
General Proximal Gradient Method:
A Case for Non-Euclidean Norms

Marwa El Halabi, Ya-Ping Hsieh, Bang Vu, Quang Nguyen, and Volkan Cevher

Laboratory for Information and Inference Systems (LIONS), EPFL

August 31, 2017

Abstract

In this paper, we consider composite convex minimization problems. We advocate the merit
of considering Generalized Proximal gradient Methods (GPM) where the norm employed is not
Euclidean. To that end, we show the tractability of the general proximity operator for a broad
class of structure priors by proposing a polynomial-time approach to approximately compute
it. We also identify a special case of regularizers whose proximity operator admits an efficient
greedy algorithm. We then introduce a proximity/projection-free accelerated variant of GPM.
We illustrate numerically the benefit of non-Euclidean norms, on the estimation quality of the
Lasso problem and on the time-complexity of the latent group Lasso problem.

1 Introduction

Composite convex minimization with the following template [21] is prevalent in machine learning:

F ? = min
x∈Rp

{
F (x) := f(x) + g(x)

}
, (1)

where f is a smooth convex loss function, often representing the empirical estimate of some risk, and
g is a non-smooth regularizer, which acts as a structure prior.

The proximal gradient method and its accelerated variant [6, 21] are the methods of choice for (1),
whenever the proximal operator of g can be computed efficiently:

prox `2g (u, z, L2) := arg min
x∈Rp

zTx +
L2

2
‖x− u‖22 + g(x), (2)

where the constant L2 is typically chosen as the Lipschitz constant of ∇f with respect to the `2-norm,
and z is the gradient of f at the current iterate u within the proximal gradient method.

However, the proximal operator of g (2) is intractable or too expensive in several important problems
(c.f., [14, 17, 12, 15]). Generalized conditional gradient (GCG) (a.k.a. Frank-Wolfe (FW)) provides
an alternative optimization framework to the (accelerated) proximal gradient by using the tractable
(or cheap) linear minimization oracles (LMO), albeit at slower convergence rates [14, 23].

This work considers a General Proximal gradient Method (GPM), using a different operator:

proxg(u, z, L) ∈ arg min
x∈Rp

zTx +
L

2
‖x− u‖2 + g(x), (3)

1

where ‖ · ‖ is any norm and L is typically chosen as the Lipschitz constant of ∇f with respect
to the chosen norm. In stark comparison to the unique solutions to (2), note that (3) can be set
valued.

The interest in this generalization stems from the benefit it can entail on the convergence, as already
observed in the context of (projected) gradient descent method, for e.g, in [16, 20, 7, 10], affine
invariance (c.f., [10]), estimation quality and time-complexity of proximal methods. We derive
important cases where (3) is tractable with the proper choice of the norm, whereas (2) is not
known to be tractable. In addition, we propose the first—to our knowledge—accelerated proximal
optimization framework that handles the composite case (1) with the general proximal operator in
(3). Our specific contributions can be summarized as follows:

• We introduce a tractable method, which performs a logarithmic number of linear optimization
steps, to approximately compute (3) for a broad class of structure priors g (cf., Sect. 3.1).

• We identify a special class of functions g for which we design an efficient greedy algorithm to
compute (3) exactly (c.f., Sect. 3.2). The resulting iterates, in this approach, form a convex
combination of only few “atoms”, which is a desirable property in several applications.

• We propose an accelerated variant of GPM, accGPM, where we introduce a new type of estimate
sequences which allow us to avoid the computation of a proximity/projection operation (c.f.,
Sect. 4).

• We illustrate our results on the Lasso problem, for which GPM in the `1-norm yields better
estimation quality in a sparse setup and on `∞-latent group Lasso [25], for which we provide
the first efficient proximity operator.

1.1 Preliminaries and notation

We use the set Γ0 to denote all proper lower semi-continuous convex functions on Rp. We consider
problems of the form (1), whose set of minimizers X ? is assumed to be non-empty with f, g ∈
Γ0.

We further assume that the gradient of f is L-Lipschitz continuous with respect to ‖ · ‖, i.e.,
‖∇f(x) − ∇f(y)‖∗ ≤ L‖x − y‖, where ‖ · ‖∗ is the dual norm of ‖ · ‖. This property implies the
following majorizer for any γ ∈ (0, 1/L]:

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+
1

2γ
‖x− y‖2. (4)

A function f is µ-strongly convex with respect to ‖ · ‖ if, ∀x,y ∈ Rp,∀p ∈ ∂f(y), it holds that

f(x) ≥ f(y) + 〈x− y,p〉+
µ

2
‖x− y‖2. (5)

Throughout, ιX denotes the indicator function over the set X , where ιX (x) = 0, if x ∈ X , and ∞
otherwise. The symbol ◦ denotes the coordinate-wise multiplication and AS denotes the submatrix of
A that corresponds to the columns indexed by S. We use sign(α) = ±1 to denote the sign of α, and
sign(0) = 0. For a function f : Rp → R ∪ {+∞}, we will denote by f∗ its Fenchel conjugate.

2 Generalized proximal gradient method: Warm-up

The general proximal gradient method (GPM) in non-Euclidean norms is the iterative scheme where
xk+1 ∈ proxg(xk,∇f(xk), L). For completeness, we state below its basic convergence result.

2

Theorem 1. The iterates xk of GPM satisfy ∀k ∈ N:

F (xk)− F ? ≤ 2 max{R(x0), F (x0)− F ?}
k

where R(x0) = max{x:F (x)≤F (x0)}maxx?∈X∗ L‖x− x?‖2. If, in addition, f(x) is µ-strongly convex
w.r.t. norm ‖ · ‖, then GPM satisfies F (xk)− F ? ≤ (1− µ

L)k
(
F (x0)− F ?

)
.

The convergence rate of GPM depends on the choice of norm, where choosing a non-Euclidean
norm can lead in some cases to smaller Lipschitz constant L and level set radius R(x0), as well as
larger (restricted) strong convexity constant µ (c.f., Sect. 5.1 and [16, 20, 7]), thus yielding faster
convergence.

Theorem 1 is not new; GPM has been analyzed in the context of randomized coordinate descent [26].
However, the primary interest of [26] is the weighted `2-norm, and the broader tractability question
of the non-Euclidean norm choices is not addressed. We fill this gap in Section 3.

3 Tractability of the generalized proximity operator

To our knowledge, the computation of (3) for non-Euclidean norms is not addressed so far, except
for the special case where g is the standard simplex constraint and the chosen norm is the `1-norm
[20].

Section 3.1 shows that proxg can be approximated in polynomial time, for the class of polyhedral
functions g, if the norm is chosen to be an atomic norm ‖ · ‖A [8]. In Section 3.1, we propose an
efficient greedy algorithm to compute proxg exactly, in the special case where g corresponds to an
atomic norm, with linear independent atoms and the norm in proxg is chosen to be the same.

We now introduce a Moreau-like decomposition which relates, as in the Euclidean case, proxg to
the proximity operator of the Fenchel conjugate g∗ w.r.t. to the dual norm ‖ · ‖∗, denoted by
prox∗g∗ .
Proposition 1. Generalized Moreau’s decomposition Given g ∈ Γ0 and its Fenchel g∗, we have

p− z ∈ prox∗g∗(−z,−u, 1/L) and x? − u ∈ −∂
(L
2
‖ · ‖2∗

)
(p) ∩

(
− u + ∂g(p− z)

)
(6)

where p ∈ −∂
(
L
2 ‖ · ‖

2
)
(x? − u) ∩

(
z + ∂g(x?)

)
and x? ∈ proxg(u, z, L).

The tractability of proxg implies then the tractability of prox∗g∗ whenever finding an element in the
intersection of the two subdifferential sets (6) is easy. Such operation is also required in the acceleration
of GPM. Section 4 describes how to find such an element for some examples of interest.

A simple but key observation to our proposed framework is given below:
Lemma 1. Let h(t) = min‖x−u‖≤t z

Tx + g(x) and t? ∈ ∂h(t?)
L then

x? ∈ proxg(u, z, L)⇔ x? ∈ arg min
‖x−u‖≤t?

zTx + g(x).

Computing proxg can be seen then as computing the Fenchel conjugate of g at −z locally, by
restricting x in the norm ball of radius t? around u. Hence, we denote this operator by

lconjg(u, z, t) := arg min
‖x−u‖≤t

zTx + g(x).

Here, we note a close connection between our local conjugate operator lconjg and the local linear
oracle proposed by [12], which corresponds to a relaxation of lconjg, with g = ιP for a polytope
P .

3

3.1 Atomic proximity operator of polyhedral functions

In this section, we propose a polynomial time approach to approximately compute proxg for any
polyhedral function g, i.e., Pg := epi(g) is a polytope. Examples where g is a polyhedral functions are
abundant, including structure sparsity-inducing norms [4, 24], totally unimodular structure sparsity
penalties [11], and atomic norms [8]. For further examples, see [14, 12, 17].

We choose the norm in proxg to be any atomic norm, i.e., ‖x‖A = inft>0{t : x ∈ t conv(A)}, where
the atomic set A is centrally symmetric with finitely many atoms [8]. We denote the polytope
PA := conv(A) and the resulting proximity operator by proxAg .

