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Abstract—Phonological classes define articulatory-free and
articulatory-bound phone attributes. Deep neural network is
used to estimate the probability of phonological classes from the
speech signal. In theory, a unique combination of phone attributes
form a phoneme identity. Probabilistic inference of phonological
classes thus enables estimation of their compositional phoneme
probabilities. A novel information theoretic framework is devised
to quantify the information conveyed by each phone attribute,
and assess the speech production quality for perception of
phonemes. As a use case, we hypothesize that disruption in speech
production leads to information loss in phone attributes, and thus
confusion in phoneme identification. We quantify the amount of
information loss due to dysarthric articulation recorded in the
TORGO database. A novel information measure is formulated to
evaluate the deviation from an ideal phone attribute production
leading us to distinguish healthy production from pathological
speech.

Index Terms—Information transmission, Speech production,
Speech perception, Motor speech disorders

I. INTRODUCTION

Invariant speech representation is fundamental for speech
modeling and classification. In this context, phonetic and
phonological representations are widely regarded as robust
representations invariant to speaker and acoustic conditions.
These representations are also supported by psycho- and
neuro-linguistic studies of speech production and perception.
The present paper proposes an information theoretic analysis
of phonetic and phonological representations. We are inter-
ested in assessment of speech production quality and percep-
tion. A schematic functional view of production-perception
processes is illustrated in Fig. 1.

Speech production is one of the most complex motor
coordination processes of human brain. It involves a networked
system of brain areas that each contribute in unique ways [1].
A simplified psycholinguistic model of speech production [2],
[3] typically consists of linguistic, motor planning and motor
programming/execution stages. The linguistic stage is charac-
terized by phonological encoding, namely the preparation of
an abstract speech code. Speech code is an invariant speech
representation that lies in the intersection of the cognitive and
motor control processes.

Speech code is greatly debated in motor control, psycholin-
guistics, neuropsychology and speech neuroscience. Recent
findings suggest that speech code includes articulatory ges-
tures [4]–[7], and auditory and somatosensory targets [8].
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Fig. 1. A schematic functional view of speech production and perception.

Speech code can be defined at phonetic or phonological levels.
In the present study, we assume that the invariant speech code
is defined by composition of phonological classes. The phono-
logical classes refer to articulatory-free and articulatory-bound
phone attributes, and they are correlated with the auditory
and acoustic events [9]. Exploiting phone attributes facilitates
development of our theoretical framework for analysis of
speech production and perception. This framework can be
applied for alternative representations.

Speech perception refers to the mapping from sound to the
internal linguistic representation. Earlier studies are conducted
in the context of syllable recognition and investigate its rela-
tion to the mechanism of auditory processing. Pioneering work
of Harvey Fletcher demonstrated that human recognition acts
on the principle of processing parallels of independent streams
enabling partial recognition and merging of the independent
evidences for speech recognition [10], [11]. Although Fletcher
established his work for processing of disjoint frequency
ranges (auditory events), the notion of independent processing
influenced later development of speech perception theories
regardless of auditory processing [12].

An important perspective to speech perception relies on
inverse production processing or phonological decoding. The
decoding process is quite complex and a complete explanation
of how humans recognize syllables and phonemes remains
elusive [12]. In this context, the motor theory is probably
one of the oldest that has been re-investigated and revised
extensively [12]–[14]. According to the motor theory of speech
perception, the objects of speech perception are articulatory
rather than acoustic or auditory events [12], [13]. Although this
theory has been partially controversial, several experimental
evidence support the idea that perception operates on the
principle of detecting the underlying structures or articulatory
gestures [12], [14], [15]. The vocal tract actions (e.g., the
closing and opening of the lips during the production of
/pa/) structure the acoustic signal. As noted in [14], “speakers
produce phonetic frames as individual or as coupled gestures
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of the vocal tract. The gestures cause information in acoustic
speech signals for the segmental structure of utterances, and
that experienced listeners are sensitive to that information”.

The psycholinguistic theories assert that a unique binary
mapping exists between phonemes and phonological classes,
and speech can be seen as the molecules of alphabetic
atoms [14], [16]. However, accessing the compositional atoms
from the speech signal is an open problem. In practice, speech
manifests itself in continuous forms that may be attributed to
multiple classes. A great challenge in this context is pertained
to speech coarticulation and supra-segmental variations [15].

The present study builds on the success of deep neural
network (DNN) in estimation of class-conditional posterior
probabilities. We apply DNNs for probabilistic characteriza-
tion of the phonological classes [17], [18]. We advance the
linguistic binary association of the phoneme and phonological
classes by considering the dynamic probabilistic associations
adapting to the production condition. We define phonological
compositions as the set of phonological classes forming the
phoneme identities.

We consider the linguistic message being present in the form
of phoneme transcription. The production machinery is then
regarded as a channel that transmits the phoneme information
to phonological classes or phone attributes. Accordingly, the
phoneme perception operates on the principle of phonological
class inference and composition for phoneme identification.
DNN estimates the phonological class probabilities from the
speech signal. In an ideal speech production condition, high
probabilities are estimated whereas the disruption in produc-
tion results in small probabilities. We propose an information
theoretic approach to quantify the information content of
phone attributes. The proposed method can be applied for
assessment of speech quality and ineligibility without any
requirement to perform speech recognition.

