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Abstract

The most successful systems for “big data” processing have all adopted functional APIs. We present
a new programming model we call function passing designed to provide a more principled substrate,
or middleware, upon which to build data-centric distributed systems like Spark. A key idea is to
build up a persistent functional data structure representing transformations on distributed immutable
data by passing well-typed serializable functions over the wire and applying them to this distributed
data. Thus, the function passing model can be thought of as a persistent functional data structure
that is distributed, where transformations performed on distributed data are stored in its nodes rather
than the distributed data itself. One advantage of this model is that failure recovery is simplified by
design–data can be recovered by replaying function applications atop immutable data loaded from
stable storage. Deferred evaluation is also central to our model; by incorporating deferred evaluation
into our design only at the point of initiating network communication, the function passing model
remains easy to reason about while remaining efficient in time and memory. Moreover, we provide a
complete formalization of the programming model in order to study the foundations of lineage-based
distributed computation. In particular, we develop a theory of safe, mobile lineages based on a subject
reduction theorem for a typed core language. Furthermore, we formalize a progress theorem which
guarantees the finite materialization of remote, lineage-based data. Thus, the formal model may serve
as a basis for further developments of the theory of data-centric distributed programming, including
aspects such as fault tolerance.We provide an open-source implementation of our model in and for the
Scala programming language, along with a case study of several example frameworks and end-user
programs written atop of this model.
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1 Introduction

Data-centric programming is growing in importance with the most successful systems for
programming with “big data” all adopting ideas from functional programming; i.e., pro-
gramming with first-class functions. These functional ideas are often touted to be the key
to the success of these frameworks. Functional, declarative interfaces to data, distributed
over tens to thousands of nodes, provide amore natural way for end-users and data scientists
to reason about data.
While leveraging functional programming concepts, popular implementations of

Google’sMapReduce (Dean&Ghemawat, 2008)model, such asApacheHadoop’sMapRe-
duce Framework (Apache, 2015) for Java, have been developed without making use of
functional language features such as closures. For nearly a decade, theApacheHadoop open
source interpretation of this model grew in popularity, remaining largely unchallenged–
causing nearly all of industry to synchronize on this one implementation for most all large-
scale data processing needs.
However, in recent years, a new generation of distributed systems for large-scale data

processing have suddenly cropped up, built on top of emerging functional languages like
Scala (Odersky et al., 2010); such systems include Apache Spark (Zaharia et al., 2010),
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Twitter’s Scalding (Twitter, 2015), and Scoobi (NICTA, 2015). These systems make use
of functional language features in Scala in order to provide high-level, declarative APIs to
end-users. Further, the benefits provided by functional programming have also won over
framework designers as well–some have noticed that immutability, and data transformation
via higher-order functions makes it much easier, by design, to tackle concerns central to
distributed systems such as concurrency.
While widely adopted in practice, the aforementioned programming systems are not

without important issues. On the one hand, their programming interfaces do not prevent
common usage errors, such as unsafe closure serialization. As a result, the complexities
of distribution may trickle even to end users, who are increasingly non-expert users. On
the other hand, the foundations of their programming models remain largely unclear, in
particular, foundations of core aspects such as fault tolerance, a critical aspect for distributed
operation on a large scale.
This paper introduces a new programming model which embraces the principle of sta-

tionary data containers and mobile functions (“move computation to the data”). It can be
viewed as a generalization of the MapReduce/Spark programming model. Our program-
ming model which we call function passing can be thought of as a programming model for
a middleware, meant to underly systems like Spark. Function passing adopts the concept
of lineage which is used by systems like Spark to handle fault tolerance. Importantly,
lineage-based fault tolerance is facilitated by the core computational principle of functional
transformations on immutable data.
The programmingmodel is based on functional abstractions for lineage-based distributed

computation. In order to prevent common usage errors, the model builds upon two previous
veins of work–type-safe serialization based on functional pickler combinators (Kennedy,
2004; Elsman, 2005;Miller et al., 2013; Rossberg et al., 2004), and serializable closures (Ep-
stein et al., 2011; Miller et al., 2014). We believe this unique combination of functional
programming techniques provides a more principled substrate upon which to build data-
centric, distributed systems.
Importantly, we provide a complete formalization of the programming model. In partic-

ular, we develop a theory of safe, mobile lineages based on a subject reduction theorem for
a typed core language. Furthermore, we formalize a progress theorem which guarantees the
finite materialization of remote, lineage-based data. To our knowledge, these theorems con-
stitute the first correctness results for a programming model for lineage-based distributed
computation. Thus, our formal model may serve as a basis for further developments of the
theory of data-centric distributed programming, including aspects such as fault tolerance.

1.1 Contributions

This paper makes the following contributions:

• A new data-centric programming model for functional processing of distributed data
which provides abstractions for building fault-tolerant distributed systems, including
first-class lineages. The main computational principle is based on the idea of sending
safe, guaranteed serializable functions to stationary data containers. Using standard
monadic operations, our model enables creating directed acyclic graphs (DAG) of
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computations. Deferred evaluation enables optimizations such as operation fusion
while keeping programs simple to reason about.

• A formalization of lineage-based distributed computation based on a small-step op-
erational semantics. Our formalization extends previous theories of serializable clo-
sures to serializable lineages. The technical development enabling this extension
combines (a) serializable types, (b) “static” closures, and (c) lineages.

• A proof of a subject reduction theorem for a typed, distributed core language based
on lineages. To our knowledge we present the first such proof for a lineage-based
distributed programming model.

• A proof establishing the preservation of lineage mobility by reduction for a typed,
distributed core language. This property provides a foundation for lineage-based fault
tolerance.

• The formalization of a progress theorem, guaranteeing the finite materialization of
remote, lineage-based data, including a detailed proof sketch.

• A distributed implementation of the programming model in and for Scala as a mid-
dleware.1 In addition, we present prototype versions of programming abstractions
provided by popular frameworks like Apache Spark and MBrace using the function
passing model, and end-user applications we have built using these prototypes.

In the rest of the paper, our approach is as follows. First, we describe our model on a
high level, elaborating upon key benefits and trade-offs, and then we zoom in to make
each component part of our model more precise. We describe the basic model this way
in Section 2. In Section 3 we go on to show how essential higher-order operations on
distributed frameworks like Apache Spark can be implemented in terms of the primitives
presented in Section 2. We formalize our programming model in Section 4, providing an
operational semantics and a type system. In Section 5 we present the proof of a subject
reduction theorem and formalize important progress properties. Finally, we discuss related
work in Section 6, and conclude in Section 7.

2 Overview

2.1 Essence

The function passing model is intended to act as a middleware upon which to build up
data-centric distributed systems like Spark.
In the broadest sense, it can be thought of as a sort of persistent functional data structure

with monadic operations and structural sharing. However, rather than containing pure
data, instead this data structure represents a graph2 of functional transformations, or
operations, on distributed data. The root node contains immutable data read from stable
storage (e.g., Amazon S3); edges represent functional transformations. Said another way,
the core of the function passing model can be thought of as a persistent functional data
structure representing a history of the operations performed on some data, rather than the
data itself.

1 See the Git repository at https://github.com/heathermiller/f-p/, branch jfp.
2 a directed acyclic graph (DAG)
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Importantly, since this DAG of computations is a persistent data structure itself, it is safe
to exchange (copies of) subgraphs of a DAG between remote nodes. Subgraphs of the DAG
are called lineages; lineages enable restoring the data of failed nodes through re-applying
their transformations. This sequence of applications must begin with data available from
stable storage.
Central to the function passing model is the careful use of deferred evaluation. Compu-

tations on distributed data are typically not executed eagerly; instead, applying a function
to distributed data just creates an immutable, local lineage. To make a network call and
thus obtain the result of a computation, it is necessary to first “kick off” the computation in
order to materialize the nodes of its lineage. Within our programming model, this force op-
eration3 makes network communication (and thus possibilities for latency) explicit, which
is considered to be a strength when designing distributed systems (Waldo et al., 1996).
Deferred evaluation also enables optimizing distributed computations through operation
fusion, which avoids the creation of unnecessary intermediate data structures–this is ef-
ficient in time as well as space. This kind of optimization is particularly important and
effective in distributed systems (Chambers et al., 2010). For these reasons, we believe that
deferred evaluation should be viewed as an enabler in the design of distributed systems.

2.2 Basic Usage

We begin with a simple visual example to illustrate the intuition behind the function passing
model. The function passing model consists of three main components:

• Silos, stationary, typed, immutable data containers.
• Silo references to local or remote silos.
• Spores, safe, serializable functions.

The main handle users have to the framework is via SiloRefs. A SiloRef[T] can be
thought of as an immutable handle to a remote value of type T contained within a cor-
responding silo. Users interact with this remote data by applying functions (as spores) to
silo references. Those functions are transmitted over the wire and later applied to the data
within the corresponding silo. As is the case for persistent data structures, when a function
is applied to a piece of remote data via a SiloRef[T], a new SiloRef[T'], representing a new
silo containing the transformed data T', is returned.
We go into more detail about each of these components later in Section 2.3.
The simplest illustration of the model is shown in Figure 1 (time flows vertically from

top to bottom). Here, we start with a SiloRef[T] which points to a piece of remote data
contained within a Silo[T]. When the function, shown as λ , of type T ⇒ SiloRef[S] is
applied to SiloRef[T] and “forced” (sent over the network), a new silo reference of type
SiloRef[S] is immediately returned. Note that SiloRef[S] contains a reference to its parent
silo reference, SiloRef[T]. (This is how lineages are constructed.) Meanwhile, the function
is asynchronously sent over the network and is then applied to Silo[T], eventually produc-
ing a new Silo[S]4 containing the data transformed by function λ . This new SiloRef[S]

3 called send(), discussed in more depth in Section 2.4 along with the other primitive operations in
the function passing model.

4 New silos are materialized on the same node as their parent.
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can be operated on even before its corresponding silo is materialized (i.e., before the data
in Silo[S] is computed) – the function passing framework queues up operations applied to
SiloRef[S] and applies them when Silo[S] is fully materialized.
Different sorts of complex DAGs can be asynchronously built up in this way. Though

first, to see how this is possible, we need to develop a clearer idea of the primitive operations
available on silo references and their semantics. We describe these in the following.

MACHINE 1 MACHINE 2

SiloRef[T]
Silo[T]

SiloRef[T]

SiloRef[S]

Silo[T]

SiloRef[T]

SiloRef[S]

Silo[T]

Silo[S]

λ

t

Reference to a remote object                           Reference to a local object

1

2

3

T⇒SiloRef[S]

Fig. 1. Basic function passing model.

2.3 Programming Model

With a basic intuition under our belt for how distributed computation is performed in the
function passing model, we focus now on its three main components; silos, silo references,
and spores.

Silos. A silo is a typed and immutable data container. The container is stationary in the
sense that it does not move between machines – it remains on the machine where it was
created. Data stored in a silo may either be loaded from stable storage, such as a distributed
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file system, or it may be the result of a computation. Thus, the data stored in a silo is often
not stationary (in contrast to the containers, the silos, which are stationary), because it may
need to be transferred to other machines to compute the contents of other silos. A program
operating on data stored in a silo can only do so using a reference to the silo.

Silo references. Similar to a proxy object, a silo reference represents, and allows inter-
acting with both local and remote silos. Silo references are immutable, storing identifiers
to locate possibly remote silos. They are also typed (SiloRef[T]) corresponding to the
type T of their silo’s data, leading to well-typed network communication. A silo reference
provides two principle operations: apply and send. The applymethod makes use of deferred
evaluation; it eventually applies a user-defined function to data pointed to by the SiloRef[T],
creating a new silo containing the result of this application, though this application is de-
ferred. That is, this computation is only “kicked off” when the sendmethod is invoked. This
makes it possible to queue up transformations in order to optimize network communication.
Note that the user-defined function passed to apply returns a SiloRef[S] whose contents
is transferred to the new silo returned by apply. Essentially, apply enables accessing the
contents of (local or remote) silos from within remote computations. We illustrate these
primitives in more detail in Section 2.4.

Spores. Spores (Miller et al., 2014) are safe closures that are guaranteed to be serializable
and thus distributable. Essentially, a spore is a closure-like abstraction with associated type
rules which gives authors of distributed frameworks a principled way of controlling the
environment which a closure (provided by client code) can capture. This is achieved by
(a) enforcing a specific syntactic shape which dictates how the environment of a spore is
declared, and (b) providing additional type-checking to ensure that types being captured
have certain properties.

A spore consists of two parts: the spore header, composed of a list of value definitions,
and the spore body, a regular closure; sometimes referred to as the “spore closure.” This
shape is illustrated in Figure 2.

Safe Closure Passing Haller and Miller
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spore header

closure/spore body

}
}

Figure 1: The syntactic shape of a spore.

1 {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(a) A closure block.

1 spore {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(b) A spore.

Figure 2: The evaluation semantics of a spore is equivalent to that of a closure, obtained by simply
leaving out the spore marker.