Our choice of the atomic norm is motivated by the following observation.

h(t) = min
‖x−u‖A≤t

zTx + g(x) = min
x−u∈tPA
(x,y)∈Pg

zTx + y. (7)

Hence, h is a non-increasing piecewise linear function and h(t) can be computed, for any t, by a linear
program (LP). We will assume Pg and PA are solvable polytopes, i.e., they each have a polynomial
time seperation oracle.1 Hence, the LP (7) can be solved in polynomial time. Note that any polytope
with a polynomial time LMO also admits a polynomial time separation oracle.

Since h(t) is a non-increasing piecewise-linear function, its subdifferential can be approximated by
∂h(t) ' [h(t)−h(t+ε)ε , h(t−ε)−h(t)ε] for a small enough ε > 0. If t is a differentiable point of h(t), the
interval would correspond to a unique value. The optimal t? can then be obtained via binary search
over the interval t? ∈ [tmin, tmax] where tmin = min(x,y)∈Pg ‖x− u‖A and tmax = ‖xmin − u‖A where
xmin ∈ arg minx z

Tx + g(x). By Lemma 1, we reach the optimal t? when t? ∈ ∂h(t)
L . Algorithm 3,

given in the Appendix, provides a pseudocode for this approach.

The binary search approach provides us a simple strategy to compute proxAg approximately by a
logarithmic number of LPs, for any polyhedral function g, including examples where the standard
prox`2g is costly. One such prominent example is the `∞-latent group Lasso for which existing
approaches, to our knowledge, to compute prox`2g are inefficient.

Note that the convergence analysis we provide in Sect. 2 and Sect. 4 holds only for exact proximity
operators. While the study of inexact GPM is straightforward (the gradient method is known to
forgive inexact proximal operator calculations), the inexactness must be controlled for its acceleration,
which is already a well-studied topic. We will ignore these issues in the sequel.

3.2 Proximity operator of atomic norms with linearly independent atoms

In this section, we consider the special case of polyhedral functions where g is the indicator function
of an atomic norm with linearly independent atoms, i.e., g = ι‖·‖A≤λ, where A := {a1, · · · ,a2m},
(ai)

m
1 ’s are linearly independent and ai = −am+i,∀i = 1, · · · ,m. To simplify the notation, we use

cyclic indexing, i.e., a2m+i = ai. For example, for the `1-norm, (ai)
m
1 are the standard basis vectors.

We choose the matching norm in proxg, i.e., ‖ · ‖ = ‖ · ‖A. In this case, computing h(t) corresponds
to solving a LP over the intersection of the polytope PA = conv(A) and its (scaled) translation by
u:

h(t) = min
‖x−u‖A≤t

zTx + g(x) = min
x−u∈tPA
x∈λPA

zTx. (8)

1For an input x, a seperation oracle of P either certifies x ∈ P or outputs a hyperplane seperating x from P .

4

By the definition, we can represent x =
∑2m
i=1 c

x
i ai, where cx ≥ 0 such that

∑2m
i=1 c

x
i = ‖x‖A.

Lemma 2 shows that only linearly independent atoms are active in such a unique decomposition. We
call this then a “minimal representation" decomposition and denote it by cx = MR(x).
Lemma 2. Given x =

∑2m
i=1 c

x
i ai, c

x ≥ 0, then
∑2m
i=1 c

x
i = ‖x‖A ⇔ ∀i, cxi = 0 or cxi+m = 0.

Representing vectors in this fashion allows us to make the following key observation.
Lemma 3. Given x,y ∈ Rp, s.t cx = MR(x), cy = MR(y), we have ‖x− y‖A = ‖cx − cy‖1.

Based on these observations, we present a fast greedy algorithm 1 that computes proxAg (u, z, L) exactly
and which only requires access to a linear minimization oracle LMOA(z) ∈ arg mina∈A zTa.

Note first that computing tmin and tmax is easy in this case: tmin = minx∈λPA ‖x − u‖A =
min‖cx‖1≤λ ‖cx − cu‖1 = max{‖u‖A − λ, 0} (by lemma 3) and tmax = max{−zTaimin

/L, tmin}
where aimin

:= LMOA(z) and −zTaimin
/L corresponds to the largest slope of h(t). For simplicity,

Algorithm 1 presented here assumes the input is feasible, i.e., u ∈ λPA and tmin = 0. This is true for
the iterates of GPM, but not for accGPM. The general algorithm is presented in the Appendix.

At a high level, Algorithm 1 acts the following way: Assuming the optimal t? is known, the algorithm
starts at u and moves in the direction of the best atom aimin

, i.e., the one with the smallest product
zTa (c.f., line 3), until it hits the boundary of one the two polytopes (c.f., lines 6 - 7). If the boundary
reached is of t∗PA + u, we are done. Otherwise, we are at the boundary of λPA.

The algorithm then improves on the solution by moving the largest amount of weight, which will not
violate the constraints, from other active atoms to aimin , starting from the least benefecial active
atom in terms of their product with z. The algorithm stops when it runs out of active atoms or it
reaches ‖x− u‖A = t? (c.f., lines 10 -15). Note the similarity with Away step FW [17], which only
reduces the weight of the worst active atom.

Note that Algorithm 1 actually minimizes the objective along the path of possible values of t∗ =
‖x∗ − u‖A from t = 0 to t = tmax. Indeed, the iterates satisfy xk ∈ lconjg(u, z, tku),∀k, where tku
(budget used) and tkl (budget left) keep track, respectively, of how far we are from u, ‖xk −u‖A = tku
and how far we “guess" we are from the boundary of t∗PA + u, where the guess of Lt∗ corresponds
to the current slope of h(tku). Unlike the general case where we are computing h(t) using a black
box optimizer, we actually can compute explicitly the slopes of the different pieces of h(t), given by
zTaimin

, 0.5(zTaimin
− zTaj1), 0.5(zTaimin

− zTaj2), · · · , 0.5(zTaimin
− zTajp).

Proposition 2. Algorithm 1 returns x ∈ proxAg (u, z, L) in O(pT + p log p) time, where T is the
time to compute zTa for any atom a ∈ A.

Sketch of Proof Assuming t? is guessed correctly, then if the maximal feasible step δ0 = t?,
x0 is optimal. Otherwise ‖x0‖A = λ and there exists an optimal solution x? s.t. ‖x?‖A = λ and
‖x? − x0‖A ≤ t? − δ0. Then by Lemma 3, we can now solve instead: mincx≥0{z̃T cx : 1T cx =

λ, ‖cx− cx
0‖1 ≤ t} where z̃i = zTai. This has been considered by [12], to obtain a local linear oracle.

The rest of our algorithm, i.e., after entering the for loop on line 10, reduces to theirs. We refer the
reader to their proof of correctness [12, Lemma 5.2]. The correctness of the search for t∗ follows from
the correctness of this greedy approach. Finally, it is clear that the most expensive step in Algorithm
1 is the sorting operation on line 5, and hence its time complexity is O(pT + p log p).
Remark 1. If g(x) = λ‖x‖A where A := {a1, · · · ,a2m}, (ai)

m
1 ’s are linearly independent. Its

Fenchel conjugate is given by g∗(x) = ι{‖·‖A∗≤λ}(x), where ‖ · ‖A∗ is the dual norm of ‖ · ‖A, then
proxAg can be obtained by computing proxA

∗

g∗ via Algorithm 1 and applying Proposition 1.

Note that Algorithm 1 only adds one atom to the set of active atoms of u and possibly remove
others, hence the corresponding iterates in GPM retain “sparsity.”

5

Algorithm 1 Prox of linearly independent atomic norms: proxAg (u, z, L)

1: Input: cu = MR(u).
2: Initialize: x0 = u, cx = cu, t0u = 0.
3: Let aimin := LMOA(z)
4: Guess t0l = max{−zTaimin

/L, 0}.
5: Sort zTai for active atoms: zTaj1 ≥ zTaj2 ≥ · · · ,∀cuj > 0.
6: Let δ0 = maxδ>0{δ: u + δajmin

∈ λPA ∩ (t0l PA + u)} = min{t0l , λ− ‖u‖A + 2cuimin+m
}

7: Update x0 = u + δ0aimin .
8: Update weights: cximin

= max{δ0 + cuimin
− cuimin+m

, 0}, cximin+m
= −min{δ0 + cuimin

− cuimin+m
, 0}

9: Update t0u = δ0, t
r
l = t0l − t0u.

10: while k = 1, · · · , p and tkl ≥ 0 do
11: Update guess tkl = max{−0.5zT (aimin

− ajk)/L− tku, 0}.
12: Let δk = maxδ>0{δ: xk−1 + δ(aimin − ajk)∈ λPA ∩ (tkl PA + u)} = min{cxjk , t

k
l /2}

13: Update xk = xk−1 + δk(aimin
− ajk)

14: Update tk+1
l = tkl − 2δk

15: end while
16: Return: xk

4 Accelerated generalized proximal gradient method

In this section, we present an accelerated variant of GPM in Algorithm 2 and show that it has the
same convergence rate as fast proximal gradient methods, such as FISTA [6].

The literature is vast on how to accelerate first order methods in non-Euclidean norms [20, 29, 18, 2,
3, 33]. However, unlike accGPM, these schemes require the computation of a proximity/projection
operation w.r.t a strongly convex function in each iteration, which imposes the same computational
bottleneck of computing prox`2g . Similar to the classical fast methods, the accGPM introduces a
momentum term. However, a novel term pk in line 10 of accGPM is essential in our analysis.

