

(MPa m
1/2

)

Rice 

prediction

New theory

prediction

MD 

results

Prism I 582 Basal 568 125 0.252 0.236 0.254 Emission Cleavage Cleavage

Prism II 651 Basal 568 125 0.267 0.262 0.282 Emission Cleavage Cleavage

Pyramidal I 619 Basal 568 125 0.262 0.222 0.239 Emission Emission Emission

Pyramidal II 647 Basal 568 125 0.269 0.250 0.269 Emission Cleavage Cleavage

1̅010 [12̅10] 

1̅21̅0 [1̅010] 

101̅0 [12̅10] 

112̅2 [1̅010] 
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Appendix A. Anisotropic elastic properties  

 
Calculation of the material elastic property o(φ,θ), based on the Stroh formalism [16] is given by 

𝑜(𝜙, 𝜃) = 𝑠𝑖(𝜙)𝛬𝑖𝑗
(𝜃)−1

𝑠𝑗(𝜙), (A.1) 

where s(φ)  is a slip vector in the constrained path approximation and 685 

𝛬𝑖𝑗
(𝜃)

= 𝛺𝑖𝑘𝛬𝑘𝑙𝛺𝑙𝑗. (A.2) 

Λij  is the appropriate matrix for crack orientation and Ωij is rotation matrix given by 

𝛺 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] (A.3) 

For an atomically sharp, semi-infinite crack in homogeneous materials Λij  is given by 

𝛬 =
1

2
𝐿−1 (A.4) 

where 

𝐿−1 = 𝑅𝑒(𝑖𝐴𝐵−1). (A.5) 

In equation A.5, A and B are eigenvector matrices given by 

𝑁𝜉 = 𝑝𝜉 (A.6) 

𝑁 = [
𝑁1 𝑁2

𝑁3 𝑁1
𝑇] , 𝜉 = [

𝐴
𝐵

] (A.7) 

where 

𝑁1 = −𝑇−1𝑅𝑇 ,   𝑁2 = 𝑇−1, 𝑁3 = 𝑅𝑇−1𝑅𝑇 − 𝑄 (A.8) 

and 

𝑄𝑖𝑘 = 𝐶𝑖1𝑘1,  𝑅𝑖𝑘 = 𝐶𝑖1𝑘2,  𝑇𝑖𝑘 = 𝐶𝑖2𝑘2. (A.9) 

In the last equation Cijkl  is material stiffness tensor. 

 
The angular distribution of displacements near a crack tip depend on material elastic constants via p1, 695 

p2, q1 and q2 in anisotropic materials. These constants can be found from 

𝑝1 = 𝑆11
𝑝 𝑎1

2  +  𝑆12
𝑝  − 𝑆16

𝑝 𝑎1

𝑝2 = 𝑆11
𝑝 𝑎2

2  +  𝑆12
𝑝  − 𝑆16

𝑝 𝑎2

𝑞1 = 𝑆12
𝑝 𝑎1  +  𝑆22

𝑝 𝑎1⁄  − 𝑆26
𝑝

𝑞2 = 𝑆12
𝑝

𝑎2  +  𝑆22
𝑝

𝑎2⁄  −  𝑆26
𝑝

         (A.10) 

where 𝑆𝑖𝑗
𝑝

 are members of the compliance matrix for 2D plane strain problems when x-y is the plane of 

symmetry, and 𝑎1  =  𝛼1  +  𝑖𝛽1 and 𝑎2  =  𝛼2  +  𝑖𝛽2, (𝛽1, 𝛽2  >  0), are the roots of the following 

characteristic equation 

𝑆11
𝑝 𝑎4  −  2𝑆16

𝑝 𝑎3  +  (2𝑆12
𝑝  +  𝑆66

𝑝 )𝑎2  −  2𝑆26
𝑝 𝑎 + 𝑆22

𝑝  =  0. (A.11) 

The entries of the compliance matrix for plane strain problems can be found from  700 

𝑆𝑖𝑗
𝑝  =  𝑆𝑖𝑗  −  

𝑆𝑖3𝑆3𝑗

𝑆33
 (A.12) 

and Sij are members of the material compliance matrix. For more details see [35].  
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Table 4: Material parameters used for investigation of a crack tip dislocation emission 

 

Material a (Å) bp (Å) C11 (GPa) C12 (GPa) C44 (GPa) o (θ=70°,φ=0) (GPa) o' (GPa) γusf (J/m
2
) γs (J/m

