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Abstract. We propose a viewpoint invariant model for 3D human pose
estimation from a single depth image. To achieve this, our discrimina-
tive model embeds local regions into a learned viewpoint invariant feature
space. Formulated as a multi-task learning problem, our model is able to
selectively predict partial poses in the presence of noise and occlusion.
Our approach leverages a convolutional and recurrent network architec-
ture with a top-down error feedback mechanism to self-correct previous
pose estimates in an end-to-end manner. We evaluate our model on a
previously published depth dataset and a newly collected human pose
dataset containing 100K annotated depth images from extreme view-
points. Experiments show that our model achieves competitive perfor-
mance on frontal views while achieving state-of-the-art performance on
alternate viewpoints.
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Depth sensors are becoming ubiquitous in applications ranging from security to
robotics and from entertainment to smart spaces [5]. While recent advances in
apose estimation have improved performance on front and side views, most real-
world settings present challenging viewpoints such as top or angled views in retail
stores, hospital environments, or airport settings. These viewpoints introduce
high levels of self-occlusion making human pose estimation difficult for existing
algorithms]|

Humans are remarkably robust at predicting full rigid-body and articulated
poses in these challenging scenarios. However, most work in the human pose
estimation literature has addressed relatively constrained settings. There has
been a long line of work on generative pose models, where a pose is estimated
by constructing a skeleton using templates or priors in a top-down manner
[TOT2IT6IIR]. In contrast, discriminative methods directly identify individual
body parts, labels, or positions and construct the skeleton in a bottom-up ap-
proach [5TI52/T4I54T5]. However, recent research in both classes primarily focus
on frontal views with few occlusions despite the abundance of occlusion and

partial-pose research in object detection [B3IGTI723329I3I2/4122]. Even modern

representation learning techniques address human pose estimation from frontal

X

* Indicates equal contribution.
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Fig.1: From a single depth image, our model uses learned viewpoint invariant
feature representations to perform 3D human pose estimation with iterative
refinement. To provide additional three-dimensional context to the reader, a
front view is shown in the lower right of each frame.

or side views [AITT4259I34U60/T0]. While the above methods improve human
pose estimation, they fail to address viewpoint variances.

In this work we address the problem of viewpoint invariant pose estimation
from single depth images. There are two challenges towards this goal. The first
challenge is designing a model that is not only rich enough to reason about 3D
spatial information but also robust to viewpoint changes. The model must un-
derstand both local and global human pose structure. That is, it must fuse tech-
niques from local part-based discriminative models and global skeleton-driven
generative models. Additionally, it must be able to reason about 3D volumes,
geometric, and viewpoint transformations. The second challenge is that exist-
ing real-world depth datasets are often small in size, both in terms of number
of frames and number of classes [2I20]. As a result, the use of representation
learning methods and viewpoint transfer techniques has been limited.

To address these challenges, our contributions are as follows: First, on the
technical side, we embed local pose information into a learned, viewpoint invari-
ant feature space. Furthermore, we extend the iterative error feedback model [10]
to model higher-order temporal dependencies (Figure . To handle occlusions,
we formulate our model with a multi-task learning objective. Second, we intro-
duce a new dataset of 100K depth images with pixel-wise body part labels and
3D human joint locations. The dataset consists of extreme cases of viewpoint
variance with front, top, and side views of people performing 15 actions with
occluded body parts. We evaluate our model on an existing public dataset [21]
and our newly collected dataset demonstrating state-of-the-art performance on
viewpoint invariant pose estimation.

2 Related Work

RGB-Based Human Pose Estimation. Several methods have been proposed
for human pose estimation, including edge-based histograms of the human-body
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[48] and silhouette contours [25]. More general techniques using pictorial struc-
tures [IOJI2J16] and deformable part models [I8], continued to build appearance
models for each local body part independently. Subsequently, higher-level part-
based models were developed to capture more complex body part relationships
and obtain more discriminative templates [BIG2TA54UTH].