Algorithm 2 Accelerated proximal gradient method
1: Input: L > 0, µ > 0, x0 ∈ Rp, β0 > 0.
2: Initialization: w0 = x0, y0 = x0.
3: for k = 0, 1, . . . do
4: γk ∈ (0, 1/L], αk = 1

2

(√
β2
kγ

2
k + 4βkγk − βkγk

)
, βk+1 = (1− αk)βk + αkτkµ

5: yk+1 = (1− αk)xk + αkw
k

6: xk+1 ∈ prox(yk+1,∇f(yk+1), 1/γk)
7: if xk+1 = yk+1 then
8: stop
9: end if

10: pk ∈ −∂
(

1
2γk
‖ · ‖2

)
(xk+1 − yk+1) ∩

(
∇f(yk+1) + ∂g(xk+1)

)
11: wk+1 = arg minx∈Rp ek+1(x)
12: end for
13: Return: xk+1

Computation of pk: When g = 0, this term reduces to the gradient of f ; pk = ∇f(yk+1). When
‖ · ‖2 or g(x) is differentiable, pk is unique. In general, since the subdifferential of any norm can
be described by ∂‖x‖ = {z : zTx = ‖x‖, ‖z‖∗ ≤ 1}, then if g and ‖ · ‖ are atomic norms, pk can be

6

computed via a linear feasibility problem. In Section 5, we show specifically how to compute pk for
`1-norm and `∞-latent group Lasso norm examples.

In [20], the authors proposed a non-Euclidean projected gradient algorithm to solve the special case
of Problem (1) when g = ιX for a convex set X . The analysis of this scheme is based on the concept
of estimate sequences (c.f., [5, 22]). Algorithm 2 solves Problem 1 in the general setting and for
non-Euclidean norms, by constructing a novel estimate sequence ek defined as follows.
Definition 1. Let (αk)k∈N, (τk)k∈N and (γk)k∈N be sequences in (0,+∞) and let (xk)k∈N, (yk)k∈N

and (pk)k∈N be sequences in Rp. We define the estimate sequence ek recursively e0 :=
β0
σ
d +

F (x0) and ek+1 := (1 − αk)ek + αk
(
(1 − τk)ψk + τkφk

)
, where ψk := F (xk+1) +

〈
· − xk+1,pk

〉
−

1
2γk
‖xk+1−yk+1‖2 and φk := f(yk+1) +

〈
· − yk+1,∇f(yk+1)

〉
+ g. and where the prox-function d is

σ-strongly convex with respect to ‖ · ‖ and x0 = arg minx∈Rp d(x), assuming without loss of generality
that d(x0) = 0.

Note that the parameter τk allows us to choose between ψk and φk, depending on which is more
suitable to the problem at hand. The estimate sequence resulting from φk (τk = 1) is a direct
extension of the one considered in [20]. If g is strongly convex, this type of estimate sequence is
preferable as it can exploit strong convexity, leading to a linear rate (c.f., Theorem 1). However, this
approach requires the minimization of a proximal-type subproblem involving the strongly-convex
function d (c.f., line 11 in Algo 2), which we will avoid in this paper. In fact, if d = 1

2‖ · ‖
2
2, this

subproblem reduces to the Euclidean prox of g. On the other hand, choosing instead the novel
estimate sequence resulting from ψk (τk = 0) avoids such expensive subroutine. If the prox-function
is chosen to be d = 1

2‖ · ‖
2
q, 1 < q ≤ 2, wk+1 can be computed in closed-form solution.

Theorem 2. Consider Problem 1 where g is µ-strongly convex w.r.t. ‖ · ‖. If accGPM terminates at
iteration k, i.e., xk+1 = yk+1, then xk+1 is a solution to (1). Otherwise, let x? ∈X ?, the iterates
of accGPM satisfy the following.

1. If µ = 0. Then ∀k ∈ N, we have F (xk+1)− F ? ≤
4
(
σ(F (x0)− F ?) + β0d(x?)

)
σ{2 +

√
β0
∑k
i=0

√
γi}2

.

Consequently, if ∀k ∈ N, γk = 1/L, then F (xk+1)− F ? ≤
4L
(
σ(F (x0)− F ?) + β0d(x?)

)
σ{2
√
L+
√
β0(k + 1)}2

.

2. If µ > 0. Set τ = infk∈N τk, and ρ = τµ
2L

{√
1 + 4L

β0+µ
−1

}
. If β0 ≥ τµ and ∀k ∈ N, γk = 1/L,

then we have F (xk+1)− F ? ≤ (1− ρ)k+1{F (x0)− F ? + β0

σ d(x?)}.

Note that the choice of the norm in accGPM affects the Lipschitz constant L as in GPM, but also
affects implicity the term d(x?)/σ.

5 Numerical Illustration

The purpose of this experimental section is to demonstrate how choosing a non-Euclidean norm
in GPM leads in some cases to better estimation quality and in others to easier-to-solve proximity
operators. To that end, we consider in Section 5.1, the classical Lasso problem [28] and illustrate
how `1-GPM improves the learning quality. Then, in Section 5.2, we consider the latent group Lasso
problem [25] and illustrate how our results yield an efficient proximity operator of the `∞-LGL
norm.

7

100 102

10-10

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-10

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-5

100

F (xk)! F $

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-4

10-2

100

kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-4

10-2

100

kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

100 102

10-2

10-1

100

101
kxk ! x\k2

ISTA
ISTA-ls
FISTA
`1-GPM
`1-GPM-ls
`1-accGPM

Figure 1: (1st row) Objective error and (2nd row) estimation error, with p = 1000, n = 400: (Left)
s = 10, (Middle) s = 50, (Right) s = 100.

5.1 Sparse Linear Regression

In this section, we consider the classical Lasso problem [28]: minx∈Rp
1
2n‖Ax − b‖22 + λ‖x‖1. We

propose to solve it with `1-GPM, i.e., with prox`1`1 . The motivation of this choice is two folds. The
resulting iterates from prox`1`1 are sparse (c.f., Sect. 3.2) which is naturally preferred in this set-up.
Also, the Restricted Strong Convexity parameter, which governs the learning quality of Lasso problems
is known to be better w.r.t. the `1-norm vs the `2-norm [31], implying stronger estimation guarantees
(c.f., Appendix for more details). Our experiment verifies this theoretical claim.

The standard prox`2`1 can be computed in O(p) using the so-called soft thresholding operator [6]. By
Remark 1, prox`1`1 can be solved in O(p log p) time by the greedy algorithm 1 and the decomposition
in Prop. 1. We choose instead to solve it directly via another greedy algorithm, of the same “flavor"
as Algorithm 1, presented in the Appendix. The momentum pk for accGPM has a closed form
solution in this case, given in the Appendix.

We synthetically set up a linear model b = Ax\ + w, where x\ is an s-sparse vector with normalized
`1-norm. A ∈ Rn×p is an i.i.d Gaussian matrix and w an i.i.d. Gaussian noise vector of variance σ2

where σ = 10−4. We fix p = 1000, n = 400, and vary the sparsity level s from 10 to 100. The number
of samples is chosen to exceed the sample complexity [19], while approaching to the statistical phase

transition as sparsity increases. The regularization parameter is set to λ = σ
√

log p
n according to the

theory of [19].

We compare ISTA and FISTA to `1-GPM and `1-accGPM (with τ = 0). Figure 5.1 plots (in logscale)
the objective error and estimation error, in the different sparsity setups. We use an accuracy based
stopping condition with tol= 10−9 where the optimal objective value is obtained by cvx. We also use
a 3000 iteration limit. We equip both ISTA and `1-GPM with line-search. We use d(x) = 1

2‖x‖
2
1+ε

as the prox-function, in Definition 1, for the `1-accGPM. Such function is strongly convex in the
`1-norm, with σ = ε/p

2ε
1+ε . We set ε = 0.03 to maximize σ. Unfortunately, the dimension-dependence

of σ leads to a slower convergence of `1-accGPM, as observed in 5.1. Otherwise, a clear advantage of
sparse updates in the sparse regime can be inferred from the leftmost pair, where `1-GPM significantly
outperforms the classical ISTA/FISTA. As the sparsity level increases, the benefits of sparse updates

8

vanish (mid pair), and around the phase transition classical gradient methods perform better.

5.2 Latent group Lasso

In this section, we consider the latent group Lasso (LGL) problem: minx∈Rp
1
2‖Ax− b‖22 + λ‖x‖G ,

where ‖x‖G is the LGL-norm, proposed by [25] to induce supports that corresponds to union of
groups. Given a collection of groups G : {G1, · · · , GM}, the `q-LGL norm is given by ‖x‖G =

minv{
∑M
i=1 ‖vGi‖q : |x| =

∑M
i=1 vGi , supp(vGi) ⊆ Gi}. It is known that `q-LGL is an atomic norm,

with atoms A = {v ∈ Rp : supp(vGi) ⊆ Gi, ‖vGi‖q ≤ 1} [25]. We focus on the case with finitely
many atoms where q = ∞. The `∞-LGL is of particular interest as it corresponds to the convex
envelope of the set cover function over the unit `∞-ball [11, 24].