A Spores

Spores are a closure-like abstraction and type system which aims to give users a principled way of
controlling the environment which a closure can capture. This is achieved by (a) enforcing a specific
syntactic shape which dictates how the environment of a spore is declared, and (b) providing additional
type-checking to ensure that types being captured have certain properties. A crucial insight of spores is
that, by including type information of captured variables in the type of a spore, type-based constraints for
captured variables can be composed and checked, making spores safer to use in a concurrent, distributed,
or in arbitrary settings where closures must be controlled.

A.1 Spore Syntax

A spore is a closure with a specific shape that dictates how the environment of a spore is declared. The
shape of a spore is shown in Figure 1. A spore consists of two parts:

• the spore header, composed of a list of value definitions.

• the spore body (sometimes referred to as the “spore closure”), a regular closure.

The characteristic property of a spore is that the spore body is only allowed to access its parameter,
the values in the spore header, as well as top-level singleton objects (public, global state). In particular,
the spore closure is not allowed to capture variables in the environment. Only an expression on the
right-hand side of a value definition in the spore header is allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in the spore header,
which avoids accidentally capturing problematic references. Moreover, importantly for object-oriented
languages, it’s no longer possible to accidentally capture the this reference.

7

Fig. 2. The shape of a spore.

The characteristic property of a spore is that the spore body is only allowed to access
its parameter, the values in the spore header, as well as top-level singleton objects (Scala’s
form of modules). The spore closure is not allowed to capture variables other than those
declared in the spore header (i.e., a spore may not capture variables in the environment). By
enforcing this shape, the environment of a spore is always declared explicitly in the spore
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trait SiloRef[T] {

def apply[S](p: Spore[T, SiloRef[S]]): SiloRef[S]

def send(): Future[T]

def persist(): SiloRef[T]

def unpersist(): SiloRef[T]

}

object SiloRef {

def populate[T](host: Host, value: T): SiloRef[T]

}

Fig. 3. Type signatures of primitive operations.

header, which avoids accidentally capturing problematic references. Moreover, importantly
for object-oriented languages like Scala, it is no longer possible to accidentally capture the
this reference.
Spores also come with additional type-checking. Type information corresponding to

captured variables are included in the type of a spore. This enables authors of distributed
frameworks to customize type-checking of spores to, for example, exclude a certain type
from being captured by user-provided spores. Authors of distributed frameworks may kick
on this type-checking by simply including information about excluded types (or other type-
based properties) in the signature of a method. A concrete example would be to ensure that
the mapmethod on RDDs in Apache Spark (a distributed collection) accepts only spores which
do not capture SparkContext (a non-serializable internal framework class).

2.4 Primitives

There are five basic primitive operations on silo references that together can be used to build
the higher-order operations common to popular data-centric distributed systems. (How to
build some of these higher-order operations is described in Section 3.). In this section we
introduce these primitives in the context of a running example. These primitives include
apply, send, persist, unpersist, and populate; their type signatures are shown in Figure 3.5

Note that populate does not operate on a SiloRef, unlike the other primitives. Instead,
populate is used to create new SiloRefs; therefore, it is defined as a (factory) method in
the SiloRef singleton object.6

apply. def apply[S](p: Spore[T, SiloRef[S]]): SiloRef[S]

The apply method takes a spore that is to be applied to the data in the silo associated with
the given SiloRef (i.e., the receiver of the method call). Rather than immediately sending
the spore across the network, and waiting for the operation to finish, the apply method’s
evaluation is deferred. Without involving any network communication, it immediately re-
turns a SiloRef referring to a new, to-be-created silo. This new silo reference only contains

5 A trait in Scala can be thought of as an abstract class supporting mixin composition, essentially
providing a safe form of multiple inheritance (Odersky & Zenger, 2005).

6 Singleton objects are Scala’s form of modules. The name of a singleton object refers to a value.
Since in Scala the namespace for types is disjoint from the namespace for values, the trait and the
singleton object can have the same name.
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lineage information, namely, a reference to the original SiloRef and a reference to the
argument spore. As we explain below, another method, send, must be called explicitly to
force the materialization of the result silo. Note that the result type of the spore parameter is
a SiloRef[S]. Semantically, the new silo created by apply is defined to contain the data of the
silo that the user-defined spore returns. This way, the apply combinator enables expressing
computation DAGs.
To better understand how DAGs are created and how remote silos are materialized,

we will develop a running example throughout this section. Given a silo containing a list
of Person records, the following invocation of apply defines a (not-yet-materialized) silo
containing only the records of adults (graphically shown in Figure 5, part 1):

val persons: SiloRef[List[Person]] = ...

val adults: SiloRef[List[Person]] = persons.apply(spore { ps =>

SiloRef.populate(currentHost, ps.filter(p => p.age >= 18))

})

When the spore is received on the machine hosting the silo corresponding to the persons

silo reference, it is applied to the contents of the silo, a List[Person]. The body of the
spore (a) filters this list (ps), creating a new list of adults, and (b) populates a new silo
with the result of the filter invocation. Note that populate takes the host of the new silo
as an argument; in the above example, this argument is currentHost which returns the host
currently computing the silo’s contents.
Section 2.4.1 below describes additional ways to create new silos. However, in each

case, the host on which the silo should be created must be specified. The reason is that each
instance of SiloRef[T] contains the host of the corresponding silo; this information is neces-
sary for accessing the silo’s data. Given the fact that the host of a SiloRef is fixed, SiloRefs
are not suitable for direct use by applications requiring fault tolerance. Instead, SiloRefs
should be regarded as a (low-level) building block for distributed systems which implement
fault-recovery mechanisms on top of the basic functionality provided by SiloRefs.
The apply combinator enables expressing also more interesting computation DAGs. For

example, consider the problem of combining the information contained in two different
silos (potentially located on different hosts). Suppose the information of a silo containing
Vehicle records should be enriched with other details only found in the adults silo. In the
example shown in Figure 4 apply is used to create a silo of (Person, Vehicle) pairs where
the names of person and vehicle owner match.
Here, it is necessary to read the data of the vehicles silo in addition to the persons, the list
of Person records. This requires calling apply on localVehicles on line 6, whose argument
spore captures the persons list and takes the vs list as a parameter; thereby, the two lists can
be combined, and the result stored in a new silo (line 9). Note that with the use of apply
on line 3, the call to localVehicles.apply(..) on line 6 creates the final result silo, whose
data is then also contained in the owners silo declared on line 2. (See Appendix A.1 for a
diagram illustrating also the use of regular Scala collection combinators in the listing.)
To illustrate the data flow between hosts, let us kick off thematerialization of the involved

silos:

val adults: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...
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1 val vehicles: SiloRef[List[Vehicle]] = ...

2 val owners: SiloRef[List[(Person, Vehicle)]] = // adults that own a vehicle

3 adults.apply(spore {

4 val localVehicles = vehicles // spore header

5 (persons: List[Person]) =>

6 localVehicles.apply(spore {

7 val localPersons = persons // spore header

8 (vs: List[Vehicle]) =>

9 SiloRef.populate(currentHost,

10 localPersons.flatMap(p =>

11 // list of (p, v) for a single person p

12 vs.flatMap(v =>

13 if (v.owner.name == p.name) List((p, v))

14 else Nil

15 )

16 )

17 )

18 })

19 })

Fig. 4. Matching persons and vehicle owners using the apply combinator.

val owners: Future[List[(Person,Vehicle)]] =

adults.apply(...).send()

For illustration we use the informal notation @m to denote the location of a value. We assume
that the silo references are at machine m1 but the actual data is distributed over m2 and m3

(note that these locations are different from Figure 5, part 2; however, they help make the
required data transfers more precise):

adults @ m1 --> Silo[List[Person]] @ m2

vehicles @ m1 --> Silo[List[Vehicle]] @ m3

To create owners, wemust combine data hosted at m2with data hosted at m3. First, adults.apply
transfers its spore, i.e., the silo reference vehicles and the closure
persons => ..., to m2 hosting the referenced silo of grown-up Person records. Next,
localVehicles.apply transfers its spore, i.e., the collection of adults persons and the closure
vehicles => ..., to m3 hosting the referenced silo of Vehicle records. Now, at m3, we have
all required information: the adults persons, the vehicles vehicles, and the necessary com-
putations to combine corresponding records, resulting in a new (anonymous) silo reference
at m2 referencing the new silo of (Person,Vehicle) records hosted at m3. This new silo
reference at m2 is used to transfer its referenced data from m3 to m2, the origin of the apply,
and, eventually, to m1 where the materialization has been kicked off.
To reduce the amount of data that is transferred, the implementation in fact leverages silo

reference proxies, delegating to the actual data:

adults @ m1 --> Silo[List[Person]] @ m2

vehicles @ m1 --> Silo[List[Vehicle]] @ m3

owners @ m1 --> proxy @ m2 --> Silo[List[(Person,Vehicle)]] @ m3
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List[Person]⇒SiloRef[List[String]]

Fig. 5. A simple DAG in the function passing model.

The anonymous silo reference created at m2 will not lead to a materialization of its contents
at m2; instead, the silo reference functions as a proxy for the data hosted at m3. As a result,
when m1 requests the actual list of persons owning a vehicle, it is retrieved from m3. Avoiding
a materialization also on m2 alleviates network communication overhead.



ZU064-05-FPR fp-jfp 19 December 2017 15:12

12 P. Haller, H. Miller, and N. Müller

Finally, note that the spore passed to apply on line 3 in Figure 4 declares the capturing
of the vehicles silo reference in its spore header. The spore header spans all variable
definitions between the spore marker and the parameter list of the spore’s closure. The
spore header defines the variables that the spore’s closure is allowed to access. Essentially,
spores limit the free variables of their closure’s body to the closure’s parameters and the
variables declared in the spore’s header.

send. def send(): Future[T]

As mentioned earlier, the execution of computations built using silo references is deferred.
The send operation forces the deferred computation defined by the given SiloRef[T]. Forc-
ing is explicit in our model, because it requires sending the lineage to the remote node on
which the result silo should be created. Given that network communication has a latency
several orders of magnitude greater than accessing a word in main memory, providing an
explicit send operation is a judicious choice (Waldo et al., 1996).
To enable materialization of remote silos to proceed concurrently, the send operation

immediately returns a future (Haller et al., 2012). This future is then asynchronously com-
pleted with the data of the given silo. Since calling send will materialize a silo on the same
node as its parent, and will send its resulting data to the current node, send should only
be called on silos with reasonably small data (for example, in the implementation of an
aggregate operation such as reduce on a distributed collection).

persist. def persist(): SiloRef[T]

The performance of typical data analytics jobs can be increased dramatically by caching
large datasets in memory (Zaharia et al., 2010). To do this, silos containing computed
datasets need to be materialized, and furthermore, re-materialization should be avoided
when datasets are used multiple times.
The only way, that we have shown so far, to materialize a silo is using the send primitive.

However, using send does not prevent the system from evicting the silo from memory at a
later point in time, e.g., when its host is running low on memory. In addition, send transfers
the contents of the silo to the requesting host–too much if a large remote dataset should
merely be cached in memory remotely.
Therefore, we provide an additional primitive called persist which immediately returns

a SiloRef representing a silo which (a) has the same data when materialized, and (b) is
guaranteed to remain in memory as long as at least one host has persisted the SiloRef.
Given the running example so far, we can add another lineage branching off of adults by

sorting the list of Person records by age, and producing a greeting String for each record:

val sorted = adults.apply(spore { ps =>

SiloRef.populate(currentHost, ps.sortWith(p => p.age))

})

val labels = sorted.apply(spore { ps =>

SiloRef.populate(currentHost, ps.map(p => "Hi " + p.name))

})

val cachedLabels = labels.persist()

val done: Future[Boolean] = cachedLabels.map(x => true).send()
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The cachedLabels silo contains the same (logical) data as the labels silo, however the data
of cachedLabels is cached in memory. Thus, cachedLabels needs to be materialized just
once. In order to “kick off” remote computation, it is still necessary to call send; however,
it is always possible to “prefetch” data into remote memory by mapping the data to a trivial
value (true above) and invoking send to materialize the lineage.7 The lineage for the above
example looks as illustrated in Figure 5.

unpersist. def unpersist(): SiloRef[T]

The final primitive operation on silo references is unpersist. By invoking unpersist on
a silo reference r the current host declares that it is no longer interested in the data of r.
As a result, unless other hosts have persisted r, the memory occupied by the data of r

may be reclaimed without negatively impacting performance. Just like persist, invoking
unpersist immediately returns a SiloRef representing a silo which may not be cached in
memory. However, if another host has persisted r, the silo’s data remains cached inmemory.
In the context of future work we plan to investigate techniques for inferring invocations of
unpersist in order to automatically and efficiently manage silo memory (see Section 7).