These models continued to evolve, attempting to capture even higher-level
part features. Convolutional networks [40J39], a class of representation learning
methods [§], began to exhibit performance gains not only in human pose esti-
mation, but various areas of computer vision [37]. Since valid human poses rep-
resent a much lower-dimensional manifold in the high-dimensional input space,
it is difficult to directly regress from input image to output poses with a con-
volutional network. As a solution to this, researchers framed the problem as a
multi-task learning problem where human joints must be first detected then pre-
cisely localized [IIT7I42]. Jain et al. [34] enforce global pose consistency with
a Markov random field representing human anatomical constraints. Follow up
work by Tompson et al. [59] combines a convolutional network part-detector
with a part-based spatial model into a unified framework.

Because human pose estimation is ultimately a structured prediction task, it
is difficult for convolutional networks to correctly regress the full pose in a single
pass. Recently, iterative refinement techniques have been proposed to address
this issue. In [58], Sun et al. proposed a multi-stage system of convolutional net-
works for predicting facial point locations. Each stage refines the output from
the previous stage given a local region of the input. Building on this work, Deep-
Pose [60] uses a cascade of convolutional networks for full-body pose estimation.
In another body of work, instead of predicting absolute human joint locations,
Carreira et al. [10] refine pose estimates by predicting error feedback (i.e. cor-
rections) at each iteration.

Depth-Based Human Pose Estimation. Both generative and discrimina-
tive models have been proposed. Generative models (i.e. top-down approaches)
fit a human body template, with parametric or non-parametric methods, to the
input data. Dense point clouds provided by depth sensors motivate the use of
iterative closest point algorithms [2T)26/27)36] and database lookups [65]. To
further constrain the output space similar to RGB methods, graphical mod-
els [29120] impose kinematic constraints to improve full-body pose estimation.
Other methods such as kernel methods with kinematic chain structures [I13] and
template fitting with Gaussian mixture models [66] have been proposed.

Discriminative methods (i.e. bottom-up approaches) detect instances of body
parts instead of fitting a skeleton template. In [56], Shotton et al. trained a
random forest classifier for body part segmentation from a single depth image
and used mean shift to estimate joint locations. This work inspired an entire
line of depth-based pose estimation research exploring regression tree methods:
Hough forests [24], random ferns [30], and random tree walks [67] have been
proposed in recent years.

Occlusion Handling and Viewpoint Invariance. One popular approach
to model occlusions is to treat visibility as a binary mask and jointly reason
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Fig.2: Model overview. The input to our model is a single depth image. We
perform several iterations on this image. At iteration ¢, the input to our convo-
lutional network is (i) a set of retina-like patches X; extracted from the input
depth image and (ii) the current pose estimate ;1. Our model predicts offsets
; and selectively applies them to the previous pose estimate based on a pre-
dicted visibility mask é&;. The refined pose at the end of iteration ¢ is denoted
by 9:. Element-wise product is denoted by ©®.

on this mask with the input images [53[61]. Other approaches such as [7123],
include templates for occluded versions of each part. More sophisticated models
introduce occlusion priors [32l9] or semantic information [22].

For rigid body pose estimation and 3D object analysis, several descriptors
have been proposed. Given the success of SIFT [44], there have been several
attempts at embedding rotational and translational invariance [B5J622]. Other
features such as viewpoint invariant 3D feature maps [43], histograms of 3D joint
locations [63], multifractal spectrum [64], volumetric attention models [28], and
volumetric convolutional filters [45/46] have been proposed for 3D modeling. In-
stead of proposing invariant features, Ozuysal et al. [50] trained a classifier for
each viewpoint. Building on the success of representation learning from RGB,
discriminative pose estimation from the depth domain, viewpoint invariant fea-
tures, and occlusion modeling, we design a model which achieves viewpoint in-
variant 3D human pose estimation.

