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Abstract 

 

The search for new photovoltaic materials has been driven by the combined need to 

exploit sources of energy that are clean and sustainable, while simultaneously doing it in 

a cost effective manner. In this light, hybrid organic-inorganic perovskites have recently 

emerged as an extremely promising photonic material, and their application as a 

functional photovoltaic layer has resulted in power conversion efficiencies that rival long 

established silicon based technologies. Rapid progress in device efficiencies have 

occurred over the last years (22.1% being the current record). However, the simultaneous 

growth in basic studies of the material have not resulted in a conclusive understanding of 

the fundamental process that occur subsequent to photoexcitation. Hence, there is a 

pressing need to identify the pathways that currently limit device performance and 

provide direction for future work in materials and device engineering. Towards this goal, 

we investigate two perovskite compositions (CH3NH3PbI3 and 

(FAPbI3)0.85(MAPbBr3)0.15) using time-resolved THz and electroabsorption spectroscopic 

techniques.  

Chapter 1 and 2 provide a general introduction into the investigated system and the 

experimental techniques that have been used. In chapter 3, we detail time-resolved THz 

measurements and report on experimental evidence for carrier recombination through an 

indirect process, as well as a direct recombination pathway that is present at higher carrier 

densities. We calculate temperature dependent carrier mobilities (at THz frequencies) and 

bimolecular recombination constants, through which we identify phonon scattering as the 



primary limiting mechanism for carrier transport, and temperature dependent bimolecular 

recombination. Analysis of the complex photoconductivity spectra using the Drude-

Smith model revealed a large difference in carrier scattering between the two perovskite 

films that could be attributed to the significantly different morphologies. 

In chapter 4 we apply time-resolved electroabsorption spectroscopy (TREAS) to 

insulated CH3NH3PbI3 layers and investigate the macroscopic carrier transport dynamics 

under an externally applied electric field. Transport within the 40 nm perovskite grain 

was discovered to be diminished by a factor ≈ 2 relative to the high frequency mobility 

obtained through THz spectroscopy. The averaged carrier mobility across the 280 nm 

film thickness was reduced by a factor ≈ 4, due to the presence of grain boundaries and 

defects. Preliminary investigations also identified spectral signatures associated with 

carrier accumulation at the perovskite interface and delayed extraction at the contacts. 

Chapter 5 deals with complete solar cells formed using (FAPbI3)0.85(MAPbBr3)0.15 as the 

active layer and we report the first application of the TREAS technique to complete 

perovskite devices. Our results reveal that the improved morphology of the carrier results 

in film averaged mobilities that are near the intrinsic values obtained using THz 

spectroscopy. Analysis of transient absorption spectra revealed an electroabsorption 

signature, which can be correlated with the disassociation of a transient excitonic species 

to form free charge carriers.  

 

Keywords: Ultrafast spectroscopy, THz spectroscopy, time-resolved electroabsorption 

spectroscopy, perovskite, photovoltaics  



Résumé 

La recherche de nouveaux matériaux photovoltaïques a été poussée par le besoin 

d’exploiter de nouvelles sources d’énergies propres et durables d’une manière rentable. 

Dans ce contexte, les pérovskites organométalliques hybrides ont récemment émergé en 

tant que matériel photonique très prometteur. Leur application comme couche 

photovoltaïque fonctionnelle a résulté en une efficacité des systèmes qui rivalisent avec 

les technologies basées sur la silicium utilisées jusqu’à présent. Un progrès rapide du 

rendement des systèmes a été observé ces dernières années (avec un record actuel à 

22,1%). Cependant l’évolution simultanée des connaissances de base sur les matériaux 

n’a pas donné lieu à des avancées majeures dans la compréhension du processus 

fondamental qui suit la photo-excitation. Il y a par conséquent un grand besoin d’identifier 

les processus qui limitent la performance des systèmes et de trouver de nouvelles pistes 

pour l’ingénierie de matériaux et de systèmes plus performants. 

Les chapitres 1 et 2 présentent une introduction générale du système étudié ainsi que des 

techniques expérimentales employées. Dans le chapitre 3 les mesures THz résolues en 

temps sont détaillées avant d’être appliquées à des résultats expérimentaux pourtant sur 

la recombinaison de porteurs de charge par un processus indirect puis sur une voie de 

recombinaison directe qui est présente à des fluences plus élevées. La mobilité des 

porteurs dépendante de la température (aux fréquences THz) et les constantes de 

recombinaison bi-moléculaire ont été calculées ; ce qui a permis dans un premier temps 

d’identifier la diffusion par les phonons comme le principal facteur limitant le transports 

des charges, puis dans un second temps de déterminer que la recombinaison bi-

moléculaire dépendante de la température est contrôlée par la mobilité relative des 

porteurs de charge. L’analyse de spectres complexes de photoconductivité via le modèle 



Drude-Smith a révélé d’importantes disparités dans la dispersion des porteurs entre les 

deux films pérovskites. Ces disparités ont pu être attribuées aux différences significatives 

de morphologie. 

Au chapitre 4, la spectroscopie d’électro-absorption résolue en temps (TREAS) a été 

appliquée à des couches isolées de CH3NH3PbI3 puis la dynamique de transport à longue 

distance de porteurs de charge sous l’effet d’un champ électrique a été étudiée. Il a été 

découvert que le transport dans les grains de pérovskite de 40 nm était diminué d'un 

facteur ≈ 2 par rapport à la mobilité à haute fréquence obtenue par spectroscopie THz 

(qui est proche des valeurs intrinsèques du matériau). La mobilité moyenne sur toute 

l’épaisseur du film de 280 nm a été réduite d'un facteur ≈ 4 en raison de la présence de 

piège aux joints de grains. Des recherches préliminaires ont également permis d'identifier 

des signatures spectrales associées à l'accumulation de porteurs à l'interface pérovskite et 

à une extraction retardée aux zones de contact. Enfin, le chapitre 5 traite des cellules 

solaires complètes formées en utilisant (FAPbI3)0,85 (MAPbBr3)0,15 comme couche 

active ; l’application de la technique TREAS pour étudier ces systèmes de pérovskite est 

présentée. Les résultats révèlent que la morphologie ainsi améliorée du film résulte en 

des mobilités moyennes des charges proches des valeurs intrinsèques obtenues en 

utilisant la spectroscopie THz. L'analyse des spectres d'absorption transitoire a révélé une 

signature d'électro-absorption qui peut être corrélée avec la dissociation d'une espèce 

excitonique transitoire. 

Keywords: Spectroscopie ultrarapide, THz spectroscopie, spectroscopie 

d’electroabsorption résolue dans le temps, photovoltaïque, perovskite
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1. Introduction 
 

Humanity’s ability to efficiently harness sources of energy over the last centuries has 

been a cornerstone in the progress of industries that now touch all areas of our lives, such 

as agriculture, transportation, communications, etc. However, over the last decades our 

individual energy demands have grown rapidly and in tandem with an ever rising global 

population. Our growing needs have occurred in parallel with the realization of the 

substantial health and climatic risks associated with the use of fossil fuels as our primary 

source of energy. In this light, one of the most pressing issues of our time is the 

implementation of sources of energy, that are not just clean and sustainable, but also 

capable of meeting our needs without excessive compromise. This paves the way for 

renewable energy sources (solar, wind, hydroelectric, etc.) that provide avenues to meet 

our demands in a manner that is both clean and sustainable. Among the options, solar 

energy harvested from the sun to produce electricity is an especially promising choice 

given the magnitude of solar radiation that strikes the earth every day. The photovoltaic 

effect discovered by A.E Becquerel1 in 1839 serves as the basis for modern photovoltaic 

cells that directly convert solar radiation to electricity. The current commercial market 

for these photovoltaic cells are dominated by silicon based cells, which provide benefits 

of fairly high device efficiencies and longevity. The drawbacks of crystalline silicon as 

the active photovoltaic material are the requirements for a high purity material, which 

involves processing at high vacuum and elevated temperatures. This takes a considerable 
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amount of energy to produce, in addition to the financial costs associated with the 

demanding processing conditions. So, despite the dominance of silicon in the market, 

there are significant research efforts focused on developing new materials and device 

architectures that can compete with silicon in terms of efficiency and reliability, while 

reducing the energetic and financial costs associated with the fabrication of devices. 

Towards this goal, a wide range of alternative device architectures and functional 

materials that have significantly less challenging processing conditions have been 

studied.  

One such architecture is the dye-sensitized solar cells (DSSCs), where a monolayer of 

dye molecules with a high extinction coefficient is adsorbed on a high surface area 

nanocrystalline TiO2 scaffold. The dye act as the light absorber and electron injection into 

the TiO2 allows for carrier separation. The electron is subsequently transported through 

the TiO2 semiconductor to the extraction electrode. Another alternative is the thin film 

photovoltaic architecture that uses direct bandgap materials with high absorption 

coefficients, that consequently require significantly less material to achieve similar 

absorbance as silicon (as the latter is characterized by an indirect band gap). This thesis 

investigates hybrid organic-inorganic perovskites, a class of solution-processable 

semiconductor materials that have recently been demonstrated as an exceptional 

functional material for photovoltaic applications.2-4 A more detailed description of 

perovskites and their application in photovoltaic devices will be provided over the course 

of chapter 1.  

 



 

Chapter 1 

 

 

3

1.1 Semiconductors 

Solids are characterized by a continuum of states formed by a large density of closely 

spaced electronic energy levels, rather than the discreet levels that characterize atoms and 

molecules. An energy gap (Eg) separates the lowest, unoccupied band of allowed states 

(referred to as the conduction band (CB)) and the highest, completely occupied band 

(called the valence band (VB)). The gap between energy levels is possessed by both 

semiconductors and insulators, with the possibility to make semiconductors conductive 

under certain conditions. The Fermi level (EF) in the band picture (Figure 1.1) defines 

energy level for which there is a 50% probability of electronic occupation at a certain 

temperature (T), the probability distribution of a state being occupied is given by the 

Fermi-Dirac function in Eq. 1.1. 

 

 

Figure 1.1 – Illustration of the band gap between the valence and conduction bands of

semiconductors   
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 Eq. 1.1
 

In intrinsic semiconductors, the Fermi energy lies in the middle of the forbidden 

bandgap. This implies that the VB is completely occupied and with no easily accessible 

states for conduction. In this case, with the occupation of states in the VB, the first empty 

states for the electron lie in the CB which is separated by a band gap of Eg. Hence, in the 

presence of an external electric field, acceleration of electrons is not possible, inhibiting 

the flow of charge carriers across the material.5 Photoexcitation with a photon energy hν 

≥ Eg , can promote electrons from the VB to the CB. This results in the formation of 

partially filled bands that allows the crystal to become electrically conductive, through 

the motion of electrons in the CB or holes (electron vacancies) in the VB. In extrinsic 

semiconductors partial filling of the bands is accomplished by doping. They can either be 

n-doped where electrons are added to the CB due to donor impurities or p-doped where 

acceptor impurities result in the formation of holes in the VB.  The density of charge 

carriers in semiconductors are generally small. In metals, the Fermi levels lie in the 

conduction band and electrons can access empty states that are closely spaced 

energetically, allowing them to become conductive. 

 

 

 

 

=
+ −
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Origin of the Bandgap 

We begin with the free electron model, although it does not explain the existence of a 

band gap, it does provide insight into the thermal and electrical conductivities of metals 

and its extension serves as the basis for a description of the band structure in a crystal. In 

the free electron picture, electrons are considered to be completely detached from their 

ionic cores and their only interaction involves scattering off these ionic cores. The 

electron energy is purely kinetic and given by: 

   
and

      
Eq. 1.2

 

Where  is the rest mass of a free electron and p is electron momentum, with 

p = h / λe = ħk, λe being the de Broglie wavelength of the electron and k the wave vector 

of the electron.  

In order to explain the formation of the band gap we use an extension to the previous 

model, this extension is called the nearly free electron model. It takes into account the 

existence of a periodic lattice potential formed by the repeating units of atoms and allows 

for the existence of a band gap.6 The potential originates from positively charged ion 

cores in a structure, that creates a periodic electromagnetic field. Free electrons in the 

form a traveling plane wave experience this field as a periodic perturbation. Bragg 

reflections of the electron wave by lattice planes formed in the periodic crystal structure, 

interfere in a constructive or destructive manner with the forward traveling wave. When 

the separation distance of the planes is comparable to the electron wavelength, the 

reflected waves interfere destructively with the forward travelling wave.7 These 

= =
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interferences give rise to standing waves which have their electron density peaking at 

different regions of the periodic lattice (Figure 1.2), and the difference between the 

potential energies of the standing waves and the traveling electron wave gives rise to the 

observed band gap.5-7 The description of the band structure of a semiconductor is 

provided by the Bloch’s theorem.  

    Eq. 1.3 

Where the Bloch wave is determined by the product of the wavefunction of the electron 

exp(ik • r) and a function with the periodicity of the crystal lattice uk(r). 

The E–k diagram near the VBM and CBM are shown in Figure 1.3, which displays a 

simplified view in one-dimension, for small k the bands can be considered parabolic. The 

band dispersions of the valence band, Evb(k), and conduction band, Ecb(k), are given by 

Eq. 1.4. 

ψ ( ) = ( )

Figure 1.2 – Distribution of the probability density, (p), of the conduction band electrons in the 

lattice for the standing wave, |Ψ (-)| and |Ψ (+)| and  the travelling wave. In the wavefunction|Ψ 

(+)|electronic charge is preferentially distributed at the positive ion core and the average potential 

is lower relative to the average potential of the travelling wave. The wavefunction |Ψ (-)|piles up 

electronic charge between the ions and removes it from the ion cores; thereby raising the average

potential relative to that seen by the travelling wave. Figure reproduced from ref 6.   
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and
          

Eq. 1.4
 

Where m* refers to the effective mass of electrons and holes in the CB and VB 

respectively.  

 

Effective Mass 

A characteristic of semiconductor crystals is the effective mass (m*) of electrons and 

holes in the bands they occupy. It serves to describe the response of the carriers’ crystal 

momentum, p = m*v =  (where v is the velocity), to an applied external force, F, with 

respect to the periodic lattice potential. The result being that carriers are accelerated as if 

they had this effective mass rather than the free electron mass  in vacuum (m0). According 

to Eq. 1.4, we see that the coefficient of the E-k relationship determines the curvature of 

E versus k. Alternatively, the effective mass is defined by the curvature according to: 

= − = +

E 

k 

Figure 1.3 – Simplified view of the band edge structure of a direct gap semiconductor. k represents

the projection of the   vector on the x axis. It is proportional to the carrier momentum p. 

Eg 
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Eq. 1.5

 

Direct and indirect bandgap semiconductors 

Semiconductors can be further differentiated based on the nature of the transition 

between the VBM to the CBM. They can be classed as either direct or indirect bandgap 

materials based on the overlap of the VBM and CBM in k space. For a direct band gap 

semiconductor, the VBM and CBM overlap in k space and a photon with energy hν ≥ Eg 

can excite electrons to the CB through a vertical transition (Figure 1.3a). Indirect band 

gap semiconductors, however, are characterized by an offset of the VBM and CBM in k 

space (Figure 1.3b). Since photons do not carry momentum they would not be sufficient 

for a VBM to CBM transition (momentum conservation). Unless, the photon couples with 

a phonon (lattice vibration), which can provide sufficient momentum to make up the 

= ∂
∂

−

Figure 1.4- In the direct band gap the CBM occurs at the same point in k space as the highest point as the 

VBM, allowing for a direct optical transition to occur without a significant change in the k vector. The 

energy gap between the two bands can be determined by the threshold frequency for absorption (λonset). In 

the case of the indirect bandgap the transition involves both a photon and simultaneous coupling with a

phonon (either through emission or absorption of a phonon). With the absorption onset being determined

by the energy of the photon as well as that of the phonon involved in the transition.  

di b d h CBM h i i k h
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offset in k space. Direct band gap semiconductors are usually characterized by large 

absorption coefficients for photon energies hν > Eg. Indirect band gap materials, on the 

other hand, have significantly lower absorption coefficients (probability wise). This arises 

due to the momentum offset that requires simultaneous coupling of a photon with a 

phonon in order for absorption to occur. The most well-known example of an indirect 

semiconductor are silicon and GaAs; this explains why fairly thick silicon crystals are 

needed in photovoltaic cells for complete absorption of the incident radiation. 

 

1.2 Organic-inorganic perovskite photovoltaics 

1.2.1 Background 

Perovskites were discovered in 1839 by Gustav Rose,8 who went on to name them after 

the Russian mineralogist Lev Perovski. The name initially referred to the mineral CaTiO3 

but was later extended to encompass materials that had a similar crystal structure and a 

= A 

= B 

= X 

Figure 1.5 – Crystal structure of the perovskite - CH3NH3PbI3. Where A = CH3NH3
+, B = Pb2+ 

and X = I– 
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comparable ABX3 stoichiometry, where A is a cation, B a metal cation and X an oxide or 

halide anion (Figure 1.5).  

The first reports of hybrid organo-metallic perovskites (OMP) were by Webber et al.9 

in 1978, who studied compounds with the composition CH3NH3PbX3 (X= Cl, Br & I). 

Their application as a photovoltaic material came much later and was initially 

demonstrated in 2009 by Kojima et al.2 who made devices with CH3NH3PbX3 (X = I & 

Br) with device efficiencies of 3.8% (X = I) and 3.1% (X = Br). The dye-sensitized solar 

cell architecture developed at the EPFL10,11 served as the template for their first 

application, with the perovskite active layer replacing the conventional dye sensitizer on 

a mesoporus-TiO2 (mp-TiO2) scaffold. The initial iterations of perovskite based 

photovoltaic devices faced some significant hurdles, the foremost being that they rapidly 

decomposed in the liquid electrolyte that served as the redox mediator for the DSSCs.12 

The limitations of the liquid electrolyte were overcome by replacing it with the solid state 

hole transport material, spiro-MeOTAD1, which had orginially been used for solid-state 

DSSCs.13 In 2012, Kim et al.3 reported OMP solar cells using spiro-MeOTAD as the hole 

transporter. Their work resulted in significant improvements in the power conversion 

efficiency (PCE) to 9.7% and devices which were markedly more stable than their liquid 

electrolyte counterparts. Work undertaken simultaneously by Lee et al.4 showed that the 

perovskite could function in device architectures where the electron accepting mp-TiO2 

was replaced with insulating mp-Al2O3, achieving even higher PCEs of 10.7%. Their 

                                                

1 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene 
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work also demonstrated that the perovskite’s functions are significantly more 

comprehensive than the dyes that they replaced in the early devices.12,14 The initial papers 

in 20123,4 that demonstrated the all-solid-state perovskite devices were extraordinary, in 

the sense that these seminal works already produced photovoltaic devices with power 

conversion efficiency’s that surpassed solid-state DSSCs15 and rivalled state-of-the-art 

liquid electrolyte DSSCs at the time.16 The high device performances triggered a lot of 

research interest and the simple solution processing requirements for device fabrication 

meant a low entry barrier to the field. This has resulted in a substantial amount of research 

activity occurring over a very short time, literature publications around organometallic 

perovskites have risen exponentially since the handful in 2012 to over 1200 in 2015. 

Device efficiencies have steadily improved over the last four years as well, more than 

doubling to a current record efficiency of 22.1%.17 The improvements in performance are 

mostly correlated with two parameters, substantial advances in morphological 

engineering of the film to improve carrier transport and tuning of the chemical 

composition to optimize material properties such as the optical band gap. In addition to 

their use as photovoltaic materials, their applications have grown to include use in water 

splitting,18 light emitting diodes (LEDs),19 OMP nanowire lasers20 and photodetectors.21 
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1.2.2 Film fabrication and device architectures 

The morphological quality of the OMP film is a critical parameter in determining the 

device efficiency, as it defines how well photogenerated electrons and holes are 

transported across the film to their respective extraction interfaces. Preparation methods 

for film formation have been extensively investigated and their optimization is ongoing. 

The established techniques are illustrated in Figure 1.6.22 There are two primary film 

fabrication routes, the first of which is based on the deposition of the film from solution 

in either a one-step method4 or a two-step method developed by Burshka et al.23 

(Figure1.6 a & b). The second is through vapor deposition24-26 of the precursors which 

allows for high precision control of the film thickness and its composition (Figure 1.6d). 

These techniques, through control of the deposition parameters offer routes to control the 

formation of the perovskite crystals by affecting their nucleation and growth. In addition 

to the deposition method, morphological control can be achieved through engineering 

Figure 1.6 - Deposition methods for OMP perovskite thin films, including (a) single-step solution

deposition, (b) two-step solution deposition, (c) two-step hybrid deposition, and (d) thermal vapor

deposition.  Taken from reference 22 
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with the solvents27 and processing parameters28-30 (such as annealing or anti-solvent 

addition during the spin coating process) used in the film formation process.22,31   

Two of the most common device architectures are presented in Figure 1.7. As 

previously mentioned the OMP layer had initially been thought of as a replacement of the 

dyes that sensitized the mp-TiO2 in the DSSC.2,12 However, their ability to efficiently 

disassociate, as well as transport charge carriers after photoexcitation opened them up to 

a wider range of device architectures. Although the highest performing devices (PCE 

21.1%) currently still use perovskite infiltrated mp-TiO2,32 these devices generally have 

a perovskite layer that “caps” the mp-TiO2 (Figure 1.7a). The thickness of this capping 

layer (≈ 500nm) is significant relative to the mp-TiO2 (≈ 150nm), making the device 

structure near to that of a completely planar device. The perovskite functions as the light 

absorber and subsequent to the absorption of a photon, photogenerated electrons and 

holes are transported to the electron transport (ETM) and hole transport (HTM) interfaces 

respectively. The OMP, being able to transport both charge carriers efficiently over 

Figure 1.7 - Schematic diagrams of perovskite solar cells in the (a) n-i-p mesoscopic, (b) n-i-p

planar. Adapted from reference 22 

  

a b 
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distances >1 um33 means that being in high proximity to the carrier accepting interface is 

not a requirement. Hence, completely planar devices (Figure 1.7b) that use thin films of 

TiO2 or SnO2 as the ETM are also under study.34,35 For the hole transport material (HTM), 

spiro-MeOTAD continues to be the material of choice for state-of-the-art devices.  

1.2.3 Crystal structure and optical properties 

The general schematic of the crystal structure of hybrid OMPs are presented in Figure 

1.8.36 The ideal perovskite has a simple cubic structure, where BX6 (PbI6 in Figure 1.8) 

corner sharing octahedra form three dimensional networks. The organic cation (A) 

(CH3NH3
+ in Figure 1.8) fills the interstitials between the octahedral. The CH3NH3

+ ions 

can rotate within their octahedral cages, with potentially significant consequences for the 

electronic structure that will be discussed later in the introduction. A key strength of 

OMPs is the ability to easily tune their chemical composition. This allows us to tailor the 

physical dimensions of the crystal, the morphology and the electronic transitions by 

altering the ions that constitute the perovskite material. By changing the molecular cation 

(A site) we can change the polarization, as well as break the three-dimensional crystal 

network. In 2001, Mitzi et al.37 showed that 2-D sheets and 1-D rods of organo-metallic 

perovskites could be fabricated by introducing larger cations, and Wu et al. 38 
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demonstrated an increasing density of excitonic trap states on confining the crystals 

dimensions. The redox properties of the material are primarily governed by the metal 

cation and halide anions in the B and X sites respectively. Substitution of the halides that 

occupy the X sites can tune the bandgap in proportion to their electronegativity,39 with 

the bandgaps increasing according to Cl > Br > I. Kulkarni et al.40 demonstrated the ability 

to continuously tune the absorption onset by varying the halide concentration in the 

CH3NH3PbI3-xBrx composition, for x between 0 < x < 3, shifting the band gap from 

1.55eV (x = 0) to 2.2eV (x = 3). Similar substitutions between Cl/Br have also been 

demonstrated,41 substitution of the iodide by chloride ions are however not possible. 

Figure 1.8 –. Schematic of the perovskite crystal structure with respect to the A, B, and X lattice 

sites. The redox chemistry of the component ions can be used to influence the valence and

conduction band energies and orbital composition, and hence the stability of electrons and holes

in the material. For larger molecular A sites layered perovskites are formed. Reproduced from

reference 36. 
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Initial demonstrations of CH3NH3PbI3-xClx, formed by vapor deposition showed high 

device efficiencies of 15%,42 however later studies showed that the large mismatch 

between the size of I- and Cl- meant that a negligible amount of Cl- remains in the film. 