The general assessment of human perception is a more
complex problem and larger units than phonemes may be
evaluated. This paper is presented for encoding and decoding
of phonemes to nail the information theoretic foundation of our
proposed method. In practice, similar principles and method
are applicable for assessment of syllables and beyond.

One interesting application of the proposed method is in
the context of speech pathology, in particular, assessment of
information loss due to speech production disorder. Using
the information theoretical measures, we are able to contrast
control/healthy and pathological speech to reveal the degree
of information loss apparent at the level of individual phone
attributes. Considering phonemes as composition of phone
attributes, the most informative attributes for phoneme iden-
tification are determined. Moreover, the phonemes mainly
affected by production impairment are identified and their
information loss is quantified. We measure the degree of
impairment or deviation from an ideal production that enables
us to distinguish healthy speech from impaired production.

The rest of the paper is organized as follows. The framework
for estimation of phonological class probabilities is outlined
in Section II. We explain the information theoretic method for
assessment of speech production in terms of phone attribute
information in Section III. The measures of information loss

are formulated in Section IV. The numerical results are
evaluated in Section V, and finally the concluding remarks
are drawn in Section VI.

II. PHONOLOGICAL POSTERIORS

We use DNN for estimation of class-conditional posterior
probabilities [19]. In this framework, K independent DNNs
take as input acoustic features derived from short frames
of speech signal, and estimate the class-conditional posterior
probability of K phonological classes given the input acoustic
features. The DNN output probabilities are briefly dubbed
phonological posteriors. Each component of the phonological
posterior represents the probability of a phone attribute in
the speech signal. These attributes describe speech segments
phonemes using binary labels; for example, phonological
classes of [consonantal], [anterior], [voice] and [nasal] com-
pose phoneme /M/ [19].

There are theoretical and empirical evidence that detection
of phonological features plays an important role in human
perception. Speech perception is associated with processing
in the peripheral and the central auditory system, the former
performed by cochlea and the latter by primary auditory
cortex. Historically, speech perception studies are based on
psychoacoustic principles of cochlea, including absolute hear-
ing thresholds, critical band frequency analysis, simultaneous
masking, the spread of masking along the basilar membrane,
and the temporal masking. However, promising recent neuro-
logical data from the brain activity during speech perception
are increasingly used to devise updated models of speech
and language processing. For example, dual-stream cortical
circuit [20] suggests that primary auditory cortex performs
phonological-level processing [21]. Thus, we can hypothesize
that the phonological features in the central auditory system
significantly contribute to phoneme perception, and that using
of phonological class-conditional posterior probabilities esti-
mated from the speech signal indirectly supports claims of
‘machine‘ DNN contribution to human perception. Accuracy
of our phonological posteriors estimation is very high, ranging
from 92.5−99.8% measured on a cross-validation set at frame
level (cf. Table 3 of [22]).

Phonology defines two traditional speech structures [16]: (i)
canonical structures represented by canonical representation,
and (ii) surface/co-articulated structures exhibited by observed
representation patterns, defined by phonological rules. The
phonological posteriors are associated with the surface struc-
tures. The phonological posteriors yield a parametric speech
representation, and the trajectories of the articulatory-bound
phonological posteriors correspond to the distal representation
of the gestures in the gestural model of phoneme production
(and perception). Hence, we hypothesize that they represent
the probabilistic relation of the canonical phonetic and phono-
logical classes to a distal representation of the (co-articulated)
speech code.

The present study exploits phonological posteriors as es-
sential representations to quantify the information content of
produced phone attributes and the information loss due to
impaired speech production. To that end, we use information
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theory for transmission analysis of the production channel as
explained in the following Section III.

III. INFORMATION TRANSMISSION ANALYSIS

In this section, we formulate an information theoretic
analysis of speech production and perception. The proposed
approach builds on the seminal work of Miller and Nicely on
analysis of perceptual confusion and information loss in noisy
communication systems [23]. The original theory of informa-
tion transmission analysis (ITA) is developed for quantification
of information conveyed by binary phone attributes, such as
voicing, place and manner of articulation [23].

In practice, however, co-articulation and supra-segmental
variations such as stress affect the binary association between
phoneme and phonological classes [24], [25]. Therefore, the
present paper adopts the probabilistic estimation of phone
attributes for ITA. DNN provides the phonological posteriors
that quantifies the precision of phonetic attributes detected
from the speech signal.

A. Production of Phone Attributes

The following production scenario is considered. A phonetic
transcription is provided, which is encoded through the speech
production process in terms of phone attributes as depicted in
Fig. 2. A listener (judging the speech production quality) may
detect/infer phone attributes towards recognition of the speech
signal.