2.4.1 Creating Silos

Asmentioned earlier, besides a type definition for SiloRef[T], our framework also provides
a companion singleton object. The singleton object provides a variety of factory methods
for obtaining silo references referring to silos populated with some initial data:8

object SiloRef {

def populate[T](host: Host, value: T): SiloRef[T]

def fromTextFile(host: Host, file: File): SiloRef[List[String]]

def fromFun[T](host: Host, s: Spore[Unit, T]): SiloRef[T]

def fromLineage[T](host: Host, s: SiloRef[T]): SiloRef[T]

}

Each of the factorymethods has a host parameter that specifies the target host (address/port)
on which to create the silo. Note that the fromFun method takes a spore closure as an
argument to make sure it can be serialized and sent to host. In each case, the returned
SiloRef[T] contains its host as well as a host-unique identifier. The fromLineage method
is particularly interesting as it creates a copy of a previously existing silo based on the
lineage of a silo reference s. Note that only the silo reference is necessary for this operation
to successfully complete; the silo is not required to be materialized.

2.4.2 Type Polymorphism and Silos/SiloRefs

An important property of silos is that they are polymorphic in the type of data that they
hold (Silo[T]). Importantly, silos may not only store collections; silos are polymorphic in

7 Our system also provides a cache operation which abbreviates this pattern: semantically,
ref.cache() is equivalent to ref.persist().map(x => ()).send().

8 For clarity, only method signatures are shown.
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the type of their entire dataset. For example, a silo might contain a Red-Black tree with
elements of type Person for some ADT Person, ordered by one of the fields of the Person

type. Another silo might contain a completely different collection type, say, a linked list.
This type polymorphism enables optimizing silos according to their data access patterns.
Given that different data types may have specialized operations (e.g., a tree map could
provide a range projection), the key to enabling this type polymorphism is the fact that a
spore, sent to a silo, may apply arbitrary functions to the silo’s data. Thus, the SiloRef API
itself is not limited to providing just a fixed set of built-in operations (in contrast to RDDs
in Apache Spark, for example).

2.5 Limitations

Although fairly small and simple, the introduced programming model is quite flexible, and
we have used it to implement a variety of examples and abstractions from the literature
(see Section 3). However, as presented, the function passing model also has important
limitations. Two principle limitations pertain to distributed data and distributed behavior:

• Data maintained in silos is immutable. As a result, computational patterns based on
mutating distributed state cannot be expressed in the model. An example would be
(potentially long-lived) distributed graph data that is asynchronously updated. An-
other example would be mutable, distributed data structures such as CRDTs (Shapiro
et al., 2011).

• A computation cannot spawn independent activities. While it is possible to create
spore closures and send them to remote hosts for execution, a spore is applied only
once, to materialize (the contents of) a silo. However, there is no way to create a
behavior which remains active in some way across multiple interactions, like ac-
tors (Agha, 1986) or processes in the π-calculus (Milner et al., 1992).

3 Examples

The introduced primitives enable expressing surprisingly intricate computational patterns.
Higher-order operations such as variants of map, reduce, and join, operating on collec-

tions of data partitions, distributed across a set of hosts, are required when implementing
abstractions like Spark’s distributed collections (Zaharia et al., 2010). Section 3.1 demon-
strates the implementation of some such operations in terms of silos.
Section 3.2 shows an extension of the higher-order operations of Section 3.1, providing

a distributed collections abstraction reminiscent of Spark’s RDDs. Finally, Section 3.3
shows an implementation of k-means clusteringwhich demonstrates computational patterns
supported by the MBrace framework (Dzik et al., 2013), a programming system closely
related to the function passing model.

3.1 Higher-Order Operations

join. Suppose we are given two silos with the following types:

val silo1: SiloRef[List[A]]

val silo2: SiloRef[List[B]]
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as well as two hash functions computing hashes (of type K) for elements of type A and type
B, respectively:

val hashA: A => K = ...

val hashB: B => K = ...

The goal is to compute the hash-join of silo1 and silo2 using a higher-order operation
hashJoin:

def hashJoin[A, B, K](s1: SiloRef[List[A]], s2: SiloRef[List[B]], f: A => K, g: B => K)

: SiloRef[List[(K, (A, B))]] = ???

To implement hashJoin in terms of silos, the types of the two silos first have to be made
equal, through initial apply invocations:

val s12: SiloRef[List[(K, Option[A], Option[B])]] =

s1.apply(spore { l1 =>

SiloRef.populate(currentHost, l1.map(x => (f(x), Some(x), None)))

})

val s22: SiloRef[List[(K, Option[A], Option[B])]] =

s2.apply(spore { l2 =>

SiloRef.populate(currentHost, l2.map(x => (g(x), None, Some(x))))

})

Then, we can use apply to create a new silo which contains the elements of both silo s12

and silo s22:9

val combined = s12.apply(spore {

val locals22 = s22

(triples1: List[(K, Option[A], Option[B])]) =>

locals22.apply(spore {

val localTriples1 = triples1

(triples2: List[(K, Option[A], Option[B])]) =>

SiloRef.populate(currentHost, localTriples1 ++ triples2)

})

})

The combined silo contains triples of type (K, Option[A], Option[B]). Using an additional
apply, the collection can be sorted by key, and adjacent triples be combined, yielding a
SiloRef[List[(K, (A, B))]] as required.

Partitioning and groupByKey. A groupByKey operation on a group of silos containing col-
lections needs to create multiple result silos, on each host, with ranges of keys supposed to
be shipped to destination hosts. These destination hosts are determined using a partitioning
function. Our goal, concretely:

val groupedSilos = groupByKey(silos)

9 The expression localTriples1 ++ triples2 denotes the concatenation of lists localTriples1 and
triples2.
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Furthermore, we assume that silos.size = N where N is the number of hosts, with hosts
h1, h2, etc. We assume each silo contains an unordered collection of key-value pairs (a
multi-map). Then, groupByKey can be implemented as follows:

• Each host hi applies a partitioning function (example: hash(key) mod N) to the key-
value pairs in its silo, yielding N (local) silos.

• Using apply, each pair of silos containing keys of the same range can be combined
and materialized on the destination host.

3.2 Distributed Collections

To show that the function passing model is able to serve as a substrate upon which to build
different sorts of data-centric distributed frameworks, we have implemented a miniaturized
example system that is inspired by Spark’s Resilient Distributed Dataset (RDD).
RDDs provide an API for executing data-parallel operations on distributed data. Our

simplified RDD implementation provides a collections abstraction distributed using a group
of silos. We have implemented some of the operations of Spark’s RDD, such as map, reduce,
groupBy, and join, in terms of the primitives of the function passing model.
Virtually all methods on RDDs are implemented using the apply method of SiloRef.

RDD methods like flatMap or filter that do not require communication across silos are
implemented using simple spores which call the corresponding methods of the underlying
Scala collections; each spore directly creates its result silo using the populate primitive.
(Several examples shown earlier make use of this pattern.) In contrast, methods combining
multiple silos, such as join, require nested invocations of the apply method, similar to the
example shown in Figure 4.
Below, we show a simple example using our RDD abstraction. The example processes

two documents, content and lorem, which are represented as RDDs containing lists of
strings:

val content: RDD[String, List[String]] = ...

val lorem: RDD[String, List[String]] = ...

val contentWord = content.flatMap(line => {

line.split(' ').toList

}).map(word => (word.length, word))

val loremWord = lorem.flatMap(line => {

line.split(' ').toList

}).map(word => (word.length, word))

val res: Map[Int, Set[String]] =

contentWord.join[Set, Map](loremWord).collectMap()

In this example, the closure passed to RDD’s flatMap method invoked on contentWord

and loremWord splits each line into a list of words, and flattens everything as a single list.
Each word is then mapped to a tuple containing its length and the word. Finally, we do
an inner join, which in turn associates each length to the set of words of the same length,
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removing duplicate words in the process. Finally, we collect the final result in a Map using
the collectMap method on RDDs. Several other more detailed example programs using
RDDs on top of the function passing model are available online.10

3.3 K-Means Clustering

In order to illustrate how the function passing model supports computation patterns pro-
vided by the closely related MBrace (Dzik et al., 2013) framework, we ported an example
implementation of k-means clustering.11 Belowwe show an excerpt of the implementation.
(See Appendix A.2 for a diagram illustrating various Scala features used in the listing.) Our
implementation of distributed k-means clustering using the function passing model is an
almost identical port of the version using MBrace written in F♯. K-means is an algorithm to
categorize data points across k different clusters. It starts with the centroids of the k clusters.

def kMeansIterate(partitionedPoints: Seq[SiloRef[Array[Point]]],

centroids: Array[Point],

iteration: Int): Array[Point] = {

val clusterParts =

partitionedPoints.map(silo => silo.apply(

spore {

val lCentroids = centroids // spore header

(points: Array[Point]) =>

SiloRef.populate(currentHost, kmeansLocal(points, lCentroids))

}

).send())

val newCentroids =

Await.result(Future.sequence(clusterParts).map(seq => {

seq.reduce((x, y) => x ++ y)

.groupBy(x => x._1)

.toSeq

.sortBy(x => x._1)

.map(x => x._2)

.map(clp => clp.map(x => x._2).toArray.unzip)

.map({ case (ns, points) => (ns.sum, sumPoints(points)) })

.map({ case (n, sum) => divPoint(sum, n) })

}), Duration.Inf).toArray

val diff =

newCentroids.zip(centroids).map({ case (p1, p2) => dist(p1, p2) }).max

10 See the Git repository at https://github.com/heathermiller/f-p/, branch jfp.
11 See the MBrace website, http://mbrace.io/starterkit/HandsOnTutorial.FSharp/examples/

200-kmeans-clustering-example.html.
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if (diff < epsilon) // check if converged, else iterate again

newCentroids

else

kMeansIterate(partitionedPoints, newCentroids, iteration + 1)

}

The algorithm proceeds in two steps. It first assigns data points to the closest cluster. Then
it assigns to each cluster a new centroid by computing the mean of all points assigned to
the cluster.12 It stops when the centroids stop changing; if this convergence condition has
not been met, the algorithm is called recursively with the updated set of centroids. In the
distributed version of k-means clustering, we start with a master node that partitions the
points into silos. In each iteration, apply is called on the SiloRef which results in a spore
function being applied to the data within the corresponding silo. The spore captures the
centroids of the current iteration and uses them to compute the new cluster for its local set
of points (using the kmeansLocal function). The results are then sent back to the master node
to compute the new centroids, and to verify the algorithm’s convergence condition.

4 Formalization

We formalize our programming model in the context of a typed lambda calculus. Figure 6
shows the abstract syntax of our core language. Besides standard terms, the language in-
cludes terms related to (a) spores, (b) silos, and (c) futures. The spore term creates a new
spore. It contains a list of variable definitions, the spore header, and a closure which may
only refer to its parameter and variables in the spore header. The populate term initializes
a new silo on a given host with a given value. The apply term creates a lineage of silo
transformations represented as a silo reference (see below). The send term forces themateri-
alization of the argument silo. The send expression returns a future which is asynchronously
completed with the silo’s value. The await term waits for the completion of its argument
future and returns the future’s value. Decentralized identifiers ι are used to refer to futures
and to identify silos via their lineages (each element in a lineage carries a decentralized
identifier).
Values in our language are as expected: besides abstractions and integer literals they

include spore values, decentralized identifiers, and silo references. Decentralized identifiers
and silo references are not part of the “surface syntax” of our language; they are only intro-
duced by evaluation (see Section 4.1). Silo reference values have the form Ref(l,h) where
l is a lineage and h is a host. Lineages are values of a simple datatype with constructors
Mat and Applied. The constructors include all information required for materializing a silo
with the result of applying the described transformations. We defer a detailed explanation
of the transformations described by a lineage to the following Section 4.1.
In addition to standard function types and Int and Unit types, the language has types for

spores, futures, silo references, and hosts (see Figure 7). A spore type T ⇒ T ′ { type C =

T } includes the types T of the variables declared in the header of the spore.

12 Simply for the sake of illustration we assume no node failures in this computation.
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t ::= terms:
x variable
| v value
| t t application
| t ⊕ t integer operator
| spore { x : T = t ;(x : T )⇒ t } spore
| populate(t, t) populate silo
| apply(t, t) apply
| send(t) send
| await(t) await future
| respond(h, t, t) respond

v ::= values:
(x : T )⇒ t abstraction value
| n integer literal
| unit unit
| p spore value
| ι decentralized identifier
| r silo reference
| h host

p ::= spore { x : T = v ;(x : T )⇒ t }

l ::= lineages:
Mat(ι) materialized
| Applied(ι , l, p) lineage with apply

r ::= Ref(l,h) where h ∈H silo reference

ι ::= (h, i) where h ∈H and i ∈ N decentralized identifier
Fig. 6. Abstract syntax of core language. Integer operators are represented using ⊕ ∈ {+,-,*,/}.

T ::= types:
T ⇒ T abstraction type
| Int integer type
| Unit unit type
|S
| Future[T ] future type
| SiloRef[T ] silo reference type
| Host host type

S ::= T ⇒ T { type C = T } spore type
| T ⇒ T { type C } abstract spore type

Fig. 7. Types of core language.