The function of the chloride was primarily in aiding the formation of the perovskite 

crystals and improving the film morphology43 (which would certainly be an important 

parameter in the perspective of device performance). Substitution of the B site has also 

been demonstrated as an avenue for tuning the optical absorption, alloying the OMP by 

partially replacing Pb by Sn can shift the band gap from Eg = 1.55 to 1.17eV.44 

 

1.2.4 Electronic structure 

The presence of heavy Pb and I atoms in OMPs is expected to give rise to relativistic 

effects, specifically enhanced Spin-Orbit Coupling (SOC). This was indeed identified 

through DFT calculations by Evans et al.45. Their work showed a significant SOC impact 

on the electronic structure of the OMP. Which resulted in a breaking of the degeneracy 

of the conduction band (CB) to form a triply degenerate CB which can be populated 

through direct transitions from a single valence band (VB). Further theoretical work by 

Zheng et al.46 subsequently showed that the strong SOC effect due to the heavy elements 

combines with asymmetric fields in locally polarized domains resulting in a Rashba 

effect. The result in a shift of the CB in k space relative to the VB, forming an indirect 

transition between their minima (Figure 1.9b). The rotation of the CH3NH3
+ cations were 

shown to result in a breaking of the crystal symmetry, forming dynamic local polar 

distortions that contribute to the Rashba effect. 47-50  
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1.2.5 Carrier transport 

The carrier transport properties of a material are a crucial consideration in the 

perspective of their suitability for application in photonic devices. The related 

observables of interest are carrier diffusion lengths, lifetimes, effective mass, mobilities 

and the scattering processes that limit carrier mobility. A large part of this thesis involves 

the investigation of carrier transport properties in OMP materials and a short review of 

relevant literature will be presented below.  
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Figure 1.9 – Band structure of the fully relaxed CH3NH3PbI3 crystal. The bands are shown for

molecule orientations along (a) (111) and (b) (011) direction. The insets show a magnification of

the bands (which have been shifted in energy for convenience) around the bandgap and highlight

the changes in the VBM and CBM caused by the rotation of CH3NH3
+. Note that for the (011)

orientation the bandgap becomes indirect. Taken from reference 50.  
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Literature Review    

Initial measurements of the carrier diffusion lengths found values that matched or 

exceeded the typical OMP film thickness in photovoltaic devices, meaning that 

photogenerated carriers could efficiently reach their accepting interfaces prior to loss 

through recombination. Xing et al.51 found diffusion lengths of 100 nm for CH3NH3PbI3 

perovskites while Stranks et al.33 established values > 1 μm for CH3NH3PbI3-xClx. As 

mentioned previously this is likely to be due to the improved morphology that Cl 

incorporation provides in the vapor deposition process, which manifests as significantly 

larger carrier diffusion lengths. Importantly, the studies also found that diffusion lengths 

were comparably long for both electrons and holes. Subsequent work by Li et al.52 

determined μm diffusion lengths (for both electrons and holes) for CH3NH3PbI3 that were 

comparable to those of CH3NH3PbI3-xClx. Dong et al.53 demonstrated diffusion lengths 

exceeding 175μm in solution grown single crystals of CH3NH3PbI3. The long diffusion 

lengths are a result of high carrier mobilities (relative to organic semiconductors) and 

long carrier lifetimes. With Wehrenfennig et al.54 and Marchioro et al.55 demonstrating 

lifetimes of 4.9 μs and 15 μs in films of CH3NH3PbI3-xClx and CH3NH3PbI3. 

SOC–GW calculations by Umari et al.56 for the effective mass of electrons and holes 

gave values of  = 0.19 and  = 0.25. Other theoretical and experimental work 

produced carrier effective mass values that were in close agreement.57,58 Interestingly the 

work by Umari et al. shows that the effective mass of electrons is lower than that of holes. 

Since carrier mobility is inversely proportional to the effective mass (μ = eτ/m*, here τ is 

the scattering time of carriers), this would lead to electrons having a higher mobility. 
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Further theoretical work by Motta et al. using DFT simulations found hole mobilities of 

1 – 5 cm2 V-1 s-1 and an electron mobilities between 5 – 10 cm2 V-1 s-1. Hall measurements 

of the carrier mobility by Stoumpos et al.59 revealed electron-hole averaged mobilities of 

66 cm2 V-1 s-1 for CH3NH3PbI3 and values as high as 2320 cm2 V-1 s-1 for CH3NH3SnI3. Y. 

Chen et al.60 also report Hall effect measurements of CH3NH3PbI3 for polycrystalline 

films but they obtained a much lower value of 8 cm2 V-1 s-1.  

Another method to directly probe charge carrier mobility is through the use of time 

resolved-THz spectroscopy (TR-THz), a review of the THz technique is provided in 

chapter 2. Using this technique Wehrenfennig et al.54 measured carrier mobilities of 8 

cm2 V-1 s-1 to 11.6 cm2 V-1 s-1 . The technique allows for the direct probing of charge 

carriers due to their interaction with radiation in the THz regime, however it does not 

make a distinction between electrons and holes, giving the sum of the individual carrier 

mobility instead. Ponseca et al.61 used TR-THz to investigate OMP samples with and 

without mp-TiO2 (which functions as an electron acceptor). The low mobility of electrons 

in TiO2 (< 1 cm2 V-1 s-1)62 relative to the OMP allowed them to dis-entangle their 

calculated mobility value (20 cm2 V-1 s- 1). Obtaining an electron mobility of 12.5 cm2 V-

1 s-1 and a hole mobility of 7.5 cm2 V-1 s-1, with electrons having a higher mobility of a 

factor ≈ 2.61 In both the previous TR-THz studies the carrier generation efficiency φ is 

taken as unity (i.e. all absorbed photons form free charge carriers) and the observed 

photoconductivity were frequency averaged values over the accessible THz domain. The 

frequency resolved photoconductivity can also be obtained using the TR-THz technique, 

fitting the conductivity spectrum with an appropriate model provides an alternative means 
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to obtain the materials carrier mobility. La-o-vorakiat et al.63 obtained mobility values by 

fitting their photoconductivity spectrum with the Drude-Smith model, finding a mobility 

of 260 cm2 V-1 s-1, notably the generation efficiency used in their calculations was φ = 

0.05 which is an exceptionally low value and significantly affects the calculated mobility 

values. Indeed, using a generation efficiency of φ = 1 for their mobility calculation would 

result in a mobility of 13 cm2 V-1 s-1, in line with the reports of Wehrenfennig et al.54 and 

Ponseca et al.61. Valverde-Chávez et al.64 also measured high carrier mobilities of 800 

cm2 V-1 s-1 using the TR-THz technique with a broadband THz probe. Unlike previous 

work, they measured single crystals of CH3NH3PbI3 rather than solution processed 

polycrystalline films. Savenije et al.65 used time resolved microwave conductivity (TR-

MC) to measure a mobilities of 6.2 cm2 V-1 s-1 and also monitored the dependence of 

carrier mobility on temperature, obtaining a relationship of  μ ∝ T–1.6 indicating phonon 

limited carrier mobility.  

 

1.2.6 Defects and morphology 

The presence of defects can play a significant role in the performance of a photovoltaic 

device, due to their detrimental effect on carrier mobilities and lifetimes. In a crystalline 

semiconductor, defects can manifest in three primary forms, point defects, linear defects 

and planar defects. Point defects can arise from extrinsic impurity atoms in the crystal 

structure or native point defects that can be vacancies of a positive and a negative ion, 

which are called Schottky defects or a vacancy caused by the movement of an ion to 

interstitial site that is referred to as a Frenkel defect. Defects also take the form of   
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dislocations within the crystal and unterminated grain boundaries between crystals. All 

of these can act as trap sites, which have electronic states within the semiconductor band 

gap and result in carrier localization and loss through non-radiative recombination 

pathways. They can also act as centres where mobile charge carriers scatter. Carrier 

mobility is proportional to the average time between scattering events and an increase in 

defect density would contribute to a reduction of the carrier mobility.66 A reduction in 

mobility would be detrimental to the performance of photovoltaic devices, where rapid 

carrier transport to the extraction interface is a critical parameters. 

As a consequence of the above, the variations in carrier mobility reported in literature 

can largely be attributed to the variety of processing conditions that have been used for 

film fabrication. The solution processability of the organo-metallic perovskites are one of 

their biggest strengths, but it also gives rise to large variations between films in terms of 

defects within the perovskite grains as well as the macroscale morphology of the 

fabricated thin films. Large single crystals of OMPs would be near ideal systems to 

characterize the intrinsic properties of the material. Investigation of solution processed 

films should attempt to link experimental observations to device performance as well as 

the film morphology. This would allow for a better understanding of their correlation and 

provide practical insights and direction for future work. 

Work by DeQuilettes et al.29 used correlated microscopy and photoluminescence (PL) 

measurements to demonstrate the microstructure dependence of luminescence in 

polycrystalline OMP films. Their work revealed significant variations between the 

different grains that make up a single solution processed film, in terms of the magnitude 
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of radiative and nonradiative carrier recombination pathways. The photoluminescence 

(PL) was shown to have large variations with certain grains exhibiting brighter PL, 

indicating more efficient radiative recombination. While in other grains, non-radiative 

recombination pathways are dominant and they are hence darker. The grain boundaries 

were generally dimmer in all cases, indicating faster, non-radiative recombination occurs 

at the interfaces between grains. Chemical treatment of their films using pyradine was 

shown to partially passivate non radiative traps at the grain boundaries, resulting in 

increased radiative recombination.   

 

 

 

1.3 Electroabsorption  

The splitting of spectral lines in atoms and molecules by application of static external 

electric field was discovered Joahnnes Stark in 191367 and forms the basis of Stark 

spectroscopy. More broadly, Electroabsorption (EA) corresponds to a change in a 

materials absorption spectrum due to the presence of a local or externally applied electric 

field.  The differential absorption (∆A) signal is detected using a modulation technique 

and is calculated by subtracting the steady state absorption from the absorption of the 

material subjected to an electric field (illustrated in Figure 1.10). 
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This technique can be used to probe the change in dipole moment and polarizability of 

a transition state by monitoring the dependence of the field strength on the shape and 

amplitude of the EA spectra.68 The change in the absorption band shape, ΔA(ν), of 

molecular and excitonic species subjected to an electric field  can be described as the 

linear combination of first and second derivatives of the static absorption spectrum A: 69-

71 

 
Eq. 1.6 

where E is the electric field exerted on the sample, m0k is the change in the permanent 

dipole moment, and p0k is the difference in polarizability between the ground (0) and state 

(k) connected by the optical transition that is being probed. The first term in Eq 1.6 is 

linear in E and reaches zero for isotropic samples, because the transition dipole moment, 

m0k is averaged over all possible orientations. The second term shows that changes in the 

λ = − ∂ λ
∂λ
i − ∂ λ

∂λ
i + ∂ λ

∂λ
i

A

e

0

Energy

f

Δ
A

Figure 1.10 – Due to the static electric field the absorption spectrum of the material is shifted 

(dotted and solid lines in the top figure correspond to the absorption spectrum with and without

the applied field. The bottom figure corresponds to the calculated difference between the spectra. 

Figure from ref 67. 
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dipole moment are associated with the second derivative of the absorption spectrum, and 

the last term includes the product of the change in polarizability between the ground and 

perturbed state, p0k, and the first derivative of the absorption spectrum.  

An EA shift can be induced by the application of an external electric field, but it can 

also be caused by a local electric field formed by photo-generated charge carriers, the 

resulting coulomb interaction affects the absorbance of the surrounding material. Such 

EA features due to local electric fields between photogenerated carriers have been shown 

to manifest after photoexcitation in transient absorption (TA) measurements where no 

applied external field is present.71-74 Trinh et al.71 observed such transient photoinduced 

EA features in their TA measurements of CH3NH3PbI3 films. They attributed their 

observations to the electric field created by hot carriers that affects the subsequent 

absorption of the material, resulting in a transient Stark shift. The spectral features 

associated with their observed photoinduced EA were also observed in EA spectroscopy 

studies, that investigated the spectral line shape of perovskite films on the application of 

an external field.75,76 
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2 Experimental Techniques 
 

Electromagnetic radiation can serve as a contactless probe of the fundamental 

processes that occur in photonic materials.  By carefully choosing the probe wavelength, 

we are able to selectively investigate interactions and phenomena that are uniquely visible 

at specific parts of the electromagnetic spectrum. This gives us the ability to create a 

broad understanding of the fundamental material properties and processes that occur after 

photo-excitation. In this chapter the key experimental techniques will be presented. The 

majority of this thesis involved the investigation of important processes in opto-electronic 

materials at the femtosecond and picosecond timescale. Femtosecond pulsed lasers were 

the primary experimental tool used over the course of this work to give us access to the 

ultrafast time scale. Three primary spectroscopic techniques which relied on ultrafast 

pulsed lasers, were combined to provide a comprehensive understanding of the process 

TerahertzVis Radio
WavesMicrowavesIRUVX-Rays

Frequency (Hz)

Wavelength(nm)

Figure 2.1 – The electromagnetic spectrum with the visible and THz parts of the spectrum 

highlighted  

Wavelength (um) 
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that occur on the macro and microscale in our investigated films. In transient absorption 

spectroscopy, we relied on optical pulses in the visible part of the spectrum. While our 

time-resolved electroabsorption setup used these optical pulses in combination with the 

application of modulated voltage pulses, to investigate the macroscopic carrier dynamics 

under applied electric fields. In THz spectroscopy we combine optical excitation in the 

visible part of the spectrum with probing in the THz domain, to directly observe carrier 

formation and recombination dynamics and probe the microscopic carrier mobility of 

photogenerated charge carriers. The fundamentals of the experimental techniques will be 

presented in detail in this chapter.  

 

2.1 Time-resolved laser spectroscopy 

Time resolved spectroscopy allows us investigate fundamental processes that occur 

within a system in response to controlled external perturbations. These perturbations are 

usually optical in nature. Ultrafast pulsed lasers that provide pulses of light with a 

femtosecond duration, were used to investigate the response of photovoltaic materials and 

devices to optical excitation. Both of the pulsed laser sources used in our measurements 

were femtosecond Ti:Sapphire amplified pulsed lasers (Clark - CPA-2001 for Transient 

absorption and electroabsroption spectroscopy and Coherent (Libra USP HE) for time 

resolved-THz spectroscopy). The femtosecond pulse duration allows us to visualize 

ultrafast processes occurring down to the femtosecond timescales. In order to monitor 

these processes in time we use a time resolved setup that uses optical pump and probe 

pulses. The general outline for such pump-probe measurements are provided in this 
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section and are generally applicable, with some variation, in all our spectroscopic 

techniques. Further details related to each spectroscopic technique will be provided in 

subsequent sections. 

In the typical pump-probe technique, we use an optical pump pulse that takes our 

system to an excited state. The pump wavelength is tuned to access a desired transition 

within the investigated system. The probe pulse monitors the response of the sample to 

the pump excitation. This usually manifests as a change in the transmission of the probe 

through either a reduction in transmission due to the formation of some new species, 

which absorbs or scatters the probe, or an increase in transmission of the probe due to a 

bleaching of an electronic transition by the pump (these processes are visible at different 

parts of the spectrum and depend on the wavelength of the probe pulse). By recording the 

absorption of the probe with and without the pump we can determine the differential 

absorption ∆A. By introducing a controllable delay between the pump and probe beams 

we can monitor the evolution of ∆A in time, giving us the dynamics of the optically 

excited system. This is accomplished by increasing the path length that the pump or probe 

travels using a delay stage (which allows us to access the dynamics occurring up to 1ns 

after photoexcitation). By using a spectrally broad probe pulse we can simultaneously 

monitor the influence of the pump on different parts of the spectrum and the dynamics of 

these processes. This gives us a substantial amount information, from which we can 

reconstruct the processes occurring in our investigated system subsequent to its optical 

excitation.  
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2.2 Transient absorption spectroscopy  

Femtosecond transient absorption spectroscopy is an ultrafast optical pump-probe 

technique. The probe in this case is a broadband white light continuum (400 - 900nm), 

which allows us to monitor the spectral changes and associated dynamics due to pump 

excitation, in the visible and near-IR parts of the spectrum. The pump is a femtosecond 

(40-60fs) optical pulse generated using a NOPA, which gives us the ability to tune the 

excitation wavelength. The resulting, pump induced perturbation to the system is 

monitored using the probe pulse. Putting the probe pulse on a delay stage allows us to 

vary the relative delay between the pump and probe and monitor the dynamics between 

100fs to 1.2ns. The differential absorption signal of the probe is the difference between 

the absorbance of the pumped and un-pumped sample. This is obtained by monitoring the 

transmitted probe intensity with the pump (Ip) and without the pump (Inp) and the intensity 

of the probe on the sample (I0) 

   
Eq. 2.1

 

 

2.3 Time-resolved electroabsorption spectroscopy (TREAS) 

The Femotsecond transient absorption measurements detailed in the previous section 

are a powerful tool in probing the response of a system to optical perturbations. They 

allow us to observe the spectral signatures of species and phenomena that are the direct 

result of optical excitation by the pump pulse. In TAS measurements, we usually study 
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the active layer responsible for the formation and transport of charge carriers. However, 

the photovoltaic systems we investigate are more complex than just the active layers. The 

inclusion of electrodes and externally applied electric fields in functioning photovoltaic 

devices, means that the phenomena and associated dynamics we observe under 

operational conditions are likely to be far more complex than what we observe with TAS. 

In order to investigate opto-electronic materials under conditions that move closer to 

operational ones, the time-resolved electroabsorption spectroscopy (TREAS) has been 

used which allows us to measure complete devices under externally applied fields and 

observe the associated photogenerated carrier dynamics and spectral changes that are 

uniquely visible under these conditions.  

Broadly, the technique allows us to monitor the change in the absorption spectrum of 

a material due to an electric field and the response of photogenerated carriers to the 

applied field. Initially, to observe the steady-state change in the absorption spectrum upon 

the application of an electric field (electroabsorption (EA)), the active layer is sandwiched 

between two electrodes to which a voltage is applied and we observe the EA signal using 

a broadband probe pulse. In the next step, using a pump-probe scheme we can monitor 

the drift dynamics of photogenerated charge carriers due to the externally applied field. 

The formation and drift of photogenerated charge carriers to the oppositely charged 

electrodes screens the externally applied field, diminishing the effective electric field 

(Eeff) felt by the bulk of the material. We can monitor the reduction in Eeff by observing 

the diminishing spectral signature of the steady state EA that was initially characterized 

(and is related to the magnitude of the field felt by the bulk of the material). This change 
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can be associated with the drift of charge carriers and their associated screening of the 

electric field in time. The dynamics are obtained by delaying the pump relative to the 

probe while maintaining a constant externally applied field. This allows us to visualize 

the carrier drift across our investigated film, calculate the carrier mobility in the 

femtosecond timescales, and observe the dynamics of the carriers’ motion across the film 

in time and as a function of the different processes that can affect their macroscopic drift. 

Such as trapping/detrapping or grain boundaries which are highly dependent on film 

morphology. The advantage of the technique lies in our ability to probe the electric field 

dynamics using femtrosecond optical pulses, which allows us to access time-scales that 

are significantly shorter than those that can be obtained by purely electrical 

measurements. 

 

 

2.3.1 State of the art 

Gulbinas et al.  used transient Stark spectroscopy to probe the field induced shift of a 

materials absorption spectrum (Stark shift) and its screening by the separation of 

photogenerated electron-hole pairs. They demonstrated the dynamic character of the 

Stark shift absorption band after excitation with pump pulses with a picosecond duration. 

Monitoring the dynamics of the Stark shift band allowed them to quantitatively analyze 

the spatial evolution of photo-generated charge pairs. Cabanillas et al  used the transient 

Stark spectroscopy technique to determine the charge mobility of PCBM films in the 

picosecond regime. They identified two distinct regimes, a short lived period of high 



 

Chapter 2 

 

 

39 

mobility lasting around 10ps and a slower transport regime commencing once carriers 

reach the inter-domain boundary and trapping becomes efficient, resulting in a reduction 

of the carrier mobility. Work by A. Devizis et al.3 used time-resolved electric field 

induced second harmonic generation (TREFISH) to demonstrate the impact of disorder 

in amorphous semi-conductors on the carrier mobility. Work done by Jelissa De Jonghe 

and Andrius Devizis in our lab used the TREAS technique to monitor the formation 

dynamics of free electrons through the disassociation of interfacial charge transfer (CT) 

states in planar cyanine/fullerene solar cells4,5.  

 

 

2.3.2 ΔAbsorption in TREAS 

In order to more clearly understand the technique and the results presented in later 

chapters, an understanding of the differential absorption signals we obtain from our 

measurements is important. In conventional TAS measurements, the pump is modulated 

i.e. every second pump pulse is blocked by a chopper running at 500Hz, half the repetition 

rate of our 1KHz laser. The ∆A(t, λ) signal we observe is the difference in the broadband 

probe with the pump (Apump (t, λ) ) and without the pump (A(t, λ)), as a function of the 

pump-probe delay (t) and is given by Eq. 2.2.  

For the steady state electroabsorption (EA) spectra, we modulate the applied voltage 

using a function generator that provides square voltage pulses at 500hz, with each pulse 

having 100us duration. We measure ∆A(λ) by looking at the probe absorption with the 
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externally applied electric field (AE(λ)) and without the applied field (A(λ)). Which gives 

us the steady state change in the absorption spectrum of our sample due to the application 

of an electric field and is given by Eq. 2.3. 

For the time resolved electroabsorption measurements, we call the spectra and 

dynamics obtained electrmodulated differential absorption (EDA) for clarity. In the 

ΔA(t, λ) signal, the pump is present in both the collected absorption spectra  (with a 

relative pump-probe delay (t) ). The voltage pulse is modulated and the difference is taken 

as the probe absorption with the pump and applied voltage (AE+Pump(t, λ) ) and the probe 

absorption with the pump but no applied voltage (APump(t, λ)) and is given by Eq.2.4. 

Figure 2.2 shows the pump, probe and modulated voltage pulses that are used in a 

standard TREAS measurement. 

TA spectrum  
ΔA(t, λ) = Apump(t, λ) − A(t, λ)                  Eq. 2.2 

EA spectrum  
ΔA(λ) = AE(λ) − A(λ) Eq. 2.3

EDA spectrum   
ΔA(t, λ) = AE+Pump(t, λ) − Apump(t, λ)          Eq. 2.4 

 

Figure 2.2 – The pump, probe and modulated voltage in a typical EDA measurement. The

pump and probe are delayed relative to each other (∆t) and the voltage is modulated so that it

is present for every second pump-probe pulse pair1.5 
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2.3.3 Experimental 

Laser Source 

The laser source used for the TAS and TREAS setups was a Ti:Sapphire femtosecond 

laser (CPA-2001 from Clark). The frequency doubled output of a Nd:YAG laser (532nm, 

7W) pumped with an arc lamp was used to pump the Ti:Sapphire medium. The seed was 

provided by a frequency doubled Er-doped fiber laser (775nm), which was pumped with 

a diode laser and constitutes the oscillator of the system. The system uses a chirped pulse 

amplification (CPA) technique, in which the seed pulse is stretched in the time domain to 

reduce the peak power. Subsequent to amplification in the laser cavity, the amplified 

pulse is compressed using diffraction gratings to obtain pulse with a duration of ≈ 150fs 

and the average energy of the pulses were 920μj.  

 

NOPA 

In order to tune the excitation wavelength of the pump beam, a two stage Non-Linear 

Optical Parametric Amplifier (NOPA) was used. A part of the output of the laser (150uj) 

was sent to the NOPA. The laser input was divided into two and a small part was used in 

the first stage to produce a chirped white light continuum (WLC) by focusing on a 

sapphire plate. The second part of the laser input is frequency doubled using a BBO 

crystal and again divided (20/80%). The smaller fraction is used in the first stage to select 

the wavelength we would like as the output of the NOPA. This is achieved by spatially 

overlapping the beam with the chirped WLC on a BBO crystal and temporally 

overlapping it with the desired wavelength in the WLC, through which we selectively 
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amplify the intended wavelength. The resulting signal is further amplified in the second 

stage by overlapping it on a second BBO with the larger fraction of doubled fundamental 

of the laser. The output of the NOPA is then compressed using a pair of glass prisms to 

obtain ≈ 50fs pulses with pulse energies that depend on the output wavelength.  

 

TREAS Measurements 

The TREAS setup was originally built in our lab by Dr. Andrius Devizis in 2013, the 

setup has also been used for the TAS measurements. 