Phoneme  
Transcription 

Production Channel Phone  
Attributes 

Fig. 2. Phone attribute encoding: Speech production channel transmits the
source phoneme information through production of the target phone attributes.

It may be noted that the source information can be presented
in a larger granularity such as syllables or words, and the target
of speech production can be considered different than phone
attributes such as neuromuscular commands. The scenario
hypothesized here (Fig. 2) facilitates derivation of our analysis.
Nevertheless, the theory and algorithm remain applicable for
different granularity of source and target units1.

We exploit information theory to quantify the information
content of phone attributes to convey phoneme transcription.

B. ITA of Binary Phonetic-Phonological Association

The analysis is based on the mathematical theory developed
by Claude Shannon [26] to calculate the information quantity
transmitted over a noisy channel. This theory is built on the
fundamental measure of information known as the Shannon
information index or entropy. Shannon proposed this measure

1In analysis of larger units when co-articulation is important, a binary map-
ping of co-articulation to the phone attributes may be considered for natural
speech production. The numerical evaluation presented in Section V is limited
to the (Chomsky’s) binary mapping of phoneme and phone attributes [18].
In practice, speech perception enjoys more flexibility and thus, considering a
larger set of phoneme and phone attribute mapping presented in natural speech
production and perception may be beneficial for speech assessment. The
mapping can be obtained from binary quantization of phonological posteriors.

to quantify the information content or entropy (uncertainty)
in strings of text. The idea was that the more different letters
there are, and the more equal their proportional abundances
in the string of interest, the more difficult it is to correctly
predict which letter will be the next one in the string.

To apply ITA on binary phonetic-phonological association,
we define random variables corresponding to phoneme cate-
gories and phonological classes.

The random variable denoting phoneme categories is an L
dimensional random variable S with categorical distribution
(ps1 , . . . , psL) where psl denotes the probability of phoneme
sl. This random variable corresponds to the source input of
the speech production channel (c.f. Fig. 2).

At the output, K phonological classes are the targets consti-
tuting the set of Q = {q1, . . . , qK} where every phonological
class qk is a discrete random variable taking binary values
{0, 1}, with probability p(qk = 1) = pqk . The speech
production channel is characterized by the joint probabilities
{p(q1, S), . . . , p(qK , S)}.

The goal of applying ITA on binary phonetic-phonological
association is to quantify the information content of every
individual phone attribute in phoneme transcription. This pro-
cedure relies on two quantities as explained below.

1. Source information: The quantity H(S) measures the
amount of information made available to the speech production
channel by the phonetic transcription S. It is calculated based
on the definition of entropy for categorical random variables
expressed as

Hsource = H(S) =

L∑
l=1

H(sl), where (1)

H(sl) = −psl log2 psl . (2)

Speech production transmits this information through phone
attributes, and accordingly, the perception relies on inference
of the compositional phonological classes for phoneme iden-
tification (more details in Section IV).

2. Transmitted information: The quantity of information
transmitted by the production channel amounts to the mutual
information between phonological classes and phonetic tran-
scription.

In former psycholinguistic studies, the phone attributes are
defined as binary variables. Hence, the information of an
individual phonological class qk,∀qk ∈ Q is calculated as

H(qk) = −pqk log2 pqk − (1− pqk) log2(1− pqk) (3)

Given the phoneme transcription, the information of phono-
logical classes is obtained as

H(qk|S) =−
L∑

l=1

p(qk, sl) log2 p(qk|sl)

=−
L∑

l=1

p(qk, sl) log2
p(qk, sl)

p(sl)

(4)

The mutual information quantifies the amount of uncertainty
resolved by a phone attribute, thus calculated as

Iktransm-binary = I(qk, S) = H(qk)−H(qk|S) (5)
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Algorithm 1 ITA of Phonetic-Phonological Mapping
Input: Table of binary phonetic-phonological association. Phonetic
transcription of the data.
Output: Information content of phonetic transcription and phonolog-
ical classes.

1) Construct matrix MK×L such that every component Mkl is 0 when
the phonetic attribute k is missing in phoneme l, and 1, otherwise.

2) Count the number of times each phoneme is present at the phonetic
transcription to form vector N = [ns1 . . . nsl ]

>.

3) p(qk, sl): Convert the frequency matrix F = MN , to joint
probability matrix through normalization P = F/C.

4) p(qk): Obtain phonological probabilities via summation of
columns of P (marginalization over phonemes).

4) p(sl): Obtain phoneme probabilities via summation of rows of P
(marginalization over phonological classes).

Return H(S) using (1)-(2) and I(qk, S) using (3)-(5).

The quantity I(qk, S) measures the amount of information
made available by the speech production channel to the listener
through phonological class qk.

To implement the binary ITA, the table of phonetic-
phonological mapping and the phonetic transcription of the
data are required. The probability of every phone attribute
being present can be obtained by frequency approach based on
counting and relative ratios. The summary of this procedure
is outlined in Algorithm 1.