4.1 Operational Semantics

In the following we present a small-step operational semantics of the introduced core lan-
guage. The semantics is clearly stratified into a local (sequential) layer and a distributed
(concurrent) layer. Importantly, this means our programming model can benefit from exist-
ing reasoning techniques for sequential programs. Program transformations that are correct
for sequential programs are also correct for distributed programs. Our programming model
shares this property with some existing approaches (Peyton Jones et al., 1996).
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E ::= evaluation contexts:
[ ] hole
| E t application (fun)
| v E application (arg)
| spore { x : T = v;xi : Ti = E;x′ : T = t;(x : T )⇒ t } spore
| populate(E, t) populate (host)
| populate(v,E) populate (val)
| apply(E, t) apply (ref)
| apply(v,E) apply (fun)
| send(E) send
| await(E) await
| respond(h,E, t) respond (fut)
| respond(h,v,E) respond (val)

Fig. 8. Evaluation contexts.

R-IntOp
v′′ = v I(⊕) v′

E[v ⊕ v′] | σ →h E[v′′] | σ

R-AppAbs
E[((x : T )⇒ t) v] | σ →h E[[x 7→ v]t] | σ

R-AppSpore
E[(spore { x : T = v ;(x : T )⇒ t }) v] | σ →h E[[x 7→ v][x 7→ v]t] | σ

R-Await
σ(ι) = v

E[await(ι)] | σ →h E[v] | σ

R-Apply
r = Ref(l,h′) l′ = Applied((h, i), l, p) i fresh

E[apply(r, p)] | σ →h E[Ref(l′,h′)] | σ

Fig. 9. Local reduction.

The semantics is based on two reduction relations for (a) local reduction of terms and (b)
distributed reduction of sets of hosts. The reduction relations use the definition of evaluation
contexts shown in Figure 8. Evaluation contexts capture the notion of the “next subterm to
be evaluated.” Following a standard approach (Pierce, 2002), we write E[t] for the term
obtained by replacing the hole in evaluation context E with term t.
Figure 9 shows the rules for local reduction. The local reduction relation has the form

E[t] | σ →h E[t ′] | σ ′ with stores σ and σ ′. Stores are required for the dynamic allocation
of silos. A store σ is a partial function mapping decentralized identifiers ι to values v. The
annotation with host h is used for creating decentralized identifiers ι = (h, i) for lineages.
Rule R-IntOp reduces integer operator applications; function I interprets the operator sym-
bol⊕, mapping it to an actual operation on integer values. (The definition of I is trivial and
standard, and thus omitted.) Rule R-AppAbs is completely standard. Analogous to rule R-
AppAbs, rule R-AppSpore describes the application of a spore value to an argument value.
Rule R-Await reduces await(ι) to v if future ι is already completed with v in store σ .
Rule R-Apply creates a lineage using the constructor Applied. The new lineage has a

fresh identifier (h, i) which uniquely identifies the corresponding (logical) silo. The spore
value p is stored in the new lineage; this enables a materialization of the silo identified by
(h, i) using parent lineage l and spore p.

Distributed reduction. The distributed reduction rules use helper functions host, id, and
parent, which are defined as follows:
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m ::= messages:
Req(h,r, ι) request
| Res(ι ,v) response
Fig. 10. Messages.

Definition 4.1 (Host identifier) The host identifier of a silo reference.
host(Ref(l,h)) := h

Definition 4.2 (Lineage identifier) The identifier of a lineage.

id(l) :=
{

ι if l =Mat(ι)
ι if l = Applied(ι ,_,_)

Definition 4.3 (Lineage parent) The parent of a lineage.
parent(l) :=

{
l′ if l = Applied(_, l′,_)

The distributed reduction relation has the form H |M↠H ′ |M′ where H,H ′ are sets of
hosts andM,M′ are multisets of messages. A host is a machine that executes a computation,
and that can store silos in its local memory. In our formal model a host is represented as a
pair (t,σ)h consisting of a term t which is the executed computation, and a partial function
σ which is the local store. Note that each host has a unique host identifier; for instance, the
host identifier of host (t,σ)h is h. When it is clear from the context we use the terms “host”
and “host identifier” interchangeably. ThemultisetsM,M′modelmessage sends that are “in
flight;” a message send h←m expresses the sending of message m to host h. If h←m ∈M
then message m has not yet been delivered to h (the message is still in transit).
As shown in Figure 10 there are two kinds ofmessages. Amessage of the formReq(h,r, ι)

requests the value of silo r to be sent to host h for materialization of identifier ι . A message
of the form Res(ι ,v) represents the corresponding response, containing the identifier ι to
be materialized using value v.
Figure 11 shows the distributed reduction rules.
Rule R-Local reduces a host h chosen non-deterministically from the set of hosts (the

rule “schedules” host h for execution). Term t of host h is reduced according to the local
reduction rules. Thus, no communication is taking place; this means that the multiset of
in-flight messages M remains unchanged.
RuleR-Send reduces a term send(r) on host h. The reduction initiates the materialization

of silo r by sending a message m = Req(h,r, id(l)) to the host of r, h′. Thus, the message
send h′←m is added to the resulting multiset of in-flight messages M′. The send term itself
is reduced to the identifier of r’s lineage, id(l).
RuleR-Populate asynchronously populates a new silo on host h′ with value v by sending

message Res(ι ,v) to h′. Note that the fresh decentralized identifier ι = (h, i) is already cre-
ated on host h, which does not require any communication. The new lineage l ismaterialized
under identifier ι , represented using the lineage value Mat(ι).
RuleR-Respond reduces a term respond(h′, ι ,v) by sending a responsemessage Res(ι ,v)

to h′.
Rule R-Process models the processing of a message m taken from the multiset M of

in-flight messages. Note that this rule is only enabled if h is suspended, waiting for a silo
ι to be materialized in local store σ . A host is suspended if its current term has the form
E[await(ι)] and ι /∈ dom(σ) (there is no mapping for ι in store σ ). The premise ι /∈ dom(σ)
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R-Local
t | σ →h t ′ | σ ′

{(t,σ)h}∪H |M↠ {(t ′,σ ′)h}∪H |M

R-Send
r = Ref(l,h′) m = Req(h,r, id(l)) M′ = M⊎{h′← m}
{(E[send(r)],σ)h}∪H |M↠ {(E[id(l)],σ)h}∪H |M′

R-Populate
ι = (h, i) i fresh l =Mat(ι) M′ = M⊎{h′← Res(ι ,v)}

{(E[populate(h′,v)],σ)h}∪H |M↠ {(E[Ref(l,h′)],σ)h}∪H |M′

R-Respond
M′ = M⊎{h′← Res(ι ,v)}

{(E[respond(h′, ι ,v)],σ)h}∪H |M↠ {(E[unit],σ)h}∪H |M′

R-Process
ι /∈ dom(σ) M = M′⊎{h← m} process(h,m,σ) = (t,M′′,σ ′)
{(E[await(ι)],σ)h}∪H |M↠ {(E[t ; await(ι)],σ ′)h}∪H |M′⊎M′′

R-Process-Val
M = M′⊎{h← m} process(h,m,σ) = (t,M′′,σ ′)
{(v,σ)h}∪H |M↠ {(t,σ ′)h}∪H |M′⊎M′′

Fig. 11. Distributed reduction.

is important, since otherwise rule R-Local would also be enabled. Rule R-Process-Val is
analogous to rule R-Process for the case where a host h is unable to reduce its term further.
The actual message processing logic is factored out into function process which we

discuss in the following. In general, processing a message m on host h in store σ results in
(a) a term t to be evaluated by h, (b) a set of new in-flight messages M′, and (c) an updated
store σ ′.

Definition 4.4 (Message processing) The function process ∈H ×m×S ⇀ t×P(H ×
m)× S handles the processing of a message resulting in a term to be evaluated, a set of
messages, and an updated store; here, S = H ×N ⇀ v is the type of a store. process is
defined in Fig. 12.

The process function must handle the two kinds of messages, Req(h′,r, ι) and Res(ι ,v).
Processing a message of the form Res(ι ,v) means that a host is responding with the value
v of a silo whose materialization has been requested by the current host h to complete its
future ι . Thus, it suffices to create an updated store σ ′ which maps ι to v (rule Proc-Res).
Processing a message of the form Req(h′,r, ι) means that host h′ requests the value of

silo r in order to complete a future with identifier ι . In the absence of caching/persisting,
this requires the receiver of the request to materialize the silo whose value is requested.
Section 4.4 introduces a refinement of these rules to enable caching, thereby avoiding
repeated materializations of the same silo.
The requested silo r = Ref(l,h) is materialized using its lineage l. Rule

Proc-ReqParent handles the case where r’s parent id(l′) is not yet materialized (l′ is the
lineage of r’s parent). In this case, process returns the term send(Ref(l′,h)); this causes
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Proc-Res
σ ′ = [ι 7→ v]σ

process(h,Res(ι ,v),σ) = (unit, /0,σ ′)

Proc-ReqParent
r = Ref(l,h) l′ = parent(l) id(l′) /∈ dom(σ) M = {h← Req(h′,r, ι)}

process(h,Req(h′,r, ι),σ) = (send(Ref(l′,h)),M,σ)

Proc-ReqMat1
r = Ref(l,h) l =Mat(ι ′) σ(ι ′) = v M = {h′← Res(ι ,v)}

process(h,Req(h′,r, ι),σ) = (unit,M,σ)

Proc-ReqMat2
r = Ref(l,h) l =Mat(ι ′) ι ′ /∈ dom(σ) M = {h← Req(h′,r, ι)}

process(h,Req(h′,r, ι),σ) = (unit,M,σ)

Proc-ReqApply
r = Ref(l,h) l = Applied(ι ′, l′, p) σ(id(l′)) = v t = respond(h′, ι ,await(send(p v)))

process(h,Req(h′,r, ι),σ) = (t, /0,σ)

Fig. 12. Message processing.

host h to request the materialization of the parent silo Ref(l′,h) before any other message
is processed. Note that a silo is always materialized on the same host as its parent silo;
therefore, the hosts of r and its parent are guaranteed to be the same. The original request
Req(h′,r, ι) is included in the new in-flight messages M, so that it is eventually handled,
namely when r’s parent is materialized.
Rules Proc-ReqMat1 and Proc-ReqMat2 handle the case where r does not have a

parent. In the case of Proc-ReqMat1, the materialization of r is just the value v of its
materialized lineage Mat(ι ′); thus, a response Res(ι ,v) is sent to host h′. In the case of
Proc-ReqMat2, lineage Mat(ι ′) is not yet materialized (i.e., host h is still waiting for
a message Res(ι ′,v′)); thus, the original request Req(h′,r, ι) sent to h is re-sent, to be
processed again later.
Rule Proc-ReqApply is only enabled when the requested silo r can bematerialized using

its lineage l; in particular, r’s parent must be materialized. In this case the lineage of r begins
with an Applied constructor. The materialization of r consists of the result of applying the
spore p provided by the lineage to the value v of the parent silo. Evaluating the application
p v requires multiple reduction steps in general. Therefore, rule Proc-ReqApply returns
a term containing the application p v for evaluation by host h. However, note that p v
reduces to a silo reference. Therefore, the value of silo p v is obtained by requesting its
materialization (using send(p v)) and waiting for the completion of the returned future
(using await). Finally, when the future is resolved, a response Res(ι ,v′) (for some value v′)
is sent to host h′ by evaluating the respond term.

4.2 Type Assignment

Type assignment is based on a judgment of the form Γ;Σ⊢ t : T which assigns term t type T .
Γ is a standard type environmentwhichmaps variables x to types T ;Σ is a store typingwhich



ZU064-05-FPR fp-jfp 19 December 2017 15:12

24 P. Haller, H. Miller, and N. Müller

T-Var
x : T ∈ Γ

Γ;Σ ⊢ x : T

T-Int
n integer literal
Γ;Σ ⊢ n : Int

T-IntOp
Γ;Σ ⊢ t : Int Γ;Σ ⊢ t ′ : Int

Γ;Σ ⊢ t ⊕ t ′ : Int

T-Abs
Γ,x : T ;Σ ⊢ t : T ′

Γ;Σ ⊢ ((x : T )⇒ t) : T ⇒ T ′

T-App
Γ;Σ ⊢ t : T ⇒ T ′ Γ;Σ ⊢ t ′ : T

Γ;Σ ⊢ (t t ′) : T ′

T-Unit
Γ;Σ ⊢ unit : Unit

T-Spore
Γ;Σ ⊢ t : T x : T ,x : T ; /0 ⊢ t : T ′ ∀S ∈ T ,T ′. serializable(S)

Γ;Σ ⊢ (spore { x : T = t ;(x : T )⇒ t }) : T ⇒ T ′ { type C = T }

T-AppSpore
Γ;Σ ⊢ t : T ⇒ T ′ { type C = T } Γ;Σ ⊢ t ′ : T

Γ;Σ ⊢ (t t ′) : T ′

T-SiloRef
Σ(id(l)) = T Σ ⊢ Ref(l,h)
Γ;Σ ⊢ Ref(l,h) : SiloRef[T ]

T-Apply
Γ;Σ ⊢ t : SiloRef[T ] Γ;Σ ⊢ t ′ : (T ⇒ SiloRef[T ′] { type C = T })

Γ;Σ ⊢ apply(t, t ′) : SiloRef[T ′]

T-Send
Γ;Σ ⊢ t : SiloRef[T ]

Γ;Σ ⊢ send(t) : Future[T ]

T-Await
Γ;Σ ⊢ t : Future[T ]
Γ;Σ ⊢ await(t) : T

T-Ident
Σ(ι) = T

Γ;Σ ⊢ ι : Future[T ]

T-Respond
h ∈H Γ;Σ ⊢ t : Future[T ] Γ;Σ ⊢ t ′ : T

Γ;Σ ⊢ respond(h, t, t ′) : Unit

T-Populate
Γ;Σ ⊢ t : Host Γ;Σ ⊢ t ′ : T serializable(T )

Γ;Σ ⊢ populate(t, t ′) : SiloRef[T ]

Fig. 13. Type assignment.