To the best of our knowledge, the only available approaches to compute the standard prox of `∞-LGL,
i.e., prox`2G , is either via duplicating the variables in the overlapping groups, which is very inefficient
for groups with substantial overlap, or via the cyclic projections approach proposed in [32], which
is guaranteed to converge but with no convergence rate guarantees. Our approach to circumvent
the difficulty of prox`2G is to solve instead LGL with `∞-GPM, i.e., with prox`∞G . Note that `∞-LGL
satisfies the assumptions in Section 3.1 and hence prox`∞G can be solved via Algorithm 3 and its pk
can be computed by a feasibility LP, as detailed in Table 1. We use Gurobi to solve the resulting
LPs. We choose d(x) = 1

2‖x‖
2
2 as the prox-function.

Table 1: Running time (in sec) of prox`2G (LHS) and prox`∞G + pk (RHS), averaged over 10 runs.
p = 64 p = 128 p = 256 p = 512

tol= 10−2 0.055 0.055 + 0.003 0.103 0.137+ 0.005 0.192 0.247 + 0.009 0.461 0.714 + 0.016
tol= 10−3 0.502 0.101 + 0.003 0.944 0.149 + 0.004 2.038 0.360 + 0.008 4.213 1.276 + 0.013
tol= 10−4 5.234 0.252 + 0.006 9.422 0.203 + 0.004 18.92 0.460 + 0.006 41.21 1.857 + 0.016
tol= 10−5 42.62 0.214 + 0.005 98.13 0.428 + 0.009 170.6 0.614 + 0.006 377.5 1.487 + 0.015

We first assess the time complexity of the proximity operator prox`∞G vs prox`2G . We fix the size of the
groups to |Gi| = 10 and generate M = 2.5p/10 (to ensure substantial overlap) groups with randomly
selected elements. The input u ∈ Rp is generated as a random Gaussian vector. For fairness, we set
λ = 0.8 mini ‖uGi‖1 to ensure all groups are active. We report, in a table in the Appendix, the CPU
time (in sec) of prox`∞G and prox`2G , as we vary the dimension p from 64 to 512 and the accuracy tol
from 10−2 to 10−5, where a true solution is obtained via cvx. prox`∞G provides up to 300× speed up.

To assess if the slow performance of prox`2G is compensated by a better convergence rate, we compare
the performance of FISTA to `∞-accGPM on a synthetic learning problem, where the true vector x\
is given by the union of s = 2 randomly selected groups. We follow otherwise the same setup as in
Section 5.1, with p = 100, n = 50 and the groups generated as before. We stop both prox algorithms
after 105 iterations, or when the distance between iterates reaches a precision, initialized to 10−5

and decreased linearly with iterations. For the outer algorithms, we use an accuracy based stopping
condition with tol= 10−9 where the optimal objective value is obtained by cvx. We also use a 5000
iteration limit. We choose the regularization parameter λ that yields the best performance on the
cvx solution. Figure 5.2 plots (in logscale) the objective error and optimization error. FISTA indeed
has a better convergence rate in this case, but this is undermined by the slow performance of prox`2G .
Indeed, with the set iteration limit, prox`2G is not able to reach the requested precision, and thus
FISTA doesn’t converge to the true solution.

9

iterations
100 102 104

10-6

10-4

10-2

100

102
F (xk)! F $

`1-accGPM
FISTA

time (sec)
10-5 100 105

10-6

10-4

10-2

100

102
F (xk)! F $

`1-accGPM
FISTA

iterations
100 102 104

10-3

10-2

10-1

100

101
kxk ! xcvxk2

`1-accGPM
FISTA

time (sec)
10-5 100 105

10-3

10-2

10-1

100

101
kxk ! xcvxk2

`1-accGPM
FISTA

Figure 2: Objective error (top) and optimization error (bottom), for p = 100, n = 50 and s = 2.

Acknowledgments

We would like to thank Yu-Chun Kao for useful discussions. This work was supported in part by the
European Commission under ERC Future Proof, SNF 200021-146750, SNF CRSII2-147633, NCCR
Marvel.

References
[1] Alekh Agarwal, Sahand Negahban, Martin J Wainwright, et al. Fast global convergence of

gradient methods for high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452–
2482, 2012.

[2] Masoud Ahookhosh. Accelerated first-order methods for large-scale convex minimization. arXiv
preprint arXiv:1604.08846, 2016.

[3] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. arXiv preprint arXiv:1407.1537, 2014.

[4] F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, pages
118–126, 2010.

[5] Michel Baes. Estimate sequence methods: extensions and approximations. Institute for Opera-
tions Research, ETH, Zürich, Switzerland, 2009.

[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[7] Claire Boyer, Pierre Weiss, and Jérémie Bigot. An algorithm for variable density sampling with
block-constrained acquisition. SIAM Journal on Imaging Sciences, 7(2):1080–1107, 2014.

10

[8] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky. The convex
geometry of linear inverse problems. Foundations of Computational mathematics, 12(6):805–849,
2012.

[9] Ioana Cioranescu. Geometry of Banach spaces, duality mappings and nonlinear problems,
volume 62 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht,
1990.

[10] Alexandre d’Aspremont, Cristóbal Guzmán, and Martin Jaggi. An optimal affine invariant
smooth minimization algorithm. arXiv preprint arXiv:1301.0465, 2013.

[11] M. El Halabi and V. Cevher. A totally unimodular view of structured sparsity. Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics, pp. 223–231,
2015.

[12] Dan Garber and Elad Hazan. A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM Journal
on Optimization, 26(3):1493–1528, 2016.

[13] Osman Güler. New proximal point algorithms for convex minimization. SIAM J. Optim.,
2(4):649–664, 1992.

[14] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages 427–435, 2013.

[15] Anatoli Juditsky and Arkadi Nemirovski. Solving variational inequalities with monotone operators
on domains given by linear minimization oracles. Mathematical Programming, 156(1-2):221–256,
2016.

[16] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 217–226. SIAM, 2014.

[17] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of frank-wolfe
optimization variants. In Advances in Neural Information Processing Systems, pages 496–504,
2015.

[18] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

[19] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, Bin Yu, et al. A unified frame-
work for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical
Science, 27(4):538–557, 2012.

[20] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

[21] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
140(1):125–161, 2013.

[22] Yurii Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Optimization.
Kluwer Academic Publishers, Boston, MA, 2004. A basic course.

[23] Yurii Nesterov et al. Complexity bounds for primal-dual methods minimizing the model of
objective function. Center for Operations Research and Econometrics, CORE Discussion Paper,
2015.

11

[24] G. Obozinski and F. Bach. Convex relaxation for combinatorial penalties. arXiv preprint
arXiv:1205.1240, 2012.

[25] Guillaume Obozinski, Laurent Jacob, and Jean-Philippe Vert. Group lasso with overlaps: the
latent group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

[26] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

[27] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and applications.
Technical report, Hebrew University, 2007.

[28] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[29] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. sub-
mitted to siam j. J. Optim, 2008.

[30] Sara van de Geer and Alan Muro. On higher order isotropy conditions and lower bounds for
sparse quadratic forms. Electronic Journal of Statistics, 8(2):3031–3061, 2014.

[31] Sara A Van De Geer and Peter Bühlmann. On the conditions used to prove oracle results for
the lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

[32] Silvia Villa, Lorenzo Rosasco, Sofia Mosci, and Alessandro Verri. Proximal methods for the
latent group lasso penalty. Computational Optimization and Applications, 58(2):381–407, 2014.

[33] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated
methods in optimization. arXiv preprint arXiv:1603.04245, 2016.

[34] Fu Chun Yang, Zhou Wei, and Dong Wang. Subdifferential representation of homogeneous
functions and extension of smoothness in banach spaces. Acta Mathematica Sinica, English
Series, 26(8):1535–1544, 2010.

[35] Ian En-Hsu Yen, Cho-Jui Hsieh, Pradeep K Ravikumar, and Inderjit S Dhillon. Constant
nullspace strong convexity and fast convergence of proximal methods under high-dimensional
settings. In Advances in Neural Information Processing Systems, pages 1008–1016, 2014.

[36] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

[37] Constantin Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.

12

6 Appendix

6.1 Proof of Theorem 1

Theorem 1. The iterates xk of GPM satisfy ∀k ∈ N:

F (xk)− F ? ≤ 2 max{R(x0), F (x0)− F ?}
k

where R(x0) = max{x:F (x)≤F (x0)}maxx?∈X∗ L‖x− x?‖2. If, in addition, f(x) is µ-strongly convex
w.r.t. norm ‖ · ‖, then GPM satisfies F (xk)− F ? ≤ (1− µ

L)k
(
F (x0)− F ?

)
.