The schematic of the TREAS setup is shown in Figure 2.3. The pump beam is generated 

from the NOPA and the WLC for the probe beam is generated using the fundamental of 

the laser focused on a 3mm sapphire plate. The polarizations of both the beams are set at 

their magic angle. The pump-probe delay was controlled using a PI delay stage. A 

function generator (Tektronik AFG 2001) is used to generate the voltage pulses and is set 

at 500Hz and produces square voltage pulses of 100μs duration. The pump and probe 

pulses are at 1KHz and arrive ≈ 50μs after the application of the voltage pulse. The 

measurements are done in reflectance mode, with the pump and probe beams passing 

through the transparent electrode and being reflected off the metallic electrode. The probe 

beam was dispersed in a grating spectrograph (SR163, Andor Technology) and finally 

detected shot by shot at a 1 kHz rate with a 512 × 58 pixel back-thinned CCD detector 

(S07030- 0906, Hamamatsu). Part of the probe beam was split before the sample into a 

reference beam reaching a second detector, which allowed for corrections of shot-to-shot 

fluctuations. The same setup has been used for TAS measurements. For which the 
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function generator was disconnected and a chopper set to 500Hz was used to cut every 

second pump pulse. 

 

 

 

 

 

 

 

 

2.4 THz Spectroscopy  

THz radiation generally refers to the frequency spanning about 100GHz to 30THz. For 

reference 1 THz corresponds to a photon with an energy of 4.1meV and wavelength 

300μm, which is significantly lower than the typical energy required for electronic 

transitions in semi-conductors. THz radiation can nevertheless be used as a probe for 

charge carrier formation and dynamics due to the strong scattering and absorption of THz 
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Figure 2.3 – Schematic of the TREAS setup. For TAS measurements a chopper was placed in the

path of the pump beam and modulated at 500hz and the function generator was switched off.  
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radiation by free carriers, as well as low frequency vibrations or phonons. The THz-time 

domain spectroscopy (THz-TDS) technique allows for the determination of both the 

amplitude and phase of the THz probe pulse, through the direct measurement of the 

transient electric field of the THz pulse transmitted/reflected through the sample and 

reference substrate. This allows us to calculate the frequency dependent complex values 

of conductivity (σ), refractive index(η) and relative dielectric function (ε) across our 

measured range of 0.4– 2.3THz for the sample.  

The addition of an optical pump pulse allows us to carry out time resolved optical 

pump–terahertz probe spectroscopy (OPTP). The pump pulse is used for photoexcitation 

of the sample we investigate. Subsequent to absorption of photons, the THz pulse is used 

to probe the complex induced photoconductivity at a defined time after photoexcitation. 

We probe the evolution of the photoconductivity of the sample, in time, by delaying the 

pump excitation relative to the probe pulse. In this manner we can directly visualize 

charge carrier formation and recombination dynamics.  

 The use of femtosecond lasers in THz spectroscopy was reported for the first time 

by Grischkowsky et al.6 in 1989. Where they used THz radiation generated by 

photoconductive dipole antennas to investigate water vapor. Since these initial reports, 

THz-TDS systems have continued to progress with improvements linked to the 

development of ultrafast laser technology.7 The Development of alternative THz 

generation techniques allowed for the extension of the generated frequency range to 

several THz with pulse durations of 200fs.8  

 A variety of physical systems have been studied using this experimental 

technique. Investigation of systems using THz-TDS resulted in the observation of the 
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formation of excitons9, phonons present in crystalline solids10 and electron transport 

properties in TiO2
11. Time resolved optical pump-THz probe measurements  were used 

to investigate carrier dynamics in organic molecular crystals12 and photoinduced carrier 

dynamics in mp-TiO2 films13 and other systems 14. Reviews of recent work are presented 

in refs 15,16. 

 

2.4.1 Experimental  

Setup 

The THz spectroscopy setup that has been used over the course of this thesis was 

originally built by V.K. Thorsmolle and subsequently rebuilt with a new laser source by 

Jan C. Brauer. A schematic outline of the THz setup and beam path is provided in Figure 

2.4.   

1) Laser Source 

The laser source for the THz setup was a Ti:Sapphire amplified laser system (LIBRA 

USP HE, Coherent). The system consists of a Ti:Sapphire oscillator (Vitesse) that is 

pumped by a Verdi laser head, and provides 4nj pulses at a frequency of 80MHz and a 

wavelength of 800nm.17 The regenerative amplifier is pumped using an Evolution laser 

with a power of 22W and at 1kHz. The generated pulses have an energy of ≈ 3.3mj, 

wavelength of 800nm and pulse duration of 45fs. The output of the laser is divided into 

three parts: the first goes to pump the OPA, the second is used for THz generation and 

the third part of the fundamental is used for detection of the THz pulse 
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2) Optical parametric amplification (OPA) 

Using an OPA we can tune the wavelength of the optical pulses we generate based on 

the requirements (i.e. the absorption spectrum) of the samples we investigate. The OPA 

used in our setup was an OPerA SOLO (Coherent) that could produce pulses between 

235 to 2500nm. 

As the input into the OPA we use a part of the 800nm generated from the laser source 

which is directed into the OPA. A small fraction of this beam is split and focused on a 

sapphire plate to generate a white light continuum (WLC). The WLC is then stretched 

temporally and focused on a beta barium borate (BBO) crystal. A small part of the 

fundamental is also directed on to the BBO crystal so that the two beams overlap spatially. 

By tuning the temporal delay of the fundamental to match that of the wavelength we 

would like to select in the temporally stretched WLC and adjusting the BBO angle to 

have phase matching conditions, we can obtain the desired wavelength. The pre-amplified 

pulse is then overlapped with the rest of the fundamental of the laser on a second BBO 

crystal. Changing the angle of the BBO and the delay between the fundamental and pre-

amplified pulse allows us to tune the frequency of the generated signal and idler.  We can 

then either directly make use of either of the generated pulses or further convert them by 

generating their second harmonic or by sum-frequency mixing with a part of the pump 

pulse.   

 

3) THz generation and detection 

In order to generate the THz pulse and subsequently probe its electric field we use the 

remaining two parts of the fundamental from the laser.  
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Generation of the THz radiation is accomplished by optical rectification of the 800nm 

fundamental of the laser in a zinc telluride (ZnTe) crystal. In order to generate the THz 

pulse we focus 800uj of the fundamental of the laser onto a 1mm ZnTe crystal that results 

in the emission of THz pulses with a frequency bandwidth between 0.1 to 2.3THz and 

allows us to carry out measurements with a time-resolution of 400fs. A PTFE 

(Polytetrafluroethylene / Teflon) plate is placed immediately after the ZnTe crystal, 

which blocks any fundamental that is transmitted through the ZnTe crystal but is mostly 

transparent to our generated THz region (between 0.1-3THz). The THz radiation emitted 

from the ZnTe crystal is collected, collimated and focused on to the sample by gold coated 

parabolic mirrors. The sample is placed within a cryostat that allows for temperature 

control. A second PTFE plate is placed just behind the sample to block visible radiation 

from the pump pulse.  

After the THz radiation passes through the sample it is collected and collimated by 

parabolic mirrors. Electro-optic detection of the transmitted THz electric field is carried 

out using a second ZnTe crystal. The phase and amplitude information of the transmitted 

THz pulse is extracted by mapping out the amplitude of its electric field in time. In order 

to do this the pulse is focused on a second ZnTe crystal. This results in an induced 

birefringence in the ZnTe crystal that is dependent on the amplitude of the THz wave as 

it passes through the crystal. A gating beam (fundamental of the laser) is focused on the 

ZnTe crystal (and spatially overlaps with the THz pulse) and is used to map out the 

amplitude of the transmitted THz pulse in time. The THz beam incident on the ZnTe 

crystal results in a tilt of the polarization of the linearly polarized gating beam due to its 

birefringence. We convert the linear polarization of the gating beam to circular 
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polarization by using a quarter wave plate (QW in Fig. 2.4). The tilt of polarization of the 

gating beam passing through the ZnTe crystal, delivers an optical polarization after the 

QW plate, the difference between its vertical and horizontal components is proportional 

to the intensity of the THz. The polarization modulation of the gating beam is then 

converted to an intensity modulation. The vertical and horizontal components of the 

gating beam are separated using a Wollaston prism and the difference in intensity of the 

two components are detected using two balanced diodes. By temporally delaying the 

gating beam (using a delay stage) with respect to the THz wave, the intensity of the THz 

pulse is monitored in time. The entire THz generation and detection line is enclosed 

within a dry box that has been purged with nitrogen, to reduce humidity that would absorb 

THz radiation (under typical measurement conditions the humidity is ≈ 4.5%). 

 

 

Figure 2.4 – Schematic of the THz setup. Chopper position 1 is used to conduct 

optical pump THz probe measurements and position 2 is used to conduct dark THz 

measurements where there is pump excitation.  
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2.4.2 Data Analysis 

The pump-probe experiments with THz radiation are analogous to conventional 

measurements that use visible light, in terms of using an optical excitation and probing 

the spectral change at a time t after excitation.  However, in addition to the change the 

intensity of the transmitted probe, we can also have access to the phase shift of the spectral 

frequencies contained within the THz probe pulse. Which allows us to obtain the complex 

photoconductivity of the sample.  Due to the strong absorption of free charge carriers in 

the THz spectral region, we can use the THz pulse as a direct probe of photogenerated 

carrier dynamics (formation, recombination, relaxation, etc.) and their mobility. 

Photoexcitation by a pump pulse creates charge carriers, controlling the time delay of the 

pump relative to the THz probe pulse allows us to carry out time resolved THz 

measurements. Scattering by carriers would reduce the transmitted THz, so our observed 

∆T would typically be negative due to a reduction in the transmission after the formation 

of free carriers that increase the conductivity 
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In OPTP we monitor the change in transmission (∆T) of the THz probe pulse due to 

photoexcitation. At a defined delay (t) between the pump and probe, the ∆T(t) signal is 

obtained by modulating the pump pulse using a chopper set to half the repetition 

frequency of the probe and calculating the difference in transmission between the pumped 

and un-pumped sample. The OPTP technique allows us to easily monitor the 

photogenerated carrier dynamics by fixing the probe pulse at the peak amplitude of the 

THz electric field (Tmax) (in Figure 2.5, Tmax would be the peak of the transmitted pulse 

(black trace at 0ps)). We then vary the delay between the pump and THz probe to obtain 

the frequency averaged change in photoconductivity. For a thin film where the thickness 

(L) << λ , provided there is a negligible change in phase on photoexcitation, the average 

change in photoconductivity ∆σ(t) at a pump-probe delay (t) can be related to ∆T(t)/Tmax 

according to the equation18 Eq. 2.5. 
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Figure 2.5 - Schematic of the measurements undertaken to obtain the photoconductivity of the 

sample. Linear scans of the transmission of the THz pulse through the dark sample and the 

photoexcited sample are illustrated in the figure to the right 
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Eq. 2.5

 

Where ε0 is the permittivity of vacuum, c the speed of light, d the penetration depth of 

the pump in the sample, na and nb are the refractive indexes of the materials that surround 

the sample. na and nb are usually the index of vacuum (na = 1) and the quartz substrate (nb 

= 2.13).   

In addition to the frequency averaged photoconductivity dynamics we can also measure 

the spectrally resolved photoconductivity. The frequency resolved photoconductivity 

spectra can be obtained by placing the chopper in the path of the pump, fixing the pump-

probe delay (t) and then scanning the gating beam to obtain the complete modulation of 

the THz pulse in time. This gives us the ∆T(t, τ) of the THz pulse in time (τ) 

(measurement 2 in Figure 2.5), which is the difference in transmission between the 

excited sample Ts,ex(t, τ)  and the unexcited sample Ts(τ). We then record the THz pulse 

passing through an unexcited sample to have the transmission Ts(τ) in the dark 

(measurement 1 in Figure 2.5). With which we can calculate the complex 

photoconductivity σ(ω,t) of the sample. If the variation the complex conductivity 

response of the sample due to the pump pulse is insignificant relative to the oscillation 

period of the THz pulse i.e. the leading edge of the THz pulse experiences the same 

conductivity response relative to the trailing edge (there is no rapid change in conductivity 

σ =
+ ε
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due to charge carrier formation, trapping, cooling or recombination), then a steady state 

approximation can be used to obtain complex conductivity spectrum σ(ω) using the 

Fourier transformed and acording to:

  
Eq. 2.6

 

The complex refractive index and permittivity of the sample can also be obtained by 

measuring the linear scan of the transmission of the THz pulse passing through the 

reference substrate (measurement 1, Figure 2.6) and the THz transmission through the 

sample in the dark without photoexcitation (measurement 2, Figure 2.6).  

 

 

σ ω = −
+ ε ω

ω

80

60

40

20

0

-20

6420-2-4-6
Time (ps)

80

60

40

20

0

-20

T
 (a

.u
)

-6 -4 -2 0 2 4

Figure 2.6 – Schematic of the measurements undertaken to obtain the dark materials 

parameters. Linear scans of the transmission of the THz pulse through the reference and 

sample are illustrated in the figure to the right. 
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The complex refractive index η* is defined by:  

η* = η + iκ  Eq. 2.7                    

where η is the refractive index of the material (η = c / v, here v is the velocity of light in 

the film) and the imaginary part of η* is related to the extinction coefficient (κ) of the 

material (the relationship to the absorption coefficient of the material is provided by α = 

4πκ/λ). The absorption coefficient and the refractive index of the material are related to 

the power, P, and phase, φ, of the Fourier transform of the scans taken of the sample and 

the reference substrate through 19: 

α =                   Eq. 2.8                    

φ φ   Eq. 2.9                    

Where P and φ are the Fourier transforms of the scans through the sample and P0 and φ0 

through the reference substrate.  

The complex refractive index η*and complex relative dielectric function ε* are related by: 

      η* = √ε*                    Eq.2.10                    

For the complex permittivity, the real, ε’, and imaginary part ε’’ are calculated by 
19: 

ε’ = n2 – k2 and ε’’ = 2nk       Eq. 2.11                   
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3 THz Spectroscopy of Hybrid Organic-Inorganic 

Perovskite Films 

 

3.1 Introduction 

In this chapter we investigate thin film perovskites using time-resolved THz 

spectroscopy. Hybrid organic-inorganic perovskites have emerged as one of the most 

promising active materials for new generations of photovoltaics1,2 and a broad range of 

opto-electronic devices. The spectrally broad absorption of the semiconductor combined 

with the ability to transport both electrons and holes allows them to efficiently harness 

the solar spectrum and extract photogenerated carriers.3,4 Their excellent optical and 

electronic properties have resulted in device efficiencies that rival established silicon 

based devices.5 Despite this very rapid progress, much remains to be understood 

regarding the intrinsic properties of the material and the basic mechanisms of solar cell 

operation. Some of the key factors related to the performance of photovoltaic devices 

made from these materials are the nature of the photogenerated species, the efficiency of 

their transport across the device and the rates of loss mechanisms such as carrier 

recombination.   

The dynamics of charge carriers created using an optical excitation pulse in the visible 

part of the spectrum (within the absorption spectrum of the material) are probed with 
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radiation in the THz domain. We are able to directly visualize the formation and loss of 

photogenerated carriers due to their interaction with the THz pulse. In addition to being 

able to selectively probe photogenerated charge carriers, THz spectroscopy allows us to 

simultaneously obtain information about the change in amplitude and phase of the THz 

probe pulse as it passes through the sample in its photoexcited or ground state. In this 

way we directly obtain the frequency dependence of the complex material parameters as 

well as vibrational interactions over the investigated THz frequency range.  

Photoconductivity measurements using THz spectroscopy investigates the high 

frequency, nanoscopic conductivity of our sample films. Using this technique, we aim to 

obtain an understanding of the intrinsic properties of the perovskite in terms of their 

material parameters, such as microscale carrier mobility and carrier transport insights 

obtained from the complex conductivity spectrum. Since the measurements with the THz 

setup does not take into account the macroscopic movement of charges, we combine our 

THz investigations with EDA measurements (presented in subsequent chapters) that 

allow us to build a comprehensive understanding of the micro and macroscale carrier 

properties of the material. 

We investigate two perovskite compositions: the first of which is the methylammonium 

(CH3NH3
+ , MA) lead iodide perovskite (MAPbI3), this composition was used in the 

seminal papers demonstrating high performance photovoltaic devices,1,2 and used 

ubiquitously for fabrication of perovskite based optoelectronic devices and fundamental 

investigations during the first few years of the field. Recently, more complex perovskite 

alloys6,7 that used mixed organic cations/halide anions and result in improved material 
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properties and film morphology have been synthesized. The second perovskite we 

examine is a mixed cation - Formamidinium (CH=CHNH3
+, FA) / methylammonium and 

mixed halide - Iodide / Bromide alloy with the composition (FAPbI3)0.85(MAPbBr3)0.15.  

To begin, the frequency averaged THz conductivity dynamics of the two perovskite 

compositions are measured. The fluence dependence of the dynamics allows us to obtain 

information on the deactivation pathways of the perovskite subsequent to photoexcitation. 

We combine our results with theoretical/experimental literature reports8-13 and explain 

our observations using an indirect bandgap model for the perovskite. In which, carrier 

excitation occurs through a direct band gap transition, while deactivation proceeds 

through a combination of: slow, trap and indirect band gap recombination pathways at 

low carrier densities and a fast recombination pathway through a direct transition at 

elevated carrier densities. Subsequently bimolecular recombination rates and carrier 

mobilities, along with their dependence on temperature are calculated from the 

photoconductivity and the dynamics from the time-resolved measurements. Finally, the 

frequency resolved conductivity and dark THz spectra of our two films are investigated. 

Over the course of the discussion, we link our observations and calculated parameters to 

the characterized film morphology and photovoltaic device performance.  
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3.2 Experimental 

3.2.1 Sample preparation 

Perovskite samples prepared for THz spectroscopy were deposited on quartz substrates. 

Two perovskite compositions were investigated over the course of this thesis. The first -  

methylammonium lead iodide (MAPbI3) and the second - a mixed halide (Iodide / 

Bromide) / mixed cation (FA / MA) perovskite (FAPbI3)0.85(MAPbBr3)0.15 (which will be 

referred to as the mixed perovskite from here on). 

MAPbI3 films: The films used in our measurements were fabricated by Dr. Joël 

Teuscher, the procedure is described as follows: A 155-nm-thick film of MAPbI3 was 

coated on top of the quartz substrate by thermally coevaporating methylammonium iodide 

(CH3NH3I) and lead iodide (PbI2) in a vacuum. Methylammonium iodide was synthesized 

and purified following a reported recipe.14 PbI2 (99%, Aldrich) was used as received. 

Substrates and chemicals were loaded in an evaporator chamber (custom-built, Lesker). 

The chamber was pumped down to a base pressure of 9×10−6 mbar. The 

methylammonium iodide source was contained in a molybdenum boat covered by a 

perforated lid (Omnicore). The CH3NH3I evaporation rate was adjusted with a 

proportional− integral−derivative (PID) controller conditioning the heating power supply 

with a pressure set point of 1.23 × 10−4 mbar. PbI2 was placed in a quartz crucible heated 

by a tungsten wire coil (EVB9, EVC2, Lesker), and its evaporation rate was controlled 

with a quartz microbalance placed inside the chamber.15 The rate of MAPbI3 deposition 
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onto the substrate was 0.03 nm s−1. Details on the evaporation setup and procedure are 

provided in reference.16  

Mixed perovskite film: The mixed perovskite films were prepared by Dr. Juan-Pablo 

Correa-Baena and the description of the deposition procedure has been adapted from ref 

17. The perovskite films were deposited from a precursor solution containing FAI (1 M), 

PbI2 (1.1 M, TCI Chemicals), MABr (0.2 M) and PbBr2 (0.2 M, Alfa Aesar) in anhydrous 

DMF:DMSO 4 : 1 (v/v, Acros). The perovskite solution was spin-coated in a two-step 

program; first at 1000 rpm for 10 s and then at 4000 rpm for 30 s. During the second step, 

100 μL of chlorobenzene were poured on the spinning substrate 15 s prior to the end of 

the program. The substrates were then annealed at 100°C for 1 h in a nitrogen filled glove 

box. The sample thickness as determined from the UV-Vis absorbance of the film on 

quartz was 560nm. 

 

3.2.2 Film and device characterization 

Cross sectional SEM images were obtained in collaboration with Dr. Ibrahim Dar, the 

JV curves for devices made with evaporated MAPbI3 film were provided by Dr. Joël 

Teuscher and the JV curves for devices made with the mixed perovskite were done in 

collaboration with Dr. Juan-Pablo Correa Baena. 

A ZEISS Merlin HR-SEM (Scanning electron microscope) was used to characterize 

the morphology of the device cross-section. Devices made using the perovskite active 

layers were measured using a 450 W xenon light source (Oriel). The spectral mismatch 
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between AM 1.5G and the simulated illumination was reduced by the use of a Schott 

K113 Tempax filter (Prazisions Glas & Optik GmbH). The light intensity was calibrated 

with a Si photodiode equipped with an IR-cutoff filter (KG3, Schott) and it was recorded 

during each measurement. Current–voltage characteristics of the cells were obtained by 

applying an external voltage bias while measuring the current response using a digital 

source meter (Keithley 2400).17 

 

3.2.3 THz spectroscopy 

The THz spectroscopy system used for our measurements has previously been 

described in section 2. Our measurements have been conducted using a pump pulse 

generated by an optical parametric amplifier, with the wavelength tuned to 560nm or 

750nm depending on our desired excitation wavelength. The beam diameter was 

determined to be 3.3 – 3.8 mm with a beam profiler (BC 106-Vis, Thorlabs). The low 

temperature measurements were carried out in an optical helium cryostat (Oxford 

instruments). The measurements were carried out in dry box, which was purged with 

nitrogen to reduce the humidity to ≈ 5%. 
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3.3 Results and Discussion 

3.3.1 Cross sectional SEM 

 

Cross sectional SEM images of films of our two perovskite compositions are presented 

in Figure 3.1. For the MAPbI3 we observed a morphology that was extremely granular 

with grain dimensions that were between 5 -100nm. The cross sectional SEM of the 

mixed perovskite showed it was homogeneous morphologically and had crystals that 

spanned the thickness of the film. 

 

 

 

a) b) 

Figure 3.1 - Cross sectional SEM images for typical layers of our MAPbI3 film (3.1a) and 

mixed perovskite film (3.1b). The perovskite layer has been shaded in brown to distinguish it 

from the substrate. The active perovskite layer shown in this figure are  a part of the complete

devices that are subsequently investigated in chapters 4 and 5.  
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3.3.2 Device Performance 

The performance of complete photovoltaic devices made using the two perovskite 

compositions were characterized. For the mixed perovskite sample, a planar device with 

the following architecture was used: FTO|SnO2|(FAPbI3)0.85(MAPbBr3)0.15 |spiro-

OMeTAD. The MAPbI3 device had the following FTO|TiO2| MAPbI3|spiro-OMeTAD. 

The typical current-voltage scans (J-V) for devices formed from the two investigated 

perovskite compositions are displayed in Fig 3.2. The MAPbI3 based devices had a 

maximum power conversion efficiency (PCE) of 12.4%, with an open circuit voltage 

(Voc) of 1.15V, short circuit current (Jsc) of 16 mA cm-2 and fill factor (FF) of 0.62. The 

mixed perovskite devices had a PCE of 17.9%, with a Voc of 1.16V, Jsc of 22.4 mA·cm-2 

and FF of 0.67.  
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Figure 3.2 - JV scans for the devices made of MAPbI3 (a) and mixed perovskite (b) device 

in the forward and reverse directions. The MAPbI3 perovskite had a PCE of 12.4%, Jsc of 

16mA · cm- 2 and Voc of 1.15 V. The mixed perovskite had an average PCE of 17.9%, Jsc of 

22.38 mA · cm–2, Voc of 1.16 V and Vpmax of 0.9 V. 
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3.3.3 Charge carrier dynamics 

There has been significant debate on the nature of the photogenerated species in 

perovskite based photovoltaic devices, in part surrounding whether photoexcitation 

resulted in the direct formation of free carriers, bound excitons or a mixture of the two.18 

Literature reports of the exciton binding energy in MAPbI3 have varied between from 

2meV up to as high as 50meV.18-23 The general consensus now is that the binding energies 

are at the lower end of the estimated scale, with values for the exciton binding energy 

<16meV being the most likely.20 This would mean that the binding energy is generally 

lower or similar to the thermal energies at room temperature where kbT ≈ 25.7 meV (at 

298K). This indicates that the photo-excited species at room temperature is composed 

primarily of mobile charge carriers and not excitons, these charge carriers form either 

directly after photoexcitation or through splitting of a transient excitonic species. In 

addition, the large absorbance of the perovskite over the visible part of the spectrum 

coupled with the long lifetimes experienced by photogenerated charge carriers24,25 has led 

to uncertainty over the nature of the recombination pathways that govern carrier 

relaxation. The strong absorbance of the perovskite allows for the fabrication of devices 

with an active layer thickness of around 500nm, which is around 1000 times thinner than 

the typical requirements for silicon based devices, where the fundamental transition is 

indirect in nature (hence a weaker absorption which requires a thicker silicon layer). The 

lifetimes of the mobile, photogenerated carriers have been shown to be as long as 30μs 

in films.24,26 Which leads to the question of how such large densities of charge carriers 

(due to the strong absorption) can exist in the film without recombination occurring at a 
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much more rapid rate. We attempt to answer these questions over the course of this 

chapter by investigating the early dynamics of charge carriers and identifying the fluence 

dependent mechanisms that govern the recombination processes. In our measurements, 

photo-excitation was carried out using an optical pulse with a wavelength tuned to 560nm 

or 750nm. The density of photo excited charge carriers formed by the excitation pulse 

can be controlled by modulating the pump fluence.  