The limitation of the binary association is that it requires
detection of the attributes by human subjects, and measure-
ment of the degree an attribute is present is not feasible [23],
[27]. In contrast to the binary mapping, in practice a complex
function governs the phonetic-phonological association that
motivates the use of advanced computational methods for
probabilistic characterization. The attributes can be produced
with some precision, where high precision leads to higher
amount of information content. The low-precision indicates
that the attribute may contribute less in resolving the confusion
between multiple phoneme identities. In the next Section III-C,
we will see how application of ITA on probabilistic association
of phonetic-phonological classes obtained from DNN enables
a more practical information transmission analysis.

C. ITA of Probabilistic Phonetic-Phonological Association

The probabilistic association is obtained from DNN phono-
logical posteriors. Application of DNNs enables a computer-
ized method of quantifying the accuracy of phone attribute
production, that can be further employed in assessment of
speech production quality.

We define zt as the random variable which can take values
of the set of phonological classes Q = {q1, . . . , qK}; t indexes
the time frame. The probabilities of all phonological classes
{p(zt = q1|xt), . . . , p(zt = qK |xt)} are estimated by K
DNNs [19] each specifically trained to detect one of the classes
from the input acoustic speech feature xt.

The amount of information transmitted by the speech
production channel is estimated as the multivariate mutual
information [28] I(S, qk, zt) between the phonetic transcript,

the binary associated phonological class and the probabilistic
presence of all phonological classes as follows

Iktransm-posteriors =I(S, qk, zt), ∀k ∈ {1, . . . ,K}
=H(S, qk, zt)−H(S, qk)−H(qk, zt)

−H(S, zt) +H(qk) +H(S) +H(zt)

(6)

where

H(S, qk, zt) = −
L∑

l=1

p(qk, sl, zt) log2 p(qk, sl, zt) (6a)

H(S, qk) = −
L∑

l=1

p(qk, sl) log2 p(qk, sl) (6b)

H(qk, zt) = −p(qk, zt) log2 p(qk, zt) (6c)

H(S, zt) = −
L∑

l=1

p(sl, zt) log2 p(sl, zt) (6d)

H(zt) = −p(zt) log2 p(zt)dz (6e)

To implement this procedure, the DNN phonological pos-
teriors are used as follows. If the acoustic frame xt is the
result of the production of phone attribute qk, we assume
that p(xt|zt, qk) = p(xt|qk); the intuition is that the phys-
ical process leading to the production of xt is guided by
qk (the linguistic code) and the variable zt is an abstract
notion to exploit probabilistic association of the DNN to
all phonological classes. Hence, given the physical state of
qk, the observation xt is independent of zt or by Bayes
theorem p(zt|qk, xt) = p(zt|qk). Similarly, if we consider the
production of xt associated to the phoneme sl, the DNN output
phonological posteriors yields p(zt|sl). Thereby, the joint
probabilities required to calculate (6) are estimated through
conditional probabilities as p(qk, zt) = p(zt|qk)p(qk) and
p(sl, zt) = p(zt|sl)p(sl) where p(qk) and p(sl) are known
from phonetic transcription, and p(zt|qk) and p(zt|sl) are
directly available from the phonological posteriors.

In general, the multivariate mutual information for three
variables can be positive or negative [28]. The positive value
indicates a redundancy. In our analysis of the transmitted
information, I(S, qk, zt) is expected to be positive for all
phonological classes. This expectation is due to the redun-
dancy observed at the level of auditory and cortical processes
involved in speech production and perception [29], [30]. The
redundancy is further analyzed in the following Section III-D.

D. Redundancy in Production of Phonemes

A composition of multiple phonological classes form a
phoneme identity. To quantify the amount of redundancy
pertained to the phonological compositions, we consider a
phoneme sl composed of Kl phonological classes. The compo-
sitional redundancy can then be obtained as the difference be-
tween constituting phonological information and the phoneme
information expressed as

Rl
phoneme =

Kl∑
k=1

Iktransm- −H(sl) (7)
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where Iktransm- may be calculated from either binary or proba-
bilistic phonetic-phonological association defined in (5) or (6)
respectively; H(sl) is defined in (2).

The production channel capacity indicates the maximum
amount of information that can be transmitted if no error
occurs. This ideal situation corresponds to the binary phonetic-
phonological association. In this case, H(qk|S) = 0 (4), and
the capacity amounts to the overall transmitted information
Itransm-binary =

∑K
k=1 Iktransm-binary where Iktransm-binary has the

maximum value H(qk).
Considering the binary association, the theoretical redun-

dancy is obtained, whereas exploiting the probabilistic asso-
ciation yields an actual redundancy present for perception of
phonemes as a composition of phone attributes. We evaluate
this redundancy in Section V, and study the implications for
perceptual loss of phoneme information. In the following Sec-
tion IV, the information loss objective measures are derived.

IV. INFORMATION LOSS

The proposed information theoretic analysis of probabilistic
phonetic-phonological association enables us to quantify the
amount of information conveyed by an individual phone
attribute. As a use case, we calculate the information for
healthy and impaired speech production, and measure the
amount of phonological and phonetic information loss due
to production disruption. This idea leads to formulation of a
novel compositional information index to assess the production
fluency relying on probabilistic estimation of phone attributes.