S-Int
serializable(Int)

S-Unit
serializable(Unit)

S-Host
serializable(Host)

S-SiloRef
serializable(SiloRef[T ])

S-Spore
∀Ti ∈ T . serializable(Ti)

serializable(T ⇒ T ′ { type C = T })

Fig. 14. Serializable types.

maps identifiers ι to types T . Figure 13 shows the rules for type assignment. Rules T-Var,
T-Abs, and T-App are unchanged compared to a standard typed lambda calculus (Pierce,
2002). Rules T-Int and T-IntOp assign types to integer literals and applications of integer
operators, respectively.
Rule T-Spore assigns a type to spore literals. Importantly, the body of the spore’s closure,

t, must be well-typed in a type environment containing only the closure parameter x and
the variables x in the spore’s header, as well as an empty store typing. Furthermore, the
types of captured variables as well as the result type T ′ must be serializable. The predicate
serializable is defined in Figure 14. These constraints ensure that spore values are always
independent of the environment of the creating host. This independence is expressed by the
following theorem:
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WF-Store1
/0 ⊢ /0

WF-Store2
/0;Σ ⊢ v : T Σ ⊢ σ
[ι 7→ T ]Σ ⊢ [ι 7→ v]σ

WF-Store3
Σ ⊢ σ Σ′ ⊇ Σ

Σ′ ⊢ σ

WF-Lin1
ι ∈ dom(Σ)
Σ ⊢Mat(ι)

WF-Lin2
Σ(ι) = T Σ(id(l)) = T ′ ∃Γ. Γ;Σ ⊢ p : T ′⇒ SiloRef[T ] {. . .} Σ ⊢ l

Σ ⊢ Applied(ι , l, p)

WF-Ref
Σ ⊢ l h ∈H

Σ ⊢ Ref(l,h)

WF-Res
Σ(ι) = T /0;Σ ⊢ v : T

Σ ⊢ Res(ι ,v)

WF-Req
r = Ref(l,h′) Σ(id(l)) = Σ(ι) Σ ⊢ r

Σ ⊢ Req(h,r, ι)

WF-HostConfig
Σ ⊢ σ ∃Γ. Γ;Σ ⊢ t : T

Σ ⊢ (t,σ)h

WF-Host1
Σ ⊢ /0

WF-Host2
Σ ⊢ (t,σ)h Σ ⊢ H

Σ ⊢ {(t,σ)h}∪H

WF-Messages-Emp
Σ ⊢ /0

WF-Messages
Σ ⊢ m h ∈H Σ ⊢M

Σ ⊢ {h← m}⊎M

WF-Config
Σ ⊢ H Σ ⊢M

Σ ⊢ H |M

Fig. 15. Well-formedness.

Theorem 4.1 (Serializable Values) If Γ;Σ ⊢ v : T and serializable(T ) then /0;Σ ⊢ v : T .

Proof
By induction on the derivation of Γ;Σ ⊢ v : T . See Appendix B.1.

RuleT-AppSpore is analogous to ruleT-App. RulesT-Populate andT-Apply are straight-
forward; note that apply is polymorphic in the types of the captured variables of its spore
argument type. Rules T-Send and T-Await are entirely unsurprising. Rules T-Ident and
T-SiloRef are the only rules that use the store typing Σ. The type of an identifier ι has the
form Future[T ]where type T is looked up in the store typing. Rule T-SiloRef is analogous;
additionally, it requires the silo reference Ref(l,h) to be well-formed in Σ (see below).

4.3 Well-Formed Configurations

Figure 15 shows the rules for well-formed configurations. These rules are essential for
establishing subject reduction (see Section 5.1). Rules WF-Store1-3 are straightforward.
Rule WF-Lin1 requires Σ to be defined for the identifier of a materialized lineage Mat(ι).
Rule WF-Lin2 requires the types of ι and id(l) given by the store typing Σ to be consistent
with the corresponding type of spore p. Parent lineage l must be well-formed in Σ. Rule
WF-Ref extends well-formedness of lineages to silo references. Rules WF-Res and WF-
Req specify well-formedness of messages in Σ. The remaining rules lift well-formedness to
host configurations (WF-HostConfig), sets of hosts (WF-Host1-2), multisets of messages
(WF-Messages-Emp, WF-Messages), and configurations (WF-Config), respectively.

4.4 Persist and Unpersist

As explained in Section 2.4, silos may be cached in memory to avoid repeated material-
ization, which may be expensive for large data sets. The design is inspired by the popular
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t ::= terms:
. . .
| persist(t) persist
| unpersist(t) unpersist

l ::= lineages:
. . .
| Persist(ι , l, f ) lineage with persist

E ::= evaluation contexts:
. . .
| persist(E) persist
| unpersist(E) unpersist

Fig. 16. Extensions to syntax, lineages, and evaluation contexts for persist/unpersist. f is a binary
operator with f ∈ {·∪ ·, · \ ·}.

R-Persist
r = Ref(l,h′) l′ = Persist((h, i), l, ·∪ ·) i fresh

E[persist(r)] | σ →h E[Ref(l′,h′)] | σ

R-Unpersist
r = Ref(l,h′) l′ = Persist((h, i), l, · \ ·) i fresh

E[unpersist(r)] | σ →h E[Ref(l′,h′)] | σ

R-Await
σ(ι) = (v,P)

E[await(ι)] | σ →h E[v] | σ

Fig. 17. Extension to local reduction.

Spark (Zaharia et al., 2010) data processing system. Essentially, a silo r may be persisted
using the persist primitive: the call persist(r) immediately returns a new silo reference r′

whose value, when materialized, is equal to the value of r. The lineage of r′ is equal to that
of r except for one additional element: if l is the lineage of silo r, then the lineage of r′ is of
the form l′ = Persist(ι , l, f ). As for the Applied constructor ι is the identifier of lineage l′.
(As before, ι = (h, i) implies that host h has called persist.) The last argument is a binary
operator f ∈ {·∪ ·, · \ ·} which toggles between the behavior of persist and unpersist. If
f = · ∪ · then the lineage Persist(ι , l, f ) implements the behavior of persist; otherwise,
the behavior of unpersist. The extensions to syntax, lineages, and evaluation contexts are
summarized in Figure 16.

4.4.1 Operational semantics

In order to distinguish between silos that have been persisted and those that have not, we
extend stores σ to map identifiers ι not just to their associated value, but also to a so-called
“persist set” P; if σ(ι) = (v,P) then P contains all hosts that have persisted silo ι . Stores
have thus the following extended type:

Definition 4.5 (Store) σ ∈H ×N⇀ v×P(H ).

As a next step we extend the local reduction relation, as shown in Figure 17. First, we
introduce the reduction rules R-Persist and R-Unpersist to enable the creation of Persist
lineages. Second, we adjust reduction rule R-Await to use the extended store.
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Proc-Res
σ ′ = [ι 7→ (v, /0) ]σ

process(h,Res(ι ,v),σ) = (unit, /0,σ ′)

Proc-ReqPersist
r = Ref(l,h) l = Persist(ι ′, l′,⋆) ι ′ = (h′′, i)

σ(id(l′)) = (v,P) P′ = P⋆{h′′} σ ′ = [ι ′ 7→ (v,P′)]σ
process(h,Req(h′,r, ι),σ) = (unit,{h′← Res(ι ,v)},σ ′)

Proc-Req
r = Ref(l,h) σ(id(l)) = (v,P) σ ′ = consume(id(l),P,σ)

process(h,Req(h′,r, ι),σ) = (unit,{h′← Res(ι ,v)},σ ′)

Proc-ReqApply
r = Ref(l,h) l = Applied(ι ′, l′, p) σ(id(l′)) = (v,P)

t = respond(h′, ι ,await(send(p v))) σ ′ = consume(id(l′),P,σ)

process(h,Req(h′,r, ι),σ) = (t, /0, σ ′ )

Fig. 18. Extensions to message processing.

The rules for message processing are impacted most. Intuitively, the reason is that the
fact whether a silo is (re-)materialized is determined in the context of message processing.
Figure 18 shows new or extended rules for message processing. Rule Proc-Res is sim-
ply adjusted to the new store definition. Rule Proc-ReqPersist is new; the rule enables
processing requests Req(h′,r, ι) in cases where r has a Persist lineage and r’s parent is
materialized (otherwise, the above Proc-ReqParent rule would be enabled). Importantly,
a silo with lineage Persist(ι ′, l′,⋆) has the same value as the parent silo which has identi-
fier id(l′). Therefore, rule Proc-ReqPersist updates the store to map the identifier of the
persisted silo, ι ′, to the value of id(l′) in σ . In addition, a persist set P′ is computed based
on (1) the persist set P of the parent silo, (2) the host h′′ that created the Persist lineage, and
(3) the operator ⋆ provided in the Persist lineage. The latter may either be set union or set
difference; accordingly, the persisting host h′′ is either added or removed from the persist
set P of the parent of the silo to-be-persisted. In case h′′ is added to the persist set (because
host h′′ called persist rather than unpersist), it means that the persist set P′ is non-empty.
As a result, the mapping for ι ′ remains resident in the store, avoiding re-materialization, as
the following rules show.
Rule Proc-Req is also new. The rule is enabled when the requested silo r has already

been materialized, i.e., σ(id(l)) = (v,P). In this case, a response Res(ι ,v) can directly be
sent back to the requesting host h′. Importantly, the rule also checks whether the silo has
been persisted, by examining its persist set P in store σ . Using the consume function, the
mapping for identifier id(l) is removed from the updated store σ ′ if the persist set P is
empty. An empty persist set indicates that the corresponding silo has not been persisted.
Concretely, the consume function is defined as follows:

Definition 4.6 (Consume silo) Consume silo referenced by ι with persist set P in store σ

consume(ι ,P,σ) :=
{

σ − ι if P = /0
σ otherwise
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T-Persist
Γ;Σ ⊢ t : SiloRef[T ]

Γ;Σ ⊢ persist(t) : SiloRef[T ]

T-Unpersist
Γ;Σ ⊢ t : SiloRef[T ]

Γ;Σ ⊢ unpersist(t) : SiloRef[T ]

WF-Store2
/0;Σ ⊢ v : T Σ ⊢ σ

[ι 7→ T ]Σ ⊢ [ι 7→ (v,P) ]σ

WF-Lin3
Σ(ι) = Σ(id(l)) Σ ⊢ l

Σ ⊢ Persist(ι , l,⋆)

Fig. 19. Extension to type assignment and well-formedness.

Rule Proc-ReqApply is extended to consume the parent silo in case it has not been
persisted.
Figure 19 shows the required extensions to type assignment and well-formedness. The

type rules T-Persist and T-Unpersist are straightforward. Rule WF-Store2 is simply
adjusted to the extended store definition. RuleWF-Lin3 defines well-formedness for Persist
lineages: the store typings for ι and id(l) must be equal and parent lineage l must be well-
formed.

5 Correctness Properties

5.1 Subject Reduction

This section establishes a subject reduction theorem for the presented core language. The
complete proof is provided in the appendix; here, we restrict ourselves to summarizing the
main results.

Lemma 5.1 (Substitution) If Γ,x : T ′;Σ ⊢ t : T and Γ;Σ ⊢ v : T ′ then Γ;Σ ⊢ [x 7→ v]t : T .

Proof
By induction on the derivation of Γ,x : T ′;Σ ⊢ t : T .

Theorem 5.2 (Subject Reduction)

1. If Γ;Σ ⊢ t : T , Σ ⊢ σ , and t | σ →h t ′ | σ ′ then Γ;Σ′ ⊢ t ′ : T and Σ′ ⊢ σ ′ for some
Σ′ ⊇ Σ.

2. If Σ ⊢ H |M and H |M↠ H ′ |M′ then Σ′ ⊢ H ′ |M′ for some Σ′ ⊇ Σ.

Proof
Part 1: by induction on the derivation of t | σ →h t ′ | σ ′. Part 2: by induction on the
derivation of H |M↠ H ′ |M′. See Appendix B.2 for the complete proof.