3 Model

Overview. The goal of our model is to achieve viewpoint invariant pose esti-
mation. The iterative error feedback mechanism proposed by [10] demonstrates
promising results on front and side view RGB images. However, a fundamental
challenge remains unsolved: how can a model learn to be viewpoint invariant?
Our core contribution is as follows: we leverage depth data to embed local patches
into a learned viewpoint invariant feature space. As a result, we can train a body
part detector to be invariant to viewpoint changes. To provide richer context,
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Fig.3: Learned viewpoint invariant embedding for a single glimpse. A single
glimpse x is converted into a voxel z’. A localization network f(z) regresses 3D
transformation parameters # which are applied to ' with a trilinear sampler.
The resulting feature map V is projected onto 2D which gives the embedding U.

we also introduce recurrent connections to enable our model to reason on past
actions and guide downstream global pose estimation (see Figure .

3.1 Model Architecture

Local Input Representation. One of our goals is to use local body part
context to guide downstream global pose prediction. To achieve this, we propose
a two-step process. First, we extract a set of patches from the input depth image
where each patch is centered around each predicted body part. By feeding these
patches into our model, it can reason on low-level, local part information. We
transform these patches into patches called glimpses [A7I38]. A glimpse is a
retina-like encoding of the original input that encodes pixels further from the
center with a progressively lower resolution. As a result, the model must focus on
specific input regions with high resolution while maintaining some, but not all
spatial information. These glimpses are stacked and denoted by X € RH>XWxJ
where J is the number of joints, H is the glimpse height, and W is the glimpse
and width. Glimpses for iteration ¢ are generated using the predicted pose ;_1
from the previous iteration t — 1. When ¢ = 0, we use the average pose .

Learned Viewpoint Invariant Embedding. We embed the input into
a learned, viewpoint invariant feature space (see Figure . Since each glimpse
x is a real world depth map, we can convert each glimpse into a voxel z’ €
RAXWXD where D is the depth of the voxel. We refer to vozel as a volumetric
representation of the depth map and not a full 3D model. This representation
allows us to transform the glimpse in 3D thereby simulating occlusions and
geometric variations which may be present from other viewpoints.

Given the voxel 2/, we now transform it into a viewpoint invariant feature
map V € RIXWXD 'We follow [33] in a two-step process: First, we use a localiza-
tion network f(-) to estimate a set of 3D transformation parameters  which will
be applied to the voxel z’. Second, we compute a sampling grid defined as G €
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REXWXD Each coordinate of the sampling grid, i.e. Gijr = (xgﬁ),ygﬁc), zgﬁe)),
defines where we must apply a sampling kernel in voxel &’ to compute Vj;j of
the output feature map. However, since mgﬁg, yfﬁ? and zl(ﬁc) are real-valued, we
convolve 2’ with a sampling kernel, ker(-), and define the output feature map V:

H W D (G) (@) (G)
a—x;; b—y.. c— 2z,
Vijkx = ZZZSE;“ ker (H”k> ker < Wy/”k ) ker ( D”k > (1)

a=1b=1 c=1

where the kernel ker(-) = max(0,1 — | - |) is the trilinear sampling kernel. As a
final step, we project the viewpoint invariant 3D feature map V into a viewpoint
invariant 2D feature map U:

D
Uij = Z Vije suchthat U eRT*W 2)
c=1

Notice that Equations and are linear functions applied to the voxel z’.
As a result, upstream gradients can flow smoothly through these mathemati-
cal units. The resulting U now represents two-dimensional viewpoint invariant
representation of the input glimpse. At this point, U is used as input into a con-
volutional network for human body part detection and error feedback prediction.

Convolutional and Recurrent Networks. As previously mentioned, our
goal is to use local input patches to guide downstream global pose predictions. We
stack the viewpoint invariant feature maps U for each joint to form a H x W x J
tensor. This tensor is fed to a convolutional network. Through the hierarchical
receptive fields of the convolutional network, the network’s output is a global
representation of the human pose. Directly regressing body part positions from
the dense activation 1ayersE| has proven to be difficult due to the highly non-linear
mapping present in traditional human pose estimation [59].