The early time scale, at t < 3ps after photoexcitation is shown in Fig 3.3 for excitation 

at low carrier densities, where there is no observable recombination dynamics over 1ns 

(Figure 3.3 inset). We observe a rise that can be associated with the formation of charge 

carriers which is complete in ≈ 1.1 ps and has a t1/2 of ≈ 600 fs. The differential signal we 

observe on the frequency averaged optical pump – THz probe (OPTP) measurements are 

related to the photoinduced conductivity of the film and proportional to the charge carrier 

mobility and their density. Since the exciton binding energy is lower than the thermal 
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energy at room temperature, we expect our observed THz response to photoexcitation to 

be primarily due to free charge carriers. The species formed initially after photoexcitation 

can be assigned to an exciton, which is an electrically neutral quasiparticle and hence 

does not contribute to the photoconductivity probed using THz radiation. The transient 

excitonic species disassociates in 1.1 ps to form free charge carriers and is responsible for 

the observed rise in photoconductivity. Our results are in good agreement with previous 

literature reports on the exciton nature of the initial photogenerated species27  and the 

timescales for its dissociation.28,29    

Figure 3.4 shows the THz dynamics for excitation at different excitation densities for 

both the mixed and MAPbI3 perovskite films. For the MAPbI3 sample, fluence dependent 

measurements were carried out at two excitation wavelengths, 560nm and 750nm. 

Excitation at 750nm is near the absorption edge of our measured sample and results in 

the excitation of electrons from the valence band to the conduction band with very little 

excess energy. Whereas with 560nm we excite carriers into states significantly above the 

conduction band edge. For the dynamics at low excitation fluence, in both the mixed 

perovskite and MAPbI3, we see that there is no observable change in the amplitude of the 

THz signal between 1 - 1000ps after an initial rise following photoexcitation. In MAPbI3 

we see this for both excitation wavelengths (560 and 750nm). This indicates that at low 

excitation densities, after the formation of free charge carriers, there is no change in the 

carrier mobility or the carrier density due to loss mechanisms such as recombination or 

trapping. The lifetimes of these long lived charge carriers have been previously 
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determined to be 10-100μs24 and the recombination mechanism was proposed to be 

predominantly trap assisted at low excitation densities.30  

However, theoretical calculations8,31-33 and experimental work8,11,34 suggested that after 

photoexcitation, electrons and holes occupy bands which are shifted in k space relative to 

each other, resulting in an indirect relaxation pathway. The degeneracy of the conduction 

levels are broken due to spin orbit coupling (SOC), resulting in a splitting to form multiple 

bands.35 With the formation of the indirect band due to an offset of the SOC split 

conduction band minimum (CBM) relative to the valence band (VB) in k space, due to 

the Rashba effect that results in a mismatch of the CBM and VB for momentum and 

spin,13 both of which suppress the return of the carriers to the ground state. Walsh et al.9 

proposed that the mismatch in momentum is the dominant effect in suppressing carrier 

recombination rather than the spin mismatch.  

At higher excitation densities, we see that there is an observable decay of the 

photoconductivity signal within our measured window. This decay could reflect a change 

in either, the mobility of the carriers and/or a reduction in the charge carrier density. There 

is unlikely to be a significant change in carrier mobility by increasing the excitation 

fluence, since we observe no change in the photoconductivity signal over time at low 

fluences. Rather the decay is likely to reflect a loss of carriers due to recombination 

process that are directly linked to the change in photogenerated charge carrier density.  
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fluences and fig. 3.4 b), d) & f) displaying the signal amplitude (∆T) at 10ps and 1ns after

photoexcitation.  Fig 3.4 a) & b) are for the MAPbI3 film with pump excitation at 560nm, c) &

d) for MAPbI3 with the pump at 750nm and e) & f) are the mixed perovskite film with excitation 

at 560nm. 
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In Fig 3.4 (b, d & f) we plot the amplitude of the -∆T signal at 10 ps and 1 ns after 

excitation as function of the excitation density (n0). At 10 ps, we plot the THz amplitude 

at its peak after photoexcitation, while at 1 ns we monitor the signal amplitude after its 

reduction due to carrier recombination at the limit of our measurement window. The 

excitation density at which the onset of carrier recombination occurs can be calculated at 

the point at which the amplitudes at 10 ps and 1 ns begin to diverge. For the tri-iodide 

perovskites, carrier recombination can be observed at carrier densities above 4 x 1017 cm–

3 as observed in Fig 3.4b. Whereas for the mixed perovskite we see that recombination 

begins at excitation densities above 5 x 1018 cm–3 (Fig. 3.4f) which is an order of 

magnitude above that of the multi-grain MAPbI3 perovskite. In addition, we see that for 

both types of perovskite at increasing carrier densities there is a plateau in the signal 

amplitude measured at 1 ns (dotted lines for the 1ns trace in Fig 3b, d & f) while the THz 

signal amplitude at 10 ps continues to grow with increasing excitation density. This 

reflects a convergence of the dynamics traces at higher excitation fluences with increasing 

time after photoexcitation.  

 

In summary, our fluence dependent measurements show:  

1) No carrier recombination within 1 ns at both excitation wavelengths for 

low excitation densities. 

2) Carrier loss through recombination at higher carrier densities, which 

occurs in ≈ 1 ns. 
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3) Carrier recombination results in a reduction of the THz signal amplitude. 

The decay in signal amplitudes for the different fluences proceeds until the traces 

begin to converge at longer times ≈ 1 ns. Which reflects a carrier population 

density which can stably coexist at short timescales, and their recombination 

occurs at longer times >1 μs.  

4) There is an order of magnitude difference between the onset carrier 

densities for fast recombination between the mixed perovskite and MAPbI3 films. 

Our observations indicate that at low excitation densities, the photogenerated charge 

carriers occupy states from which the rate of recombination is extremely low. Excitation 

above a certain threshold (nonset) carrier density (nonset = 4x1017 cm–3 for MAPbI3 and 

5x1018 cm–3 for the mixed perovskite) results in the loss of carriers through 

recombination, until the carrier population once again returns to a value that is stable over 

the nanosecond timescale. Based on these observations we determine that two primary 

recombination regimes exist: a slow one (kslow) that is present at excitation densities n < 

nonset with carriers exhibiting lifetimes > 1 μs in this regime23,24 and a fast regime (kfast) at 

n > nonset, where recombination reduces the carrier population within 1ns until n ≈ nonset. 

A significant part of this recombination happens within our accessible 1ns time scale, 

however we observe a portion of the recombination falls just outside our measurement 

window so we do not see the carrier density reach n = nonset exactly. 

Based on the wavelength dependent measurements for the MAPbI3 film, we see that 

nature of carrier recombination (kfast and/or kslow) does not depend significantly on the 

excitation wavelength (between the two investigated wavelengths). Excitation of carriers 
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with a pump wavelength of 750nm, which is just above the band gap, results in similar 

dynamics to those observed with excitation at 560nm. This tells us that carriers with 

significant surplus energy provided by excitation at 560nm have similar recombination 

pathways and lifetimes as those excited nearer to the band edge with minimal excess 

energy. The primary determinant of whether a kfast component exists is the initial density 

of excited carriers rather than the excess, above band gap energy these carriers have at 

excitation.  

The perovskite films we investigate demonstrate high, ambipolar carrier mobilities and 

devices made from these films have high power conversion efficiencies. This implies that 

carriers occupy bands within which they are mobile and carrier transport to the extracting 

interface is efficient. This would indicate that the significant portion of carriers formed 

after photoexcitaion have long lifetimes while also having high mobility and hence are 

not localized within deep trap states. However, time resolved measurements of carrier 

dynamics at longer, microsecond time scales have found mono-molecular recombination 

dynamics associated with trap mediated carrier recombination.25,28,30,36,37  Wu et al.38 

showed that the trap states were excitonic in nature in the bulk perovskite films, with the 

density of these excitonic traps increasing as the dimensions of the crystals were reduced 

from 3 to 2-dimensional perovskite sheets. Other experimental techniques such as 

spatially resolved fluorescence microscopy by deQuilettes et al.39 have found 

microstructure dependent defects which contribute to trap assisted carrier recombination. 
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Our observed dynamics could be explained by photogenerated carriers that exist in 

either: 

1) one of two distinct bands, within which either fast or slow recombination 

pathways are dominant, and their occupation is dependent on the density carriers 

or / and;  

2) carriers that relax into trap states from which recombination occurs slowly. 

Complete filling of these trap states with increasing excitation density results in a 

surplus of carriers that remain in the conduction band and undergo fast 

recombination with their oppositely charged counterpart.     

While it is likely that trap states exist at grain boundaries and defects within the grain, 

the majority of carriers that are formed in high performance films/devices at all excitation 

fluences would generally be present as freely mobile carriers and not immobilized at these 

trap states. So the density of traps states alone would not account for the fluence 

dependent dynamics we observe.  

In addition, if the generated carriers relaxed into trap states, then the nonset value we 

determined would serve as a characteristic value for the density of these trap states. 

However, the observation of a higher nonset for the mixed perovskite than MAPbI3 is 

incompatible with the significantly higher device performance we observe for the former. 

Hence, our observations are better explained by a combination of trap mediated 

recombination and the existence of two bands with significantly different rates of carrier 

recombination.  
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The trap state density is heavily influenced by processing conditions which determine 

the morphological quality of the film and quality of the individual perovskite crystals that 

form the film;16,39 resulting in a range of trap state densities depending on the fabrication 

conditions. This would explain the significant variations in the modelled contribution that 

trap states have to the experimentally observed recombination dynamics reported in 

literature.13,30 Our observations would also imply that the long carrier lifetimes are an 

intrinsic property of the material and not dependent on the morphological quality. This 

would support our observation of long lived carriers in both the mixed perovskite with 

large crystals and the granular, polycrystalline films of MAPbI3 with significantly larger 

trap states at the grain boundaries. 

3.3.4 Band model 

The existence of an indirect band conduction band (CBindirect) was theoretically 

predicted8,10,32,33 to occur through Rashba splitting of the conduction/valence bands. The 

presence of an indirect transition between the CBM and VBM would fit with the slow 

recombination dynamics we observe. In addition, a second transition which is direct in 

nature, through overlap of the CB and VB in k space, would explain the significantly 

faster recombination kinetics. At low fluences our results show that carrier recombination 

is entirely due to the kslow pathway, regardless of the excitation wavelength. The excitation 

of carriers by high energy photons at 560nm would be a direct transition in to the 

conduction band9 and they subsequently thermalize into CBindirect. For excitation near the 

band edge (750nm) it is unclear whether the transition is initially direct, with thermal 

energy being sufficient to overcome the activation energy for carrier transfer to CBindirect; 
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or if simultaneous carrier coupling with a photon and phonon results in the primary 

excitation near the band edge being indirect in nature.  

Carriers residing in the indirect band would face a momentum forbidden recombination 

pathway. In order for recombination to happen, they would either have to couple with a 

phonon to provide the required momentum for the transition to occur or proceed through 

defect sites within the crystal or at grain boundaries. This phonon mediated recombination 

process would take place at a significantly slower rate than the direct recombination of 

carriers from CBdirect. Savenije et al.11 calculated an activation energy of 47meV for 

transfer between the direct and indirect bands suggesting that thermal energy might assist 

the transfer from the indirect to direct bands, and slow recombination occurs through this 

pathway. 

Our fluence dependent dynamics can be explained by the filling of states in CBindirect 

with increasing excitation densities. With the progressive filling of CBindirect, occupation 

of the indirect band becomes less energetically favourable and surplus carriers begin to 

occupy states in CBdirect. Carriers in the direct band undergo recombination at a 

significantly higher rate due to the overlap of the CB and VB in k space. The population 

of CBdirect is depleted until the remaining carrier density is the sum of those occupying 

CBindirect (nindirect) + trap states (ntrap) i.e. n ≈ nonset. The possible relaxation pathways at 

high and low fluences are illustrated in the free energy state diagram in figure 3.5. Figure 

3.6 illustrates the offset of the conduction band in k space and the filling of the indirect 

band with increasing excitation density.  
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Figure 3.6 – Schematic band diagrams displaying filling of the direct and k-space shifted indirect 

band and recombination pathways at low fluence (left part of figure) and high fluence (right). 

The initial absorption of photons at 560nm occurs between band at the same k values and hence 

is direct in nature. At low fluences, carrier recombination from the indirect band is forbidden due 

to the momentum mismatch and requires coupling with a phonon for recombination to occur. At

high fluences carrier recombination can also proceed through the direct band, the overlap of the

CB and VB in k-space allows this process to occur at a quicker rate without the assistance of a 

phonon to provide the required momentum.   

Figure 3.6 – Free-energy state diagram illustrating recombination pathways at low (a) and high

(b) carrier densities. At low carrier densities recombination proceeds through the two slow

pathways (Trap and Indirect). At high carrier densities recombination proceeds through the two 

slow pathways, in addition the fast recombination pathway which is direct in nature is also 

visible. 

a) b) 
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The ntrap value is highly dependent on the processing conditions.15,17,39-41 Significant 

effort has been directed over the last years to improve film morphology by forming larger 

grains42,43 that facilitate the transport of carriers across the film; passivation of grain 

boundaries44 that act as recombination centres, as well as improving the quality of the 

formed crystals through fewer internal defects. The goal being to reduce loss pathways, 

while assisting the transport and extraction of photogenerated carriers at the electrodes. 

The reduction in the density of trap states would preserve the carrier population in 

CBindirect by restricting possible relaxation pathways and ensuring carriers remain in the 

indirect band until extraction. This however would not change the value of , 

above which carriers begin to occupy CBdirect and fast recombination occurs.  

The  value would be an intrinsic property of the material whose upper limit 

could not be raised through improvements in the quality of the perovskite crystal or 

macroscale film morphology. Modification of the chemical composition of the perovskite 

would however provide an avenue to affect the materials intrinsic properties. The Spin 

orbit coupling that results in the splitting of the conduction levels in the perovskite is 

present in crystals without inversion symmetry. The disorder that is caused by partial 

substitution of the cation and halides in the MAPbI3 composition to form an alloy, would 

result in further breaking of the symmetry and is expected to enhance the effects of SOC.9  

Our fluence dependent measurements show an nonset value is approximately an order of 

magnitude higher in the mixed perovskite film, (FAPbI3)0.85(MAPbBr3)0.15, than MAPbI3. 

The improved film morphology of the mixed perovskite film would result in fewer grain 

boundaries that act as trapping sites. The expected reduction in  would also reduce 
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the nonset value if nindirect stayed constant. However, we see a large increase in nonset for the 

mixed perovskite, that shows that alloying of the perovskite does modulate nindirect. This 

occurs due to additional symmetry breaking caused by compositional disorder of the 

occupational sites enhancing the spin-split indirect gap.9 This could manifest as a change 

in the energetic position of the indirect band relative to CBDirect, which increases the 

number of states that can be occupied before their filling becomes energetically 

unfavorable; or a change in the curvature of CBIndirect that results in an increase in the 

density of states (in both cases the value of would increase.)  

The ability to sustain a large density of free charge carriers under constant illumination 

is a fundamental requirement for a photovoltaic material. And our results show that the 

mixed ion perovskites support a significantly higher carrier density before the onset of 

bimolecular recombination. Carrier densities of ≈ 1017 cm-3 are typical for an operating 

solar cell9 and the mixed perovskites, which can support densities of ≈ 5 x 1018 cm-3 are 

comfortably away from the threshold for fast, direct band recombination. This provides 

direction for future work to move beyond improving the morphological quality of the 

films to engineering the composition of the material to achieve improved device 

performance. 
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3.3.5 Bimolecular recombination rates 

In our time resolved measurements at room temperature, we see either two or three 

recombination regimes depending on the excitation fluence. At low excitation energies 

we see a long lived component that is expected to be first order, monomolecular 

recombination assisted by shallow or excitonic traps23,30,38,45 or through phonon mediated  

recombination from the indirect band.8,10,32 Beyond a certain excitation threshold 

(4 x 1017 cm–3 for CH3NH3PbI3 and 5 x 1018 cm–3 for mixed ion perovskites), we see 

charge carrier recombination occurring within our 1 – 1000 ps measurement window. In 

this high fluence regime, carrier recombination occurs through higher order pathways 

such as bimolecular recombination (which is second order) or Auger recombination (third 

order). Bimolecular processes occur through the band-to-band recombination of mobile 

electrons and holes and would be a second order process that depends on the carrier 

density. In Auger recombination, three charge carriers are simultaneously involved. 

Energy and momentum from the recombination of two carriers is transferred to a third 

carrier and would hence be a third order recombination process.  

The recombination process we observe within our investigated time window are 

predominantly bimolecular in nature over our investigated excitation fluence range. This 

is reflected in the decay dynamics which can be divided into two components, a fast decay 

in < 1 ns and a slow decay component which shows no dynamics in our investigated 

window. However, at the highest excitation fluence used for the mixed ion perovskite, 

for a carrier excitation density of ≈ 5 x 1020 cm-3 (Figure 3.4e), we see two distinct decay 

components within 1 ns. The faster of the two components decays in < 20 ps and can be 
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associated with Auger recombination of free charge carriers, due to its third-order 

dependence with excitation intensity that has been reported.46 While the second 

component can be assigned to the bimolecular recombination of free carriers.   

In order to extract the bimolecular rate constant a second order rate equation can be 

applied. The rate of recombination would depend on the concentration of both electrons 

and holes. At high excitation densities, where the carrier density that recombines through 

the direct transition is significantly larger than nindirect and ntrap, we can approximate that 

the concentration of  &   are similar and equivalent to the number of photons 

absorbed. The change in carrier concentration with time for a second order process is then 

given by the rate equation:  

   
Eq. 3.1

 

where n is the concentration of carriers and k is the recombination coefficient of the 

bimolecular process. The integrated form of Eq. 3.1 equation leads to:  

    
Eq. 3.2

 

Where n0 is the initial carrier concentration and nt is the concentration after a time t. 

Plotting as a function of time allows us to calculate the coefficient (k) of the second 

order kinetics from the gradient. 

=

= +
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Figure 3.7 shows against time for the mixed and MAPbI3 perovskites. The solid 

line in figure 3.7 corresponds to the fitted second-order kinetics of Eq. 3.2. The inverse 

concentration against time is linear in figure 3.7, indicating that for the plotted initial 

carrier densities, bimolecular recombination processes are the primary deactivation 

pathway at times < 1 ns. We can ignore the trap assisted first order monomolecular 

recombination contribution, since they take place at much longer timescales as evidenced 

by the flat dynamics we see at low excitation densities. We obtain a second order 

recombination coefficient of 3.2 x 10–10 cm3 s–1 for multi-grain CH3NH3PbI3 films and a 

coefficient of 5 x 10–11 cm3 s-1 for the mixed perovskite. Both perovskite compositions 

exhibit extremely low carrier recombination coefficients that are comparable to inorganic 

crystalline semiconductors such as GaAs.47  

a) b) 

Figure 3.7 – n–1 vs. time for MAPbI3 (a) and mixed (b) perovskite calculated from the initial 

carrier density of 4.8x1018 cm-3 (MAPbI3) and 1.2x1019 cm-3 (Mixed), the straight lines are the

second order kinetics from Eq. 3.2 
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Our measured recombination coefficient values are also confirmed by those obtained 

using other techniques: Y.Chen et al.48 used Hall effect and photoconductivity 

measurements to obtain bimolecular recombination coefficients between 10–10 – 10–11 

cm3 s-1. Savenije et al.49 obtained second order coefficients of 1.3 x 10-11 cm3 s-1 using 

time-resolved microwave conductivity. Wehrenfennig et al. obtained bimolecular 

recombination rates of 8.7 x 10-11 cm3 s-1 using a similar OPTP technique.  

The bimolecular recombination rates reported across literature have been fairly 

consistent over a range morphology. Indicating that the process, as expected, is not 

dependent on trap states at grain boundaries or within defects in the crystal. Rather the 

measured value is likely to be intrinsic to the material and hence would show very little 

dependence on the morphology. Our measured bimolecular rate constants do however 

show a difference between our two perovskite compositions. With the mixed ion 

perovskite showing a lower bimolecular recombination rate while also being able to 

sustain a considerably higher density of carriers before the onset bimolecular 

recombination process relative to MAPbI3. 

 

3.3.6 Carrier mobility at THz frequencies 

In the low fluence regime we see a linear dependence of the THz signal amplitude with 

excitation density. At higher excitation fluences we observe a deviation from linearity 

when looking at the 10 ps trace in Fig.3.4 b, d & f. Indicating that recombination at short 

time scales < 10 ps reduces the carrier population or that the valence band is significantly 

depleted of carriers, hence there are fewer carriers that can be excited to the conduction 
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band. We observe a negligible phase change upon photoexcitation (Appendix 3.1), so the 

frequency averaged photoconductivity (∆σ) over the penetration depth of the optical 

pulse can be related to the ∆T/T signal through equation Eq 2.5. Charge carrier mobilities 

are a more practical material characteristic than the photoconductivity and can be 

extracted from the frequency averaged photoconductivity THz using Eq. 3.3.50 

   Eq. 3.3
  

Where e is the elementary charge and n± is the calculated density of electrons + holes, 

and φ is the generation efficiency of a carrier pair for each absorbed photon. For our 

calculations we assume a charge carrier generation rate of unity, a value that is less would 

mean the carrier mobility is actually higher than what we calculate. In addition, our THz 

mobility measurements give average values that does not distinguish between the 

mobility of electrons and holes.50  

In order to obtain accurate mobility values, we use values for ∆  at low fluences, where 

there is no change in the photoconductivity due to carrier recombination. The average 

calculated mobility at low fluences for MAPbI3 is 41 ± 3 cm2 V-1 s-1 and 22 ± 4 cm2 V-1 

s-1 for the mixed ion perovskite. Interestingly, we obtain higher carrier mobility for the 

multi-grain MAPbI3 perovskite which has a poorer device performance (12%) relative to 

large grain mixed perovskites (18%). The carrier mobility measured with OPTP 

spectroscopy are generally the upper limit values for carrier mobility, due to the high 

frequency of the probe, carrier mobility is measured on a short length and time scale. Our 

observation of lower carrier mobility in films that form higher performance devices 

φμ = σ

±
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suggest that the intrinsic carrier mobility is not the limiting factor for the performance of 

perovskite based photovoltaic cells. Rather, the device performance is limited in part by 

the density of carriers that can exist prior to the onset of fast bimolecular recombination 

and the rate of this loss pathway. These characteristics are determined by the density of 

carriers that occupy the CBindirect and the quality of the perovskite film in terms of grain 

boundaries, defects/traps in the crystal that act as recombination centres while also 

hindering the long range transport of charge carriers for extraction at their respective 

electrodes. 

 

 

3.3.7 Temperature dependent carrier mobility 

The temperature dependence of the carrier properties in MAPbI3 and mixed perovskites 

have also been investigated using OPTP spectroscopy. In order to do this, we probed the 

photoconductivity of the perovskite films to obtain the temperature dependence of the 

carrier mobility and the bimolecular recombination dynamics.  

The frequency averaged carrier mobility for a range of temperatures was calculated 

from the photoconductivity at 5ps after photoexcitation in a similar manner to the 

mobility at room temperature. A low carrier density of 1.5x1018 cm-3 was used, which 

was below the threshold for bimolecular recombination at room temperature. The 
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mobility was calculated under the assumption that the carrier generation (φ) rate is 

constant and near unity with reducing temperature in the tetragonal phase of the 

perovskite (the tetragonal phase exists between T = 165 K to 327 K) 51. The calculated 

mobilities are plotted against temperature in figure 3.8.  A power law fit of μ against 

temperature (T) results in μ  for the mixed ion perovskite and μ  for 

MAPbI3. 

