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Abstract
In anesthesiology, the detection and anticipation of difficult tracheal intubation is crucial for

patient safety. When undergoing general anesthesia, a patient who is unexpectedly difficult to

intubate risks potential life-threatening complications with poor clinical outcomes, ranging

from severe harm to brain damage or death. Conversely, in cases of suspected difficulty,

specific equipment and personnel will be called upon to increase safety and the chances of

successful intubation.

Research in anesthesiology has associated a certain number of morphological features of the

face and neck with higher risk of difficult intubation. Detecting and analyzing these and other

potential features, thus allowing the prediction of difficulty of tracheal intubation in a robust,

objective, and automatic way, may therefore improve the patients’ safety.

In this thesis, we first present a method to automatically classify images of the mouth cavity

according to the visibility of certain oropharyngeal structures. This method is then integrated

into a novel and completely automatic method, based on frontal and profile images of the

patient’s face, to predict the difficulty of intubation. We also provide a new database of three

dimensional (3D) facial scans and present the initial steps towards a complete 3D model of the

face suitable for facial morphometry applications, which include difficult tracheal intubation

prediction.

In order to develop and test our proposed method, we collected a large database of mul-

timodal recordings of over 2700 patients undergoing general anesthesia. In the first part

of this thesis, using two dimensional (2D) facial image analysis methods, we automatically

extract morphological and appearance-based features from these images. These are used to

train a classifier, which learns to discriminate between patients as being easy or difficult to

intubate. We validate our approach on two different scenarios, one of them being close to a

real-world clinical scenario, using 966 patients, and demonstrate that the proposed method

achieves performance comparable to medical diagnosis-based predictions by experienced

anesthesiologists.

In the second part of this thesis, we focus on the development of a new 3D statistical model of

the face to overcome some of the limitations of 2D methods. We first present EPFL3DFace, a

new database of 3D facial expression scans, containing 120 subjects, performing 35 different

facial expressions. Then, we develop a nonrigid alignment method to register the scans and

allow for statistical analysis. Our proposed method is based on spectral geometry processing

and makes use of an implicit representation of the scans in order to be robust to noise or

holes in the surfaces. It presents the significant advantage of reducing the number of free
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parameters to optimize for in the alignment process by two orders of magnitude. We apply

our proposed method on the data collected and discuss qualitative results.

At its current level of performance, our fully automatic method to predict difficult intubation

already has the potential to reduce the cost, and increase the availability of such predictions,

by not relying on qualified anesthesiologists with years of medical training. Further data

collection, in order to increase the number of patients who are difficult to intubate, as well as

extracting morphological features from a 3D representation of the face are key elements to

further improve the performance.

Key words: 2D/3D facial image analysis; Difficult intubation prediction; 3D facial expressions

database; 3D nonrigid registration; Computational geometry; Spectral mesh processing.
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Résumé
En anesthésie, la détection et l’anticipation de l’intubation trachéale difficile sont cruciales

pour la sécurité des patients. Lorsqu’il subit une anesthésie générale, un patient qui est, de

façon non anticipée, difficile à intuber risque des complications pouvant mettre sa vie en

danger et pouvant avoir des conséquences cliniques dommageables allant de douleurs sévères

à des dommages cérébraux ou la mort. A l’inverse, dans les cas de difficulté anticipée, on fera

appel à du personnel et un équipement spécifique afin d’augmenter la sécurité et les chances

de succès de l’intubation.

La recherche scientifique en anesthésie a associé un certain nombre de caractéristiques

morphologiques du visage et du cou avec un risque accru de difficulté d’intubation. Détecter

et analyser ces caractéristiques, et potentiellement d’autres, de façon à prédire la difficulté

d’intubation de manière robuste, objective et automatique peut donc améliorer la sécurité

des patients.

Dans cette thèse, nous présentons d’abord une méthode pour classifier automatiquement des

images de la cavité buccale en fonction de la visibilité de certaines structures oropharyngeales.

Cette méthode est ensuite intégrée dans une nouvelle méthode complètement automatique,

basée sur l’analyse d’images frontales et de profil du visage, pour prédire la difficulté d’in-

tubation d’un patient. Nous fournissons également une nouvelle base de données de scans

tridimensionnels (3D) du visage et présentons les étapes initiales menant à la création d’un

modèle 3D complet du visage pouvant servir dans des applications de morphométrie faciale,

parmi lesquelles la prédiction de la difficulté d’intubation trachéale.

Afin de développer et de tester notre méthode, nous avons récolté une importante base de

données d’enregistrements multi-modaux de plus de 2700 patients ayant subi une anesthé-

sie générale. Dans la première partie de cette thèse, nous extrayons automatiquement des

caractéristiques morphologiques et d’apparence à l’aide de méthodes bidimensionnelles

(2D) d’analyse d’image faciale. Ces caractéristiques sont utilisées pour entraîner un classifi-

cateur apprenant à discriminer les patients difficiles à intuber des patients faciles à intuber.

Nous validons notre approche dans deux scénarios différents, dont un proche d’un scénario

clinique réel, en utilisant 966 patients et démontrons que la méthode proposée atteint des

performances comparables aux prédictions d’anesthésistes expérimentés, basées sur des

diagnostiques médicaux.