Inspired by [I0]’s work in the RGB domain, we adopt an iterative refinement
technique which uses multiple steps to fine-tune the pose by correcting previ-
ous pose estimates. In [I0], each refinement step is only indirectly influenced by
previous iterations through the accumulation of error feedback. We claim that
these refinement iterations should have a more direct and shared temporal rep-
resentation. To remedy this, we introduce recurrent connections between each
iteration; specifically a long short term memory (LSTM) module [3I]. This en-
ables our model to directly access the underlying hidden network state which
generated prior feedback and model higher-order temporal dependencies.

3.2 Multi-Task Loss

Our primary goal is to achieve viewpoint invariance. In extreme cases such as top
views, many human joints are occluded. To be robust to such occlusions, we want
our model to reason on the visibility of joints. We formulate the optimization
procedure as a multi-task problem consisting of two objectives: (i) a body-part

2 This is referred to as direct prediction in our experiments in Table
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detection task, where the goal is to determine whether a body part is visible
or occluded in the input and (ii) a pose regression task, where we predict the
offsets to the correct real world 3D position of visible human body joints.

Body-Part Detection. For body part detection, the goal is to determine
whether a particular body part is visible or occluded in the input. This is denoted
by the predicted visibility mask & which is a 1 x J binary vector, where J is
the total number of body joints. The ground truth visibility mask is denoted
by «. If a body part is predicted to be visible, then &; = 1, otherwise &; = 0
denotes occlusion. The visibility mask & is computed using a softmax over the
unnormalized log probabilities p generated by the LSTM. Hence, our objective
is to minimize the cross-entropy. The visibility loss for a single example is:

J
Lo==3 o;log(p;) + (1~ a;)log(1 ~ ;) (3

Regardless of the ground truth and the predicted visibility mask, the above
formulation forces our model to improve its part detection. Additionally, it allows
for occluded body part recovery if the ground truth visibility is fixed to o = 1.

Partial Error Feedback. Ultimately, our goal is to predict the location of
the joint corresponding to each visible human body part. To achieve this, we
refine our previous pose prediction by learning correction offsets (i.e. feedback)
denoted by §. Furthermore, we only learn correction offsets for joints that are
visible. At each time step, a regression predicts offsets & which are used to update
the current pose estimate g. Specifically: 5,5,y,y € R7*3 denote real-world
(z,y, z) positions of each joint.

J
Ls = 1{a; =1}[[5; — 5[5 (4)
=1

The loss shown in is motivated by our goal of predicting partial poses. Con-
sider the case of when the right knee is not visible in the input. If our model
successfully labels the right knee as occluded, we wish to prevent the error feed-
back loss from backpropagating through our network. To achieve this, we include
the indicator term 1{c; = 1} which only backpropagates pose error feedback if
a particular joint is visible in the original image. A secondary benefit is that we
do not force the regressor to output dummy real values (if a joint is occluded)
which may skew the model’s understanding of output magnitude.

Global Loss. The resulting objective is the linear combination of the error
feedback cost function for all joints and the detection cost function for all body
parts: L = AL + AsLs. The mixing parameters A, and A5 define the relative
weight of each sub-objective.

3.3 Training and Optimization

We train the full model end-to-end in a single step of optimization. We train
the convolutional and recurrent network from scratch with all weights initialized
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(a) EVAL [21] (b) ITOP (Front) (c) ITOP (Top)

Fig.4: Examples images from each of the datasets. Our newly collected ITOP
dataset contains challenging front and top view images.

from a Gaussian with y = 0,0 = 0.001. Gradients are computed using £ and
flow through the recurrent and convolutional networks. We use the Adam [35]
optimizer with an initial learning rate of 1 x 1075, 8; = 0.9, and 3, = 0.999.
An exponential learning rate decay schedule is applied with a decay rate of 0.99
every 1,000 iterations.

