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In this supplementary material, we analyze different as-
pects of our approach via several additional experiments.
While the main paper discusses action anticipation, here,
we focus on evaluating our approach on the task of ac-
tion recognition. Therefore, we first provide a comparison
to the state-of-the-art action recognition methods on three
standard benchmarks, and evaluate the effect of exploiting
additional optical flow features for both action recognition
and anticipation. We then analyze the effect of our differ-
ent feature types in several loss functions, the influence of
the number of hidden units and of our average pooling in
LSTMs, and, finally, the effect of our multi-stage LSTM
architecture.

1. Comparison to State-of-the-Art Action
Recognition Methods

We first compare the results of our approach to state-
of-the-art methods on UCF-101, JHMDB-21 and UT-
Interaction in terms of average accuracy over the standard
training and testing partitions. In Table [} we provide the
results on the UCF-101 dataset. Here, for the comparison
to be fair, we only report the results of the baselines that do
not use any other information than the RGB image and the
activity label (we refer the readers to the baselines’ papers
and the survey [6] for more detail). In other words, while it
has been shown that additional, handcrafted features, such
as dense trajectories and optical flow, can help improve ac-
curacy [19} 20} |9, 13} l1], our goal here is to truly evalu-
ate the benefits of our method, not of these features. Note,
however, that, as discussed in the next section of this supple-
mentary material, our approach can still benefit from such
features. As can be seen from the table, our approach out-
performs all these RGB-based baselines. In Tables 2]and 3]
we provide the results for JHMDB-21 and UT-Interaction.
Again, we outperform all the baselines, even though, in this
case, some of them rely on additional information such as
optical flow [5) 21, 14} [15} [10] or IDT Fisher vector fea-
tures [14]. We believe that these experiments show the ef-

Table 1. Comparison with state-of-the-art methods on UCF-101
(average accuracy over all training/testing splits). For the compar-
ison to be fair, we focus on the baselines that, as us, only use the
RGB frames as input.

Method Accuracy
Dynamic Image Network [[1] 70.0%
Dynamic Image Network + Static RGB [1]] 76.9%
Rank Pooling [4] 72.2%
DHR [4] 78.8%
Zhang et al. [20] 74.4%
LSTM [16] 74.5%
LRCN [2] 68.8%
C3D [17] 82.3%
Spatial Stream Net [[13] 73.0%
Deep Network [7] 65.4%
ConvPool (Single frame) [25]] 73.3%
ConvPool (30 frames) [23]] 80.8%
ConvPool (120 frames) [25] 82.6%

Ours 83.3%
Diff. to State-of-the-Art +0.7%

fectiveness of our approach at tackling the action recogni-
tion problem.

2. Exploiting Optical Flow

Note that our approach can also be extended into a two-
stream architecture to benefit from optical flow information,
as state-of-the-art action recognition methods do. In partic-
ular, to extract optical flow features, we made use of the
pre-trained temporal network of [13]. We then computed
the CNN features from a stack of 20 optical flow frames (10
frames in the z-direction and 10 frames in the y-direction),
from ¢ — 10 to ¢ at each time ¢t. As these features are po-
tentially loosely related to the action (by focusing on mo-
tion), we merge them with the input to the second stage of
our multi-stage LSTM. In Table ] we compare the results
of our modified approach with state-of-the-art methods that
also exploit optical flow. Note that our two-stream approach



Table 2. Comparison with state-of-the-art methods on JHMDB-21
(average accuracy over all training/testing splits). Note that while
the methods of [5, 21} 14} [15] use motion/optical flow information
and [14]] uses IDT Fisher vector features, our method yields better

performance.
Method Accuracy
Where and What [15]] 43.8%
DP-SVM [14]] 44.2%
S-SVM [14] 47.3%
Spatial-CNN (3] 37.9%
Motion-CNN [5]] 45.7%
Full Method [3] 53.3%
Actionness-Spatial [21]] 42.6%
Actionness-Temporal [21]] 54.8%
Actionness-Full Method [21]] 56.4%

Ours 58.3%
Diff. to State-of-the-Art +1.9%

Table 3. Comparison with state-of-the-art methods on UT-
Interaction (average accuracy over all training/testing splits). Note
that while the methods of [[14] uses motion/optical flow informa-
tion and IDT Fisher vector features, our method yields better per-
formance.