5.2 Progress

This section formulates progress properties. The main Theorem 5.5 states that materializa-
tion requests are satisfied after a finite number of reduction steps in so-called “responsive
configurations.”
In the following we assume a fair scheduling property which ensures that in a well-

formed configuration H | M, each message h← m ∈ M is eventually received by host h.
Fair scheduling is also assumed in other models of distributed computing like actors (Agha,
1986; Agha et al., 1997). Formally, fair scheduling is defined as follows:
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Definition 5.1 (Fair Scheduling) Let Σ ⊢ H |M and h← m ∈M where Σ ⊢ m.
ThenH |M↠∗ H ′ |M′↠H ′′ |M′′ after a finite number of reduction steps, andH ′ |M′↠

H ′′ |M′′ by ruleR-Process orR-Process-Val such thatM′=Mold⊎{h←m}, (t,σ)h ∈H ′,
process(h,m,σ) = (t ′,Mnew,σ ′), and M′′ = Mold ⊎Mnew.

Although our focus is the establishment of desirable progress properties for distributed
reduction, it is necessary to consider the following strong normalization property of single-
host reductions. For this, we consider the reduction relation⇝ defined as the subset of the
reduction relation↠ excluding reduction rules R-Process and R-Process-Val.

Lemma 5.3 (Single-Host Strong Normalization) Let Σ ⊢ H | M where H = {(t,σ)h}∪
H ′. Then H |M⇝∗ {(t ′,σ ′)h}∪H ′ |M′ after a finite number of reduction steps and either
t ′ is a value or t ′ = E[await(ι)].

Note that in the above reduction, only a single host h is reduced. Furthermore, the set
of in-flight messages may change, e.g., by applying rule R-Send. A proof of Lemma 5.3
is outside the scope of this paper. However, our core language is, fundamentally, not more
expressive than the simply typed lambda calculus, for which strong normalization holds.
As a prerequisite for the establishment of our main progress theorem, we introduce a

small amount of bookkeeping into the reduction relations. The aim is to keep track of silo
references created during reduction. Importantly, this additional bookkeeping information
does not introduce any change in the semantic behavior–the information can be erased
without affecting the run-time semantics in any way.
The augmented local reduction relation has the form E[t] | σ →h E[t ′] | σ ′ | R where R is

either the empty set or a singleton set containing the created silo reference. Rule R-Apply
is the only rule resulting in a non-empty set of created references:

R-Apply
r = Ref(l,h′) l′ = Applied((h, i), l, p) i fresh r′ = Ref(l′,h′)

E[apply(r, p)] | σ →h E[r′] | σ | {r′}

The augmented distributed reduction relation has the form H | M | R↠ H ′ | M′ | R′

where R is the set of references already existing before performing the reduction step and
R′ is the set of references existing after performing the reduction step. Rules R-Local and
R-Populate are the only rules resulting in a set of references R′ where R′ ̸= R is possible:

R-Local
t | σ →h t ′ | σ ′ | R′

{(t,σ)h}∪H |M | R↠ {(t ′,σ ′)h}∪H |M | R∪R′

R-Populate
ι = (h, i) i fresh l =Mat(ι) M′ = M⊎{h′← Res(ι ,v)} r′ = Ref(l,h′)
{(E[populate(h′,v)],σ)h}∪H |M | R↠ {(E[r′],σ)h}∪H |M′ | R∪{r′}

Finally, the extension of well-formed configurations is straightforward:
WF-Config
Σ ⊢ H Σ ⊢M Σ ⊢ R

Σ ⊢ H |M | R

WF-Refs
Σ ⊢ r Σ ⊢ R

Σ ⊢ {r}∪R
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Using the augmented reduction rules we introduce a responsiveness property, responsive
configurations. Informally, in a responsive configuration requesting (the materialization
of) any previously created silo reference results in a corresponding response after a finite
number of reduction steps. The property is defined as follows:

Definition 5.2 (Responsive Configuration) A configuration Σ ⊢ H | M | R is responsive,
written Responsive(H,M,R), iff
∀r = Ref(l,h) ∈ R. (m = Req(h′,r, ι)∧Σ ⊢ m) =⇒ H | M⊎{h← m} | R↠∗ H ′ | M′ ⊎

{h′← Res(ι ,v)} | R′ after a finite number of reduction steps.

The following lemma ensures that the ability to materialize a silo after a finite number
of reduction steps is preserved under reduction.

Lemma 5.4 (Responsiveness) Let Σ ⊢ H |M | R∪ R̂ and Responsive(H,M, R̂).
If H |M | R∪ R̂↠ H ′ |M′ | R′∪ R̂ then Responsive(H ′,M′, R̂).

Proof Sketch
By induction on the derivation of H |M | R∪ R̂↠H ′ |M′ | R′∪ R̂ with case analysis of the
last applied rule, using Def. 5.1 and Lemma 5.3.

We are now ready to introduce the main progress theorem. Theorem 5.5 states that finite
materialization of silos is a universal property of our core language.

Theorem 5.5 (Finite Materialization) Let Σ ⊢ H |M | R such that Responsive(H,M,R).
If H |M | R↠ H ′ |M′ | R′ then Responsive(H ′,M′,R′).

Proof
See Appendix B.3.

6 Related Work

Alice ML (Rossberg et al., 2004) is an extension of Standard ML which adds a number
of important features for distributed programming such as futures and proxies. The design
leading up to the function passing model has incorporated many similar ideas, such as type-
safe, generic and platform-independent pickling. In Alice, functions intend to be mobile.
Only those functions which capture (either directly or indirectly) local resources remain
stationary. In the case of functions that must remain stationary, it is possible to send proxies,
mobile wrappers for functions. Sending a proxy will not transfer the wrapped function;
instead, when a proxy function is applied, the call is forwarded by the system to the original
site as a remote invocation (pickling arguments and result appropriately). In F-P, however,
functions are not wrapped in proxies but sent directly. Thus, calling a received function will
not lead to remote invocations.
Cloud Haskell (Epstein et al., 2011) leverages guaranteed-serializable, static closures

for a message-passing communication model inspired by Erlang. In contrast, in our model
spores are sent between passive, persistent silos. Moreover, the coordination of concurrent
activity is based on futures, instead of message passing. Closures and continuations in
Termite Scheme (Germain, 2006) are always serializable; references to non-serializable
objects (like open files) are automatically wrapped in processes that are serialized as their
process ID. Similar to Cloud Haskell, Termite is inspired by Erlang. In contrast to Termite,



ZU064-05-FPR fp-jfp 19 December 2017 15:12

Journal of Functional Programming 31

the function passing model is statically typed, enabling advanced type-based optimizations.
In non-process-oriented models, parallel closures (Matsakis, 2012) and RiverTrail (Herhut
et al., 2013) address important safety issues of closures in a concurrent setting. However,
RiverTrail currently does not support capturing variables in closures, which is critical for
the apply combinator in the function passing model. In contrast to parallel closures, spores
do not require a type system extension in Scala.
Acute ML (Sewell et al., 2005) is a dialect of ML which proposes numerous primitives

for distributed programming, such as type-safe serialization, dynamic linking and rebind-
ing, and versioning. The function passing model, in contrast, is based on spores, which ship
with their serialized environment or they fail to compile, obviating the need for dynamic
rebinding. HashCaml (Billings et al., 2006) is a practical evolution of Acute ML’s ideas
in the form of an extension to the OCaml bytecode compiler, which focuses on type-safe
serialization and providing globally meaningful type names. In contrast, function passing
is merely a programming model, which does not require extensions to the Scala compiler.
ML5 (Murphy VII et al., 2007) provides mobile closures verified not to use resources not

present on machines where they are applied. This property is enforced transitively (for all
values reachable from captured values), which is stronger than what plain spores provide.
However, type constraints allow spores to require properties not limited to mobility. Tran-
sitive properties are supported either using type constraints based on type classes which
enforce a transitive property or by integrating with type systems that enforce transitive
properties. UnlikeML5, spores do not require a type system extension. Further, the function
passing model sits on top of these primitives to provide a full programming model for
distribution, which also integrates spores and type-safe pickling.
MapReduce (Dean&Ghemawat, 2008), Dryad (Isard et al., 2007), andApache Spark (Za-

haria et al., 2010) are distributed systems for large-scale data processing, building on con-
cepts from functional programming, such as higher-order functions. Ciel (Murray et al.,
2011) is an execution engine for distributed data-flow programs which, like the function
passingmodel, supports dynamic task dependencies and data-dependent control flow, thereby
going beyond the capabilities of MapReduce and Dryad. Like Spark, MapReduce, and
Dryad, Ciel supports transparent scaling, and fault tolerance is transparent. Our system
shares several aspects of its design with Spark, such as lazy materialization of datasets, and
serialization of computations, including closures, for remote shipping. In contrast to Spark’s
RDDs (Resilient Distributed Datasets), silos in the function passing model are lower-level
abstractions without transparent fault tolerance or transparent scaling. Instead, the goal of
our programmingmodel is to provide a foundation on top of which higher-level abstractions
for distributed programming, like RDDs, can be built. An important focus of our work is the
precise and detailed formalization of lineages and silos as a first step towards formal models
of distributed systems like Spark. DryadLINQ (Yu et al., 2008) extends Dryad with a func-
tional language, LINQ, for expressing transformations on distributed datasets which en-
ables sophisticated optimizations including those typically employed by databases. Like the
function passing model, DryadLINQ enables the use of function closures within distributed
computations. DryadLINQ uses dynamic code generation to ensure the serializability of
these closures: captured variables are either eliminated by partial evaluation or serialized
as resources shipped to machines in the cluster at runtime. In our system, serializability of
closures (spores) is ensured at compile time using macros instead of using dynamic code
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generation. Like Spark, but unlike DryadLINQ and MapReduce, silos may be persisted
in memory across multiple usages in our system. Nectar (Gunda et al., 2010) provides
a caching service to improve the resource utilization of Dryad/DryadLINQ clusters. For
this, Nectar identifies derived datasets by the computations that generate them, similar to
lineages in the function passing model. Nectar has been shown to significantly improve
space utilization as well as provide speed-ups via incremental computation and shared
sub-computations. It would be interesting to investigate potential usages of the lineages
of the functional passing model for similar purposes. In contrast to these above systems,
the function passing model is meant to act as more of a middleware to facilitate the design
and implementation of such systems, and as a result provides finer-grained control over
details such as fault handling. Rather than system building and experimental evaluation,
our focus is on a precise formalization of the programming model, as well as the proof of
preservation and progress properties.
The Clojure programming language proposes agents (Hickey, 2008)–stationary mutable

data containers that users apply functions to in order to update an agent’s state. The func-
tion passing model, in contrast, proposes that data in stationary containers be immutable,
and that transformations by function application form a persistent data structure. Further,
Clojure’s agents are designed to manage state in a shared memory scenario, whereas the
function passing model is designed with remote references for a distributed scenario.
The function passing model is also related to the actor model of concurrency (Agha,

1986), which features multiple implementations in Scala (Haller & Odersky, 2009; Type-
safe, 2015; He et al., 2014). Actors can serve as in-memory data containers in a distributed
system, like our silos. Unlike silos, actors encapsulate behavior in addition to immutable
or mutable values. While only some actor implementations support mobile actors (none in
Scala), mobile behavior in the form of serializable closures is central to the function passing
model.

7 Future Work and Conclusion

7.1 Ongoing and Future Work

Our ongoing efforts are three-fold; (a) we are working on a semantics and implementation
of fault handling on top of the function passing model, (b) we are exploring approaches for
memory reclamation, and (c) we are working to better understand the concerns of separate
compilation.

7.1.1 Fault Handling

The current implementation of the function passing model includes overloaded variants
of function passing’s primitive operations to enable flexible fault handling semantics. The
main idea is to specify fault handlers for subgraphs of computation DAGs. Our guiding
principle is to make the definition of the failure-free path through a computation DAG as
simple as possible, while still enabling the handling of faults at the fine-granular level of
individual silo references.
What follows are illustrations of this ongoing work based on the running example intro-

duced in Section 2.3.
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Defining fault handlers. Fault handlers may be specified whenever the lineage of a silo
reference is extended. For this purpose, the introduced apply primitive is overloaded. For
example, consider the running example illustrated in Figure 5, but extended with a fault
handler:

val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// copy of `vehicles̀ on different host `h`, see Section 2.4.1

val vehicles2 = SiloRef.fromLineage(h, vehicles)

val adults = persons.apply(spore { ps =>

SiloRef.populate(currentHost, ps.filter(p => p.age >= 18))

})

// adults that own a vehicle

def computeOwners(v: SiloRef[List[Vehicle]]) = spore {

val localVehicles = v

(ps: List[Person]) => localVehicles.apply(...)