4 Datasets

We evaluate our model on a publicly available dataset that has been used by
recent state-of-the-art human pose methods. To more rigorously evaluate our
model, we also collected a new dataset consisting of varied camera viewpoints.
See Figure [4] for samples.

Previous Depth Datasets. We use the Stanford EVAL dataset [2I] which
consists of 9K front-facing depth images. The dataset contains 3 people perform-
ing 8 action sequences each. The EVAL dataset was recorded using the Microsoft
Kinect camera at 30 fps. Similar to leave-one-out cross validation, we adopt a
leave-one-out train-test procedure. One person is selected as the test set and
the other two people are designated as the training set. This is performed three
times such that each person is the test set once.

Invariant-Top View Dataset (ITOP). Existing depth datasets for pose
estimation are often small in size, both in the number of people and number of
frames per person [20021]. To address these issues, we collected a new dataset
consisting of 100K real-world depth images from multiple camera viewpoints.
Named ITOP, the dataset consists of 20 people performing 15 action sequences
each. Each depth image is labeled with real-world 3D joint locations from the
point of view of the respective camera. The dataset consists of two “views,”
namely the front/side view and the top view. The frontal view contains 360°
views of each person, although not necessarily uniformly distributed. The top
view contains images captured solely from the top (i.e. camera on the ceiling
pointed down to the floor).

Data Collection. Two Asus Xtion PRO cameras were used. One camera
was placed on the ceiling facing down while another camera was from a tradi-
tional front-facing viewpoint. To annotate each frame, we used a series of steps
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that progressively involved more human supervision if necessary. First, 3D joints
were estimated using [50] from the front-facing camera. These coordinates were
then transformed into the respective world coordinate system of each camera
in the system. Second, we used an iterative ground truth error correction tech-
nique based on per-pixel labeling using k-nearest neighbors and center of mass
convergence. Finally, humans manually validated, corrected, and discarded noisy
frames. On average, the human labeling procedure took one second per frame.

5 Experiments

5.1 Evaluation Metrics

We evaluate our model using two metrics. As introduced in [6], we use the
percentage of correct keypoints (PCKh) with a variable threshold. This metric
defines a successful human joint localization if the predicted joint is within 50%
of the head segment length to the ground truth joint.

For summary tables and figures, we use the mean average precision (mAP)
which is the average precision for all human body parts. Precision is reported for
individual body parts. A successful detection occurs when the predicted joint is
less than 10 cm from the ground truth in 3D space.

5.2 Implementation Details

Our model is implemented in TensorFlow [1]. We use mini-batches of size 10
and 10 refinement steps per batch. We use the VGG-16 [57] architecture for
our convolutional network but instead modify the first layer to accommodate
the increased number of input channels. Additionally, we reduce the number
of neurons in the dense layers to 2048. We remove the final softmax layer and
use the second dense layer activations as input into a recurrent network. For
the recurrent network, we use a long short term memory (LSTM) module [31]
consisting of 2048 hidden units. The LSTM hidden state is duplicated and passed
to a softmax layer and a regression layer for loss computation and pose-error
computation. The model is trained from scratch.

The grid generator is a convolutional network with four layers. Each layer
contains: (i) a convolutional layer with 32 filters of size 3 x 3 with stride 1 and
padding 1, (ii) a rectified linear unit [49], (iii), a max-pooling over a 2 x 2 region
with stride 2. The fourth layer’s output is 10 x 10 x 32 and is connected to
a dense layer consisting of 12 output nodes which defines 6. The specific 3D
transformation parameters are defined in [33].