Proof. Without loss of generality, we assume that f is µ-strongly convex with µ ∈ [0,+∞) (the case
when µ = 0 corresponds to the fact that f is convex). Fix x? a minimizer of F and k ∈ N. If xk is a
minimizer of F then the claims are trivial. Otherwise, let us define

(∀x ∈ Rp) Q(x,xk) = f(xk) +
〈
x− xk,∇f(xk)

〉
+ g(x) +

L

2
‖x− xk‖2. (9)

Then
xk+1 ∈ proxg(∇f(xk),xk, L) = arg min

x∈Rp
Q(x,xk). (10)

Since the gradient f is L-Lipschitz continuous,

f(xk+1) ≤ f(xk) +
〈
xk+1 − xk,∇f(xk)

〉
+
L1

2
‖xk+1 − xk‖2 (11)

and hence (10) yields

F (xk) = Q(xk,xk) ≥ Q(xk+1,xk) ≥ F (xk+1). (12)

By strongly convexity of f we have,

(∀x ∈ Rp) f(xk) +
〈
x− xk,∇f(xk)

〉
≤ f(x)− µ

2
‖x− xk‖2. (13)

Also by strongly convexity of F and by lemma 13 in [27] we have

(∀α ∈ [0, 1]) F (αx? + (1− α)xk) ≤ αF (x?) + (1− α)F (xk)− α(1− α)µ1

2
‖x? − xk‖2. (14)

It hence follows from (10), (13), and (14) that

Q(xk+1,xk) = min
x∈Rp

f(xk) +
〈
x− xk,∇f(xk)

〉
+ g(x) +

L

2
‖x− xk‖2

≤ min
x∈Rp

F (x) +
L− µ

2
‖x− xk‖2

≤ min
α∈[0,1]

F (αx? + (1− α)xk) +
(L− µ)α2

2
‖x? − xk‖2

≤ min
α∈[0,1]

αF (x?) + (1− α)F (xk)− α(1− α)µ1

2
‖x? − xk‖2 +

(L1 − µ1)α2

2
‖xk − x?‖2.

≤ min
α∈[0,1]

F (xk) + α
(
F (x?)− F (xk)

)
− α(1− α)µ− (L− µ)α2

2
‖x? − xk‖2. (15)

13

For µ = 0, the function in (15) admits a minimizer at

α∗k = min{ F (xk)− F ?

L‖xk − x?‖2
, 1} ∈ [0, 1], (16)

we deduce from (15) that

Q(xk+1,xk)− F ? ≤ max

{
1− F (xk)− F ?

2L‖xk − x?‖2
,

1

2

}(
F (xk)− F ?

)
. (17)

Consequently, (12) yields

F (xk+1)− F ? ≤ Q(xk+1,xk)− F ? ≤
(

1− F (xk)− F ?

ρ

)(
F (xk)− F ?

)
. (18)

Let ak = F (xk)− F ?. Since ak − ak+1 ≥ a2k
ρ , we obtain

1

ak+1
− 1

ak
=
ak − ak+1

akak+1
≥ a2k
ρa2k

=
1

ρ
. (19)

Consequently, ak ≤ ρ
k , which proves the first claim. For the second claim, we note that

(∀x ∈ Rp)
µ

2
‖x− x?‖2 ≤ f(x)− f? ≤ L

2
‖x− x?‖2 (20)

and hence α∗k =
µ1

L1
∈ (0, 1]. It then follows from (15) that Q(xk+1,xk) ≤ F (xk)− α∗k

(
F (xk)− F ?

)
,

and hence,

F (xk+1)− F ? ≤ (1− α∗k)
(
F (xk)− F ?

)
=

(
1− µ

L

)(
F (xk)− F ?

)
. (21)

6.2 Proof of Proposition 1

Proposition 1. Generalized Moreau’s decomposition Given g ∈ Γ0 and its Fenchel g∗, we have

p− z ∈ prox∗g∗(−z,−u, 1/L) and x? − u ∈ −∂
(L
2
‖ · ‖2∗

)
(p) ∩

(
− u + ∂g(p− z)

)
(6)

where p ∈ −∂
(
L
2 ‖ · ‖

2
)
(x? − u) ∩

(
z + ∂g(x?)

)
and x? ∈ proxg(u, z, L).

Proof. Recall that y ∈ ∂f(x)⇔ x ∈ ∂f∗(y) for any f ∈ Γ0 and its fenchel conjugate f∗. Then since
the fenchel conjugate of −L2 ‖ · ‖

2 is given by − 1
2L‖ · ‖

2
∗, we have

x? − u ∈ ∂
(
− L

2
‖ · ‖2∗

)
(p)

x? ∈ ∂g(p− z)

⇔ x? − u ∈ ∂
(
− L

2
‖ · ‖2∗

)
(p−z +z) ∩

(
− u + ∂g(p− z)

)
⇔ p− z ∈ prox∗g∗(−z,−u, 1/L)

14

6.3 Proof of Lemma 1

Lemma 1. Let h(t) = min‖x−u‖≤t z
Tx + g(x) and t? ∈ ∂h(t?)

L then

x? ∈ proxg(u, z, L)⇔ x? ∈ arg min
‖x−u‖≤t?

zTx + g(x).

Proof. The two problems are related in the following way:

min
x∈Rp

zTx +
L

2
‖x− u‖2 + g(x)

= min
t≥0

L

2
t2 + min

‖x−u‖≤t
zTx + g(x)

= min
t≥0

L

2
t2 + h(t)

The lemma follows by optimality conditions.

6.4 Atomic proximity operator of polyhedral functions

Algorithm 3 Atomic prox of polyhedral functions
Input: tmin > 0, tmax > 0, δ > 0, ε > 0
while |tmax − tmin| > δ do
t = (tmin + tmax)/2;
slope1 = h(t)−h(t+ε)

ε

slope2 = h(t−ε)−h(t)
ε

if slope1 ≤ Lt ≤ slope2 then
break

else if t− slope1/L > 0 then
tmax = t

else
tmin = t

end if
end while
Return: xk+1 ∈ arg min‖x−u‖A≤t z

Tx + g(x)

6.5 Proof of Lemma 2

Lemma 2. Given x =
∑2m
i=1 c

x
i ai, c

x ≥ 0, then
∑2m
i=1 c

x
i = ‖x‖A ⇔ ∀i, cxi = 0 or cxi+m = 0.

Proof. Assume towards contradiction that ∃i′, such that cxi′ 6= 0, cxi′+m 6= 0, then let c̃xi′ = cxi′ −
min{cxi′ , cxi′+m}, c̃xi′+m = cxi′+m −min{cxi′ , cxi′+m}, which makes one of them zero and keep all other
coefficients unchanged. Note then that x =

∑2m
i=1 c̃

x
i ai, c̃

x ≥ 0 and 1T c̃x < 1T cx = ‖x‖A leading
to a contradiction. The uniqueness follows from the linear independence of the atoms. The other
direction follows from the uniqueness observation.

15

6.6 Proof of Lemma 3

Lemma 3. Given x,y ∈ Rp, s.t cx = MR(x), cy = MR(y), we have ‖x− y‖A = ‖cx − cy‖1.

Proof. We can write x− y =
∑2m
i=1 c

x−y
i ai where cx−y = MR(x− y). By linear independence, we

have (cxi − cxi+m) − (cyi − c
y
i+m) = (cx−yi − cx−yi+m). By lemma 2, we know that ∀i either cx−yi or

cx−yi+m is zero. It follows then that the other will be equal to |(cxi − cxi+m) − (cyi − c
y
i+m)|. Hence

‖(cx(1 : m)− cy(1 : m))− (cx(m+ 1 : 2m)− cy(m+ 1 : 2m))‖1 = 1T cx−y = ‖x− y‖A.

By lemma 2, we only need to consider these cases:

cxi cxi+m cyi cyi+m |(cxi − cxi+m)− (cyi − c
y
i+m)| |cxi − c

y
i |+ |cxi+m − c

y
i+m|

> 0 0 > 0 0 |cxi − c
y
i | |cxi − c

y
i |

> 0 0 0 > 0 cxi + cyi+m cxi + cyi+m
0 > 0 > 0 0 cxi+m + cyi cxi+m + cyi
0 > 0 0 > 0 |cxi+m − c

y
i+m| |cxi+m − c

y
i+m|

Hence, ‖x − y‖A = ‖(cx(1 : m) − cy(1 : m)) − (cx(m + 1 : 2m) − cy(m + 1 : 2m))‖1 = ‖cx(1 :
m)− cy(1 : m)‖1 − ‖cx(m+ 1 : 2m)− cy(m+ 1 : 2m)‖1 = ‖cx − cy‖1.

6.7 Proof of Proposition 2

Algorithm 4 presents the general version of Algorithm 1 which can handle the case where ‖u‖A > λ.
In the case where ‖u‖A ≤ λ and t is given, Algorithm 4 reduces to algorithm 5.
Proposition 2. Algorithm 1 returns x ∈ proxAg (u, z, L) in O(pT + p log p) time, where T is the
time to compute zTa for any atom a ∈ A.

Proof. We know from lemma 1 that solving proxAg (u, z, L) reduces to solving lconjAg (u, z, t) with
t = t?. We show first that given any t ≥ 0 algorithm 5 indeed returns xk ∈ lconjAg (u, z, t). Making
use of lemma 2 and 3, we make the following observations:

• δ0 = maxδ>0{δ : u + δajmin
∈ λconv(A) ∩ (tconv(A) + u)}.

To see this note that for any δ > 0 s.t. x = u+δajmin
is feasible, we need to have ‖x−u‖A = δ ≤ t

and ‖x‖A ≤ λ, i.e.,
∑
i 6=imin,imin+m

cui + |δ + cuimin
− cuimin+m

| ≤ λ (by lemma 2). Since
1T cu = ‖u‖A ≤ c, we deduce the following constraint (note that we don’t need to consider
cases where δ + cuimin

− cuimin+m
≤ 0 since in that case ‖x‖A ≤ λ is trivially satisfied for any

δ ≥ 0), δ ≤ λ−‖u‖A+ 2cuimin+m
. Hence, δ0 is indeed the maximal feasible step in this direction.