}

val owners: SiloRef[List[(Person, Vehicle)]] =

adults.apply(computeOwners(vehicles),

computeOwners(vehicles2))

Importantly, in the apply call on the last line, in addition to computeOwners(vehicles), the
regular spore argument of apply, computeOwners(vehicles2) is passed as an additional argu-
ment. The second argument registers a failure handler for the subgraph of the computation
DAG starting at adults. This means that if during the execution of computeOwners(vehicles)
it is detected that the vehicles silo reference has failed, it is checked whether the SiloRef

that the higher-order combinator was invoked on (in this case, adults) has a failure handler
registered. In that case, the failure handler is used as an alternative spore to compute the
result of adults.apply(..). In this example, we specified computeOwners(vehicles2) as the
failure handler; thus, in case vehicles has failed, the computation is retried using vehicles2

instead.
A limitation of this basic failure handling model is the fact that in the above example, the

fall-back silo vehicles2 is defined up front using a specific host h. However, note that the
computation DAG defined by a SiloRef can easily be materialized on any host using the
SiloRef.fromLineage function shown in Section 2.4.1. Thus, assuming the existence of a
function that randomly returns one of the healthy hosts in the cluster, say, getHealthyHost(),
the above fault handler could be made more dynamic as follows:

val owners: SiloRef[List[(Person, Vehicle)]] =

adults.apply(computeOwners(vehicles),

spore {

val localVehicles = vehicles

(ps: List[Person]) =>

val recoveredVehicles =
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SiloRef.fromLineage(getHealthyHost(), localVehicles)

recoveredVehicles.apply(...)

}

)

In order to implement more flexible fault handling mechanisms, including strategies for
straggler mitigation, additional information pertaining to the execution of (parts of) DAGs
would need to be provided. For example, to mitigate stragglers, materializations could be
initiated on alternative machines after a timeout. The specification (on the API level) and
implementation of more flexible execution policies is left for future work.

7.1.2 Memory Reclamation

We are exploring multiple approaches for memory reclamation. The first approach uses
Java’sweak references to detect when a SiloRef is no longer reachable from local GC roots.
Upon detection the host of the corresponding silo is notified to decrease the silo’s reference
count; the host’s reference(s) to the silo are nulled out when the reference count reaches
zero. It is important to note that this strategy requires notifying a silo’s host whenever
a SiloRef to the silo reaches a new machine, to increase the silo’s reference count. The
second approach leverages uniqueness types in Scala (Haller & Odersky, 2010; Haller &
Loiko, 2016). Here, SiloRefs are locally unique, and the programmer can explicitly declare
a SiloRef as unused; the type system ensures that such an “unused” SiloRef is not used again
subsequently. As in the first approach, uponmarking a SiloRef as unused, the corresponding
silo’s host is notified to decrease the silo’s reference count.
Other future work includes better understanding concerns of separate compilation in

order to evaluate whether our model could be of help in coordinating between microser-
vices.13

7.2 Conclusion

We have presented the function passing model, a new programming model and new sub-
strate or middleware upon which to build data-centric distributed systems. This enables two
important benefits for distributed system builders; since (a) all computations are functional
transformations on immutable data, themodel directly provides lineageswhich can form the
basis for fault recovery, and (b) communication is made well-typed by design, the function
passing model attempts to more naturally model the paradigm of data-centric program-
ming by extending monadic programming to the network. One insight of our model is that
lineage-based fault recovery mechanisms, used in widespread frameworks for distribution,
are closely related to persistent data structures in functional programming. Therefore, we
believe that fault tolerance based on lineages may benefit from further study by the func-
tional programming community. We have also presented a formalization of the function

13 Microservices are small, independent (separately-compiled) services running on different
machines which communicate with each other to together make up a single and complex
application. They are a predominant trend in industry amongst rich and complicated web-based
services.
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passing model, providing an operational semantics and a type system for lineage-based
distributed computation. While our formal model does not yet provide an approach to fault
tolerance, our hope is that aspects of the model including lineages, silo references, and silo
materialization can eventually form the basis of a complete formal treatment of lineage-
based fault tolerance in future work. Finally, we have implemented our approach in and for
Scala, and have shown that it is possible to support different popular patterns of distributed
processing, such as batch processingwithApache Spark’s RDDs andMBrace’s cloud-based
asynchronous tasks.
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A Illustrated Listings

A.1 Matching Vehicles and Owners

Figure A 1 shows an illustrated version of the listing in Figure 4.

Spore passed to apply 
method on SiloRef

Spore passed to apply 
method on SiloRef
type: List[Person]

flatMap on Scala standard 
collections

flatMap on Scala standard 
collections

Fig. A 1. Matching persons and vehicle owners using the apply combinator.

A.2 K-Means Clustering

Figure A 2 shows an illustrated version of the listing of the k-means clustering example in
Section 3.3.
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Spore passed to
apply method on 
SiloRef

Chained higher-
order functions 
on standard Scala 
collections

Pattern match 
deconstructing a 
pair and 
assigning names 
to each 
component.

type: SiloRef[Array[Point]] 
parameter of fn 
passed to map on
Seq[SiloRef[Array[Point]]]

type: Seq[Array[Point]]]
parameter of fn 
passed to map on
Future[Seq[Array[Point]]]

apply returns 
a SiloRef

Await.result is a barrier which blocks 
until the argument future is resolved

send returns 
a Future

Fig. A 2. Excerpt of an implementation of k-means clustering.

B Proofs

B.1 Proof of Theorem 4.1

Theorem (Serializable Values) If Γ;Σ ⊢ v : T and serializable(T ) then /0;Σ ⊢ v : T .

Proof
By induction on the derivation of Γ;Σ ⊢ v : T with a case analysis of the last applied rule.

• Cases T-Int, T-Unit, and T-Host are trivial.
• Case T-SiloRef.

1. By the assumptions
(a) Γ;Σ ⊢ v : T

(b) serializable(T )

2. By 1.a) and T-SiloRef
(a) v = Ref(l,h)
(b) T = SiloRef[T ′]

(c) Σ(id(l)) = T ′
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(d) Σ ⊢ Ref(l,h)
3. By 2.a-d), and T-SiloRef, /0;Σ ⊢ v : T .

• Case T-Spore follows by S-Spore and the IH.

B.2 Proof of Theorem 5.2

Lemma B.1 (Weakening) If Γ;Σ ⊢ t : T and x /∈ dom(Γ), then Γ,x : T ′;Σ ⊢ t : T .

Proof
By induction on the derivation of Γ;Σ ⊢ t : T .

Lemma B.2 (Weakening of Store Typing)

1. If Γ;Σ ⊢ t : T and ι /∈ dom(Σ) then Γ;Σ′ ⊢ t : T where Σ′ = [ι 7→ T ′]Σ.
2. If Σ ⊢ (t,σ)h and ι /∈ dom(Σ) then Σ′ ⊢ (t,σ)h where Σ′ = [ι 7→ T ]Σ.
3. If Σ ⊢ H and ι /∈ dom(Σ) then Σ′ ⊢ H where Σ′ = [ι 7→ T ]Σ.

Proof
Part 1: By induction on the derivation of Γ;Σ ⊢ t : T . Part 2: By induction on the derivation
of Σ ⊢ (t,σ)h. Part 3: By induction on the derivation of Σ ⊢ H.

Lemma B.3 (Process) If Σ ⊢ σ , Σ ⊢ m, and process(h,m,σ) = (t,M,σ ′) then /0;Σ′ ⊢ t : T
for some T , Σ′ ⊢M, and Σ′ ⊢ σ ′ for some Σ′ ⊇ Σ.

Proof
• Case Proc-Req.

1. By the assumptions
(a) Σ ⊢ σ
(b) Σ ⊢ m

(c) process(h,m,σ) = (t,M,σ ′)
2. By Proc-Req

(a) m = Req(h′,r, ι)
(b) r = Ref(l,h)
(c) σ(id(l)) = (v,P)

(d) M = {h′← Res(ι ,v)}
(e) σ ′ = consume(id(l),P,σ)

(f) t = unit

3. Define Σ′ := Σ.
4. By 2.e) and Def. 4.6, dom(σ ′)⊆ dom(σ).
5. By 1.a), 3., 4., and WF-Store1-3, Σ′ ⊢ σ ′.
6. By 1.b), 2.a,b), and WF-Req

(a) Σ(id(l)) = Σ(ι)
(b) Σ ⊢ r



ZU064-05-FPR fp-jfp 19 December 2017 15:12

Journal of Functional Programming 39

7. Define T := Σ(id(l)).
8. By 1.a), 2.c), 7., and WF-Store2, /0;Σ ⊢ v : T .
9. By 6.a), 7., 8., and WF-Res, Σ ⊢ Res(ι ,v).
10. By 2.d), 9., and WF-Messages, Σ ⊢M.
11. By 2.f), T-Unit, and Lemma B.2, /0;Σ ⊢ t : T ′ for some T ′.
12. 3., 5., 10., and 11. close this case.

• Cases Proc-ReqMat1, Proc-ReqMat2, and Proc-ReqParent follow analogously.
• Case Proc-ReqApply.

1. By the assumptions

(a) Σ ⊢ σ
(b) Σ ⊢ m

(c) process(h,m,σ) = (t,M,σ ′)
2. By Proc-ReqApply

(a) m = Req(h′,r, ι)
(b) r = Ref(l,h)

(c) l = Applied(ι ′, l′, p)

(d) σ(id(l′)) = (v,P)

(e) t = respond(h′, ι ,await(send(p v)))

(f) σ ′ = consume(id(l′),P,σ)

(g) M = /0

3. By 1.b), 2.a,b), and WF-Req
(a) Σ(id(l)) = Σ(ι)
(b) Σ ⊢ r

4. By 2.b,c), 3.b), WF-Ref, and WF-Lin2
(a) Σ(ι ′) = T

(b) Σ(id(l′)) = T ′

(c) ∃Γ. Γ;Σ ⊢ p : T ′⇒ SiloRef[T ] {. . .}
(d) Σ ⊢ l′

5. By 1.a), 2.d), 4.b), and WF-Store2, /0;Σ ⊢ v : T ′.
6. By 4.c),T-Spore, Def. serializable, and Lemma 4.1, /0;Σ⊢ p : T ′⇒ SiloRef[T ] {. . .}.
7. By 5., 6., and T-AppSpore, /0,Σ ⊢ p v : SiloRef[T ].
8. By 7. and T-Send, /0,Σ ⊢ send(p v) : Future[T ].
9. By 8. and T-Await, /0,Σ ⊢ await(send(p v)) : T .
10. By 3.a), 4.a), and Def. 4.2, Σ(ι) = T and thus by T-Ident, /0;Σ ⊢ ι : Future[T ].
11. By 2.e), 9., 10., and T-Respond, /0,Σ ⊢ t : Unit.
12. By 2.g) and WF-Messages-Emp, Σ ⊢M.
13. By 2.f) and Def. 4.6, dom(σ ′)⊆ dom(σ).
14. By 1.a), 13., and WF-Store1-3, Σ ⊢ σ ′.
15. 11., 12., and 14. close this case.
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• Cases Proc-ReqPersist and Proc-Res follow analogously.

Theorem (Subject Reduction)

1. If Γ;Σ ⊢ t : T , Σ ⊢ σ , and t | σ →h t ′ | σ ′ then Γ;Σ′ ⊢ t ′ : T and Σ′ ⊢ σ ′ for some
Σ′ ⊇ Σ.

2. If Σ ⊢ H |M and H |M↠ H ′ |M′ then Σ′ ⊢ H ′ |M′ for some Σ′ ⊇ Σ.

Proof
Part 1: by induction on the derivation of t | σ→h t ′ | σ ′ with case analysis of the last applied
rule.

• Case R-AppAbs.
1. By the assumptions

(a) Γ;Σ ⊢ t : T

(b) Σ ⊢ σ
(c) t | σ →h t ′ | σ ′

2. By R-AppAbs
(a) t = E[((x : T ′)⇒ t ′′) v′]

(b) t ′ = E[[x 7→ v′]t ′′]

(c) σ ′ = σ
3. By 1.a) and 2.a), Γ;Σ ⊢ ((x : T ′)⇒ t ′′) v′ : T ′′.
4. By 3. and T-App,

(a) Γ;Σ ⊢ ((x : T ′)⇒ t ′′) : T ′⇒ T ′′

(b) Γ;Σ ⊢ v′ : T ′

5. By 4.a) and T-Abs, Γ,x : T ′;Σ ⊢ t ′′ : T ′′.
6. By 4.b), 5., and Lemma 5.1, Γ;Σ ⊢ [x 7→ v′]t ′′ : T ′′.
7. By 1.a), 2.a-b), 3., and 6., Γ;Σ ⊢ t ′ : T .
8. 2.c) and 7. close this case.

• Cases R-IntOp, R-AppSpore, and R-Await follow analogously.
• Case R-Apply.