To generate glimpses for the first refinement iteration, the mean 3D pose
from the training set is used. Glimpses are 160 pixels in height and width and
centered at each joint location (in the image plane). Each glimpse consists of 4
patches where each patch is quadratically downsampled according to the patch
number (i.e. its distance from the glimpse center). The input to our convolutional
network is 160 x 160 x J where J is the number of body part joints.
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Fig. 5: Percentage of correct keypoints based on the head (PCKh). Colors indi-
cate different methods. Solid lines indicate full body performance. Dashed lines
indicate upper body performance. Higher is better.

5.3 Comparison with State-of-the-Art

We compare our model to three state-of-the-art methods: random forests [56],
random tree walks (RTW) [67], and iterative error feedback (IEF) [I0]. One of
our primary goals is to achieve viewpoint invariance. To evaluate this, we perform
three sets of experiments, progressing in level of difficulty. First, we train and
test all models on front view images. This is the classical human pose estimation
task. Second, we train and test all models on top view images. This is similar
to the classical pose estimation task but from a different viewpoint. Third, we
train on front view images and test on top view images. This is the most difficult
experiment and truly tests a model’s ability to learn viewpoint transfer.
Baselines. We give a brief overview of the baseline algorithms:
1. The random forest model [56] consists of multiple decision trees that traverse
each pixel to find the body part labels for that pixel. Once pixels are classified
into body parts, joint positions are found with mean shift [IT].
2. Random tree walk (RTW) [67] trains a regression tree to estimate the prob-
ability distribution to the direction toward the particular joint, relative to the
current position. At test time, the direction for the random walk is randomly
chosen from a set of representative directions.
3. Tterative error feedback (IEF) [I0] is a self-correcting model used to progres-
sively make changes to an initial pose estimation by using error feedback.
Train on front views, test on front views. Table [I] shows the average
precision for each joint using a 10 cm threshold and the overall mean average
precision (mAP) while Figure [5| shows the PCKh for all models. IEF and the
random forest methods were not evaluated on the EVAL dataset. Random forest
depends on a per-pixel body part labeling, which is not provided by EVAL. IEF
was unable to converge to comparable results on the EVAL dataset. We discuss
the ITOP results below. For frontal views, RTW achieves a mAP of 84.8 and 80.5
for the upper and full body, respectively. Our recurrent error feedback (REF)
model performs similarly to RTW, achieving a mAP of 2 to 3 points less. The
random forest algorithm achieves the lowest full body mAP of 65.8. This could
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ITOP (front-view) ITOP (top-view) EVAL

Body Part |RTW RF IEF Ours |RTW RF IEF Ours |RTW Ours
Head 97.8 63.8 96.2 981 | 984 954 838 981|909 939
Neck 95.8 86.4 852 97.5 | 822 985 50.0 976 | 87.4 94.7
Shoulders 941 833 772 96.5 | 91.8 89.0 673 96.1 | 87.8 87.0
Elbows 779 732 454 733 | 80.1 574 402 86.2 | 27.5 455
Hands 70.5 51.3 309 68.7 | 769 49.1 39.0 855 | 323 396
Torso 93.8 65.0 847 856 | 682 805 305 729 | — —

Hips 80.3 50.8 835 720 | 55.7 200 389 612 | — —

Knees 68.8 65.7 81.8 69.0 | 53.9 2.6 540 51.6 | 83.4 86.0
Feet 684 61.3 809 608|287 0.0 624 51.5|90.0 923
Upper Body| 84.8 70.7 61.0 84.0 | 84.8 73.1 51.7 914 | 59.2 738
Lower Body| 72.5 59.3 821 67.3 | 46.1 7.5 533 54.7 | 86.7 89.2
Full Body 80.5 658 710 774|682 474 51.2 755 | 683 741

Table 1: Detection rates of body parts using a 10 cm threshold. Higher is better.
Results for the left and right body part were averaged. Upper body consists of
the head, neck, shoulders, elbows, and hands.

be attributed to the limited amount of training data. The original algorithm [56]
was trained on 900K synthetic depth images.