Method Accuracy
D-BoW [12] 85.0%
I-BoW [12]] 81.7%
Cuboid SVM [[L1] 85.0%
BP-SVM [8]] 83.3%
Cuboid/Bayesian [[12] 71.7%
DP-SVM [14] 14.6%
Yu et al. [23]] 83.3%
Yuan et al. [24] 78.2%
Waltisberg et al. [[18] 88.0%

Ours 90.0%
Diff. to State-of-the-Art +2.0%

yields accuracy comparable to the state-of-the-art.

We also conducted an experiment to evaluate the ef-
fectiveness of incorporating optical flow in our framework
for action anticipation. To handle the case where less
than 10 frames are used, we padded the frame stack with
gray images (with values 127.5). Our flow-based approach
achieved 86.8% for earliest and 91.8% for latest prediction
on UCF-101, thus showing that, if runtime is not a concern,
optical flow can indeed help increase the accuracy of our
approach.

We further compare our approach with the two-stream
network [13]], designed for action recognition, applied to
the task of action anticipation. On UCF-101, this model
achieved 83.2% for earliest and 88.6% for latest prediction,
which our approach with optical flow clearly outperforms.

Table 4. Comparison with the state-of-the-art approaches that use
optical flow. For the comparison to be fair, we focus on the base-
lines that, as us, use RGB frames+optical flow as input.

Method Accuracy
Spatio-temporal ConvNet [7]] 65.4%
LRCN + Optical Flow [2] 82.9%
LSTM + Optical Flow [16] 84.3%
Two-Stream Fusion [3]] 92.5%
CNN features + Optical Flow [13] 73.9%
ConvPool (30 frames) + OpticalFlow [25] 87.6%
ConvPool (120 frames) + OpticalFlow [25] 88.2%
VLAD3 + Optical Flow [9] 84.1%
Two-Stream ConvNet [[13]] 88.0%
Two-Stream Conv.Pooling [25]] 88.2%
Two-Stream TSN [22] 91.5%
Ours + Optical Flow 91.8%

Table 5. Importance of the different feature types using different
losses. Note that combining both types of features consistently
outperforms using a single one. Note also that, for a given model,
our new loss yields higher accuracies than the other ones.

Feature Sequence Learning  Accuracy
Context-Aware  LSTM (CE) 72.38%
Action-Aware LSTM (CE) 74.24%
Context+Action MS-LSTM (CE) 78.93%
Context-Aware  LSTM (ECE) 72.41%
Action-Aware LSTM (ECE) 77.20%
Context+Action MS-LSTM (ECE) 80.38%
Context-Aware ~ LSTM (LGL) 72.58%
Action-Aware LSTM (LGL) 77.63%
Context+Action MS-LSTM (LGL) 81.27%
Context-Aware ~ LSTM (Ours) 72.71%
Action-Aware LSTM (Ours) 77.86%
Context+Action MS-LSTM (Ours) 83.37%

3. Effect of Different Feature Types

Here, we evaluate the importance of the different fea-
ture types, context-aware and action-aware, on recognition
accuracy. To this end, we compare models trained using
each feature type individually with our model that uses
them jointly. For all models, we made use of LSTMs with
2048 units. Recall that our approach relies on a multi-
stage LSTM, which we denote by MS-LSTM. The results of
this experiment for different losses are reported in Table [3]
These results clearly evidence the importance of using both
feature types, which consistently outperforms using indi-
vidual ones in all settings.



Table 6. Influence of the number of hidden LSTM units and of our
average pooling strategy in our multi-stage LSTM model. These
experiments were conducted on the first splits of UCF-101 and
JHMDB-21.