The scattering processes that have a dependence on the temperature are phonon 

scattering and scattering by ionized impurities. Carrier mobility is proportional to the 

average time between all scattering events, given by the relaxation time constant τ. 

      
Eq. 3.4

 
μ = τ

Figure 3.8 – mobility vs. temperature plot for MAPbI3 (a) and the mixed perovskite (b). The 

points represent the experimental value and the line represents a power law fit with μ  

for MAPbI3 and μ  for the mixed perovskite.  
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According to Mathiessen’s rule, the various scattering mechanisms are assumed to be 

independent of each other and the total relaxation time (τ) is a summation of the 

independent scattering mechanisms52, given by: 

   
Eq. 3.5

 

Where τphon and τimp are the temperature dependent carrier scattering processes due to 

phonons and ionized impurities. The relation of phonon and ionized impurity scattering 

with temperature is expected to be53: 

τphon  μphon     and   τimp  μimp     Eq.3.6 

With μphon and μimp being the mobilities limited by phonon and charged impurity 

scattering. The relationship implies that the decrease in mobility with increasing 

temperature to be proportional to  for phonon scattering. As temperature rises, the 

increase in thermal vibrations would result in increased scattering and hence lower 

mobility. If carrier mobility is limited by ionized impurity scattering, the mobility rises 

with increasing T, with a  dependence. An increase in the average thermal speed of 

carriers with rising temperature would result in them spending less time near ionized 

impurity as they pass, reducing the effect of this scattering mechanism.  

Zhao et al.52 show the expected dependence of the carrier mobility as function of the 

temperature for different doping densities (Figure 3.9). Their calculations show that at 

low defect and doping concentrations carrier mobility is primarily determined through 

scattering by acoustic phonons (red line in figure 3.9). While at higher defect and doping 

τ
=
τ

+
τ

+
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concentrations, the mobility is primarily limited by charged impurity scattering (blue line 

in figure 3.9). With the effective carrier mobility at a certain temperature being a 

combination of these two temperature dependent scattering contributions (black lines in 

figure 3.9).  

Our results show that for the mixed ion perovskite, the change in mobility with 

temperature is  and we can experimentally show that the carrier mobility is 

primarily limited by phonon scattering, which would result in a   dependence. In 

MAPbI3, the  dependence we see, implies that μ depends on a mixture of phonon 

and charged impurity scattering. The total relaxation time would involve both τphon and 

τimp, with τphon having the larger contribution to the carrier mobility (τphon increases with 

decreasing T, while τimp increases with decreasing T).  

Figure 3.9 – The figure (taken from ref 52) represents theoretical calculations for the contributions 

of phonon scattering (red) and impurity scattering (blue) to the overall mobility (black) as a 

function of temperature for different defect/doping concentrations.
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In order to link our observations to the performance of devices made using the two 

perovskite films, we should emphasize the observed distinction between the two films. In 

the MAPbI3 film, we see the charged impurity density is significant due to its influence 

on the carrier mobility in our temperature dependent measurements. Whereas, in the 

mixed perovskite film there is no visible contribution form charged impurities. The 

absence of these charged impurities could contribute to the reduction in hysteresis we 

observe in the current-voltage scans for these devices (figure 3.2). The slow migration of 

ions has been proposed as one of the reasons for the significant photocurrent hysteresis 

that has been observed in perovskite based devices, with ion migration under electric 

fields being mediated by defects that are present within the film, such as vacancies or 

interstitials.54,55 In addition to these point defects, channels between grain boundaries 

have been proposed as pathways for the ion migration.55,56 In MAPbI3 films, the high 

density of charged point defects that are present within the crystal and at grain boundaries 

would be a source of charged impurity scattering of charge carriers while also 

contributing to the observed hysteresis. The improvements in the size and quality of the 

crystals we see in the mixed perovskite films would mean that they possess fewer defects, 

in addition to the reduction in grain boundaries due to larger crystals. A significant 

reduction in the number of charged defects would reduce the impurity scattering 

contribution as well as result in devices with less hysteresis.55 
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3.3.8 Temperature dependent recombination rates 

In Fig 3.10a we see the carrier recombination dynamics at a high excitation density for 

two temperatures (295 K and 165 K) for the MAPbI3 film. The increase in amplitude we 

observe with reducing temperature is due the increased carrier mobility (the 

photoconductivity signal is proportional to carrier mobility and density). Fig 3.10b plots 

the inverse carrier concentration (  vs. time to show the second order dynamics as 

previously described in Eq. 3.2. Fitting of the experimental results (with Eq. 3.2) allows 

us to extract second order recombination coefficients of 3.2 x 10-10 cm3 s–1 at 295 K and 

4.8 x 10-10 cm3 s– 1 at 165 K. We see that reducing the temperature leads to an increase in 

the rate of recombination. The observed increase in the recombination coefficient can be 

related to the rise in carrier mobility with decreasing temperature. Our temperature 

dependent recombination rates can be explained by the Langevin model for bimolecular 
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Figure 3.10 – a) shows the dynamics of MAPbI3 at 295kel (Blue) and 165kel (red) for pump

excitation at 560nm and a carrier density of 2.8 x 1018 cm–3 b) the points shows the change in

inverse carrier density (n-1) vs Time for 295K (blue) and 165K (red) calculated from the

dynamics. The solid lines are the second order kinetics according to Eq 3.2.     
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recombination that had previously been used by Wehrenfennig et al.25 to describe their 

observed recombination rates. In the Langevin theory the likelihood of a recombination 

event occurring is related to the probability of the oppositely charged carriers finding each 

other,57 which is related to the carrier density and their mobility. The recombination rate 

constant according to the Langevin formalism is:57  

     
Eq. 3.7

 

Where μ is the mobility,  the vacuum permittivity, and  the permittivity of the 

active layer. We observe that the rate of bimolecular recombination is proportional to the 

carrier mobility. Hence if k ∝ μ, the increasing mobility we observe with reducing 

temperature would result in an increase the recombination rate. Our temperature 

dependent mobility measurements for the MAPbI3 showed a mobility of 41 cm2.V-1.s-1 at 

295 K and 64 cm2.V-1.s-1 at 170 K. The ratio of the change in mobility is 1.56 (64/41), 

which matches the ratio of our calculated second order recombination coefficients of 1.5 

(4.8x10-10 / 3.2x10-10 ). This shows that the change in the recombination coefficients with 

temperature can be well explained by the related change in carrier mobility.  
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3.3.9 THz conductivity spectra  

The frequency averaged conductivity measurements that have previously been 

presented were obtained by monitoring the change in transmission, at the peak amplitude 

of the THz pulse, as a function of time after photoexcitation. This allowed us to observe 

the dynamics of free carrier formation and recombination and calculate the carrier 

mobility from the change in photoconductivity. In addition to the frequency averaged 

conductivity measurements, we also carried out frequency resolved THz measurements 

within our experimentally accessible window of 0.3 - 2.4 THz. The spectral dependence 

of the photoconductivity and dark permittivity can provide valuable information about 

the nature of carrier transport in the investigated materials. 

3.3.9.1 Drude-Smith conductivity models 

A range of models have been used to analyze the conductivity spectrum depending on 

the nature of the generated carriers and the morphology of the investigated samples. Of 

these, the Drude model provides a simple description of the response of free carriers to 

the frequency of an applied electric field in photoexcited semiconductors or other 

conductive materials. The complex Drude conductivity, at frequency ω, is given by the 

equation: 

    
Eq. 3.8

 

With τ being the scattering time for carriers that have been elastically scattered and 

, is the dc conductivity given by: 

σ ω =
σ
− ωτ
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Eq. 3.9

 

In the above equation, n is the density of charge carriers, e the elementary charge, 

the effective mass,  the vacuum permittivity and  the carrier plasma frequency, 

which is given by: 

 
Eq. 3.10

 

The conventional Drude model has been successful in describing homogeneous 

systems, where transport is dominated by free carriers across large crystalline domains.58-

60 The Drude-Smith model, which was developed by Smith has been able to effectively 

model deviations from Drude like conductivity that can occur in inhomogeneous systems 

where carrier transport is hindered by localization and scattering due to disorder.61-63 A 

second Smith term is added, with a factor cn, that modifies the Drude model to account 

for the retained carrier velocity after backscattering after n events. An assumption that 

the persistence of the velocity is retained only after the first collision (n = 1) allows the 

Drude-Smith equation to be simplified to:  

  
Eq. 3.11

 

σ = =ω τε

ω =
ε

σ ω =
σ
− ωτ

+
− ωτ
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Where the c varies between –1 < c < 0. At c = 0 the conductivity is described purely 

by the classical Drude model. Increasing carrier backscattering is reflected by c values 

that become increasingly negative, varying from conductivity that is Drude like to one 

that is dominated by carrier backscattering for values of c < –0.5. In systems where the 

conductivity is dominated by carrier backscattering, the imaginary part of the 

conductivity is negative at low frequencies, which can be seen in Fig. 3.11 for values of 

c < –0.5. The conductivity becomes increasingly negative as the frequency increases 

before reaching its negative maximum. The real part of the conductivity, for c = 0 is at its 

maximum at DC conductivity and steadily decreases at higher frequencies. For c < –0.5, 

the real part of the conductivity increases at higher frequencies and peaks at  for 

c = –1.  

3.3.9.2 THz conductivity spectra 

In order to obtain the real and imaginary parts of the photoinduced conductivity 

spectrum, the dark spectrum T(ω) and the differential absorption spectrum of the 

photoexcited ∆T(ω,t) are taken. The ∆T(ω,t) measurements are taken at steady state 

Figure 3.11 – Simulated real (a) and imaginary (b) conductivity modelled with the Drude-

Smith model for varying values of the back scattering term (C) 

a) b)



 

Chapter 3  

 

 

94 

conditions, with t ≈ 10 ps after photoexcitation, which is longer than the formation time 

for the charge carriers, and at low excitation densities where there is no change in the 

carrier population over our measured time scale (i.e. no change in the signal amplitude as 

measured in the OPTP dynamics fixed at the peak of the THz amplitude). The complex 

photoconductivity spectrum is extracted according to equation Eq. 2.6. The real and 

imaginary parts of the experimentally obtained conductivity spectra for the mixed and 

MAPbI3 perovskites are displayed in figure 3.12 (dotted plots), in addition the calculated 

conductivities from the Drude-Smith model are plotted on the same figure (solid lines) 

according to eq. 3.11. Within the parameters of the Drude-Smith model; the plasma 

frequency  has been calculated and fixed in the model using the known 

carrier density (1.5x1018 cm-3 for the mixed and 5 x 1017 cm -3 for MAPbI3) (assuming 

100% generation efficiency for electrons and holes)) and m* = 0.23me, which are 

theoretically calculated and experimentally obtained values reported in literature.20,64 It 

should be noted that there could be a variation of the effective mass between perovskite 

compositions. In addition, our assumption of a generation efficiency of unity might be 

overestimated affecting . We primarily aim to correlate the observed conductivity 

spectra to the morphology and scattering process that occur in our two perovskite films, 

which can be accomplished by observing the magnitude of the Smith contribution in the 

Drude-Smith conductivity model. The experimental complex photoconductivity spectra 

for the mixed perovskite displays a nearly flat, positive real part and near zero imaginary 

part. For conductivity that is Drude-like we expect to see a zero imaginary component 

and nearly dispersionless real conductivity in our investigated THz window.  
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For the mixed perovskite, the conductivity spectrum could be replicated using the 

simple Drude model, with the Smith term set to c = 0, and a τ of 2.9 fs (calculated using 

Eq. 3.4 and the previously calculated mobility of 22 cm2.V-1.s-1). Which indicates that 

conductivity is primarily Drude-like and not dominated by disorder induced carrier 

scattering or carrier localization. This can be correlated to the large crystalline domains 

we observe in the mixed ion perovskites from our cross sectional SEM images and the 

absence of charged impurities which we identified with our temperature dependent 

mobility measurements.  

For the MAPbI3 perovskite film, the imaginary part of the photoconductivity is negative 

at THz frequencies and becomes increasingly negative at higher frequencies. The real 

part of the conductivity is positive and shows a small increase with rising frequencies. 

For conductivity dominated by scattering the imaginary part of σ would be negative. This 

is reflected in the Drude-Smith fit which requires c = -0.60 and τ of 8.3 fs, in order to 

obtain a good fit to our experimental results. The low valued c term indicates that the 

Smith contribution to the conductivity dominates due to backscattering of carriers, likely 

off grain boundaries65 and defects due to increased structural disorder or charged 

defects.66 Our experimental results can be well explained by the small crystalline domains 

in our morphologically granular MAPbI3 samples. Which have grains with dimensions 

between 5-100nm as characterized through cross-sectional SEM images of samples. And 

the presence scattering centres in the form of charged impurities, that were previously 

identified through our temperature dependent mobility measurements. Such charged 
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defects, in high enough densities, could act as scattering centres by providing a columbic 

restoring force.67 

 

 

Figure 3.12 – real (red) and imaginary (blue) parts of the photoconductivity for the mixed (Fig

3.12a) and MAPbI3 (3.12b) films. The dotted points represent the experimental obtained values

while the solid lines are the Drude-Smith fits. 
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3.3.9.3 Dark permittivity spectra  

We can also obtain the dark permittivity spectrum by measuring the linear scan of the 

THz pulse passing through the dark sample and through the reference substrate. The real 

part of the measured dark permittivity of the mixed ion and MAPbI3 perovskites are 

presented in figure 3.13. In the dark permittivity spectra for MAPbI3 we observe features 

at 1.1, 1.7 and 2.35 THz. In the mixed ion perovskite, we observe four peaks, centered at 

≈ 1.1, 1.6, 1.9 and 2.2 THz. Previous THz measurements observed peaks at ≈1 Thz and 

2 THz.23 Theoretical DFT simulations and experimental measurements with Raman 

spectroscopy68 of MAPbI3, that lie within our measured THz window, identified two 

Raman active modes at 1.5 THz and 2.2 THz. With the peak at 1.5 THz being attributed 

to the I-Pb-I bending mode and the one at 2.2 THz corresponding to the Pb-I stretching 

mode.68 The previous computational and experimental work corresponds quite closely to 

our observed features at 1.7 and 2.2 THz and can be assigned to the vibrational and 

stretching modes associated with the lead-halide bonds.  

Figure 3.13 - Real dark permittivity spectra of MAPbI3 (Blue) and the mixed perovskite.  
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In the mixed perovskite we see an additional peak at 1.9 THz and a possible shift of 

the two peaks centered at 2.35 and 1.7 THz in MAPbI3, red shifting to 2.2 and 1.6 THz, 

respectively. Our observations can be related to Raman measurements of perovskites with 

mixtures of halides (iodide and bromide) in different ratios carried out by Ledinsky et 

al.69 Their measurements showed that the observed bands are significantly stronger and 

sharper for the mixed halides than for single halide MAPbI3 or MAPbBr3.  

Figure 3.14 shows the real parts of the photoconductivity and permittivity for the mixed 

perovskite. We observe some overlap of the features observed in the real part of the dark 

permittivity with the photoconductivity spectra. With sharp peaks observable at 1.6 and 

2.2 THz which overlap with the peaks observed in the dark permittivity spectrum. Along 

with features and 1.1 and 2 THz that overlap with peaks that are observable in the dark 

spectrum. Since the photoconductivity spectra is obtained by dividing the ∆Tsample (ω,t) 

of the photoexcited sample by Tsample of the dark sample, we would expect the peaks to 

cancel out. However, we continue to observe features associated with the dark spectrum 

Figure 3.14 – Real dark permittivity (red) and photoconductivity (Blue) for the mixed perovskite.
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in our photoconductivity spectrum. This indicates that there is an induced modulation of 

the vibrational modes we observe in our dark spectrum70,71 due to photoexcitation and 

generation of charge carriers by the pump pulse. Future work that systematically 

investigates the compositional dependence of the perovskite, by sequentially varying the 

halide and cation ratios would shed more light on the vibrational bonds involved and the 

nature of their modulation subsequent to photoexcitation. 

 

3.4 Conclusion 

Over the course of this chapter we investigated two perovskite films with different 

chemical compositions and film morphologies. The multi-grain MAPbI3 perovskite had 

crystal dimensions ranging from 5 – 100 nm and fabrication of devices with these films 

gave average PCEs of 12%. The mixed composition produced large perovskite crystals 

with dimensions that were comparable to the thickness of the layer and resulted in 

preparation of devices with an average device PCE of 18%.  

We initially carried out time resolved OPTP measurements to investigate the formation 

and recombination dynamics of photo-generated charge carriers. Subsequent to 

photoexcitation we observe that the generation of free charge carriers occurs in ≈ 600 fs 

and proceeds through the disassociation of a transient excitonic species. With our fluence 

dependent measurements we were able to identify two distinct recombination pathways 

following charge generation. A fast recombination pathway which is present at elevated 

carrier densities and proceeds through direct band-band recombination until a stable, long 
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lived (>1 ns) carrier population density is reached. And a slow recombination pathway 

that involves carriers that occupy an indirect band as well as those residing in trap states. 

Carriers occupying the indirect band would face a momentum forbidden recombination 

pathway that significantly enhances carrier lifetimes; the offset in momentum between 

the CB and VB would require coupling with a phonon for radiative recombination to 

occur or carrier recombination would have to proceed through unoccupied defect states. 

Both of these processes would have rates that are significantly slower than direct band-

band recombination. Our results show that the density of carriers that can exist in CBindirect 

is sufficiently high (≈ 1017 – 1018) to support the carrier densities which exist under the 

typical operational conditions in photovoltaic devices.9    

Engineering of the film deposition process to improve the film morphology and reduce 

the density of trap states would enhance carrier lifetimes and facilitate the macroscale 

carrier transport properties. However, in order to increase the density of states that can be 

occupied in the indirect band, compositional engineering of the perovskite would be 

required to modify an intrinsic material property that is not dependent on the macroscale 

film morphology. Our experimental results show that in the mixed perovskite film, a 

significantly larger density of photogenerated charge carriers can indeed be sustained 

prior to the onset of the fast recombination component. This shows that tuning the 

chemical composition of the perovskite can modify the occupation density of the indirect 

band prior to recombination occurring through the direct transition.  

Investigation of the conductivity spectra for the MAPbI3 and mixed perovskites were 

also carried out and the spectra were fit using the Drude-Smith model. The conductivity 
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for the mixed perovskite was predominantly Drude like, whereas the MAPbI3 film had a 

large Smith contribution to the conductivity indicating significant backscattering of 

carriers. The smaller crystal size in our MAPbI3 film results in a larger number of 

boundaries and surface states between the grains which would contribute to scattering. In 

addition, the charged impurity scattering that was identified through our temperature 

dependent photoconductivity measurements can also be linked to the backscattering we 

observe in the Drude-Smith fits. We observed vibrational modes in the dark permittivity 

spectrum for both of our investigated samples as well as the photo-induced modulation 

of these modes in the mixed sample. These observations provide direction for future work 

which investigates the dependence of the cation and halides, on the intensity and 

frequencies of the observed spectral features. 

 Such compositional investigations can also provide insights into the nature of the 

photoinduced modulations in the spectra. These measurements can be combined with 

newly developed time-resolved broadband-THz spectroscopy which allows for the direct 

probing of carrier dynamics at faster timescales (≈ 50 fs) and investigation of the THz 

spectrum between 2 - 20 THz, which was outside our currently accessible frequency and 

time domain. This relatively broader band THz probe can be used to probe phonon modes 

that were previously not visible and identify their possible coupling with charge carriers. 

Due to the high frequency of the probe and short pulse duration, the THz technique 

measures carrier mobility on a short length scale and would likely be the upper bounds 

for the sample. The calculated carrier mobilities were 41 ± 3 cm2 V-1 s-1 for MAPbI3 and 

22 ± 4 cm2 V-1 s-1 for the mixed perovskite sample. Our results show that the device 
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performance cannot be directly linked to the intrinsic carrier mobility, with the MAPbI3 

device having a PCE of 12% while the mixed perovskite had a PCE of 18%. Rather, the 

overall device performance is determined by range of other factors that determine the 

efficiency with which the photogenerated charge carriers can be extracted at the 

electrodes. The mixed perovskite was shown to be able to sustain carrier densities that 

were an order of magnitude higher than the conventional MAPbI3 composition prior to 

the onset of fast bimolecular recombination, while also demonstrating a lower rate of 

bimolecular recombination. Both of these attributes would support the efficient extraction 

of charge carriers prior to their loss through recombination. 

 In addition, the microscale mobility we investigate with the THz setup would not 

necessarily represent the average mobility of carriers travelling across the film to their 

respective accepting layers. The macroscale mobility is correlated with the film 

morphology and process that hinder the transport of carriers across the film, such as 

trapping/de-trapping at grain boundaries and defects. This would result in an average 

mobility that is lower than the intrinsic mobility of carriers in a perfect defect free crystal. 

Characterization of the macroscale transport properties and correlating the evolution of 

the carrier’s mobility with film morphology as they drift across the device are important 

steps in identifying the mechanisms that limit transport across the film and will be 

investigated in detail over the next chapters.   
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3.5 Appendix 

Appendix 3.1 - Negligible phase change on photoexcitation 

 

 

Figure A3.1 - Typical THz waveform passing for the pulse transmitted through 

the unexcited sample (blue) and the pulse transmitted through the photoexcited 

sample. (red) 
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Figure A3.2 – Absorbance spectrum of MAPbI3 and the mixed perovskite. 
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Time-Resolved Electroabsorption Spectroscopy of 

MAPbI3 Films

This chapter is based on the publication: 

Dynamics of Photocarrier Separation in MAPbI3 Perovskite Multigrain Films under a 
Quasistatic Electric Field. Arun Aby Paraecattil, J. De Jonghe-Risse, V. Pranculis, J. 
Teuscher and J.-E. Moser.  Journal of Physical Chemistry C, vol. 120, num. 35, p. 19595-
19602, 2016. 

 

Abstract: Applying time-resolved electroabsorption spectroscopy for the first time to 

methylammonium lead triiodide perovskite (MAPbI3) thin films under reverse bias, we 

monitored optically the ultrafast evolution of the local counter-electric field produced by 

the drift of photogenerated electrons and holes in opposite directions. Under an externally 

applied electric field of |E| < 105 V cm−1, the carriers were found to reach a separation of 

40 nm within 1 ps. This distance corresponds to the average dimensions of crystalline 

grains in the active film, at the boundaries of which charges were trapped. An intragrain 

average carrier drift mobility of μ± = 23 cm2 V−1 s−1 was inferred. Subsequent charge 

detrapping, migration through the entire film, and accumulation at its insulated surfaces 

caused a blue shift of the perovskite absorption edge that arose within tens of picoseconds, 

owing to a trap-limited electron drift mobility μn = 6 cm2 V−1 s−1. Charge recombination 

was entirely suppressed between field-separated photocarriers generated at initial 

densities of n0 ≤ 2 × 1016 cm−3. Accumulation of electrons at the interface between a 

mesoporous TiO2 electron-transport layer and a multigrain MAPbI3 film was also 

observed, which was indicative of delayed charge injection through a poor contact 

junction.  
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4.1 Introduction 

In this chapter we continue our investigation of previously introduced perovskite based 

films using time resolved electro-absorption spectroscopy (TREAS). Despite the 

significant research efforts that have been focused towards the characterization of the 

fundamental properties of these materials we still have a lot to understand about the basic 

mechanisms of operation. Typical photovoltaic device characterization protocols rely on 

current-voltage scans to measure power conversion efficiency. For a number of 

photovoltaic cell architectures, however, accurate device characterization has proven to 

be difficult, due to the apparent huge dielectric constant of the perovskite at low frequency 

and an anomalous photocurrent hysteresis observed under typical measurement 

conditions.1-3 The latter effects reflect a polarization of the active material submitted to 

an electric field and is believed to be primarily caused by slow halide ions and halide 

vacancies migration within the material and charge accumulation at ion-blocking 

interfaces.4-6 

Ionic disorder in perovskites at room temperature imply the presence of interstitial 

iodide anions and iodide vacancies within the crystal that are likely to act as hole- and 

electron traps, respectively.7-9 Photophysical studies,10,11 photoluminescence nano-

imaging,12  and transient absorption microscopy 13-15 have also evidenced trap and midgap 

states in the material, which are located predominantly at grain boundaries and interfaces. 