We show qualitative results in Figure [} The front-view ITOP dataset is
shown in columns (¢) and (d). Both our model and IEF make similar mistakes:
both models sometimes fail to learn sufficient feedback to converge to the correct
body part location. Since we do not impose joint position constraints or enforce
skeleton priors, our method incorrectly predicts the elbow location.

Train on top view, test on top view. Figure [f] shows examples of quali-
tative results from frontal and top down views for Shotton et al. [56] and random
tree walk (RTW) [67]. For the top-down view, we show only 8 joints on the up-
per body (i.e. head, neck, left shoulder, right shoulder, left elbow, right elbow,
left hand, and right hand) as the lower body joints are almost always occluded.
RF and RTW give reasonable results when all joints are visible (see Figure Eh
and [6f) but do not perform well in the case of occlusion (Figure [6p and [61).
For the random forest method, we can see from figure [6p that the prediction for
the occluded right elbow is topologically invalid though both right shoulder and
hand are visible and correctly predicted. This is because the model doesn’t take
into account the topological information among joints, so it is not able to modify
its prediction for one joint base on the predicted positions of neighboring joints.
For RTW, figure [6p shows that the predicted position for right hand goes to the
right leg. Though legs and hands possess very different depth information, the
model mistook the right leg for right hand when the hand is occluded and the
leg appears in the common spatial location of a hand.

Train on frontal views, test on top views. This is the most difficult
task for 3D pose estimation algorithms since the test set contains significant
scale and shape differences from the training data. Results are shown in Table
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(a) Top View (Good) (b) Top View (Failure) (c) Side View (Good) (d) Side View (Failure)

Random
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Error
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Fig. 6: Qualitative results without viewpoint transfer

Body Part RTW RF IEF  Our Model

Head 1.5 48.1 479 55.6
Neck 8.1 5.9 39.0 40.9
Torso 3.9 4.7 41.9 35.0
Upper Body 2.2 19.7 239 29.4
Full Body 2.0 10.8 174 20.4

Table 2: Detection rate for the viewpoint transfer task

RTW gives the lowest performance as the model relies heavily on topological
information. If the prediction for an initial joint fails, error will accumulate onto
subsequent joints. Both deep learning methods are able to localize joints despite
the viewpoint change. IEF achieves a 47.9 detection rate for the head while our
model achieves a 55.6 detection rate. This can be attributed to the proximity of
upper body joints in both viewpoints. The head, neck, and torso locations are
similarly positioned across viewpoints.

Runtime Analysis. Methods which employ deep learning techniques of-
ten require more computation for forward propagation compared to non deep
learning approaches. Our model requires 1.7 seconds per frame (10 iterations,
forward-pass only) while the random tree walk requires 0.1 second per frame.
While this is dependent on implementation details, it does illustrate the tradeoff
between speed and performance.
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Direct Prediction Iterative Feedback | Recurrent Feedback
Body Part Front Top Front Top Front Top
Head 27.8 32.1 96.2 83.8 98.1 98.1
Hands 1.3 1.8 30.9 39.0 68.7 85.5
Upper Body 15.0 17.8 61.0 51.7 84.0 91.4
Full Body 21.8 23.8 71.0 51.2 77.4 75.5

Table 3: Detection rate of our model with different feedback mechanisms on
the ITOP front dataset. Rows denote a different body parts. Model is trained
without viewpoint transfer and the detection threshold is 10 cm.

Iteration 0 Iteration 1 e Iteration 10

Fig. 7: Our model’s estimated pose at different iterations of the refinement pro-
cess. Initialized with the average pose, it converges to the correct pose over time.

5.4 Ablation Studies

To further gauge the effectiveness of our model, we analyze each component of
our model and provide both quantitative and qualitative analyses. Specifically,
we evaluate the effect of error feedback and discuss the relevance of the input
glimpse representation.