A. Phonological Information Loss

We compare two information quantities obtained from
healthy speech production and impaired production. The dif-
ference measures to what extent each of the phone attributes
has been disrupted. To state in formally, we define the phono-
logical information loss as

Lk
phonology = |Ik-Healthy

transm-posteriors − I
k-pathology
transm-posteriors − L

k
binary| (8)

where |.| stands for the absolute value. To obtain the phono-
logical information loss Lk

phonology, the difference in posterior
information content is normalized by the binary difference
obtained as

Lk
binary = Ik-Healthy

transm-binary − I
k-pathology
transm-binary (9)

If healthy and pathological speakers read different texts, this
quantity is non-zero, so the effect of binary information differ-
ence between healthy and pathological speech is factored out
in (8). If the phonetic transcriptions are the same, Lk

binary = 0.
Applying a phoneme perception method operating on the

principle of independent processing of compositional phono-
logical classes provides a measure of the production influency
that a listener may perceive. This idea is described in the
following section IV-B.

B. Information Loss in Phoneme Perception

Initial works to understand human perception are conducted
on recognition of syllables. A principle proposal of the studies
pioneered by Harvey Fletcher is that humans appear to perform
partial recognition of phonetic units in different frequency
ranges independently [10], [11], [31], [32].

Recent studies by Nima Megarani and colleagues [9] sug-
gest that phone attributes contain disjoint frequency compo-
nents. The evidence is demonstrated as the weighted average
spectro-temporal receptive fields (STRF) of the neural activi-
ties clustered on the phone attributes (cf. Fig. 2 of [9]). Hence,
building on Fletcher’s proposal, we assume that phonetic per-
ception relies on independent processing of multiple streams
of phone attribute inference as depicted in Fig. 3.

Phonological  
Posteriors 

Composition Phoneme  
Posteriors 

Fig. 3. Phoneme decoding: Phoneme perception operates on the basis of
merging evidences on phone attributes composition.

The goal is to assess speech production quality by drawing
inference on the underlying phonemes using phonological
posteriors. We define the lth phonological composition for
phoneme sl as the set of Kl phonological classes, thus
gsl = {q1, . . . , qKl

}. The probability of erroneous phoneme
perception is obtained as multiplication of the products of
errors at individual phonological classes. Hence, the compo-
sitional probability of phoneme perception is expressed as

p(gsl , zt) = 1− (1− p(q1, zt)) . . . (1− p(qKl
, zt)) (10)

To obtain pgsl , zt is marginalized assuming a uniform prob-
ability for the available Tsl frames aligned (using phonetic
transcription) as the phoneme sl via

pgsl =
1

Tsl

Tsl∑
t=1

p(sl, zt) ∀l ∈ {1, . . . , L} (11)

That amounts to the phoneme uncertainty calculated as

Hl
posteriors = −pgsl log2 pgsl ∀l ∈ {1, . . . , L} (12)

The quantity Hl
posteriors determines the uncertainty pertained

to perception of an individual phoneme by processing the
inference of the phone attributes obtained in phonological
posteriors.

If speech production is performed fluently, the phonological
posteriors get close to their ideal binary values [33]. Due to a
unique phonological composition defined for every phoneme,
sharp posteriors lead to a minor uncertainty in phoneme
perception. On the other hand, high uncertainty at the level
of phone attributes (small posterior probabilities) leads to a
great uncertainty in phoneme identification2.

2We admit the fact that human perception may not operate at the level of
phoneme classification or phonological composition. Hence, this approach is
not a computerized version of quantifying human perception. Rather, it takes
an initial step towards formalizing the speech perception as the process of
decoding the speech code that corresponds to the phonological compositions
in the present work. Nevertheless, alternative codes can be considered for
information transmission analysis.
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As a use case on pathological speech assessment, we
are now able to quantify the level of information loss in
phoneme perception based on the degradation in phonological
posteriors. Therefore, we can find out which phonemes are
affected the most due to impaired speech production.

To that end, we calculate H l
posteriors (12) and measure its

distance to the information obtained from the binary (ideal)
mapping. The phoneme information loss is thus defined as

Ll
phoneme = |Hl

posteriors −Hl
binary| (13)

where Hl
binary = H(sl) as obtained from (2) using

the phoneme probabilities estimated in Algorithm 1. The
phonemes with larger distances from the binary canonical
information are the ones whose perception are most distorted.

In the next section, we exploit the uncertainty pertained
to phonemes for individual speakers. We propose a metric
to assess production fluency with respect to an ideal speech
production that can distinguish apart healthy and pathological
speech.