The size of crystalline grains in perovskite films and the quality of the electronic contact 

at the interface between the active layer and the electron acceptor material appear, 

therefore, to play a crucial role in determining the devices photovoltaic performances.16-
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18 The design of new possibilities to improve them call for a deeper insight into the details 

of the trapping of photogenerated charge carriers at grain boundaries and of the 

accumulation of charges at the perovskite interfaces. The determination of carrier 

mobilities has been achieved so far by the application of various techniques, contactless 

time-domain terahertz spectroscopy being one among them. This technique, however, 

probes the oscillation of carriers over very short distances and does not allow for the 

characterization of drift mobilities on the order of 200−400 nm, corresponding to typical 

thicknesses of perovskite films in a solar cell. Apart from Hall effect measurements, a 

number of electrical methods, such as time-of-flight (TOF) techniques, have been 

employed to determine dc mobilities within large crystals and in complete photovoltaic 

devices.19,20 The nanosecond time resolution of photocurrent probing constitutes a serious 

limitation in these cases and prevents the observation of ultrafast stages of the carrier 

separation dynamics.  

Time-resolved electroabsorption spectroscopy (TREAS) has been designed to probe 

optically the perturbation of an externally applied electric field experienced by an 

absorber semiconductor, a donor−acceptor bilayer, or a solid blend with femtosecond 

time resolution.21 This recently established experimental technique relies on the electric-

field-dependent optical response of a material (electroabsorption: Stark or Franz−Keldysh 

effects). Photogeneration of charge pairs, splitting of these pairs, and subsequent drift of 

the carriers perturb the electric field exerted locally on the material, causing changes in 

its absorption. Monitoring the temporal evolution of these optical properties in an ultrafast 

pump−probe spectroscopy scheme allows for the reconstruction of the electric field and, 
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hence, the dynamics of charge motion. TREAS based on the transient Stark effect has 

been successfully applied to scrutinize the charge generation and separation dynamics in 

bilayer and bulk heterojunction organic photovoltaic cells.22,23 This technique was applied 

in this work for the first time to investigate the dynamics of charge carrier separation and 

trapping in MAPbI3 perovskite thin films subjected to an external quasi-static electric 

field. 

 

4.2 Experimental 

4.2.1 Sample preparation 

Vapor deposition of the perovskite films were carried out by Dr. Joël Teuscher. ALD 

deposition of the Al2O3 layer was carried out by Dr. Aswani Yella. The general device 

fabrication procedure is as follows:  

An ITO conductive glass substrate was covered by atomic layer deposition (ALD) with 

a 30-nmthick film of insulating alumina. Al2O3 was deposited from pulses of Al(CH3)3 

precursor and water vapor at 114°C.24 A 280-nm-thick film of MAPbI3 was then coated 

on top of the alumina layer by thermally coevaporating methylammonium iodide 

(CH3NH3I) and lead iodide (PbI2) in a vacuum. Methylammonium iodide was synthesized 

and purified following a reported recipe.25 PbI2 (99%, Aldrich) was used as received. 

Substrates and chemicals were loaded in an evaporator chamber (custom-built, Lesker). 

The chamber was pumped down to a base pressure of 9 × 10−6 mbar. The 

methylammonium iodide source was contained in a molybdenum boat covered by a 
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perforated lid (Omnicore). The CH3NH3I evaporation rate was adjusted with a 

proportional− integral−derivative (PID) controller conditioning the heating power supply 

with a pressure set point of 1.23 × 10−4 mbar. PbI2 was placed in a quartz crucible heated 

by a tungsten wire coil (EVB9, EVC2, Lesker), and its evaporation rate was controlled 

with a quartz microbalance placed inside the chamber. The rate of MAPbI3 deposition 

onto the substrate was 0.03 nm s−1. Details on the evaporation setup and procedure are 

provided in ref 26. An insulating poly(methyl methacrylate) (PMMA) layer (25−30 nm 

thick) was deposited by spin-coating on top of the evaporated perovskite. PMMA beads 

(MW 120000, Sigma-Aldrich) were dissolved in chlorobenzene (15 mg/mL), and the 

solution was spin-coated (5000 rpm for 2 min) in a glovebox under a dry and oxygen free 

atmosphere. Gold was finally thermally evaporated on the polymer (BenchTop Turbo 

evaporator, Denton), yielding an 80-nm-thick film of metal. Samples were kept in the 

glovebox until they were used for laser experiments. The aforementioned vacuum 

deposition techniques were employed to prepare complete solar cell devices with an 

ITO conductive glass|mesoporous-TiO2|vapor-deposited MAPbI3|Au architecture. 

Deposition of the 2-μm-thick mesoporous titania layer was carried out by spin-coating a 

colloidal solution of TiO2 with a particle diameter of 20 nm at 5000 rpm for 20s. The film 

was then gradually heated to 500 °C and sintered at that temperature for 15 min. 

4.2.2 Device characterization 

A ZEISS Merlin HR-SEM (Scanning electron microscope) was used to characterize 

the morphology of the device cross-section. The measurements were carried out by Dr. 

Ibrahim Dar. 
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4.2.3 Time resolved electro-absorption spectroscopy (TREAS) 

and Transient absorption (TA) spectroscopy 

The experimental details have been previously described in section 2.2. Similar 

pump−probe schemes were used for ultrafast transient absorption spectroscopy and 

TREAS measurements. Both experiments were based on a common amplified Ti:sapphire 

femtosecond laser system (CPA-2001, Clark-MXR), with an output wavelength of 780 

nm at a repetition rate of 1 kHz. The pump beam at 545 nm was generated by a two-stage 

noncollinear optical parametric amplifier (NOPA-Plus, ClarkMXR), with a typical pulse 

duration of 50−60 fs. The pump and probe pulses were time-delayed with respect to one 

another using a computerized translation stage, and they were crossed in the sample. After 

being being reflected off the gold electrode of the EDA sample (after entering through 

the transparent ITO layer), the probe beam was dispersed in a grating spectrograph and 

detected shot by shot at a 1 kHz rate with CCD detector (S07030- 0906, Hamamatsu).  

For TA spectroscopy, the pump beam was chopped at one-half the amplifier repetition 

rate (500 Hz). In TREAS experiments, each probe pulse was crossed with the pump at 

the full 1 kHz repetition rate. The voltage applied to the electrodes was modulated at 500 

Hz using a function generator (AFG 2021, Tektronix), which provided square voltage 

pulses (up to 6-V reverse bias, 100-μs pulse duration). Multiple samples were measured 

under the same conditions, yielding consistent results. 
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4.3 Results 

4.3.1 Device characterization 

 

The samples used in this work had a multilayer structure of the form 

ITO|Al2O3|MAPbI3|PMMA|Au, where the active material was sandwiched between two 

insulating layers acting as barriers against carrier injection and collection at the 

electrodes. Samples were prepared by coating an ITO/glass conductive transparent 

substrate with an insulating, 30-nm-thick Al2O3 layer, on top of which a 280-nm-thick 

film of MAPbI3 was deposited by coevaporation of methylammonium iodide (CH3NH3I) 

and lead iodide (PbI2).26,27 A 30nm insulating layer of PMMA was deposited by 

Figure 4.1 -. Cross-sectional scanning electron microscopy (SEM) image of an insulated,

vapor-deposited MAPbI3 film sandwiched between two conductive electrodes. From bottom to

top, the micrograph shows ITO conductive glass coated with an insulating layer of alumina, the 

perovskite film, a second insulating layer made of spin-coated PMMA, and an evaporated gold

layer constituting the second electrode. The polycrystalline morphology of the vapor-deposited 

MAPbI3 film is clearly visible, with grain size varying between 5 and 100 nm.
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spincoating a solution of the polymer onto the perovskite, allowing the active film to be 

encapsulated and protected against possible degradation by moisture and oxygen. The 

overall thickness of the sample between the two conductive electrodes was determined 

by scanning electron microscopy to be 340 ± 20 nm (Figure 4.1). 

 
4.3.2 Spectral changes due to optical and electrical perturbations 

A short recap of the ∆A signals we observe using the TREAS and TA technique will 

be given to aid in the understanding of the presented measurements. To obtain the 

transient absorption (TA) spectra, the pump excitation pulse is modulated by using a 

chopper to physically block every second pump pulse. The differential absorption signal 

(∆A) is effectively the difference between the white light spectrum with and without the 

pump pulse (Eq. 4.1). The TA dynamics are obtained by monitoring the ∆A at different 

relative time delays (t) between the pump and probe pulses. To generate the static electro-

absorption (EA) spectra, a square voltage pulse is applied between the ITO and Au 

electrodes with a pulse duration of 100 μs and a repetition rate of 500 Hz (half the 

repetition rate of the laser). In this case, the function generator (which applies the voltage) 

acts as the chopper. We modulate the applied voltage and look at the white light spectrum 

with and without the externally applied voltage and the ∆A is obtained according to Eq. 

4.2. The electro-modulated absorption spectra (EDA) spectra and dynamics are obtained 

by modulating the applied voltage while obtaining the ∆A at different relative pump and 

probe delays (Eq. 4.3).  
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The absorbance changes, ΔA, determined in each case are defined by the following 

differences: 

TA spectrum  
ΔA(t, λ) = Apump(t, λ) − A(t, λ)              Eq. 4.1 

EA spectrum        
ΔA(λ) = AE(λ) − A(λ)                            Eq. 4.2 

EDA spectrum  
ΔA(t, λ) = AE+Pump(t, λ) − Apump(t, λ)     Eq. 4.3 

 

where A(λ) is the absorbance spectrum measured in the absence of a field and with no 

pump excitation, AE(λ) is the spectrum of the sample subjected to the electric field E, 

Apump(t, λ) is the transient spectrum obtained upon laser-pulsed excitation, and AE+pump(t, 

λ) is the transient spectrum of the sample subjected to both the external electric field and 

the optical pump. Figure 4.2 shows the static electro-absorption spectrum (red trace) of 

MAPbI3, its transient absorption spectrum (yellow trace), and its electro-modulated 

differential absorption spectrum (black trace). 
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The change in the absorption band shape, ΔA(ν), of molecular and excitonic species 

subjected to an electric field E can be described as the sum of first and second derivatives 

of the absorption spectrum A(ν):28,29 

      

Eq. 4.4 

 

λ = − ∂ λ
∂λ
i − ∂ λ

∂λ
i + ∂ λ

∂λ
i

Figure 4.2 - Differential absorption spectra of insulated MAPbI3 films. Yellow line: Transient 

absorbance (TA) spectrum (U = 0, λpump = 545 nm, probed 300ps after pump excitation). Red line:

Electroabsorption (EA) spectrum (U = 6.0 V, no pump pulse). Black line: Electromodulated 

differential absorbance (EDA) spectrum (U = 6.0 V, λpump = 545 nm, probed 300 ps after pump

excitation). Inset: Dependence of the differential electro-absorption (EA) signal measured at λprobe

= 762 nm upon the applied voltage (forward and reverse bias). The red curve drawn through the 

experimental points is the best fit to a parabolic function.
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where E is the electric field exerted on the sample, m0k is the change in the permanent 

dipole moment, and p0k is the difference in polarizability between the ground (0) and 

transition state (k) connected by the optical transition that is being probed.   

The linear and quadratic terms in Eq. 4.4 can be distinguished by measuring the 

electroabsorption as a function of the applied bias voltage. The inset of Figure 4.2 shows 

the field dependence of the change in electroabsorption amplitude at the wavelength λprobe 

= 762 nm. A parabolic dependence of the EA signal on the applied voltage is observed. 

In our case, EA measured at the absorption edge seems to be primarily due to a shift and 

broadening of the Gaussian excitonic band component of the perovskite absorbance 

spectrum (Appendix 4.1 - Figure A4.1, A4.2)30, which is expected to produce a quadratic 

Stark effect if the polarizability of the material is reasonably isotropic.28,29 

Electroabsorption spectra of insulated MAPbI3 films were recently shown to also be 

compatible with low-field Franz−Keldysh−Aspnes (FKA) model, according to which 

relative transmittance or reflectance changes also scale quadratically with the electric 

field.31 

The symmetrical responses of the EA signals (Inset, Fig. 4.2) observed at both forward 

and reverse applied biases confirm that the insulating layers effectively prevent carrier 

injection at the electrodes. Any interfacial charge transfer occurring at a particular 

junction would produce a decrease of the effective electric field exerted on the material 

and dramatically reduce the observed electroabsorption upon reaching a critical voltage 

value under normal bias.  
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The EA spectrum in Figure 4.2 shows a negative absorbance change at λprobe = 

745−775 nm, with a maximum at 762 nm along with a weaker positive ΔA feature at 

λprobe = 718−745 nm, an additional positive band above 775 nm is also visible. The shape 

of the EA spectrum is indicative of a blue shift of the excitonic band of MAPbI3 upon 

application of the external electric field and is typical of quadratic Stark or FKA effects, 

where the differential absorbance appears as a mixture of the first and second derivatives 

of the absorption spectrum. The TA spectrum recorded at a delay time of 300 ps after the 

pump excitation shows a negative band between 720 and 780 nm with a peak at 757 nm. 

This feature is associated with the ground-state bleaching of the perovskite, whereas the 

broad positive absorption band spanning 550−720 nm is due to charge carriers generated 

in the photoexcited material.32-34 A shift of 6 nm is observed between the negative peaks 

of the EA and TA spectra with full width at half-maximum (FWHM) values of 20 and 30 

nm, respectively. The EDA spectrum recorded 300 ps after pump excitation is also shown 

in Figure 4.2. The negative band at 751 nm is slightly blue-shifted relative to the ground- 

state bleaching observed in the TA spectrum. Whereas a positive band at 680−720 nm is 

observed, the transient absorption feature due to photogenerated carriers appearing in the 

TA spectrum at shorter wavelengths (λprobe < 660 nm) is absent here, because it was 

subtracted in the calculation of the differential spectrum (Eq. 4.3).  

4.3.3 EDA spectra and dynamics 

The EDA spectra at selected times after pump excitation are shown in Figure 4.3. At a 

delay time of ≤ 0 ps, the pump pulse has not yet generated charge carriers, and therefore, 

the EDA and steady-state EA spectra are identical. The inset of Figure 4.3 shows the EDA 
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dynamics monitored at 762 nm. We observe flat dynamics between – 30 to 0 ps, which is 

prior to the arrival of the pump pulse but the externally applied field is still present over 

this time period. This indicates that there are no spectral changes occurring due to the 

applied field occurring over these time scales. If ion migration is induced by the applied 

electric field, causing a change in the absorption of the material, this must take place on 

a time scale that exceeds the 100-μs period during which the electric field is applied to 

the sample. Hence, any effect of ionic migration is not significant for our measured EDA 

dynamics over the investigated 1ns timescale.  

After pump excitation, the photogenerated electrons and holes in the perovskite layer 

drift toward the oppositely biased electrodes. The carrier separation produces a space 

Figure 4.3 -. Time evolution of the electromodulated differential absorption (EDA) spectra of 

insulated MAPbI3 films excited at λpump = 545 nm and subjected to an external electric field |E|0 =

9.4 × 104 V cm−1 (U = 6 V). Inset: Time dependence of the differential absorbance change 

recorded under the same conditions at λprobe = 762 nm.
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charge and a transient electric field Es that opposes the steady field E0 applied between 

the electrodes. It reduces the effective field strength, |Eeff | = |E0| − |Es|, exerted on the 

MAPbI3 film and consequently decreases the amplitude of the electroabsorption. The 

EDA signal dynamics depends on the carrier’s drift velocity and hence on their mobility. 

EDA dynamics monitored at the peak of the negative band associated with the Stark shift 

(inset of Figure 4.3) shows a decrease of the signal amplitude by approximately one- half 

at early times (< 5 ps) that can be attributed to the field-induced charge separation and 

the ensuing screening of the applied electric field exerted on the perovskite film. This 

initial carrier motion step is completed within 3 ps, at which point the EDA signal flattens 

out, indicating that there is no further rapid change in the effective field experienced by 

the material.  

On a longer timescale, we observe that, after the initial decrease on the picosecond 

range, the amplitude of the transient negative signal increases with a half-reaction time 

of ca. 0.4 ns. The ingrowth in the bleaching band extends far beyond the initial amplitude 

at time zero resulting from the initially observed Stark effect and is accompanied by a 

7 – 9 nm blue shift. This indicates that the slowly growing negative signal peaking at 

λprobe = 755 nm is unrelated to the field-induced electroabsorption of the perovskite. This 

phenomenon, however, is observed only when the external electric field is applied and 

will be discussed in the following section.  

Figure 4.4 compares TA and EDA signals obtained under similar conditions. Because 

no charge extraction from the insulated perovskite film is possible, the time evolution of 

the TA dynamics must result from carrier recombination. In the absence of an applied 
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electric field, a decay of the ground-state bleaching is indeed observed, whose kinetics 

depends on the excitation pulse fluence and the resulting initial photogenerated carrier 

density (Figure 4.4A). Single-exponential fitting of the recombination dynamics yields 

time constants of τr = 5.2, 4.8, 3.4, and 3.4 ± 0.2 ns for pump energy fluences of Ψ = 0.12, 

0.24, 0.36, and 0.48 μJ cm−2 per pulse, respectively. The energy fluence per excitation 

Figure 4.4 -Subnanosecond time evolution of the transient absorption (TA) and electromodulated

differential absorption (EDA) signals recorded for increasing values of the energy fluences at

λpump = 545 nm. (A) TA dynamics of carrier recombination in the absence of a field. (B) EDA

dynamics obtained upon application of an external field of |E| 0 = 6.2 × 104 V cm−1 (U = 4.0 V).

(C) EDA dynamics after subtraction of the carrier recombination contribution (eq 4.5). The

vertical positioning of the traces is arbitrary. All measured absorbance changes (TA and EDA) 

were averaged on the probe wavelength interval 749 nm < λprobe < 757 nm. 
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pulse used in our experiments was kept at low values corresponding at most (Ψ = 0.48 

μJ·cm−2) to < 1 Sun35 and an initial impulsive photocarrier density of n0 = 4.2 × 1016 cm−3.  

Rather than decaying, the EDA ground-state bleaching signal increases markedly after 

the initial 5 ps period with apparent biphasic dynamics (Figure 4.4B). Fitting of the slower 

kinetic component yields time constants quite similar to those extracted from the TA 

signals for carrier recombination. When the external electric field is applied, charge 

migration in opposite directions indeed prevents electron−hole recombination to a large 

extent. The suppression of the carrier recombination and the associated ground-state 

absorption recovery must result in a growing negative differential absorption in the EDA 

response that mirrors the decay of the TA, in terms of both kinetics and amplitude. This 

slow contribution is subtracted in Figure 4.4C by plotting:  

EDA − (−TA) 

ΔA(t, λ) = AE+pump(t, λ) − A(λ)      Eq. 4.5 

The results reveal a fast kinetic component with a first-order time constant of τ = 24 ± 

4 ps that is decoupled from both the initial signal growth assigned to the screening of the 

Stark effect at time delays shorter than 5 ps and the slow decay due to carrier 

recombination on the nanosecond time scale. This 24 ps component is attributed to the 

migration of carriers and accumulation at the two opposite film surfaces. Further charge 

separation should screen the electroabsorption more and thus produce an upward 

absorbance change signal. This contribution, however, is apparently overcompensated 

here by an increase of the bleaching of the material at the probe wavelengths, which 
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credibly results from a Burstein−Moss blue shift of the absorption threshold.34,36 Because 

the two phenomena are characterized by the same time evolution, the combination of their 

respective signals yields the same kinetic parameter.  

A closer look at the sum of the TA and EDA signals (appendix 4.2 – Figure A4.4) 

shows that the recombination dynamics is indeed completely suppressed for initial 

photocarrier densities of n0 ≤ 2 × 1016 cm−3. At higher pump energy fluences (n0 ≥ 3 × 

1016 cm−3), however, a residual slow recovery of the ground-state absorption is still 

observed. This suggests that a portion of the more deeply trapped carriers were not 

separated by the electric field within the first tens of picoseconds and eventually 

recombined on a nanosecond time scale. 
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The interpretation of these results is schematized in Figure 4.5. Band-gap irradiation of 

MAPbI3 perovskite at a pump wavelength of 545 nm generates out-of-equilibrium charge 

carriers. The application of an external field |E|0 quickly separates charges over an initial 

distance corresponding to the size of crystal grains. Typical dimensions of such domains 

range from 5 to 100 nm (Figure 4.1). An average value of the grain length in the transverse 

direction was determined from several cross-sectional SEM images to be d = 40 nm. The 

initial decay of the electric field exerted on the material, as probed optically by the 

screening of the electroabsorption response, shows that the initial charge separation takes 

Figure 4.5 -Schematic showing how photogenerated charge carriers can accumulate at both 

surfaces of an insulated perovskite thin film within an externally applied electric field. 

Populated electronic states appear in dark blue for the conduction band (cb) and electron 

traps and dark pink for the valence band (vb) and hole traps. Fn
* and Fp

* are quasi-Fermi 

levels for electrons and holes, respectively, in the material under illumination. Accumulation 

of carriers causes a blue shift (hν  > hν) of the absorption threshold of the material.  
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place with a time constant of τ1 = 0.94 ± 0.1 ps. (see Figure 4.6 (which zooms in on the 

short timescale dynamics shown in the inset of Figure 4.3)).  

 

 

4.3.4 Evaluating the carrier drift mobility 

The mobility μ of a charged particle migrating in an electric field is defined by:  

μ = v / |E|
0 
      Eq. 4.6 

 

Figure 4.6 - Time-evolution of the electromodulated differential absorbance (EDA) signal 

recorded at λprobe = 765 nm for a MAPbI3 perovskite film submitted to an external electric 

field |E|0 = 9.4×104 V cm–1 upon ultrashort pulse irradiation at λpump = 545 nm. The red line

drawn through the experimental points is the result of an exponential fit with a time constant 

of τ1 = 0.94 ps ± 0.1. 
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where v is the drift velocity of the particle and |E|0 the electric field modulus. The drift 

velocity v = L / τ could in principle be estimated directly from the average transit distance 

L and time τ.  

Absorbance changes resulting from the screening of the quadratic Stark effect by 

drifting charges or from the Burstein-Moss shift induced by the accumulation of carriers 

at the interfaces were shown to scale linearly with the pump energy fluence (appendix 4.2 

– Figure A4.4). The time evolution of ∆A signals should then reflect the rate at which 

carriers reach the boundaries of the grain or of the entire film they moved across. The 

carrier transit time is spread by the initial spatial distribution of the carriers, as well as by 

possible dispersive transport and charge trapping processes. Figures 4.6 and 4.4C showed 

that the transient absorbance signal could be fitted in both cases by a single exponential 

of the form ∆A = b·exp(–kt) + c, from which an average carrier transit time τ1 = L / k was 

estimated. Assuming that the drift velocity is constant, v = L / τ can be calculated, 

provided a reasonably accurate average transit distance (L) is evaluated.  

 

4.3.4.1 Effective external field  

The model for the electric field drop across the perovskite layer was developed in 

collaboration with Dr. Guido Rothenberger. The three-layered insulated perovskite film 

Al2O3 (30 nm)| MAPbI3 (280 nm) | PMMA (30 nm) can be modelled as three capacitors 

in series. A detailed description of the calculation of the field drop across the perovskite 

layer is presented in appendix 4.3. Taking into account the permittivity of the MAPbI3 
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film as well as those of the two insulating layers, the magnitude of the electric field 

experienced by the perovskite material was calculated to be |E|0 = 0.44*U/d, where U is 

the voltage applied between the ITO and gold electrodes and d = 280 ± 20 nm is the 

perovskite film thickness (Eq. A4.6, appendix 4.3). A voltage of U = 6.0 V applied across 

the whole device would hence corresponds to an electric field intensity of |E|0 = 9.4 ± 0.8 

× 104 V cm–1. 

 

4.3.4.2 Average transit distance of carriers 

Contrary to the conventional time-of-flight method, where the penetration depth of the 

pump light is generally small compared to the thickness of the sample and the initial 

photocarrier distribution can be considered as a quasi-two-dimensional sheet, the 

extended absorption profile within the perovskite material results in an initial gradient of 

carrier concentration in the depth of the irradiated film. The average transit distance for 

electrons and holes can be estimated from the coordinate of the centre of mass of carriers 

generated by the excitation laser pulse.  

Let us consider a film of perovskite of thickness L, irradiated through the ITO glass 

substrate and the Al2O3 insulating layer from the left. The light transmittance profile 

across the material is given by Lambert’s law:  

I(x) = I0 .exp(-αx)      Eq. 4.7 

where I(x) is the light intensity transmitted at a depth x and α the absorption constant 

of the material. An absorption constant  α = 6.4×104 cm–1 at λ = 545 nm was obtained 
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from the measured transmittance spectrum of a film of MAPbI3 of known thickness. 

Based on eq. 4.7 The transmittance profile through the 280nm MAPbI3 layer is given in 

Figure 4.7A.  