1. By the assumptions
(a) Γ;Σ ⊢ t : T

(b) Σ ⊢ σ
(c) t | σ →h t ′ | σ ′

2. By R-Apply
(a) t = E[apply(r, p)]

(b) r = Ref(l,h′)
(c) t ′ = E[r′]

(d) r′ = Ref(l′,h′)
(e) l′ = Applied((h, i), l, p) where i fresh
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(f) σ ′ = σ
3. By 1.a) and 2.a), Γ;Σ ⊢ apply(r, p) : T̂ .
4. By 3. and T-Apply,

(a) T̂ = SiloRef[T ′]

(b) Γ;Σ ⊢ r : SiloRef[T ′′]

(c) Γ;Σ ⊢ p : T ′′⇒ SiloRef[T ′] { type C = T }
5. By 2.b), 4.b), T-SiloRef, and WF-Ref

(a) Σ(id(l)) = T ′′

(b) Σ ⊢ r

(c) Σ ⊢ l

(d) h′ ∈H

6. Define Σ′ := [(h, i) 7→ T ′]Σ.
7. By 2.d-e), 4.c), 5.a-d), 6., WF-Lin2, and WF-Ref, Σ′ ⊢ r′.
8. By 2.d-e), 6., 7., and T-SiloRef, Γ;Σ′ ⊢ r′ : SiloRef[T ′].
9. By 2.e), 3., 4.a), 6., and part 1 of Lemma B.2, Γ;Σ′ ⊢ apply(r, p) : SiloRef[T ′].
10. By 1.a), 2.e), 6., and part 1 of Lemma B.2, Γ;Σ′ ⊢ t : T .
11. By 2.a,c), 8., 9., and 10., Γ;Σ′ ⊢ t ′ : T .
12. By 1.b) and 2.f), Σ ⊢ σ ′.
13. By 6., Σ′ ⊇ Σ.
14. By 12., 13., and WF-Store3, Σ′ ⊢ σ ′.
15. 11., 13., and 14. close this case.
• Cases R-Persist and R-Unpersist follow analogously.

Part 2: by induction on the derivation of H | M↠ H ′ | M′ with case analysis of the last
applied rule.

• Case R-Local.
1. By the assumptions

(a) Σ ⊢ H |M
(b) H |M↠ H ′ |M′

2. By R-Local
(a) H = {(t,σ)h}∪H ′′

(b) H ′ = {(t ′,σ ′)h}∪H ′′

(c) t | σ →h t ′ | σ ′

(d) M′ = M

3. By 1.a) and WF-Config, Σ ⊢ H.
4. By 2.a), 3., and WF-Host2

(a) Σ ⊢ (t,σ)h

(b) Σ ⊢ H ′′

5. By 4.a) and WF-HostConfig
(a) Σ ⊢ σ
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(b) Γ;Σ ⊢ t : T for some Γ
6. By 2.c), 5.a,b), and part 1

(a) Γ;Σ′ ⊢ t ′ : T

(b) Σ′ ⊢ σ ′ for some Σ′ ⊇ Σ
7. By 6.a,b) and WF-HostConfig, Σ′ ⊢ (t ′,σ ′)h.
8. By 4.b), 6.b), and part 3 of Lemma B.2, Σ′ ⊢ H ′′.
9. By 2.b), 7., 8., and WF-Host2, Σ′ ⊢ H ′.
10. By 1.a), 2.d), 9., WF-Config, and WF-Messages, Σ′ ⊢ H ′ |M′.
• Case R-Send.

1. By the assumptions
(a) Σ ⊢ H |M
(b) H |M↠ H ′ |M′

2. By R-Send
(a) H = {(E[send(r)],σ)h}∪H ′′

(b) H ′ = {(E[id(l)],σ)h}∪H ′′

(c) r = Ref(l,h′)
(d) m = Req(h,r, id(l))
(e) M′ = M⊎{h′← m}

3. By 1.a) and WF-Config
(a) Σ ⊢ H

(b) Σ ⊢M

4. By 2.a), 3.a), and WF-Host2
(a) Σ ⊢ (E[send(r)],σ)h

(b) Σ ⊢ H ′′

5. By 4.a) and WF-HostConfig
(a) Σ ⊢ σ
(b) Γ;Σ ⊢ E[send(r)] : T for some Γ

6. By 5.b), Γ;Σ ⊢ send(r) : T̂ .
7. By 6. and T-Send

(a) T̂ = Future[T ′′]

(b) Γ;Σ ⊢ r : SiloRef[T ′′]

8. By 2.c), 7.b), and T-SiloRef
(a) Σ(id(l)) = T ′′

(b) Σ ⊢ r

9. By 8.a) and T-Ident, Γ;Σ ⊢ id(l) : Future[T ′′].
10. By 5.b), 6., 7.a), and 9., Γ;Σ ⊢ E[id(l)] : T .
11. By 5.a), 10., and WF-HostConfig, Σ ⊢ (E[id(l)],σ)h.
12. By 4.b), 11., and WF-Host2, Σ ⊢ H ′.
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13. By 2.c,d), 8.b), and WF-Req, Σ ⊢ m.
14. By 2.c,e), 3.b), 8.b), 13., WF-Ref, and WF-Messages, Σ ⊢M′.
15. By 12., 14., and WF-Config, Σ ⊢ H ′ |M′.
• Cases R-Populate and R-Respond follow analogously.
• Case R-Process.

1. By the assumptions
(a) Σ ⊢ H |M
(b) H |M↠ H ′ |M′

2. By R-Process
(a) H = {(E[await(ι)],σ)h}∪H ′′

(b) H ′ = {(E[t ; await(ι)],σ ′)h}∪H ′′

(c) M′ = M̂⊎M′′

(d) process(h,m,σ) = (t,M′′,σ ′)
(e) M = M̂⊎{h← m}

3. By 1.a) and WF-Config
(a) Σ ⊢ H

(b) Σ ⊢M

4. By 2.a), 3.a), and WF-Host2
(a) Σ ⊢ (E[await(ι)],σ)h

(b) Σ ⊢ H ′′

5. By 4.a) and WF-HostConfig
(a) Σ ⊢ σ
(b) Γ;Σ ⊢ E[await(ι)] : T for some Γ

6. By 2.e), 3.b), and WF-Messages, Σ ⊢ m.
7. By 2.d), 5.a), 6., and Lemma B.3 (Process), ∃Σ′ such that

(a) /0;Σ′ ⊢ t : T ′

(b) Σ′ ⊢M′′

(c) Σ′ ⊢ σ ′

(d) Σ′ ⊇ Σ
8. By 5.b), 7.d), and part 1 of Lemma B.2, Γ;Σ′ ⊢ E[await(ι)] : T .
9. By 7.a) and 8., Γ;Σ′ ⊢ E[t ; await(ι)] : T .
10. By 7.c), 9., and WF-HostConfig, Σ′ ⊢ (E[t ; await(ι)],σ ′)h.
11. By 4.b), 7.d), and part 3 of Lemma B.2, Σ′ ⊢ H ′′.
12. By 2.b), 10., 11., and WF-Host2, Σ′ ⊢ H ′.
13. By 3.b), 7.d), WF-Res, WF-Req, WF-Ref, and WF-Messages, Σ′ ⊢M.
14. By 2.c), 7.b), 13., and WF-Messages, Σ′ ⊢M′.
15. By 12., 14., and WF-Config, Σ′ ⊢ H ′ |M′.
• Case R-Process-Val follows analogously.
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B.3 Proof of Theorem 5.5

Lemma B.4 (Responsive Population) Let Σ ⊢ H |M | R and H = {(E[t],σ)h}⊎ Ĥ.
Then ∀h′ ∈ hosts(H): {(E[send(r)],σ)h}⊎ Ĥ | M ⊎{h′ ← m}↠∗ H ′ | M′ ⊎{h← m}

after a finite number of reduction steps where r = Ref(l,h′), l = Mat(ι) for some ι , and
m = Res(ι ,v).

Proof Sketch
By R-Send, {(E[send(r)],σ)h}⊎ Ĥ |M⊎{h′←m}↠ {(E[ι ],σ)h}⊎ Ĥ |M⊎{h′←m}⊎
{h′← m′} where m′ = Req(h,r, ι). By Def. 5.1 message m is processed by h′ after a finite
number of reduction steps. As a result, the store of h′ is updated with the mapping ι 7→ v.
After another finite number of reduction steps, h′ processes message m′. By R-Process,
R-Process-Val, and Proc-ReqMat1, the resulting multiset of messages includes {h←
Res(ι ,v)} as required.

Lemma B.5 (Responsive Apply)

Proof
1. By R-Local and R-Apply

(a) E[apply(r, p)] | σ →h E[r′] | σ | {r′}
(b) r′ = Ref(l′,h′)
(c) r = Ref(l,h′)
(d) l′ = Applied((h, i), l, p) where i fresh
(e) H ′ = {(E[r′],σ)h}⊎ Ĥ
(f) M′ = M
(g) R′ = R⊎{r′}

2. By Lemma 5.4, Responsive(H ′,M′,R).
3. Consider H ′ |M′⊎{h′← m} | R′ where m = Req(h′′,r′, ι).
4. By Def. 5.1H ′ |M′⊎{h′←m} | R′↠∗ Hp |Mp | Rp such that (Ep[await(ιp)],σp)

h′ ∈
Hp∨ (Ep[vp],σp)

h′ ∈ Hp and {h′← m} ∈Mp.
5. There are two cases.Case 1: id(l) /∈ dom(σ ′). In this caseHp |Mp |Rp can be reduced

according to R-Process (or R-Process-Val) and Proc-ReqParent. As a result, h′

reduces send(Ref(l,h′)). ByR-Send, Ref(l,h′)∈R, and Lemma 5.4,Hp |Mp | Rp↠∗
Hr |Mr⊎{h′←Res(id(l),v)} |Rr after a finite number of reduction steps. ByDef. 5.1
and Proc-Res, Hr | Mr ⊎{h′ ← Res(id(l),v)} | Rr ↠∗ H ′′ | M′′ | R′′ after a finite
number of reduction steps, such that
(a) H ′′ = {(E ′[t ′],σ ′)h′}∪H3 where t ′ = v′ or t ′ = await(ι ′)
(b) M′′ = {h′← m}⊎M3

(c) σ ′(id(l)) = v
(d) Σ′′ ⊢ H ′′ |M′′ | R′′

Case 2: σ ′(id(l)) = v. In this case H ′′ = Hp, M′′ = Mp, and R′′ = Rp.
6. By 5.a-c), R-Process, R-Process-Val, and Proc-ReqApply

(a) process(h′,m,σ ′) = (t ′′, /0,σ ′)
(b) t ′′ = respond(h′′, ι ,await(send(p v)))
(c) H ′′ |M′′ | R′′↠ H3 |M3 | R′′
(d) H3 = {(E ′[t ′′ ; t ′],σ ′)h′}∪H4
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7. By 5.d), 6.c), and Theorem 5.2 (Subject Reduction),Σ3 ⊢{(E ′[t ′′ ; t ′],σ ′)h′}∪H4 |M3 |R′′
for some Σ3 ⊇ Σ′′.

8. By 7., WF-Config, WF-Host2, and WF-HostConfig
(a) Σ3 ⊢ σ ′

(b) Γ3;Σ3 ⊢ E ′[t ′′ ; t ′] : T3 for some Γ3, T3

9. By 6.b), 8.b), and the type rules
(a) Γ4;Σ3 ⊢ p : T ′⇒ SiloRef[T ] { type C = T } for some Γ4

(b) p = spore { x : T = v ;(x : T ′)⇒ t }
10. By 9.a,b), and T-Spore

(a) x : T ,x : T ′; /0 ⊢ t : SiloRef[T ]
(b) ∀S ∈ T ,SiloRef[T ]. serializable(S)

11. By the type rules, derivation 10.a) does not contain applications of T-SiloRef or T-
Ident. By 10.b) spore p does not capture futures. Thus, any occurrence of await(ι̂)
within p v is preceded by a reduction of a corresponding send resulting in future ι̂ .
By Lemma 5.4 (Responsiveness), Responsive(H3,M3,R). There are two cases.
Case 1: d = 0. Then p does not contain a nested apply invocation. Therefore, by
LemmaB.4, p v reduces to a value r′′ after a finite number of reduction steps. Since ei-
ther r′′ ∈R or r′′ is newly populated, send(r′′) results in a response h′←Res(id(r′′),v′′)
after a finite number of reduction steps. This enables h′ to reduce respond(h′′, ι ,v′′)
which concludes this case.
Case 2: d > 0. The depth of nested applys of term p v is less than the depth of
the term apply(r, p). Therefore, by the induction hypothesis, reductions of nested
apply invocations within p v result in responsive configurations. By Lemma B.4, p v
reduces to a value r′′ after a finite number of reduction steps. Since either r′′ ∈ R,
or r′′ is newly populated, or r′′ is the result of a nested apply invocation, send(r′′)
results in a response h′ ← Res(id(r′′),v′′) after a finite number of reduction steps.
This enables h′ to reduce respond(h′′, ι ,v′′) which concludes this case.

Theorem (Finite Materialization) Let Σ ⊢ H |M | R such that Responsive(H,M,R).
If H |M | R↠ H ′ |M′ | R′ then Responsive(H ′,M′,R′).

Proof
Corollary of Lemma 5.4, Lemma B.4, and Lemma B.5.
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