C. Compositional Information Index

We assume that a speaker has produced Tspk speech frames,
resulting in {p(gsl , zt)}

Tspk
t=1 compositional phoneme probabili-

ties corresponding to {gsl}Ll=1 obtained from (10). Hence, the
speaker-specific probabilities are estimated through marginal-
ization over zt assuming a uniform probability as

pspk
gsl

=
1

Tspk

Tspk∑
t=1

p(gsl , zt) (14)

We define a compositional information (CI) index to assess
perception of the production fluency expressed as

CI =

∑L
l=1 p

spk
gsl

log2 p
spk
gsl∑L

l=1 p
spk
sl log2 p

spk
sl

(15)

where pspk
sl indicates the phoneme probability for a speaker

obtained by the frequency approach based on counting the
phonemes in the speaker’s phonetic transcription.

The CI index can be used to determine the degree of fluency
in speech production exhibited in probabilistic phone attribute
characterization with respect to the binary mapping in an ideal
production (probabilities equal to 0 or 1). We will see through
the numerical evaluation in Section V that CI index enables
separation of healthy and pathological speech with a linear
classifier.

V. NUMERICAL EVALUATION

Numerical studies are conducted to demonstrate the po-
tential of the proposed information theoretic framework to
assess the quality of speech production based on the notion
of information loss exploiting probabilistic characterization of
the phone attributes.

A. Experimental Setup

1) Data: We use the WSJ database [34] to train the DNNs
for phonological analysis. The training set was the 90% subset
of the WSJ si tr s 284 set, and the remaining 10% subset
was used for cross-validation. The phoneme set comprises 40
phonemes (including “sil”, representing silence) defined by the
CMU pronunciation dictionary.

As evaluation data, we used the TORGO database of
dysarthric speech that consists of recordings from speakers
with either cerebral palsy or amyotrophic lateral sclerosis
[35], along with Frenchay Dysarthria Assessment (FDA) [36]
done by a speech-language pathologist. Original data include
3 female and 5 male pathological speakers, and 3 female and 4
male control (healthy) speakers. The recordings of dysarthric
speech have been manually checked, and those with significant
clipping waveform distortion have been removed from further
analysis.

The Frenchay assessment includes 28 relevant perceptual
dimensions of speech, namely related to the following dimen-
sions:

• Laryngeal: noting weather the patient has clear phonation
with the vocal folds, without huskiness.

• Tongue: noting accurate tongue movements (positions)
with correct articulation.

• Palate: noting nasal resonance in spontaneous conversa-
tion, without hypernasality or nasal emission.

• Lips: observing the movements of lips in conversation,
noting correct shape of lips.

• Respiration: noting running out of breath when speaking,
and breathy voice.

2) Training: We use our open-source phonological vocod-
ing platform [19] to perform phonological analysis. Briefly, the
platform is based on cascaded speech analysis and synthesis
that works internally with the phonological speech representa-
tion. In the phonological analysis part, phonological posteriors
are extracted from the speech signal by DNNs. We used the
binary classification of the eSPE set [18], and thus each DNN
determines the probability of a particular phonological class.

To train the DNNs for phonological analysis, we first
trained a phoneme-based automatic speech recognition system
using Mel frequency cepstral coefficients (MFCC) as acoustic
features. The three-state, cross-word triphone models were
trained with the HMM-based speech synthesis system (HTS)
variant [37] of the Hidden Markov Model Toolkit (HTK) on
the WSJ training and cross-validation sets. The acoustic mod-
els were used to get boundaries of the phoneme labels, which
were mapped to the eSPE phonological classes. In total, 21
DNNs were trained as phonological analyzers using the short
segment (frame) alignment with two output labels indicating
whether the phonological class exists for the aligned phoneme
or not. In other words, the two DNN outputs correspond to
the target class vs. the rest.

Each DNN was trained on the whole training set. The DNNs
have an architecture of 351×1024×1024×1024×2 neurons,
determined empirically based on the authors’ experience. The
input vectors are 39 order MFCC features with the temporal
context of 9 successive frames. The parameters were initialized
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PATHOLOGY: Ranking of information transmitted by phonological posteriors
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PATHOLOGY: Ranking of information transmitted by binary phonological class labels

Fig. 4. Ranking of information content in phone attributes: The information quantities (bits) for probabilistic and binary phonetic-phonological associations
are calculated from Ik

transm-posteriors (6) and Ik
transm-binary (5) respectively. We can see that the probabilistic estimation of information quantity shows a variance

greater than the theoretical binary information. The top 4 most important phone attributes are identified as [continuant], [vowel], [labial], and [voiced].

using deep belief network pre-training following the single-
step contrastive divergence (CD-1) procedure of [38]. The
DNNs with the softmax output function were then trained
using a mini-batch based stochastic gradient descent algorithm
with the cross-entropy cost function of the KALDI toolkit [39].
The DNN outputs for individual phonological classes de-
termine the phonological posterior probabilities. Detection
accuracies of the eSPE phonological classes are very high (cf.
Table III of [40]).

3) Phonetic Alignment: Evaluation data were aligned us-
ing the HTK tools, with the WSJ HMMs and the CMU
dictionary [41]. Overall 6278 utterances were successfully
processed, with 4374 recordings from the control speakers,
and 1904 recordings from the speakers with dysarthria.