• δ0 = t then x0 is optimal.
Given any x ∈ Rp s.t., ‖x − u‖A ≤ t, i.e., x − u ∈ tconv(A), we can write it as x − u =∑2m
i=1 c

x−u
i ai with cx−u ≥ 0 and 1T cx−u = t (not necessarily a minimal representation). If

t = δ0 then zT (x− u) =
∑2m
i=1 c

x−u
i zTai ≥ tzTaimin

= zT (x0 − u), so x0 is optimal.

• If δ0 6= t, we have ‖x0‖A = λ.
We prove this by contradiction. Assume ‖x0‖A < λ and let δ = min{λ−‖x0‖A, t−δ0} > 0, and
let x′ = u + (δ + δ0)aimin

6= x0. x′ is feasible since ‖x′ − u‖A = ‖(δ + δ0)aimin
‖A = δ + δ0 ≤ t

and ‖x′‖A ≤ ‖x0‖A + ‖δaimin‖A ≤ λ (by triangle inequality). This contradicts the above
observation about δ0.

16

Algorithm 4 Prox of linearly independent atomic norms: proxAg (u, z, L)

1: Input: cu = MR(u).
2: Initialize: x0 = u, cx = cu, t0u = 0, r = 1.
3: tmin = max{‖u‖A − λ, 0}
4: aimin := LMOA(z)
5: t0l = max{−zTaimin

/L, tmin}.
6: Sort zTai for active atoms: zTaj1 ≥ zTaj2 ≥ · · · ,∀cuj > 0.
7: if tmin > 0 then
8: Let r be the smallest integer s.t.

∑r
k=1 c

u
jk
≥ tmin.

9: for k = 1, · · · , r − 1 do
10: x0 = x0 − cujkajk , c

x
jk

= 0.
11: end for
12: x0 = x0− (tmin−

∑k
i=1 c

u
jk

)ajk
13: cxjk = cujk− (tmin−

∑k
i=1 c

u
jk

).
14: δ0 = tmin.
15: else
16: δ0 = min{t0l , λ− ‖u‖A + 2cuimin+m

}
17: x0 = u + δ0aimin

.
18: cximin

= max{δ0 + cuimin
− cuimin+m

, 0}, cximin+m
= −min{δ0 + cuimin

− cuimin+m
, 0}

19: end if
20: t0u = δ0, t

r
l = t0l − t0u.

21: while k = r, · · · , p and tkl ≥ 0 do
22: tkl = max{−0.5zT (aimin

− ajk)/L− tku, 0}.
23: δk = min{cxjk , t

k
l /2}

24: xk = xk−1 + δk(aimin
− ajk)

25: tk+1
l = tkl − 2δk

26: end while
27: Return: xk

Algorithm 5 Local Conjugate of linearly independent atomic norms: lconjAg (u, z, t)

1: Input: cu = MR(u), t ≥ 0
2: Initialize: x0 = u, cx = cu, t0l = t
3: aimin

∈ arg mina∈A zTa
4: Sort: zTaj1 ≥ zTaj2 ≥ · · · ,∀cuj > 0.
5: δ0 = min{t0l , λ− ‖u‖A + 2cuimin+m

}
6: x0 = u + δ0aimin

.
7: cximin

= max{δ0 + cuimin
− cuimin+m

, 0}, cxjmin+m
= −min{δ0 + cuimin

− cuimin+m
, 0}

8: t1l = t0l − δ0.
9: while k = 1, · · · ,m and tkl ≥ 0 do

10: δk = min{cxjk , t
k
l /2}

11: xk = xk−1 + δk(aimin
− ajk)

12: tk+1
l = tkl − 2δk

13: end while
14: Return: xk

17

• If δ0 6= t, then there exists an optimal solution x? s.t. ‖x?‖A = λ.
To see this let δ = min{(λ−‖x?‖A)/2, cx

?−u
j } > 0, where cx

?−u = MR(x?−u), and j any index
that satisfies j 6= imin, c

x?−u
j > 0. Such index exists unless x? = u+cx

?−u
imin

aimin
, in which case x0

is optimal. Let x′ = x?+δ(aimin−aj) 6= x?, ‖x′−u‖A = ‖(cx
?−u
imin

+δ−cx
?−u
imin+m

)aimin +(cx
?−u
j −

δ))aj+
∑
i 6=j,imin,imin+m

cx
?−u
i ai‖A ≤ 1T cx

?−u ≤ t, ‖x′‖A ≤ ‖x?‖A+‖δaimin
‖A+‖δ(−aij)‖A =

‖x?‖A + 2δ ≤ λ. So x′ is feasible and has a better objective than x? leading to a contradiction.

• There exists an optimal solution s.t. ‖x? − x0‖A ≤ t− δ0.
By the above observation, this is trivial if t = δ0. It also holds trivially if δ0 = 0. Otherwise,
it is enough to show that cx

?−u
imin

≥ δ0, where cx
?−u = MR(x? − u). Since ‖x? − x0‖A =

‖(cx
?−u
imin

− cx
?−u−δ0
imin+m

)aimin
+
∑
i 6=imin,imin+m

cx
?−u
i ai‖A, if cx

?−u
imin

≥ δ0 > 0, then by lemma 2,
cx
?−u
imin+m

= 0 and ‖x? − x0‖A =
∑
i6=imin,imin+m

cx
?−u
i + (cx

?−u
imin

− δ0) = 1T cx
?−u − δ0 ≤ t− δ0.

To show that cx
?−u
imin

≥ δ0, assume towards contradiction that cx
?−u
imin

< δ0, and let j be an index
where cx

?−u
j > 0 and cx

?−u
j − cuj+m > 0 and j 6= imin. Such index must exists, since otherwise

∀i 6= imin where cx
?−u
i > 0, we’ll have 0 < cx

?−u
i ≤ cui+m, hence by lemma 2 cui = 0. Then we

can write x? = u +
∑
i c
x?−u
i ai =

∑
cx
?−u
i >0,i6=imin

(−cui+m + cx
?−u
i)ai + |cx

?−u
imin

− cuimin+m
|aimin

.

We assume that ∃i 6= imin, c
x?−u
i > 0, otherwise x? = x0. Hence, we’ll have the following 2

cases:

λ = ‖x?‖A =

{∑
cx
?−u
i >0

cui+m −
∑
cx
?−u
i >0

cx
?−u
i if cx

?−u
imin

− cuimin+m
≤ 0∑

cx
?−u
i >0

cui+m −
∑
cx
?−u
i >0,i6=imin

cx
?−u
i + cx

?−u
imin

− 2cuimin+m
otherwise

<

{
‖u‖A if cx

?−u
imin

− cuimin+m
≤ 0

‖u‖A + δ0 − 2cuimin+m
otherwise

(since cx
?−u
imin

< δ0)

≤ λ

which leads to a contradiction. Hence, such index must exists. Then let δ = cx
?−u
j − cuj+m > 0

and x′ = x?+δ(aimin
−aj) 6= x?. We show that x′ is feasible. First note that−u =

∑
i c
u
i (−ai) =∑

i c
u
i+mai and hence by lemma 3, ‖x?‖A = ‖x? − u − (−u)‖A = ‖cx?−u − c̃u‖1 = λ where

c̃ui = cui+m. Then, we have ‖x′ − u‖A = ‖(cx
?−u
imin

+ δ − cx
?−u
imin+m

)aimin
+ (cx

?−u
j − δ))aj +∑

i 6=j,imin,imin+m
cx
?−u
i ai‖A ≤ 1T cx

?−u ≤ t and ‖x′‖A = ‖
∑
i6=j,j+m(cx

?−u
i + cui)ai + (cx

?−u
j +

cuj −cuj+m−δ)aj+δaimin
‖A ≤ ‖

∑
i6=j,j+m c

x?−u
i ai+(cx

?−u
j −cuj+m−δ)aj−(−u)‖A+‖δaimin

‖A =

‖cx?−u−c̃u‖1−δ+δ = λ, by lemma 13. Finally note that zTx′ ≤ zTx? leading to a contradiciton.

Note that in the algorithm 5 we enter the loop only if t 6= δ0. So if we stop before that then we
have found an optimal solution x0. Otherwise, there exists an optimal solution s.t. ‖x?‖A = λ and
‖x? − x0‖A ≤ t− δ0, so we can now solve this problem instead:

min
‖x‖A=λ
‖x−x0‖A≤t

zTx (22)

We know though by lemma 3 that ‖x− x0‖A = ||cx − cx
0‖1, for cx = MR(x), cx

0

= MR(x0). Hence
we can further reformulate problem 22 as:

min
1T cx=λ,cx≥0
‖cx−cx

0
‖1≤t

z̃T cx (23)

where z̃i = zTai. This problem has been considered by [12], to obtain a local linear oracle. The
rest of our algorithm, i.e., after entering the loop, reduces to their algorithm. So we refer the reader

18

to their proof of correctness [12, Lemma 5.2]. This concludes the proof that algorithm 5 returns
xk ∈ lconjAg (u, z, t).