Details for the calculation of the centre of mass for carriers generated by the laser pulse 

are given in Appendix 4.4. Using α = 6.4×104 cm–1 and L = 280 nm, the abscissa of 

the centre of mass of the carriers initially generated by light in the perovskite is 

determined from Eq. A 4.11(appendix 4.4) as being x̄= 82 nm. The average transit 

distance of electrons to the interface with Al2O3, therefore, is ln = x̄ – 0 = 82 nm, while 

that of holes to the interface with PMMA is lp = L – x̄ = 198 nm (Figure 4.7B). The initial 

drift of charge carriers upon ultrafast pulsed photogeneration takes place within 

individual crystal grains of the perovskite film, whose average length in the transverse 

direction is 40 nm. Using the same value of α and L = 40nm, the light transmittance of 

one grain is found to be 0.77. Equation Eq. A 4.11 returns an average transit distance for 

electrons and holes to the grain boundaries of 18 nm and 22 nm, respectively (Figure 4.8).  

 

 



 

Chapter 4  

 

 

135

 

4.3.4.3 Calculating the carrier mobility 

A time constant τ  = 0.94 ps was determined for intragrain carrier separation under a 

reverse bias U = 6.0 V. On the average, this corresponds to the time necessary for 

Figure 4.8 -Carrier density profile within a 40-nm MAPbI3 crystal grain irradiated from the 

left with α = 6.4×104 cm–1. The calculated average transit distance of electrons to the grain’s

surface is le = 18 nm, while that of holes is lh = 22 nm.  

Figure 4.7 - A) Calculated light transmittance profile of a 280 nm-thick MAPbI3 film with α

= 6.4×104 cm–1 at λ = 545 nm. B) The abscissa of the center of mass of photogenerated carriers

yielded by Eq. A 4.11 is x̄ = 82 nm. 
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photogenerated carriers to reach the grain boundaries from a position corresponding to 

their center of mass. Since there is no way to distinguish between electrons and holes, the 

transit distance to be used in the calculation of the drift velocity must be averaged over 

negative and positive charge carriers: L± = (Ln + Lp ) / 2 = 20nm, leading to a drift velocity 

v± = L± / τ = 2.13×106 cm s–1 and an intragrain average mobility μ± = v±  / |E|0 = 22.6 cm2 

V–1 s–1. A relative uncertainty of the order of 10 % is estimated for the magnitude of the 

electric field and at most of 20% for the drift velocity. Consequently, the determined 

value of μ± is marred by a maximum absolute error of ± 4 cm2 V–1 s–1.  

As the photogenerated charge carriers further migrate toward the oppositely biased 

electrodes, they accumulate at the interface with insulating layers, forming n- and p-doped 

regions at the surface of the perovskite film. A Burstein−Moss blue shift of the MAPbI3 

absorption spectrum owing to the carriers’ accumulation was observed to build up with a 

time constant τ2 = 24 ± 4 ps under a bias voltage of 4.0 V. Because the observed 

Burstein−Moss shift of the absorption edge of the semi- conductor can result from the 

accumulation of only one specific type of carrier (Figure 4.5), the transit time measured 

in this case must be related to the type of carrier that is the first to reach an interface. 

Assuming that the accumulation of electrons in MAPbI3 at the proximity of the alumina 

layer is responsible for the growing in of the bleaching signal, a value for the mobility of 

the negative charge carriers of μn = Ln /(τ|E|0 )= 5.5 ± 1 cm2 V−1 s−1 is calculated. 

Alternatively, if holes are the first to accumulate at the interface between the perovskite 

film and PMMA, their mobility would be determined as μp = 13.3 ± 2 cm2 V−1 s−1. In the 

latter hypothesis, the mobility of the electrons, μn < 5.5 cm2 V−1 s−1, would be ca. 3 times 
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smaller than that of the holes. Retention of negative carriers in deeper traps could provide 

a rationale for this difference. However, if the first assumption is true, namely, that 

electrons are the first to accumulate and cause the bleaching signal, a value of μp < 13 

cm2 V−1 s−1 would be implied, which is compatible with an electron-to-hole mobility ratio 

of 2 (μp ≈ 3 cm2 V−1 s−1) determined by terahertz and microwave photoconductivity 

measurements37,38 and predicted by computational calculations.39,40 In both cases, if a 

mobility averaged over electrons and holes of µ± = (µn + µp) / 2 = L / (2τ |E|0) = 9.4 ± 2 

cm2 V−1 s−1 is considered, one observes that the drift mobility of carriers along their path 

across the multigrain film is reduced at least by a factor of 2−4 compared to the intragrain, 

averaged mobility. This indicates the significant limitation of the drift velocity of carriers 

across the polycrystalline film by scattering at grain boundaries.41,42  

To quickly summarize our calculated mobility values so that we can bring them 

together with the THz mobility calculated in chapter 3: with the EDA measurements we 

calculated an intragrain mobility of 22.6 ± 4 cm2 V–1 s–1, along with a film and carrier 

averaged mobility of 9.4 ± 2 cm2 V−1 s−1. Our calculated OP-THz probe mobility for the 

MAPbI3 film was 41 ± 3 cm2 V–1 s–1. For a quick recap, due to the high frequency of the 

THz probe we calculate the carrier mobilities over very short distances. Hence the values 

we calculate using THz spectroscopy would be near the intrinsic values for the material. 

Taking this into account, we see that the granular film morphology and poor quality of 

the perovskite crystals that form the perovskite film substantially reduces the long range 

carrier mobility. Not taking into account grain boundaries, we see that scattering of 

carriers through defects present within the 40nm large grains already takes a toll on the 
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mobility, with the intragrain mobility being reduced by ≈ 1/2 relative to the calculated 

THz mobility. While average mobility of carriers traversing the length film being ≈ 1/4 

of the intrinsic value. We see that the effective mobility of carriers being transported 

across the polycrystalline film is drastically affected by the presence of grain boundaries 

and defects, which act as scattering and recombination centers of mobile charge carriers.  

 

4.3.5 Accumulation of electrons at the MAPbI3 | mp-TiO2 junction  

In an attempt to discriminate between the respective contributions of electrons and 

holes, we carried out preliminary EDA measurements of thin films of evaporated MAPbI3 

in an architecture that would allow charge extraction at both electrodes. The measurement 

of the uninsulated perovskite sample was conducted by Vytenis Pranculis. The 

investigated sample had the alumina insulator replaced by a thin mesoporous 

nanocrystalline TiO2 layer between the ITO conductive glass substrate and the perovskite. 

On the cathode side, the PMMA insulating layer was omitted, and gold was evaporated 

directly on top of the MAPbI3 film. The U = 4.0 V reverse bias applied in this case was 

expected to make the TiO2 act as an effective electron-transport layer, whereas holes 

would be readily extracted at the gold electrode. Similarly, to the case of the insulated 

perovskite film, screening of the externally applied electric field by intragrain carrier 

separation was observed to take place within a few picoseconds (see Figure 4.6). 
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Following this early decrease of the electroabsorption response, a growing bleaching 

signal with time constant of 20 − 50 ps was monitored again, which was indicative of 

carrier accumulation at one or both interfaces. A slow recovery of the ground-state 

absorption of the perovskite was finally observed with a half-reaction time of t1/2 ≈ 300 

ps. The latter kinetic component was absent in insulated devices and is therefore assigned 

to the slow injection of accumulated carriers through one of the interfaces. A poor 

junction between the mesoporous titania and the polycrystalline vapor-deposited 

perovskite is expected, owing to rather sparse punctual contacts between the TiO2 

spherical particles and the nanometer-sized angular grains of the perovskite. On the 

contrary, the evaporated gold film forms a conformal junction with the active layer. It is, 

therefore, very likely that the observed carrier accumulation and delayed extraction 

 

Figure 4.9 - Sub-nanosecond time-evolution of the electromodulated differential absorption

(EDA) dynamics obtained upon application of an external electric field |E|0 = 6.2× 104 V· cm–

1 (U = 4.0 V, reverse bias) on an insulated MAPbI3 perovskite film (red trace) and a solar cell 

constituted of the same material in contact with a mesoporous TiO2 layer on one side and 

evaporated gold on the other side (black trace).  
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concerns electrons at the MAPbI3|TiO2 interface. These observations highlight the 

importance considering the efficiency of carrier injection at the contacts. Which provides 

direction for future measurements that investigate the efficiency and rates of carrier 

extraction using different electron and hole acceptor materials. 

 
 

4.4 Conclusion 

We successfully applied the time-resolved electroabsorption spectroscopy (TREAS) 

technique to probe long range carrier transport dynamics in methylammonium lead 

triiodide perovskite films. The active material was prepared by vapor deposition and was 

demonstrated to be polycrystalline with an average grain size of 40 nm. On the application 

of an external electric field on the order of 10 MV m−1, the MAPbI3 films displayed a blue 

shift of their absorption edge at 780 nm, corresponding to a quadratic electroabsorption 

response compatible with both Stark and Franz−Keldysh−Aspnes models. The observed 

electroabsorption signal was leveraged to optically probe the time evolution of the local 

electric field experienced by the perovskite due to photogenerated charge carriers.  

Electron−hole pairs were formed on above band-gap excitation of the perovskite using 

a monochromatic pump pulse at 545nm. Their initial spatial separation was observed 

from the EDA signal dynamics to take place with a time constant of 0.94 ± 0.1 ps, until 

charges were trapped at grain boundaries. An average intragrain dc mobility of the 

carriers of μ± = 23 ± 4 cm2 V−1 s−1 was extracted from this result, in good agreement with 

terahertz spectroscopy measurements.38,40,43,44 A second charge separation step was 

observed optically with a time constant of 24 ± 4 ps. This kinetic component was assigned 
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to the de-trapping of carriers and their migration to the opposite insulated film surfaces, 

where they accumulated, producing a Burstein−Moss blue shift of the absorption 

spectrum of the MAPbI3 material. A value of the mobility, limited by trapping−detrapping 

processes at grain boundaries, of μn = 5.5 ± 1 cm2 V−1 s−1 was estimated for electrons 

drifting across the entire film thickness.  A carrier averaged value of 9.4 ± 2 cm2 V−1 s−1. 

was calculated for the transport of electrons and holes across the film. In all cases the 

mobilities we obtained were lower than the intrinsic mobility calculated using THz 

spectroscopy by a factor of 2 – 4. Using the TREAS technique we were able link the 

reduction in the intrinsic mobility value to the film morphology. This was achieved by 

monitoring the evolution of the carrier’s mobility in the picosecond regime and 

identifying the spectral signatures associated with carrier screening of the externally 

applied field, the de-trapping of carriers and their accumulation at the perovskite 

interface. 

The TREAS technique also allowed for the initial characterization of the kinetics of the 

carrier transfer between the perovskite absorber material and carrier-extracting layers in 

fully operational photovoltaic devices. In particular, electron accumulation at the junction 

between the vapor-deposited MAPbI3 film and a mesoporous nanocrystalline TiO2 layer 

was observed before the charge extraction could take place at the subnanosecond time 

scale. Efficient carrier extraction at the interface would have a large dependence on the 

quality of the physical contact at the interface and the energetics of the materials in 

contact. With poorly matched energetics or physical interconnectivity between at the 

interfaces resulting in the hindered extraction of one or both carriers, leading to their 
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accumulation and possible unbalanced carrier extraction from the perovskite. Our 

observations, in particular suggest that future work using TREAS to investigate the carrier 

transfer dynamics at the electron and hole accepting interfaces, with a variety of acceptor 

materials, are warranted. 

 



 

Chapter 4  

 

 

143

4.5 Appendix 

Appendix 4.1  

 

Figure A 4.2 - Absorbance spectrum near the absorption edge of a 280-nm-thick vapor- 

deposited MAPbI3 film sandwiched between alumina and PMMA insulating layers (before 

thermal evaporation of gold on PMMA). Absorbance between 750 and 790 nm is due 

primarily to an excitonic absorption band.30  

EB = 25 ± 3 meVc)

825           775            730        688 
Wavelength (nm) 

Figure A 4.2 –Taken from the chapter by Cadelano et al. in ref 30. The figure describes the

contributions to the band edge absorption spectra in MAPbI3 perovskite films. The red empty

circles represent the theoretical fits to the experimental data (continuous black lines). The

contributions to the absorption due to both excitonic and band-to-band transitions are modelled.

The dotted green lines are relative to excitonic transitions, while the continuous blue lines are 

relative to band-to-band contributions with the inclusion of Coulomb interactions between

electrons and holes.  

A
bs

or
ba

nc
e 

(a
.u

.)



 

Chapter 4  

 

 

144

 
Appendix 4.2 
 

 

 

 
 
 
 

 
 
 

Figure A 4.3 -Time-evolution of EDA recorded for increasing values of the applied voltage

U0. Measured absorbance changes were averaged on a probe wavelength interval 749 nm ≤ 

λprobe≤ 757 nm. The pump excitation was at λ = 545 nm, with a constant energy fluence 0.48

μJ cm-2. Continuous curves drawn through experimental points are the result of the fit of a

double exponential function.  

 



 

Chapter 4  

 

 

145

 
Figure A4.4 displays the dependence of the summation of the electromodulated 

differential absorption (EDA) and transient absorption (TA) signals A = A (EDA) – { 

– A (TA) } upon the pump energy fluence. The slow dynamics observed in Figure A4.4 

with τr = 500 ps is only partially perceptible at high fluences, showing that the carrier 

recombination is entirely suppressed for no ≤ 2×1016 cm–3.   

 
 

Figure A 4.4 -Summation of the electromodulated differential absorption (EDA, U0 = 4.0 V)

and transient absorption (TA) signals recorded for increasing values of the pump energy

fluences. Labels above the traces correspond to the initial photocarrier densities n0 achieved

by each pump pulse. All measured absorbance changes (TA and EDA) were averaged on a 

probe wavelength interval 749 nm ≤ λprobe ≤ 757 nm.  
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Appendix 4.3  

Capacitance in a parallel plate capacitor is governed by the following equation:

C = ε
0 

. ε .S / d                            Eq. A 4.1 

where ε0 is the vacuum permittivity constant, ε the real part of the relative permittivity of 

the dielectric medium, S the area of the parallel plates and d the distance between them.  

The voltage drop, ∆U, across each capacitor depends on the values of the individual 

capacitances. By applying Kirchoff’s voltage law to the above circuit, it comes:  

                    Uab =∆U1 + ∆U2 + ∆U3               Eq. A 4.2 

        ΔU1 =      ΔU2 =    ΔU3 =      Eq. A 4.3 

where Q is the charge stored in each capacitor. Since the total charge stored in the group 

of three capacitors in series is also Q, one gets:  

 

 

Figure A 4.5 - Equivalent circuit of the MAPbI3 film in the dark (C2), sandwiched between

alumina (C1) and PMMA (C3) dielectric layers.  
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Q = Ctot   · Uab = Ci ·∆Ui                       Eq. A 4.4 

 

                                   Eq. A 4.5 

 

         Eq. A 4.6 

The thickness of each layer was measured by taking several cross-sectional SEM images, 

yielding on the average d1 = d3 = 30 nm and d2 = 280 nm. The relative permittivity of 

each of the three dielectric materials was more difficult to assess, as a rather broad 

distribution of values can be found in the literature. MAPbI3 was shown to be 

characterized by a large static relative permittivity, due in particular to ionic movement 

and molecular dipole contributions from the organic cation.45,46 In our case, though, the 

field is applied in the form of a square pulse voltage for only 100 μs, preventing the slow 

polarization of the material by ion migration. A moderate isotropic average dielectric 

constant in the range of 20-30 at a frequency of 104-105 Hz is believed to better describe 

the material in conditions prevailing in our experiments. In the following, we will then 

assume a relative permittivity ε2 = 25.46 For ALD-coated alumina, ε1 = 9 measured at a 

frequency of 1 MHz was taken from reference.47 PMMA, like numerous organic solids, 

has a relative permittivity ranging between 2.5 and 3. A value ε3 = 2.7, measured at a 

frequency of 1 MHz, was used for our calculation.48  

Inserting the above numerical values in equation Eq. A4.6, the voltage drop across the 

respective Al2O3, perovskite, and PMMA films was calculated as being ∆U1 = 0.13·UAB, 

ΔUi =UAB ⋅
Ctot
Ci

=UAB ⋅
1
Ci

⋅ 1
1
Ci
i∑

=UAB ⋅
di
εi
⋅ 1

di
εi
i∑

  

1
Ctot

=
UAB

Q
= 1
C1

+ 1
C2

+ 1
C3   
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∆U2 = 0.44·UAB, and ∆U3 = 0.43·UAB (see Figure S3). Hence, for voltage biases U = 6.0 

V and U = 4.0 V applied onto the triple-layer system, the effective external electric field 

exerted onto the perovskite film in the dark was:  

|E|0 = 0.44·U / d2 = 0.44·6.0 V / 280×10–7 
cm = 9.4 ×104 

V cm–1 
and 

|E|0 = 0.44·U / d2 = 0.45·4.0 V / 280×10–7 
cm = 6.2 ×104 

V cm–1 
, respectively.  

 
Appendix 4.4 
 
Let us consider a film of perovskite of thickness L, irradiated through the ITO glass 

substrate and the Al2O3 insulating layer from the left. The light transmittance profile 

across the material is given by the Lambert’s law:  

I(x) = I0 .exp(-αx)                                           Eq. A 4.7 

The density of carriers dn(x) photogenerated within a slice of infinitesimal thickness dx 

between the coordinates x and x + dx can be written:  

dn(x)= I(x) − I(x+dx)= I(x).[1−exp(-α.dx)             Eq. A 4.8 

The latter expression can be simplified by using the first two terms of the Maclaurin series 

expansion:  

exp(-α.dx)  ≈ 1−α.dx  −−> dn(x)= I(x). α.dx         Eq. A 4.9 

Applying again the Lambert’s law, the carrier density at the coordinate x can be expressed 

by:  

dn(x)= α.I
0 

. exp(-α.x) dx                                          Eq. A 4.10 
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The abscissa x of the centre of mass of photogenerated carriers is finally provided by the 

expression:  

 

            Eq. A 4.11 

 

An absorption constant α = 6.4×104 cm–1 at λ = 545 nm was obtained from the measured 

transmittance spectrum of a film of MAPbI3 of known thickness deposited on a quartz 

substrate. Using the latter value and L = 280 nm, the abscissa of the center of mass of the 

carriers initially generated by light in the perovskite is determined from Eq A4.11 as being 

x = 82 nm. The average transit distance of electrons to the interface with Al2O3, therefore, 

is ln = x – 0 = 82 nm, while that of holes to the interface with PMMA is lp = L – x = 198 

nm. (Figure 4.7B) 

The initial drift of charge carriers upon ultrafast pulsed photogeneration takes place 

within individual crystal grains of the perovskite film, whose average length in the 

transverse direction is 40 nm. Using again α = 6.4×104 cm–1 at λ  = 545 nm, the light 

transmittance of one grain is found to be 0.77. Equation 4.11 returns an average transit 

distance for electrons and holes to the grain boundaries of 18 nm and 22 nm, respectively 

(Figure 4.8).  
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Time-Resolved Electroabsorption Spectroscopy of 

Perovskite Solar Cells 

5.1 Introduction 

In this chapter we apply the TREAS technique to investigate state-of-the-art planar 

perovskite photovoltaic devices. The mixed perovskite, (FAPbI3)0.85(MAPbBr3)0.15, 

serves as the active photovoltaic layer and thin films of the material were previously 

investigated using THz spectroscopy in chapter 3. A short recap of the relevant results 

from chapter 3: carrier mobilities of 22 ± 4 cm2 V−1 s−1 at THz frequencies were extracted 

and Drude-like photoconductivity was observed. The improved morphology of the mixed 

perovskite film meant that there was significantly less carrier scattering at grain 

boundaries and defects relative to the MAPbI3 film. As the next step, we use time resolved 

electroabsorption measurements to investigate carrier dynamics under applied electric 

fields in fully functional devices. We observe two distinct components in the field 

screening dynamics allowing us to distinguish between electron and hole transport to the 

interfaces. Our calculated macroscopic carrier mobilities are quite close to the high 

frequency mobility we calculate using THz spectroscopy, with the macroscopic mobility 

being diminished by a factor of 2, at most. This allows us to conclude that the significant 

improvements in morphology and crystal quality of the mixed perovskite film, results in 

similar macro and microscale carrier transport properties. Unlike the MAPbI3 film 

investigated in chapter 4, where the high density of defects and grain boundaries resulted 
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in a reduction of the THz mobility by a factor of ≈ 4 for carrier transport across the 

polycrystalline film. 

We are also able to directly compare the femtosecond transient absorption spectrum 

with the steady state electroabsorption spectrum. Our results indicate the presence of a 

photo-induced electroabsorption signal within 500 fs after pump absorption in TA 

measurements. This arises from the disassociation of a neutral excitonic species formed 

immediately after photoexcitation, into a free electron and hole. The electrostatic force 

between these point charges shifts the absorption of the surrounding material, resulting 

in a transient EA signal while the charges are in proximity. 

5.2 Experimental 

5.2.1 Sample preparation and device characterization 

Devices used in this chapter were fabricated by Dr. Juan-Pablo Correa-Baena and 

Mahboubeh Hadadian. The mixed perovskite films were deposited according to the 

procedure described in chapter 3.2.1.  The device architecture used is as follows - FTO | 

SnO2 or mp-TiO2| perovskite | spiro-MeOTAD | Au. For the electron transport layer, either 

a thin 15nm SnO2 layer deposited by ALD or a 200nm mp-TiO2 layer deposited through 

spin coating on FTO coated glass were used. After the deposition of the perovskite layer, 

220nm of spiro-MeOTAD was deposited on the perovskite by spin coating, finally 80nm 

of gold was evaporated. Further details of the fabrication procedure can be found in ref1. 

The morphology of the device was characterized using cross-sectional SEM 

measurements taken by Dr. Correa-Baena. 
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5.3 Results 

5.3.1 Device characterization 

An extensive study on devices based on the mixed perovskites has been published by 

Correa Banea et al.1 The morphology and  solar cell performance of our investigated 

devices were characterized prior to beginning the study. Cross sectional SEM images of 

the complete devices are presented in figure 5.1. Our investigations focused primarily on 

the completely planar devices that used a thin film of ALD deposited SnO2 as the electron 

accepting layer (Figure 5.1b) and IV curves in the forward and reverse direction are 

presented in Figure 3.2b. The thickness of the perovskite layer estimated from the cross-

sectional SEM images is 485 50 nm. The device has a 15 nm thick SnO2 electron 

Figure 5.1 - Cross-sectional Scanning Electron Microscopy (SEM) image of a planar 

perovskite device with the respective layers from bottom to top: FTO | SnO2 or TiO2| perovskite | 

spiro-MeOTAD | Au (shaded in colour and annotated) The SnO2 and TiO2 acts as the electron

selective layer (ESL).  

a) b) b)
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selective layer (ESL) that was deposited by ALD on a FTO coated substrate. A 220 nm 

spin coated, spiro-MeOTAD layer that acts as the hole transport layer. The entire device 

thickness is 715 50 nm. Preliminary measurements on devices employing mp-TiO2 as 

the electron transport layer were carried out and cross sectional SEM images of the device 

are presented in Figure 5.1b. The majority of the perovskite in the device exists as a ~ 

500 nm perovskite layer which caps the 200 nm mp-TiO2 layer with a small fraction of 

the total perovskite volume infiltrated within the pores of the mp-TiO2.  
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5.3.2 Electroabsorption spectra 

 

The steady-state EA spectra of the perovskite layer in a working solar cell are shown 

in Figure 5.2 for a range of voltages from 0 V to 8 V in reverse bias. The voltage was 

applied across the FTO and gold electrodes using a function generator, setup to give 

square voltage pulses with 100 µs duration. Based on the measured thickness, we 

calculate the external electric field strength for an applied bias of 1 V across the device is 

|E|0 = V / d = 1.4 ± 0.1 × 104 V cm–1. The voltage pulses were applied in reverse bias, in 

these conditions photo-generated carriers are efficiently extracted and carrier injection is 

negligible. EA spectra are obtained by calculating the differential absorption of the 

Figure 5.2 - Steady state electro-absorption (EA) spectra of the perovskite active layer in a 

planar SnO2 photovoltaic device for applied voltages ranging from 0 to 8 V in reverse bias. Inset: 

Quadratic dependence of the differential absorbance measured at λprobe = 758 and 780nm upon 

application of an external electric field (E). 
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broadband probe by modulating the applied field in a planar PSC and our observed 

absorbance change (∆A) can be defined by Eq.4.2.  