B. Ranking of Phonological Information

We calculate the information content of the phone attributes.
The information can be quantified using the binary table
of phonetic-phonological mapping as summarized in Algo-
rithm 1. The binary maps used in this work are taken from
Appendix A of [18]. The information content of an individual
phone attribute corresponds to Iktransm-binary (5). Alternatively,
continuous phonological posteriors can be exploited to obtain
Iktransm-posteriors (6). The resulted mutual information is quanti-
fied for each frame. Considering a long duration of multiple
frames, we compute an average of the mutual information.

The results are sorted and demonstrated in Fig. 4 for both
healthy and pathological speech production. Comparing the
binary and probabilistic information content indicates that

the difference between highly informative attributes such as
[continuant] or [vowel] and less informative attributes such as
[glottal] and [dental] is far greater when their probabilities are
inferred from the acoustic speech signal through phonological
posteriors. This observation may indicate that some phone
attributes make a higher impact on structure of the speech
signal, and they bear more information in detection of the
phoneme identities.

The ranking is different for impaired speech production
implying that the information loss may not be equal for all
phone attributes. In other words, speech production impair-
ment may be more visible if a subset of phonological classes
is selected [42]. In practice, this information may be consid-
ered in devising scripts for speech production assessment to
better distinguish the impairment. Considering that different
sources of production disability exhibit different patterns of
impairment, more distinctive assessment tests can be devised.

C. Redundancy of Compositional Information

A phoneme identity is defined by composition of a few un-
derlying phonological classes. We calculate the redundancy as
the difference between constituting phonological information
and the phoneme information as expressed in (7).

Fig. 5 shows the ranking of redundancy in production of
phonemes. A difference is observed between two groups of
the phonemes characterized by the vowels, and the stops and
africates. The results imply that the latter consonantal group
of the phonemes is less robust in the presence of distortion.
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Fig. 5. Ranking of redundancy in production of phonemes as a combination of multiple phone attributes (7) for (top) healthy and (bottom) pathological speech
production. Phonological posteriors are used to obtain the results illustrated above. Similar results are obtained for binary phonetic-phonological association.
The phone description is according to [41].

Comparing the differences of the healthy controls and the
speakers with dysarthria, the robustness to distortion is similar.

Although, the redundancy analysis suggests that a small
subset of phonetic attributes may suffice to determine the
phoneme categories, development of speech production involv-
ing redundancy [29], [30] may ensure robustness in adverse
acoustic conditions. In practice, analysis of redundancy yields
a prediction of the level of vulnerabilities in perception of
phonemes.

D. Information Loss

Information loss is the difference between the information
content of a phone attribute when it is obtained from healthy
and pathological production. This quantity is calculated based
on the expression in (8). The healthy and pathological speakers
read different texts, thus the effect of different underlying
phonetic transcriptions is normalized. Fig. 6 illustrates the
information loss due to speech pathology.

co
ntin

uant

vo
wel

la
bia

l

nasa
l

appro
xim

ant

co
ro

nal

ante
rio

r
back

denta
l

ro
und

vo
ice

d
te

nse

glo
tta

l
hig

h
ve

la
r

st
op

m
id lo

w

fri
ca

tiv
e

re
tro

fle
x

0

0.1

0.2

0.3

0.4

0.5

0.6

In
fo

rm
a
ti
o
n
 L

o
s
s

Fig. 6. Phone attribute information loss due to production impairment
calculated based on (8).

The ranking of the phonological classes corresponds to the
Frenchay assessment. The [continuant] and [vowel] classes
correspond to the laryngeal dimension, where clear phonation

is necessary to produce correct vowels, without any significant
obstruction in the vocal tract. The [labial] class is associated
with the lips dimension and the [nasal] class with the palate
dimension. The [coronal] and [anterior] classes are related
to the tongue dimension, where the former is related to the
tongue-tip, and the latter to the tongue-blade.

To quantify the effect of phone attribute information loss
on phoneme perception, we apply the method explained in
Section IV-C. The quantity of information loss in phoneme
perception is calculated from (13). The results are illustrated
in Fig. 7 for the top 20 phoneme categories affected by speech
pathology.
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Fig. 7. Phoneme perception information loss due to production impairment
calculated based on (13) and demonstrated for the top 20 most affected
phonemes. The phonemes are described in [41].

This observation suggests that the effect of impaired pro-
duction in perception of phonemes is not equally distributed
and investigations on a selected category of phonemes may
bring practical benefits in assessment of pathological speech
production.

The group of the first three top most affected vowels refers
to the high-front and the mid-central phonemes that might
be associated with the Tongue dimension of the Frenchay
assessment. The evidence of distribution of information loss
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TABLE I
CI index calculated from (15) for phoneme /EH/ (c.f. Fig. 7) is listed for each speaker. We can see that the healthy and pathological productions can be

distinguished with a large margin.