Now we argue that algorithm 1 returns xk ∈ proxAg (u, z, L). Recall from section 3.1 that h(t) is a non-
increasing piecewise linear function. But unlike the general case where we’re computing h(t) using a
black box optimizer, we actually can compute the slopes of the different pieces of h(t) explicitly. In fact,
h′(t?) belongs to one of these intervals: [zTaimin

,∞], [0.5(zTaimin
− zTaj2), 0.5(zTaimin

− zTaj1)], · · · .
Note that algorithm 5 is actually minimizing the objective along the path of possible values of
t′ = ‖x− u‖A from t′ = tmin to t′ = t. In fact, xk ∈ lconjg(u, z, tku),∀k in algorithm 5. Hence, it’s
easy to incorporate the search for t? without increasing the time complexity.
Finally, it is clear that the most expensive step in algorithm 1 is the sorting operation on line 5, and
hence it’s time complexity is O(pT + p log p). Handling the case where ‖u‖A > λ (c.f., lines 7 -14)
follows using similar arguments.

6.8 Proof of Theorem 2

First, we present a technical lemma, which can be found in [9, Example 2.9]. We provide a proof
of it here for completeness. The term pk satisfies the following property, which is usefull to handle
general norms.
Lemma 4 (cf., [9, Example 2.9]). ‖ · ‖2 is differentiable at zero with ∂(12‖ · ‖

2)(0) = 0 and ∀x ∈ Rp
and p ∈ ∂(1

2‖ · ‖
2)(x), we have

〈x,p〉 = ‖x‖2 = ‖p‖2∗. (24)

Proof. Note that ∀x ∈ Rp

lim
t→0

‖0 + tz‖2 − ‖0‖2

t
= lim
t→0

t‖x‖2 = 0, (25)

which implies that ‖ · ‖2 is differentiable at 0. Hence if x = 0 then p = 0 and (24) trivially holds.
Otherwise if x 6= 0, note that since ‖ · ‖2 is positively homogeneous of degree 2 and is locally Lipschitz,
then by [34] Euler’s identity holds

‖x‖2 = 〈x,p〉 ≤ ‖x‖‖p‖∗, (26)

which implies that ‖x‖ ≤ ‖p‖∗. The subdifferential of ‖ · ‖ exists every point (c.f., [37]) and
p/‖x‖ ∈ ∂‖x‖. Then since ‖ · ‖ ∈ Γ0, it follows by Fenchel-Young equality,

‖p/‖x‖‖∗ + ‖x‖ = 〈x,p/‖x‖〉 = ‖x‖, (27)

where ‖ · ‖∗ is the Fenchel conjugate of ‖ · ‖. This implies that ‖p/‖x‖‖∗ = ι‖·‖∗≤1(p/‖x‖) = 0 and
hence ‖p‖∗ ≤ ‖x‖, and thus (24) holds.

Theorem 2. Consider Problem 1 where g is µ-strongly convex w.r.t. ‖ · ‖. If accGPM terminates at
iteration k, i.e., xk+1 = yk+1, then xk+1 is a solution to (1). Otherwise, let x? ∈X ?, the iterates
of accGPM satisfy the following.

1. If µ = 0. Then ∀k ∈ N, we have F (xk+1)− F ? ≤
4
(
σ(F (x0)− F ?) + β0d(x?)

)
σ{2 +

√
β0
∑k
i=0

√
γi}2

.

Consequently, if ∀k ∈ N, γk = 1/L, then F (xk+1)− F ? ≤
4L
(
σ(F (x0)− F ?) + β0d(x?)

)
σ{2
√
L+
√
β0(k + 1)}2

.

19

2. If µ > 0. Set τ = infk∈N τk, and ρ = τµ
2L

{√
1 + 4L

β0+µ
−1

}
. If β0 ≥ τµ and ∀k ∈ N, γk = 1/L,

then we have F (xk+1)− F ? ≤ (1− ρ)k+1{F (x0)− F ? + β0

σ d(x?)}.

Proof. If there exists k ∈ N such that xk+1 = yk+1 then it follows from Step 6 of Algorithm 2 and
Fermat’s rule that

0 ∈ ∂g(xk+1) +∇f(xk+1) + ∂(
1

2γk
‖ · ‖2)(0) (28)

By lemma 4, (28) yields 0 ∈ ∂g(xk+1) +∇f(xk+1) and thus xk is a minimizer of F . We now suppose
that ∀k ∈ N, xk+1 6= yk+1. Step 10 of Algorithm 2 yields

(∀k ∈ N) pk −∇f(yk+1) ∈ ∂g(xk+1) (29)

It follows then that
g(x) ≥ g(xk+1) +

〈
x− xk+1,pk −∇f(yk+1)

〉
. (30)

Since ∇f is L-Lipschitz and since ∀k ∈ N, γk ∈ (0, 1/L], it follows from that

f(xk+1) ≤ f(yk+1) +
〈
xk+1 − yk+1,∇f(yk+1)

〉
+

1

2γk
‖xk+1 − yk+1‖2. (31)

In turn the convexity of f implies that

f(x) ≥ f(yk+1) +
〈
x− yk+1,∇f(yk+1)

〉
≥ f(xk+1) +

〈
yk+1 − xk+1,∇f(yk+1)

〉
− 1

2γk
‖xk+1 − yk+1‖2 +

〈
x− yk+1,∇f(yk+1)

〉
= f(xk+1) +

〈
x− xk+1,∇f(yk+1)

〉
− 1

2γk
‖xk+1 − yk+1‖2.

(32)

Adding (30) and (32) we get

F (x) ≥ F (xk+1) +
〈
x− xk+1,pk

〉
− 1

2γk
‖xk+1 − yk+1‖2. (33)

Hence, for every x ∈ Rp,

ek+1(x)− F (x) = (1− αk)(ek(x)− F (x)) + αk
(
(1− τk)(ψk(x)− F (x)) + τk(φk(x)− F (x))

)
≤ (1− αk)(ek(x)− F (x)). (34)

Since d is σ-strongly convex and g is µ-strongly convex, it follows by induction that ek is βk-strongly
convex. Next, let us show that

(∀k ∈ N) ek(wk) ≥ F (xk). (35)

Note that e0(w0) ≥ F (x0). Suppose that ek(wk) ≥ F (xk) for some k ∈ N. Then it follows from (33)
that

ek(wk) ≥ F (xk) ≥ ψk(xk+1)

Hence, since ek is βk-strongly convex, we have

ek(wk+1) ≥ ek(wk) +
βk
2
‖wk+1 −wk‖2

≥ ψk(xk+1) +
βk
2
‖wk+1 −wk‖2. (36)

20

However, since pk −∇f(yk+1) ∈ ∂g(xk+1),

g(x) +
〈
x− xk+1,∇f(yk+1)− pk

〉
≥ g(xk+1), (37)

and hence we deduce from (31) that

φk(x) ≥ ψk(x). (38)

In turn, we deduce from (36) that

ek+1(wk+1) ≥ (1− αk)ek(wk+1) + αkψk(wk+1)

= F (xk+1) +
(1− αk)βk

2
‖wk+1−wk‖2 +

〈
yk+1− xk+1,pk

〉
+
〈
αk(wk+1 −wk),pk

〉
− 1

2γk
‖xk+1 − yk+1‖2.

(39)

It follows from definition of pk and Lemma 4 that〈
yk+1 − xk+1, pk

〉
=

1

γk
‖xk+1 − yk+1‖2 = γk‖ − pk‖2∗. (40)

On the other hand, the Cauchy-Schwarz inequality yields

αk

〈
wk+1 −wk,pk

〉
≥ − (1− αk)βk

2
‖wk+1 −wk‖2 − α2

k

2(1− αk)βk
‖pk‖2∗. (41)

Consequently, we deduce from (39) and (40) that

ek+1(w
k+1) ≥ F (xk+1) +

1

2γk
‖xk+1 − yk+1‖2 − α2

k

2(1− αk)βkγk
‖xk+1 − yk+1‖2

≥ F (xk+1) +
1

2γk

{
1− α2

k

(1− αk)βkγk

}
‖xk+1 − yk+1‖2

= F (xk+1)

(42)

which proves (35). Finally, we derive from the definition of wk+1 and (34) that

(∀k ∈ N) F (xk+1)− F ? ≤ ek+1(wk+1)− F ? ≤ ek+1(x?)− F ? ≤ (1− αk)
(
ek(x?)− F ?

)
, (43)

where x? is a minimizer of F . Hence, by induction,

F (xk+1)− F ? ≤
k∏
i=0

(1− αi)
(
e0(x?)− F ?

)
. (44)

(1): Note that ∀k ∈ N

α2
k = (1− αk)βkγk and βk+1 = (1− αk)βk

Hence, it follows from Lemma 2.2 in [13] that

k∏
i=0

(1− αi) ≤
1(

1 +
√
β0/2

∑k
i=0

√
γi
)2 . (45)

Consequently, the assertion follows from (44).

21

(2): First we note that by induction,

(∀k ∈ N) τµ ≤ βk ≤ β0 + µ. (46)

Therefore,

αk+1 =
βk
2L

{√
1 +

4L

βk
− 1

}
≥ τµ

2L

{√
1 +

4L

β0 + µ
− 1

}
(47)

and hence the assertion follows from (43).

7 Solving prox`1`1 and pk for Section 5.1

7.1 Computing `1-proximity operator

Computing the standard prox`2`1 of `1-norm can be computed efficiently in O(p) using the so-called
soft thresholding operator SoftThreshold(z, λ) = sign(z) ◦max{|z| − λ, 0}, [6].