Effect of Recurrent Connections. We analyze the effect of recurrent
connections compared to regular iterative error feedback and direct prediction.
To evaluate iterative feedback, we use our final model but remove the LSTM
module and regress the visibility mask & and error feedback ) using the dense
layer activations. Note that we still use a multi-task loss and glimpse inputs.
Direct prediction does not involve feedback but instead attempts to directly
regress correct pose locations in a single pass.

Quantitative results are shown in Table [3] Direct prediction, as expected,
performs poorly as it is very difficult to regress exact 3D joint locations in a
single pass. Iterative-based approaches significantly improve performance by 30
points. It is clear that recurrent connections improve performance, especially in
the top-view case where recurrent feedback achieves 91.4 upper body mAP while
iterative feedback achieves 51.7 upper body mAP.

Figure|7|shows how our model updates the pose over time. Consistent across
all images, the first iteration always involves a large, seemingly random trans-
formation of the pose. This can be thought of as the model is “looking around”
the initial pose estimate. Once the model understands the initial surrounding
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Fig.8: Comparison of heatmap and glimpse input representations. (a) Multi-
channel heatmap and glimpse input projected onto a 2D image. (b) Localization
error as a function of refinement iterations. Lower error is better.

area, it returns to the human body and begins to fine-tune the pose prediction,
as shown in iteration 10. Figure [8b quantitatively illustrates this result.

Effect of Glimpses. Our motivation for glimpses is to provide additional lo-
cal context to our model to guide downstream, global pose estimation. In Figure
we evaluate the performance of glimpses vs indicator masks (i.e. heatmaps).
Figure [8p shows that glimpses do provide more context for the global pose pre-
diction task. As the number of refinement iterations increases, using glimpses,
the localization error for each joint is less than the error with heatmaps. By
looking at Figure[Bh, it becomes apparent that heatmaps provide limited spatial
information. The indicator mask is a way of encoding two-dimensional body part
coordinates but does not explicitly provide local context information. Glimpses
are able to provide such context from the input image.

6 Conclusion

We introduced a viewpoint invariant model that estimates 3D human pose from
a single depth image. Our model is formulated as a deep discriminative model
that attends to glimpses in the input. Using a multi-task optimization objec-
tive, our model is able to selectively predict partial poses by using a predicted
visibility mask. This enables our model to iteratively improve its pose estimates
by predicting occlusion and human joint offsets. We showed that our model
achieves competitive performance on an existing depth-based pose estimation
dataset and achieves state-of-the-art performance on a newly collected dataset
containing 100K annotated depth images from several view points.
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Appendices

A Localization Heatmaps

To further analyze the viewpoint transfer task (train on front and side views,
test on top views), we visualize the localization heatmap in the figures below.
For each body part, we plot the predicted test-set locations with respect to the
ground truth. Clusters closer to (0,0) are better. All axes denote centimeters.

Figure [9]shows our model’s outputs for the viewpoint transfer task. For lower
body parts, our model makes a systemic error of predicting joints to be lower
(i.e. closer to the ground) than the ground truth. From the top view, the lower
body parts are not only further from the camera but they are also often occluded
which forces our model to reason based on global pose structure as opposed to
fine-tuned local information. For the upper body, most joints are visible which
lead to more correct predictions.
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Fig. 9: Predicted joint locations for our method (iteration 10) for the viewpoint
transfer task. The point (0,0) indicates the ground truth location.
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Below, Figures [L0] and [11| show the differences between the initialization strate-
gies of IEF and our method.
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Fig. 10: Predicted joint locations for iterative error feedback (iteration 0) for the
viewpoint transfer task. The point (0,0) indicates the ground truth location.
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Random tree walk tends to perform poorly on the viewpoint transfer task. The
heatmaps below show predictions very far from the ground truth.
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Fig. 12: Predicted joint locations for random tree walk (step 0) for the viewpoint
transfer task. The point (0,0) indicates the ground truth location.
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Fig. 13: Predicted joint locations for random tree walk (step 300) for the view-
point transfer task. The point (0,0) indicates the ground truth location.
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