We observe on Figure 5.2 a negative ∆A at λprobe = 745 - 772 nm, with a maximum 

amplitude at 758 nm along with a positive ∆A feature at λprobe = 772 - 800nm and a weaker 

positive feature between 718 - 745 nm. The inset in Fig 5.2 shows the dependence of the 

EA amplitude with the applied voltage for the peaks at 758 nm and 780 nm. A quadratic 

dependence of the EA amplitude with the applied field was observed. With a good fit 

∆A(758nm) = -0.35E2 for the peak at 758nm. This dependence indicates that no permanent 

dipole exists within the sample and that the polarizability of the material is reasonably 

isotropic. The quadratic nature of the of EA response confirms that we probe the bulk 

perovskite material and that the EA signal we observe is not dominated by oriented 

dipoles at interfaces with SnO2 that would lead to a linear dependence.2,3 The sample with 

mp-TiO2 could not be fit with a simple E2 term and required a fit ∆A(762nm) = -0.32E1.6 

(Figure A5.1- appendix 5.1), indicating that there is a non-negligible linear contribution 

and that the EA shift is not predominantly quadratic in nature in the mp-TiO2 sample. 

This behavior is due to the mix of oriented dipoles at the interface between mp-

TiO2 | perovskite and the bulk perovskite.2 
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5.3.3 Evaluating the carrier drift mobility 

The absorbance change for the EDA spectra is defined by equation 4.3. The evolution 

of the EDA spectra as a function of time is presented in Figure 5.3. We excited the sample 

with a monochromatic pump pulse at a low excitation fluence of 0.1 µJ cm–2 (carrier 

density – 3x1015 cm–3). Prior to the arrival of the pump excitation pulse the observed 

spectra (time = 0 ps, black trace) can be attributed entirely to the steady-state EA of the 

perovskite layer. Since charge carriers have not yet been created by the pump pulse they 

have no contribution to the screening and hence the EA and EDA spectra are identical. 

Photo-excitation by a short pump pulse with a wavelength of 600 nm generates electrons 

and holes within the perovskite layer. The photo-generated carriers subsequently drift to 

the oppositely charged electrodes. Carrier motion towards the electron and hole acceptor 

interfaces generates a transient electric field ∆E that opposes to the steady field E applied 

between the electrodes. It reduces the effective field Eeff = |E| – |∆E| experienced by the 

Figure 5.3 – Time-evolution of EDA spectra of perovskite cells excited at λpump  = 600 nm, fluence 

= 0.2 µJ cm–2 and under application of an external electric field E = 4.9×104 V cm–1 (V0 = 3.5 V). 
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perovskite film and consequently decreases the amplitude of the optical EA of the 

absorbance.4 Therefore a decrease in the effective field experienced by the perovskite 

layer translates into a reduction of the EA signal with a time component that depends on 

both carrier motions to the interfaces.  

The applied voltage pulses have a 100 µs duration which is shorter than the time scales 

for any significant ionic motion over the film thickness.5 There is a 1.9 ms gap between 

each 100 µs voltage pulse which allows the system to completely recover to its ground 

state. We confirmed this by carrying out multiple temporal scans with the pump pulse at 

each applied voltage. The sequential scans overlapped indicating that there was no build-

up of the perturbations caused by the applied electric field and optical pump between 

pulses. In the EDA measurements, prior to the arrival of the pump pulse (t = – 40 ps to 

t = 0 ps) we do not observe time dependence of the signal. This indicates that there is no 

measurable contribution of ionic motion on our measured time scales to the observed 

spectral dynamics.  

By observing the dynamics of the EDA spectrum monitored at its peak amplitude 

(758 nm) we can extract the time taken for both carriers to reach their respective acceptor 

interfaces, since the EDA signal in time is due to the diminishing Eeff caused by carrier 

screening. These dynamics are shown in Figure 5.4 for three applied voltages. Increasing 

the applied bias from 1 to 3.5 V results in carriers within the perovskite layer travelling 
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to the electrodes with a higher velocity, which is proportional to the increase of the field. 

The carrier drift velocity (υd) can in principle be estimated directly from the average 

transit distance of electrons and holes (Le/h) and their transit time τe/h. The drift velocity 

is directly proportional to the mobility (μ) and electric field (υd = μE), hence υd increases 

with the applied voltage. This results in a more rapid screening of the applied electric 

field, as can be seen in Figure 5.4 through the faster signal decay at higher voltages. The 

dynamics have two separated time components. A first fast decay component, which takes 

between 13 (at 3.5V) – 47 ps (at 1V) and a second slower decay that takes between 261 

(at 3.5V) – 782ps (at 1V) until a plateau of the signal amplitude after all the carriers reach 

the interface. We observe that an increase in the applied voltage results in an acceleration 

in the rate of decay for both the fast and slow components, with a change that is nearly 

proportional to the increase in voltage. We also carried out EDA measurements on 

samples with mp-TiO2 as the electron acceptor (Appendix 5.3). The dynamics were 
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Figure 5.4 - Time-dependence of the differential absorbance change recorded for applied 

voltages of 3.5, 2.5 and 1 V, and probed at the peak of the EA signal at λprobe = 758 nm,

fluence = 0.1 µJ/cm2. 
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broadly similar to the those of the planar devices, however detailed mobility calculations 

are not carried out due to the convolution of carrier transport within the mp-TiO2 and the 

bulk capping layer, which means we cannot reliably calculate the transport distance of 

carriers to the electrodes.  

Samples are excited from the transparent FTO side and we measured an absorbance of 

1.4 by the perovskite layer at the 600 nm pump excitation wavelength, meaning complete 

absorption of the excitation pulse (Appendix 5.1 - absorbance spectrum). Therefore the 

high absorbance of the perovskite layer results in an inhomogeneous distribution of 

photo-generated carriers that can be modelled with a beer-lambert profile.6 The majority 

of the photo-generated carriers are formed in higher proximity to the transparent FTO 

electrode than at the gold back electrode. Assuming each absorbed photon forms a pair 

of free charge carriers (electron and hole) we calculated the weighted average distance 

that electrons (de) and holes (dh) have to travel to reach their acceptor interfaces using the 

absorption profile modelled with the beer-lambert law (as previously outlined in appendix 

4.4). Using α = 6.6 x 104 cm-1 and a film thickness (L) of 485 nm, the average transit 

distance (calculated using Eq. A4.11 in appendix 4.4) of electrons travel is 131 nm to 

reach the SnO2 interface, while holes travel an average of 354 nm to the spiro-MeOTAD 

interface. We assign the fast component to screening by electrons due to the higher 

proximity of their generation to their acceptor (SnO2) interface, and the slower component 

to screening by holes travelling towards the spiro-OMeTAD interface. We consider this 

assumption to be reasonable, considering that the inverse (i.e. assigning the holes to the 

faster component and electrons to the slower one) would result in holes having a mobility 

≈ 50 times larger than electrons. This would not fit with the significant number of 
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theoretical and experimental studies that demonstrate carrier mobilities that are more 

closely balanced. We used a biexponential function to fit the dynamics of the EA signal 

decay and extract time constants associated with the slow and fast components, for holes 

and electrons, respectively. Our model assumes that the electron and hole screening 

components are completely separated between the two time components. The presence 

of selective carrier traps would shift the total electric field screening contribution of the 

electrons or holes, in addition diffusive carrier transport could contribute to screening of 

the applied field. Table 1 compiles the rates extracted from the dynamics in Figure 5.4. 

The fitting amplitude of the fast component is 60%, which is near the 50% expected for 

equal screening contributions from electrons and holes.7 We also note that the 

measurement with the lowest applied voltage has a slow component close to the 

investigated time window and therefore does not allow for precise determination of the 

associated time constant. This is further reflected in the uncertainty in the calculated value 

for hole mobility. 

Carrier mobility is calculated using the weighted average distance, de and dh, travelled 

by electrons and holes, the fitted time constants (t) and the applied electric field (E) using 

μe/h = de/h / (t * E). In order to calculate the effective external electric field exerted on the 

perovskite layer we model our device as three capacitors in series according to the 

analysis presented in Appendix 4.3. In order to calculate the voltage drop (∆U) across 

each capacitor we require knowledge of the applied voltage (U), the thickness of the 

individual layers (L) and the relative permitivity (ε). U and L are easily obtained using 

the known applied voltage and the layer thickness (L) from the cross sectional SEM. The 

relative permittivity of the materials is harder to asses and range of values can be found 



 

Chapter 5  

 

 

166 

in literature. At higher frequencies, the electronic polarizability and reorientation of 

dipoles have the largest contributions, where the slower migration of ions and hopping 

charges do not play a significant role. For the ALD coated SnO2 layer, the thickness 

d1 = 15nm and the dielectric constant SnO2 is taken as ε1 = 10 from ref8. The perovskite 

layer had an average thickness d2 = 485nm and a moderate relative permittivity of ε2 = 25 

which has been identified at frequencies of 104 – 105 has been used.9 The voltage pulse 

we apply is of 100 μs in duration and would be much shorter than the timescales 

associated with the slow polarization of the perovskite. The hole transport material 

(HTM), spiro-MeOTAD had an estimated layer thickness of d3 = 220 nm, with a reported 

dielectric constant of ε3 = 3 for pristine films. However, the composition of the hole 

conducting layer in state-of-the-art devices is a mixture of spiro-MeOTAD with additives, 

which in our case were Li-TFSI, FK209, and TBP1. The presence of additives would 

likely increase the effective dielectric constant of the hole transport layer, resulting in a 

larger effective external electric field exerted on the perovskite layer (according to Eq 

A4.6 in appendix 4.3).  

To investigate the consequences of having a larger relative permittivity for the HTM, 

we consider two situations using ε3 = 3 and a larger ε3 = 8.  The effective field experienced 

by the perovskite (|E|0) using a ε3 = 3 would be given by |E|0 = 0.20·U / d2 (U being the 

                                                

1 Li-TFSI - bis(trifluoromethylsulfonyl)- imide lithium salt  
  FK209 -tris(2-(1H-pyrazol-1-yl)- 4-tert-butylpyridine)–cobalt(III) tris(bis(trifluoromethylsulfonyl)imide) 
  TBP - 4-tert-butylpyridine 
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total externally applied voltage to the device). The value of 0.20 in the equation implies 

that the field strength experienced by the perovskite layer is 20% of the total field applied 

across the 715 nm thick device. Using ε3 = 3, values for |E|0 at different applied voltages, 

along with the calculated electron and hole mobilities are presented in table 1. For this 

case, the average electron mobility μn = 75 ± 15 cm2 V–1 s–1  and μp = 11 ± 3 cm2 V–1 s–1 for 

holes, the carrier averaged values for electrons and holes is μ± = 43 ± 9 cm2 V–1 s–1. The 

uncertainty is associated with the roughness of the substrate (which results in an estimated 

perovskite thickness of ± 50nm) and the fitted time constants. The error propagation in 

our calculations results in the mobility values having an uncertainty of ≈ 20%.  

 

 

Table 1 – Mobility determination of holes and electrons at different applied field 

strengths and associated time constants for the hole and electron contributions of the field 

screening. 

 

Using the higher relative permittivity ε3 = 8 for the HTM, we obtain a much larger |E|0, 

the calculated effective field experienced by the perovskite layer is 40% of the field 

applied across the entire device (i.e. ≈ x 2 relative to that for ε3 = 3). The resulting 

voltage (V) 

Applied field strength 

(E) x104 (V cm–1) 

Fitted time constant (ps) mobility cm2 / (V.s) 

Holes Electrons Holes Electrons 

      

1 0.4 ± 0.1 782 ± 337 47 ± 6 11 ± 6 68 ± 20 

2.5 1 ± 0.1 310± 22 16 ± 1 12 ± 2 85 ± 13 

3.5 1.4 ± 0.1 261 ± 15 13 ± 1 10 ± 2 74 ± 10 
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calculated mobilities would be μn = 37 ± 7 cm2 V–1 s–1 and μp = 6 ± 2 cm2 V–1 s–1 for holes, 

with μ± = 22 ± 5 cm2 V–1 s–1. As we see, the value for the relative permittivity of the HTM 

does affect the calculated mobilities quite significantly. From our THz measurements, the 

mobility values we obtained were μ± = 22 ± 4 cm2 V−1 s−1, the high frequency mobilities 

are near the intrinsic values for this film. The value of μ± = 43 ± 9 cm2 V–1 s–1 that we 

calculated using ε3 = 3, is the averaged mobility for transit across the length of the film 

and is significantly higher than the THz mobility and hence not compatible. Which 

indicates that the relative permittivity of the HTM is indeed higher. Using the larger value 

of ε3 = 8, we obtain μ± = 22 cm2 V–1 s–1, which correlates between the THz and TREAS 

techniques and in this manner we can assign the lower bounds of the permittivity for the 

HTM as ε3 = 8 and set the upper limit of μ±. The lower limit for μ± can be determined by 

setting ε3 = ∞ (which is of course not realistic, but allows us to define a limit for the 

mobility range), this results in μ± = 10 ± 2 cm2 V–1 s–1. From this analysis we observe that 

the averaged mobility of carriers over their transit across the thickness of the film is at 

most reduced by a factor ≈ 2 relative to the THz mobility, with an intermediate value for 

μ± between 10 to 22 cm2 V–1 s–1 being a reasonable assumption.  

We see that the significant improvement in the morphological quality of the mixed 

perovskite films results in carrier mobilities that are near the intrinsic values obtained 

using THz spectroscopy. In the multigrain MAPbI3 film that we previously investigated, 

the carrier mobility diminished by a factor of ≈ 4 over a transport distance of 280 nm. In 

the mixed perovskite however, the large grains are comparable in size to the layer 

thickness. This facilitates carrier transport across the film due to the lack of grain 
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boundaries and is reflected in the carrier’s mobility that is retained near their high 

frequency values over the 485 nm thick film. Defining the lower and upper bounds for 

the average carrier mobility (μ±) with the aid of our THz measurements allows us to 

calculate the individual electron and hole mobilities within these limits. The resulting 

mobilities are μp = 2.4 to 6 cm2 V–1 s–1 and μn = 16 to 37 cm2 V–1 s–1, which corresponds 

to μ± between 10 to 22 cm2 V–1 s–1. Our calculated mobilities are supported by theoretical 

calculations by Motta et al.10 where they obtained comparable values of μp = 1 to 5 cm2 

V–1 s–1 and slightly lower values for μn = 5 to 10 cm2 V–1 s–1. We also find that the 

mobilities of electrons are ≈ 6 times larger than their positively charged counterparts. Our 

findings are in line with the observations of Ponseca et al. 11 that demonstrated μn / μp 

ratio of ≈ 2 and theoretical work by Umari et al. 12 using SOC-DFT that calculated higher 

effective masses for holes than electrons. These observations have implications for the 

design and fabrication of photovoltaic devices. Holes have a longer total transport 

distance to the HTM interface, due to photon absorption occurring in higher proximity to 

the SnO2 interface. The combination of lower mobility and longer transport distances for 

the positive charge carriers means that there is an imbalance in the rate at which 

photogenerated electrons and holes arrive at their respective extracting interfaces and 

should be a consideration in device engineering. Inverted device architectures where 

holes are generated in higher proximity to their accepting interface or compositional 

engineering of the perovskites with the goal of enhancing hole mobilities are possible 

avenues to achieve balanced electron and hole transport to the acceptor interface.   
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5.3.4 Comparison of EA and TA spectra 

Our experimental setup also allowed us to carry out transient absorption (TA) 

measurements with the same sample configuration as the EDA measurements. The 

absorbance change (ΔA) for the TA measurements are defined by equation 4.1. TA 

measurements were carried out in specular reflectance mode, sequentially after EA and 

EDA measurements. Figure 5.5 shows that the TA spectrum at 500 fs has a shape that is 

similar to the steady state EA spectra under the application of a 4.5 V bias. At time delays 

> 800 fs, the positive absorbance change at 775 nm is not present anymore. On the 

contrary, one can observe a long lived bleaching at this wavelength that merges with the 
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Figure 5.5 - Differential absorption spectra of perovskite solar cells. Yellow curve (solid): 

Transient absorbance (TA) spectrum at 500 fs after photo-excitation (V = 0 V, λpump  = 600 nm,

fluence = 0.4 µJ · cm–2), Yellow curve (dashed): TA spectrum at 1000 ps after photo-excitation

(V = 0 V, λpump  = 600 nm, fluence = 0.4 µJ · cm–2). Black curve: Electro-absorption (EA) spectrum

(V = 4.5 V). Inset: TA dynamics monitored at λprobe = 756 nm and 775 nm. 
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ground state bleaching observed at 756 nm. Inset of Figure 5.5 compares the TA dynamics 

observed at 775 nm with the bleaching dynamics at 756 nm. 

Our optical-pump THz probe measurements showed that subsequent to photoexcitation 

the early signal dynamics has a rise with a t1/2 = 600 fs. Since THz directly probes the 

formation of charge carriers, our dynamics could be associated with the formation of free 

charge carriers through dissociation of a bound exciton. We can extend our observations 

using THz spectroscopy to help in the analysis of our TA and EA spectra. In this situation, 

the disassociation of the neutral exciton results in an electric field between the electron 

and hole while they are in proximity. This field induces a shift in the absorption spectrum 

(electroabsorption) of the surrounding material that we are able to optically probe. The 

steady state EA spectra allow us to confirm that the spectral features we observe at ≈ 

500 fs using TA can be attributed to an electroabsorption signal. Hence, by probing the 

features associated with the EA shift and the time for their onset in our TA measurements, 

we identify that exciton disassociation takes place within 500 fs and we converge on this 

value using three different spectroscopic techniques. 

 Trinh et al.13 also observed such transient photoinduced EA features in their TA 

measurements of CH3NH3PbI3 films. But they attributed their observations to the electric 

field created by hot carriers formed at photoexcitation, which affects the subsequent 

absorption of the material and results in a transient Stark shift. However, as we saw from 

THz measurements the rise in photoconductivity occurs with a t1/2 = 600 fs. This implies 

that free charge carriers are formed over this period and not directly after photoexcitation, 

so the observed EA can be associated with free carrier formation.  
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5.4 Conclusion 

In conclusion, we carried out ultrafast time resolved electro-modulated absorption 

spectroscopy (TREAS) on mixed ion perovskites and this represents the first application 

of this technique to the investigation of complete perovskite photovoltaic devices. We 

observed electroabsorption in the devices under externally applied voltages as low as 1 V. 

The observed EA signal allowed investigation of the electric field screening dynamics by 

photogenerated charge carriers formed at a low excitation density of 3x1015 cm–3 for a 

range of voltages. The dynamics allowed us to directly visualize the motion of electrons 

and holes to the perovskite | acceptor interface. Combining THz and TREAS 

measurements we calculated the upper and lower bounds for each carrier’s mobility - 

μp = 2.4 to 6 cm2 V–1 s–1 for holes and μn = 16 to 37 cm2 V–1 s–1 for electrons. The lower 

mobility and longer transport distances for the positive charge carriers means that there 

is an imbalance in the rate at which photogenerated electrons and holes arrive at their 

respective extracting interfaces and should be a consideration in device engineering. 

Transient absorption measurements revealed that the electric field between a free electron 

and hole exerted on the surrounding material produces an EA signature that is visible in 

the TA spectra. This was verified using steady state EA measurements that monitor the 

change in the absorption spectrum on the application of a field. THz measurements 

allowed us to conclude that these free charge carriers are formed through the dissociation 

of a transient excitonic species and this process has a t1/2 = 500 fs.  
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5.5 Appendix 

Appendix 5.1 

Appendix 5.2  
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Figure A 5.1 – Absorption spectrum of the measured mixed perovskite film

Figure A 5.2 - Steady-state electro-absorption (EA) spectra of the perovskite active layer

in a mp-TiO2 photovoltaic device for applied voltages ranging from 0 to 10 V. Inset:

dependence of the differential absorbance measured at λprobe = 762 nm upon application of

an external electric field (E). 
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Appendix 5.3  

 
 

Figure A 5.3 - Time-dependence of the differential absorbance probed at the peak of the EA 

signal at for planar SnO2 for mp-TiO2 devices with λprobe  = 758 nm, pump fluence = 0.3µJ/cm2 

and submitted to an external electric field E = 4.9×104 V·cm–1 (V0 = 3.5 V). 
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6. Conclusion and outlook 

 Over the course of this thesis we investigated two compositions of hybrid organic-

inorganic perovskites, MAPbI3 and the mixed perovskite - (FAPbI3)0.85(MAPbBr3)0.15. 

The primary spectroscopic techniques used were time-resolved THz spectroscopy and 

time-resolved electroabsorption spectroscopy (TREAS). They served as powerful tools 

in revealing the short and long range transport properties of charge carriers, as well as 

their formation and recombination dynamics subsequent to photoexcitation. 

 In chapter 3 we employed time-resolved THz spectroscopy towards the goal of 

understanding the fundamental process that occur after the photogeneration of charge 

carriers. By monitoring the rise in photoconductivity of the perovskite film, we observe 

the formation of free charge carriers through the dissociation of an excitonic species, the 

process occurring with a t1/2 = 600 fs. The high frequency THz mobilities of our MAPbI3 

films were determined to be 41 ± 3 cm2 V-1 s-1 and 22 ± 4 cm2 V-1 s-1 for the mixed 

perovskite sample. As the next step, we controlled the charge carrier density within the 

film by modulating the pump excitation fluence and monitored the photoconductivity 

dynamics between 1 – 1000 ps. Combining the experimental results from the two 

perovskite films with distinct morphologies and compositions, we explain our 

observations using a band model that is composed of a direct as well as an indirect 

transition. At low excitation densities, carriers occupy and recombine from bands which 

are offset in k space. The resulting indirect transition is momentum forbidden and hence 

the carriers are long-lived. At higher excitation densities, carriers are divided between 

this indirect band and bands which overlap in k space, recombination through this direct 
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transition occurs more rapidly in ≈ 1 ns with the remaining carrier population being that 

of the indirect band.  

Importantly, we observe that the mixed perovskites have an ηonset value for bimolecular 

recombination that is an order of magnitude larger than their MAPbI3 counterparts. We 

experimentally show that alloying MAPbI3 increases the carrier population that can be 

sustained prior to the onset of the fast direct band recombination. The ability to support 

large densities of carriers is a fundamental requirement for photovoltaic devices and we 

show that in the mixed perovskites, the ηonset values are comfortably away from the 

typical carrier densities experienced under operational conditions. Our observations 

provide direction for future work that focuses on compositional engineering to increase 

ηonset as a route towards improved device performance.  

We also observed vibrational modes in the dark permittivity spectra. Further 

investigations that systematically vary the halide and cation composition can provide 

valuable information on the specific vibration modes that are visible over our accessible 

THz range. The insights gained can be combined with investigations of the conductivity 

spectrum and related to the photoinduced modulation of such modes.  

Chapters 4 and 5 detail the first application of time-resolved electroabsorption 

spectroscopy to perovskite thin films and state-of-the-art photovoltaic devices. These 

measurements allowed us to visualize the evolution of carrier’s mobility as they drift 

across the perovskite films. We see that the morphologies of the films play a large role in 

determining the effective macroscale charge carrier mobility. In our MAPbI3 films we 

observe that the film is composed of small grains, with average dimensions of 40nm. This 
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results in photogenerated carriers having to traverse a large number of grain boundaries, 

diminishing the effective carrier mobility by a factor ≈ 4, relative to the high frequency 

mobility measured using THz spectroscopy. We also observed spectral signatures 

associated with carrier accumulation at the perovskite | acceptor interface. This leads to 

future work investigating the efficiency of carrier extraction at different electron and hole 

transport interfaces.  

An electroabsorption signature in our transient absorption measurements was attributed 

to the electrostatic interaction between an electron and hole that shifts the absorption 

spectrum of the surrounding material. By optically probing this EA feature, we determine 

the dissociation of an exciton and subsequent formation of free carriers occurs ≈ 500fs 

after photoexcitation. Finally, we studied complete perovskite photovoltaic cells using 

TREAS. In the perovskite layer formed using the mixed composition, we identified that 

the average grain size is of comparable length to the film thickness. This facilitates the 

transport of electrons and holes to their acceptor interfaces and we observe that carriers 

retain their mobilities near their high frequency values. We are able to disentangle the 

contributions of the electrons and holes to the field screening dynamics and estimate 

electron mobilities between 16 to 37 cm2 V–1 s–1 and hole mobilities between 2.4 to 6 cm2 

V–1 s–1. These results provide an approach to separately visualize the transport of electrons 

and holes in complete photovoltaic devices. Future work should investigate carrier 

transport properties of alternative compositions that have been engineered for higher hole 

mobilities or inverted device architectures, where positive charge carriers are generated 

in higher proximity to their accepting interface.  
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