As explained in Remark 1, prox`1`1 can be solved by computing the prox over the `∞ ball by the greedy
algorithm 4 and applying the decomposition in 1. By proposition 2, prox`1`1 can then be computed
in O(p log p) time. However, prox`1`1 is simple enough that we opt for a direct way to solve it using
again an intuitive greedy algorithm, of the same “flavor" as Algorithm 1.

Algorithm 6 `1-prox of `1-norm
1: Input: u ∈ Rp, L1 > 0
2: Initialization: x0 = u, t0u = 0, s0 = sign(x0), k = 0
3: s0i = − sign(SoftThreshold(zi, λ)),∀i s.t. x0i = 0.
4: w = [s0 ◦ (z + λs0), s0 ◦ (z− λs0)]
5: Sort: |wi1 | ≥ |wi2 | ≥ · · · |wi2p |
6: while k = 1, · · · , p+ 1 and tkl ≥ 0 do
7: if wik = skik ◦ (zik + λskik) then
8: tk+1

l ← max{|wkik |/L1 − tku, 0}
9: if sign(wkik) > 0 then

10: xk+1
ik

= skik max{|xkik | − t
k
l , 0}

11: tk+1
u = tku − |xk+1

ik
|+ |xkik |

12: if xk+1
ik

= 0 then
13: sk+1

ik
= − sign(SoftThreshold(zi, λ))

14: end if
15: else
16: xk+1

ik
= skik(|xkik |+ tkl)

17: tk+1
u = tku + |xk+1

ik
| − |xkik |

18: end if
19: end if
20: end while

Return: xk+1

Proposition 3. Algorithm 6 returns x ∈ prox`1`1(u, z, L) in O(p log p) time.

The high level idea of Algorithm 10 is the following. By lemma 3, we know that computing
prox`1`1(u, z, L) is equivalent to computing lconj`1`1(u, z, L, t?), where recall from Section 3.2, h(t) is
a non-increasing piecewise linear function, whose slopes can be computed explicitly. Hence, the

22

search for t? is done in Algorithm 10 the same way as in Algorithm 1. Algorithm 10 then solves
lconj`1`1(u, z, L, t) along the path of possible t values. Note that given t and the signs of x, the
objective in lconj`1`1(u, z, L, t) reduces to minimizing a linear function sign(x) ◦ (z + λ sign(x)) over
the `1-ball ‖x−u‖1 ≤ t? and the signs constraint, whose solution is simple (c.f., lines 10 and 16). To
guess the optimal signs, we start by the feasible ones, sign(u), and modify them gradually along the
greedy solution path. It’s clear that the time complexity of Algorithm 10 is dominated by the sorting
operation on line 5, leading to a worst case complexity of O(p log p). However, in practice, we notice
that we rarely do more than one iteration. In fact, when algorithm 10 is executed within GPM and
accGPM, it’s not hard to see that doing more than one itertation requires ‖∇f(xk)‖∞ ≤ λ, and since
λ is usually small, this condition implies that we’re already near convergence, which is exactly what
we observe in our experiments (c.f., section 5.1). Hence, in our implementation we choose instead
to compute the maximum value of w at each iteration instead of sorting, leading to an expected
complexity of O(p). This observation is interesting, since it implies that running FW with carefully
chosen step-size, approximate runing a proximal gradient method.

Finally note that the updates generated by x ∈ prox`1`1(u, z, L) are always sparse, i.e., given an
s-sparse vector u, x is at most s+ 1-sparse. The proof of proposition 3 follows by similar arguments
as in proposition 2.

7.2 Computing the momentum term pk

Recall that accGPM required the computation of a momentum term pk at each iteration k (c.f., line
10). Below, we show that the computation of pk, in this setting, has a closed form solution.
Proposition 4. Given x ∈ prox`1`1(u, z, L) generated by algorithm 6, to have p ∈ ∂

(
−L2 ‖x− u‖21

)
∩

(z + λ∂‖x‖1), we can choose

pi =

{
−L‖x− u‖1 sign(x− u) if 0 = xi 6= ui

(si)
2(zi + λsi) otherwise

where si = sign(xi) if xi 6= 0 and si = − sign(SoftThreshold(zi, λ)) otherwise.

Proof. We note first than, by the optimality of x, whenever one of the two sets consists of a unique
element, then choosing this element must be a feasible choice. If ‖x−u‖1 = 0, then from algorithm 6,
we know that s = 0 and hence the above choice will correspond to p = 0, which is the unique choice
here. If 0 = xi 6= ui or xi 6= 0 the choice of pi above is again unique. Otherwise, if 0 = xi = ui, then
the choice of pi is a feasible one, since (si)

2(zi + λsi) ∈ [−L‖x− u‖1, L‖x− u‖1] ∩ zi + [−λ, λ].

7.3 Statistical Benefits of `1-GPM

This section makes a simple but powerful observation about the statistical performance of the `1-GPM
in high-dimensional learning problems of the form,

min
x∈Rp

f(x) + λ‖x‖1, (48)

For this purpose, we consider separable objective functions f(x) = 1
n

∑n
i=1 fi(x) that arises naturally

in the high-dimensional learning problems, where one uses `1-regularized empirical risk minimization
(ERM) to promote sparse solutions.

In the high-dimensional setting where n� p, the Hessian of f(x) := 1
n

∑n
i=1 fi(x) is typically singular,

and hence, the strong convexity assumption cannot hold. For example, if each fi(x) corresponds to

23

the negative log-likelihood of a distribution in canonical generalized linear models, then the ∇2f(x)
is a sum of n rank-1 matrices, which is rank deficient when n < p.

A standard way to overcome such difficulty is to consider a suitable restriction setM, and assume
strong convexity only onM. This leads to the notion of restricted strong convexity (RSC) [19]. In
this paper, we consider a generalized version of it:
Definition 2 (Restricted Strong Convexity in General Norms). LetM⊆ Rp. The function f(x) is
said to satisfy the `q-RSC with parameter µq if it holds that (∀x,y ∈M),

〈
∇2f(x)y,y

〉
≥ µq‖y‖2q.

The `q-RSC implies consistency results in statistics: cf., [31] for a comprehensive account. However,
to date, only the `2-RSC is investigated in computational perspective [1, 35]. The result is that
proximal gradient methods converge linearly when `2-RSC holds. Since the `1-GPM operates on
the `1-norm, the `1-RSC, also known as the compatibility condition, can be used for similar faster
convergence results. Importantly, the compatibility condition is strictly weaker than the `2-RSC, and
sometimes the difference can be drastic [30].
Remark 2. When the strong convexity in Theorem 1 is replaced by the compatibility condition, and
if all the iterates xk lie in the restriction set M, then the conclusion of Theorem 1 holds with µ1

being the parameter of the compatibility condition.

Hence, as compared to euclidean proximal gradient methods, the `1-GPM can retain linear rate for
a wider class of learning problems. We remark that, in general, identifying the restriction setM
can be very difficult, and one often has to modify the standard algorithm in order to show that all
the iterates lie in the setM; cf., [1]. The rigorous proof of this condition is beyond the scope of the
current paper. However, numerical results in Section 5.1 support faster convergence for the `1-GPM
methods in general.

8 Solving pk for prox`∞G in Section 5.2

Proposition 5. Given x ∈ prox`∞G (u, z, L) generated by algorithm 3, to have p ∈ ∂
(
−L2 ‖x− u‖2∞

)
∩

(z + λ∂‖x‖G), where ‖x‖G is the `∞-LGL norm, we need to solve the following linear feasibility
program.

p ∈ arg min
p∈Rp

0

subject to pT
(x− u

−Lt
)

= t(
sign(x− u) ◦ p

−Lt
)T
1 ≤ 1

xT (p− z) = λ‖x‖G
BT (sign(x) ◦ (p− z)) ≤ λ
sign(x− u) = sign(p)

sign(x) = sign(p− z)

where t = ‖x− u‖∞ and B is the matrix whose columns are the indicator vectors of the groups, i.e.,
Bi = 1Gi .

Proof. By definition of dual norms, the subdifferential of the ∂
(
−L2 ‖x− u‖2∞

)
= {−Ltκ : κT (x−u) =

‖x− u‖∞, ‖κ‖1 ≤ 1}. The dual of `∞-LGL norm is given by maxi∈[1,··· ,M] ‖κGi‖1, hence λ∂‖x‖G =
{κ : κTx = λ‖x‖G , ‖κGi‖1 ≤ λ,∀i ∈ [1, · · · ,M]}. The proposition then follows directly.

24

	Introduction
	Preliminaries and notation

	Generalized proximal gradient method: Warm-up
	Tractability of the generalized proximity operator
	Atomic proximity operator of polyhedral functions
	Proximity operator of atomic norms with linearly independent atoms

	Accelerated generalized proximal gradient method
	Numerical Illustration
	Sparse Linear Regression
	Latent group Lasso

	Appendix
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Lemma 1
	Atomic proximity operator of polyhedral functions
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 2
	Proof of Theorem 2

	Solving `39`42`"613A``45`47`"603Aprox11 and pk for Section 5.1
	Computing 1-proximity operator
	Computing the momentum term pk
	Statistical Benefits of 1-GPM

	Solving pk for `39`42`"613A``45`47`"603AproxG in Section 5.2