Condition Healthy Pathology
Speaker FC01 FC02 MC01 MC02 MC03 F01- F03- M05- M01- M02-
CI (15) 2.91 2.95 2.83 2.79 2.63 0.25 0.23 0.21 0.27 0.25

quantity may be applied in devising practical tests or revision
of the current Frenchay assessment such that variants of
disorders are more distinctive. This study yields different
results for a wide range of speech production disorders. Hence,
we speculate that the tests could be adapted to provide more
information for diagnosis of the underlying problems.

Speech production disorders are characterized by different
severity of the disease. The severity difference exists between
speakers, like one observed in the database used in this
work. For example the speakers F03, F04, M03 and M05 had
mildly impaired word intelligibility, whereas the rest of the
speakers had severe word intelligibility impairment. Similarly,
the severity difference existing within one speaker, affected for
example by neuro-degenerative diseases such as Parkinson’s or
Alzheimer’s. Mild speech production impairment is observed
first, which progressively evolves into a severe impairment.

The devised information loss measure provides a continuous
value per speaker, and is it thus also suitable for severity
estimation/prediction; this procedure requires the standard re-
gression being performed for pathological speech processing.

E. Detection of Pathological Speech

Finally, we evaluate the proposed CI index for both cases of
healthy and pathological speech. Building on our observation
on ranking of the influence of speech production disorder in
phoneme categories, CI is calculated for phoneme /EH/ which
shows the greatest effect. The results are listed in Table I.
We can see that the scores of pathological speech can be
distinguished from the healthy CI by linearly.

Recent results on classification of healthy versus patho-
logical speech reports less than 70% accuracy for sentence-
level classification using support vector machine (SVM) and
enhanced acoustic features [43]. In this analysis, we provide
a single measure for the whole speech data of each speaker,
and the minimum length of the data sufficient for detection
remains to be studied in our future work.

VI. CONCLUDING REMARKS

An information theoretic analysis of speech production and
perception is proposed exploiting probabilistic characterization
of the phone attributes using DNNs. The resulted framework
quantifies the quality of speech production and measures the
amount of information loss due to production inaccuracy. The
information loss in phone attributes enables us to quantify the
measure of information loss in perception of phonemes defined
as a composition of phone attributes. In this context, variations
is speech production can be compared and contrasted. Indeed,
perceptual units larger than phonemes can also be analyzed
using the framework presented in this paper. We may further

conduct numerical evaluation on syllable and word perception
in our future work.

As an important application of the proposed measures, we
evaluate the information loss due to production impairment in
speech pathology. A novel compositional information (CI) in-
dex is defined as the ratio of speaker’s production information
and its information in ideal production. The CI scores low for
pathological production and enables us to distinguish the cases
of speech pathology in the TORGO database from the control
healthy speakers. Moreover, the key sources of disability in
production of a small subset of phone attributes and phonemes
are identified. Limiting the analysis to the subset of distinctive
features leads to better assessment of impairment and it can
potentially contribute to the diagnosis of the underpinning
speech production disorder. This idea will be studied in our
future work.

The applications of this analysis approach may be far
beyond in other domains relying on DNN posterior prob-
abilities such as speech recognition, speech coding, spoken
query detection, as well as language (pronunciation) learning.
This framework makes it possible to find the elements of
information loss and degradation through transmission analysis
of application-specific channels. It also paves the way for
quantitative and computerized evaluation of neuro-linguistics
and phsyco-linguistics experiments.
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Hervé Bourlard received the Electrical and Com-
puter Science Engineering degree and the PhD de-
gree in Applied Sciences both from Facult Polytech-
nique de Mons, Mons, Belgium. After having been
a member of the Scientific Staff at the Philips Re-
search Laboratory of Brussels and an R&D Manager
at L&H SpeechProducts, he is now Director of the
Idiap Research Institute, Full Professor at the Swiss
Federal Institute of Technology Lausanne (EPFL),
and Founding Director of the Swiss NSF National
Centre of Competence in Research on Interactive

Multimodal Information Management (IM2). Having spent (since 1988)
several long-term and short-term visits (initially as a Guest Scientist) at
the International Computer Science Institute (ICSI), Berkeley, CA, he is
now a member of an ICSI External Fellow and a member of its Board
of Trustees. His main research interests mainly include statistical pattern
classification, signal processing, multi-channel processing, artificial neural
networks, and applied mathematics, with applications to a wide range of
Information and Communication Technologies, including spoken language
processing, speech and speaker recognition, language modeling, multimodal
interaction, augmented multi-party interaction, and distant group collaborative
environments. H. Bourlard is the author/coauthor/editor of 8 books and over
330 reviewed papers (including one IEEE paper award) and book chapters.
He is a Fellow of IEEE and ISCA and a Senior Member of ACM. He is
(or has been) a member of the program/scientific committees of numerous
international conferences (e.g., General Chairman of IEEE Workshop on
Neural Networks for Signal Processing 2002, Co-Technical Chairman of
IEEE ICASSP 2002, General Chairman of Interspeech 2003) and on the
Editorial Board of several journals (e.g., past co-Editor-in-Chief of Speech
Communication). He is the recipient of several scientific and entrepreneurship
awards.