2
)

Aluminum M [19] 4.050 1.653 113.4 61.5 31.6 87.9 88.7 0.167 0.871

Aluminum E [20] 4.032 1.646 118.0 62.2 36.7 97.0 98.2 0.119 0.871

Gold [22] 4.080 1.666 183.2 158.7 45.3 101.0 103.7 0.097 0.796

Silver [22] 4.090 1.670 129.1 91.7 56.7 115.4 120.0 0.119 0.619

Copper [21] 3.615 1.476 169.9 122.6 76.2 152.1 158.4 0.162 1.240

Palladium [22] 3.890 1.588 221.1 183.0 72.6 152.2 157.4 0.145 1.301

Nickel [19] 3.520 1.437 247.9 147.8 124.8 249.8 260.0 0.368 1.631

Cr10 [24] 3.497 1.428 301.3 171.5 156.7 311.2 324.1 0.425 1.445

Cr20 [24] 3.507 1.432 276.6 165.6 148.7 287.5 300.4 0.356 1.441

Cr33 [24] 3.522 1.438 246.6 158.1 138.5 257.8 270.5 0.288 1.434

Cr40 [24] 3.529 1.441 232.6 154.7 133.7 243.7 256.3 0.264 1.430

Cr50 [24] 3.541 1.446 213.1 150.8 127.6 223.7 236.2 0.240 1.424

Cr60 [24] 3.552 1.450 205.5 150.3 124.6 214.7 227.1 0.232 1.418

Cr70 [24] 3.563 1.454 204.5 152.8 124.6 212.4 224.8 0.237 1.413

Cr80 [24] 3.572 1.458 211.2 159.0 127.9 218.1 230.8 0.255 1.408

Cr90 [24] 3.579 1.461 225.6 168.9 134.9 231.8 245.2 0.287 1.404

Cr100 [24] 3.584 1.463 247.3 182.5 145.5 253.3 267.5 0.328 1.400
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Appendix B. Shearing of the triangular crack tip structural unit 

 In the presented theoretical model we analyze the shear deformation of triangular structural units along 

the slip plane. The crack tip dislocation emission is controlled by the local mechanical instability at the crack 

tip, which is achieved by the critical shear displacement of the crack tip structural unit. The new theory assumes 

that triangular structural units along the slip plane (see Figure 17a) are subjected to pure shear deformation. If 

the structural unit is subjected to pure shear, it will change the shape but not the area (see Figure 17b). Then, the 

relative shear displacement of the crack tip unit can be computed as ∆1= 𝑢1
′ − 𝑢0 = 𝑢1

′ − 𝑢1 = ∆1
′ , where ui is 

the atom displacement in [112] direction. This is the case when we compute the nucleation energy, and in Mode 

II simulations (with some small deviations). In Mode I crack simulations, the K-field introduces normal stress 

parallel to the slip plane. Due to normal stress in the [112] direction, the area of the structural units will be 

changed (see Figure 17c). This is an additional energy which is not incorporated in the standard nucleation 

energy. Also, the additional displacement causes that ∆1≠ ∆1
′ . This can make a confusion which relative 

displacement is the representative one. In studied Mode I simulations, the Y coordinate of atoms 1 and 1’ is the 

same, 𝑌1 = 𝑌1′ (see the initial geometry in Figure 4). Due to this geometry, we conclude that dislocation 

emission is controlled by Δ1 relative shear displacement. One can also use Δ1’, or an average value, as a measure 

of the crack tip displacement and he will find that predicted results are slightly higher than what we presented 

(Al M, Al E, Au, Ag, Cu, Pd and Ni potentials). The bigger discrepancy can arise if the used crack geometry 

changes the vertical position of the crack plane. This is what we observe with Cr10-Cr100 potentials and this 

effect is caused by the surface relaxation. Due to the mentioned effect, in the blunting case we use Δ1’ shear 

displacement for the same potentials. The additional stretching of the structural units is present along the slip 

plane. We think that this effect is important as the opening softening, even though so far it was not explained, 

nor even commented.  