Average Hidden
Setup Pooling Units  UCF-101 JHMDB-21
Ours (CE) wo/ 1024 77.26% 52.80%
Ours (CE) wo/ 2048 78.09% 53.43%
Ours (CE) w/ 2048 78.93% 54.30%
Ours (ECE) wo/ 1024 79.10% 55.33%
Ours (ECE) wo/ 2048 79.41% 56.12%
Ours (ECE) w/ 2048 80.38% 57.05%
Ours (LGL) wo/ 1024 79.76% 55.70%
Ours (LGL) wo/ 2048 80.10% 56.83%
Ours (LGL) w/ 2048 81.27% 57.70%
Ours wo/ 1024 81.94% 56.24%
Ours wo/ 2048 82.16% 57.92%
Ours w/ 2048 83.37% 58.41%

4. Robustness to the Number of Hidden Units

Based on our experiments, we found that for large
datasets such as UCF-101, the 512 hidden units that some
baselines use (e.g. [2,116]) do not suffice to capture the com-
plexity of the data. Therefore, to study the influence of the
number of units in the LSTM, we evaluated different ver-
sions of our model with 1024 and 2048 hidden units (since
512 yields poor results and higher numbers, e.g., 4096,
would require too much memory) and trained the model
with 80% training data and validated on the remaining 20%.
For a single LSTM, we found that using 2048 hidden units
performs best. For our multi-stage LSTM, using 2048 hid-
den units also yields the best results. We also evaluated the
importance of relying on average pooling in the LSTM. The
results of these different versions of our MS-LSTM frame-
work are provided in Table [ This shows that, typically,
more hidden units and average pooling can improve accu-
racy slightly.

5. Effect of the LSTM Architecture

Finally, we study the effectiveness of our multi-stage
LSTM architecture at merging our two feature types. To this
end, we compare the results of our MS-LSTM with the fol-
lowing baselines: A single-stage LSTM that takes as input
the concatenation of our context-aware and action-aware
features (Concatenation); The use of two parallel LSTMs
whose outputs are merged by concatenation and then fed
to a fully-connected layer (Parallel). A multi-stage LSTM

Table 7. Comparison of our multi-stage LSTM model with diverse
fusion strategies. We report the results of simple concatenation
of the context-aware and action-aware features, their use in two
parallel LSTMs with late fusion, and swapping their order in our
multi-stage LSTM, i.e., action-aware first, followed by context-
aware. Note that multi-stage architectures yield better results, with
the best ones achieved by using context first, followed by action,
as proposed in this paper.

Feature Sequence

Order Learning Accuracy
Concatenation LSTM 77.16%
Parallel 2 Parallel LSTMs 78.63%
Swapped MS-LSTM (Ours)  78.80%
Ours MS-LSTM (Ours)  83.37%

where the two different feature-types are processed in the
reverse order (Swapped), that is, the model processes the
action-aware features first and, in a second stage, combines
them with the context-aware ones; The results of this com-
parison are provided in Table[7} Note that both multi-stage
LSTMs outperform the single-stage one and the two paral-
lel LSTMs, thus indicating the importance of treating the
two types of features sequentially. Interestingly, processing
context-aware features first, as we propose, yields higher
accuracy than considering the action-aware ones at the be-
ginning. This matches our intuition that context-aware fea-
tures carry global information about the image and will thus
yield noisy results, which can then be refined by exploiting
the action-aware features.

Furthermore, we evaluate a CNN-only version of our ap-
proach, where we removed the LSTM, but kept our average
pooling strategy to show the effect of our MS-LSTM ar-
chitecture on top of the CNN. On UCF-101, this achieved
69.53% for earliest and 73.80% for latest prediction. This
shows that, while this CNN-only framework yields reason-
able predictions, our complete approach with our multistage
LSTM benefits from explicitly being trained on multiple
frames, thus achieving significantly higher accuracy (80.5%
and 83.4%, respectively). While the LSTM could in prin-
ciple learn to perform average pooling, we believe that the
lack of data prevents this from happening.
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