 

 

Appendix C. Comparison of shear displacement profiles in Mode I and Mode II 

Both the Rice theory and the new theory assume that the shear displacement distribution along the slip 

plane for Mode I, caused by 𝐾𝐼𝐼
𝑒𝑓𝑓

= 𝐾𝐼𝐹12(𝜃), is the same as that for Mode II. In the new theory, the only 

difference is that the shear displacement of the crack tip unit is controlled by the nucleation energy rather than 

the GSF energy. Therefore, the same crack tip shear displacement Δ1 is achieved at different applied K values 

for Mode I and Mode II. Nonetheless, for a given crack tip shear displacement Δ1, the shear displacements Δ2,  

Figure 17: Studied crack tip triangular structural unit: a) initial geometry; b) the crack tip unit under pure 

shear; c) the crack tip unit under shear and normal stresses. 
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Δ3,…. should be the same in Mode I and Mode II. We have verified this explicitly via simulation. Specifically, 

we measure the shear displacements ∆𝑖  (i=1,2,3,…) along the slip plane for both increasing Mode II KII and 

increasing Mode I KI, and obtain the displacements  ∆𝑖,𝐼𝐼(𝐾𝐼𝐼) and ∆𝑖,𝐼(𝐾𝐼𝐼
𝑒𝑓𝑓

). We then find the load levels KII 

and 𝐾𝐼𝐼
𝑒𝑓𝑓

 at which the crack tip shear displacements are equal, ∆1,𝐼𝐼(𝐾𝐼𝐼) =  ∆1,𝐼(𝐾𝐼𝐼
𝑒𝑓𝑓

) , and examine the shear 

displacements ∆𝑖,𝐼𝐼(𝐾𝐼𝐼) and ∆𝑖,𝐼(𝐾𝐼𝐼
𝑒𝑓𝑓

) for i=2,3… further along the slip plane. The results for Ni are shown in 

Figure 18, where we show the “screening” case for Mode II and the “blunting” case for Mode I so as to add an 

extra apparent level of difference. Figure 18 demonstrates that the slip distribution along the slip plane is 

essentially identical for Mode I and Mode II loadings at the same crack tip displacement ∆1. The step arising in 

the Mode I case restrains the crack tip shear displacement ∆1,𝐼 , and so a larger applied 𝐾𝐼𝐼
𝑒𝑓𝑓

 is required to obtain 

the same displacement that would be obtained in Mode II (or in Mode I with no step). This restraint is seen in 

the graphical analysis of Figure 11.  

 

 

Appendix D. Computation of the crack-tip parameter β 

The crucial parameter in describing the crack tip displacement is parameter β. Here we present an 

approximate computation method for finding the necessary parameter. As mentioned in Appendix C, at same 

applied far-field loading we observe different crack tip displacements depending on the step presence. The 

surface step creation changes the shear resistance of the crack tip structural unit. Within known shear 

displacements of crack tip unit at same far-field loading 𝐾𝐼𝐼 = 𝐾𝐼𝐼
𝑒𝑓𝑓

, and with known restoring stresses, the 

slope of the applied stress τapp is defined. Using this approach we compute the parameter β for 10 studied fcc 

materials. Results are given in Table 5 and as we expected the values are between 1.4 and 2.3. The surprisingly 

low value we find in gold which can be due to high material anisotropy. Figure 19 shows the family of the 

applied stresses computed in Nickel along with the restoring stresses. Our atomistic simulations reveal that 

applied stresses τapp are indeed parallel when effects due to non-linearity are negligible. 

Figure 18: The shear displacement distribution along the slip plane in 

Mode II (screening) and Mode I (blunting) at different far-

field K in Ni. 
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Appendix E. Assessment of the theory for different slip plane orientations  

The new theory presented in the paper, and the Rice theory as well, assume that dislocation emission 

from a crack tip in Mode I is controlled by the effective mode II stress intensity factor 𝐾𝐼𝐼
𝑒𝑓𝑓

. All differences 

with respect to the slip plane inclination angle θ are accounted for in 𝐾𝐼𝐼
𝑒𝑓𝑓

. Here, we examine this assumption in 

all respects using molecular statics crack simulations at θ=35.30, 54.70, 70.50, and 900 in fcc Ni.  

First, we show that a slip profile along the sliding plane is independent of the slip plane inclination 

angle θ. For each inclination angle we find the far field KI loading that causes the same shear displacement of 

the crack tip unit Δ1
𝑖 ( 𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, … ) at all orientation angles. We then compare the shear displacements of the 

structural units further along the slip plane Δ𝑗
𝑖  (𝑗 = 2, 3, 4, … ). We find that the slip profiles along the sliding 

plane are indeed independent of the inclination angle, as shown in Figure 20a. At the highest testing load, there 

is a very small deviation along the sliding plane when θ=35.30 which could be, at this angle, due to the some 

non-linear effects caused by the larger opening displacement along the sliding plane. 

Second, we compare K𝐼𝐼
𝑒𝑓𝑓

= 𝐾𝐼𝐹12(𝜃) for the three crack tip shear displacements Δ1
𝑖 (𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) at 

each angle, as shown in Figure 20b. 𝐾𝐼𝐼
𝑒𝑓𝑓

 is nearly independent of θ, but does show a decreasing trend with 

increasing θ. This could be due to some softening effects caused by the normal stresses (normal and parallel to 

the sliding plane). 

Element Parameter β

Cr100 1.91

Cr50 2.26

Cr10 2.36

Al M 1.83

Al E 1.48

Au 1.23

Ag 1.4

Cu 2.62

Ni 2.15

Pd 1.41

Table 5: Values of the parameter β 

computed in various fcc 

systems. 

 

Figure 19: Restoring stress of the crack tip structural with 

the surface step creation (the blue line) and 

without the surface step creation (the red line) 

and the family of applied stresses (green lines) 

for different applied KI in Nickel. 
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Third, we examine the nucleation energy including the surface step for the different inclination angles. 

The nucleation energy as a function of the relative slip Ψ𝑛𝑢𝑐(Δ) is computed for different inclination angles 

using the computational method described in Section IV. As shown in Figure 21, the energy and slip resistance 

are indeed independent of angle for 𝜃 ≥ 54.7° and show only small deviations for 𝜃 = 35.3°.  

 

Fourth, we present the critical stress intensity factor KIe observed in the simulations as a function of the 

slip plane inclination angle as shown in Figure 22a. The analytical predictions for KIe of Eq.15 are also shown, 

and excellent agreement is obtained except at θ=35.3°, where the analytical model is notably larger. The 

predictions of the Rice model (which works well for KIe in Ni) are also shown, and the simulations at θ=35.3° 

fall below the Rice value as well. The low KIe at θ=35.3° emission is facilitated by the presence of two 

symmetrical slip systems activated. To demonstrate this, simulations at θ=35.3° were performed by constraining 

the first structural unit below the crack plane (unit 1B; see Figure 22b) to displace according to the elastic K-

Figure 20: a) The shear displacement distribution along the slip plane in Mode I for different inclination 

angles θ; b) The effective Mode II stress intesity factor K𝐼𝐼
𝑒𝑓𝑓

 as a function of the inclination 

angle θ which causes the same crack tip shear displacements.  

 

Figure 21: a) Nucleation energy as a function of the relative slip for different inclination angles θ;  

b) The shear resistance, computed from the nucelation energy, for differet inclination angles θ. 

These curves are computed for fcc Ni.  

 

This is a post-print of the following article: Andric, Predrag; Curtin, W. A. Journal Of The Mechanics And Physics Of Solids 2017,, 23.
315-337.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2017.06.006 © 2017. This manuscript version is made
available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2017.06.006


37 
 

displacement. With this constraint, dislocation emission along the upper slip plane occurs at a much higher KIe 

that is also in excellent agreement with the prediction of Eq. 15. 

 

We conclude that there are small differences in precise behavior as a function of inclination angle, with 

somewhat larger deviations if two symmetrical slip systems are activated. And non-linearity and local crack tip 

geometry will always impart small material-dependent deviations from theoretical idealizations. However, these 

differences usually have little impact on the quantitative results, and the predictions of the current model remain 

generally in good agreement with simulations. This enables application of the theory to make good predictions 

based on computed or experimental material properties (e.g. unstable stacking fault and surface energies) for 

systems where interatomic potentials do not exist or are inadequate. We also note that the differences shown in 

Figures 20 and 22 pertain to the Rice theory as well as the present model. The present theory emphasizes the 

essential role of step creation in determining the major details of dislocation emission, and this important new 

feature is independent of slip plane inclination angle.  

 

 

 

 

 

 

 

 

Figure 22: Critical stress intensity factor for dislocation emission as a function of the slip plane inclination 

angle θ in fcc Ni; Simulation (red diamonds); Analytical model Eq. 15 (purple circles); Rice theory 

(black squares); dashed line shows the simulation result when constraining deformation of the 

symmetric slip plane that exists at the lowest angle. b) Crack tip geometry when θ=35.3 and 

definition of the structural units along two symmetric slip planes. 
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