Dans la seconde partie de cette thèse, nous nous concentrons sur le développement d’un

nouveau modèle statistique en 3D du visage afin de surmonter les limites des méthodes 2D.

Nous présentons d’abord EPFL3DFace, une nouvelle base de données de scans d’expressions
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faciales en 3D contenant 120 sujets réalisant 35 expressions faciales différentes. Ensuite, nous

développons une méthode d’alignement non-rigide afin de mettre les scans en correspon-

dance et de permettre une analyse statistique. La méthode que nous proposons est basée sur

le traitement de géométrie spectrale et utilise une représentation implicite des scans de façon

à être robuste au bruit ou aux trous dans les surfaces 3D. Cette méthode présente l’avantage

significatif de réduire de deux ordres de grandeur le nombre de paramètres à optimiser dans le

processus d’alignement. Finalement, nous appliquons notre méthode sur la base de données

récoltée et discutons les résultats qualitatifs.

Au niveau de performance actuel, notre méthode automatique de prédiction de l’intubation

difficile a déjà le potentiel de réduire les coûts et d’augmenter la disponibilité de ces pré-

dictions en ne dépendant pas d’anesthésistes qualifiés avec plusieurs années de formation

médicale. Une plus ample collecte de donnée, de manière à augmenter le nombre de patients

qui sont difficiles à intuber, ainsi que l’extraction de caractéristiques morphologiques à par-

tir d’une représentation en 3D du visage sont les éléments clés afin d’améliorer encore les

performances.

Mots clefs : Analyse d’image faciale 2D/3D; Prédiction de l’intubation difficile ; Base de don-

nées 3D d’expressions faciales ; Alignement non rigide en 3D; Géométrie computationnelle ;

Traitement spectral de maillage 3D.
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Introduction

Context and motivation

In the beginning of July 1966, in the artificial intelligence lab at the Massachusetts Institute

of Technology (MIT), the "summer vision project" [Papert, 1966] was intended to mimic the

human visual system by attaching a camera to a computer and having it recognize objects in a

scene. The initial plan was to complete the project over the summer.

45 years later, as observed in [Szeliski, 2011], despite all the advances in the field of computer

vision, the dream of having a computer interpret and understand an image at the same level as

a two-year old, for example counting all the animals in a picture, remains elusive. Computer

vision is difficult partially because it is an inverse problem. From a set of limited observations,

such as pixels in an image, we want to infer the three dimensional (3D) nature of the imaged

object. The available data, i.e. the pixels in the image of the object, contain insufficient

information to fully specify the solution, as the 3D structure of the object was projected to a

two dimensional (2D) representation. In order to constrain the solution, probabilistic models

are used to disambiguate between potential solutions. Intuitively, that means that the 3D

structure of the object can be recovered, if we have additional information about the object,

for example if we know that it is a human face and have a model for human faces. During

these 50 years, a number of methods and applications attracted the interest of the research

community and led to certain successes. We refer the reader to the inspiring introductory

chapter of [Szeliski, 2011] for a chronological review of computer vision’s advances in the past

decades, starting in the 1970s with pictorial structure [Fischler and Elschlager, 1973], edge

detection [Davis, 1975], feature-based stereo correspondence algorithms [Dev, 1974, Marr

and Poggio, 1976, Moravec, 1977, Marr and Poggio, 1979], or optical flow [Horn and Schunk,

1981, Huang, 1981, Lucas and Kanade, 1981], to the 2000s and the application of advanced

machine learning techniques to large scale computer vision problems.

Since the early days, the human face has always been of great interest to computer vision

researchers [Sakai et al., 1972]. Already in the 1970s, in [Fischler and Elschlager, 1973], the

reported experiments have human faces as their subject, for three reasons: the availability of a

set of pictures containing faces, the need for a single reference face that can be used on the

complete dataset, and the fact that we are familiar with the human face, which facilitates the

evaluation of performance. These reasons have remained valid and might explain that many
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successes in computer vision are linked to works on the human face: the availability of facial

images has never been so high on social media and the Internet in general, the human face

exhibits relatively small variation, as compared to other object categories, and thus can be

detected and modeled relatively accurately, and the human face has a crucial importance in

social interactions and conveys a large amount of information about a person’s state of mind

and intentions.

As an example of great success, detecting faces in images, i.e. face detection, is considered

solved in many settings, and real-world applications of face detection have spread widely since

the seminal work of Viola and Jones [Viola and Jones, 2001] on boosting based face detection,

which was the first algorithm that made face detection practically feasible in real-world

applications. Today, the majority of the commercial digital cameras have an embedded face

detector, allowing the camera to auto-focus. Since the beginning of the 2000s, applications in

automatic facial image analysis flourished and include but are not limited to face recognition

and verification [Zhao et al., 2003], face tracking for surveillance [Kalal et al., 2010], facial

behavior analysis [Pantic and Rothkrantz, 2000], facial attribute recognition [Kumar et al.,

2009], i.e. gender/age recognition [Fu et al., 2010] or assessment of beauty [Bottino and

Laurentini, 2010, Zhang et al., 2017], face relighting and morphing [Yang Wang et al., 2009],

facial shape reconstruction [Blanz and Vetter, 1999], as well as image and video retrieval. As a

second example of computer vision success linked to the human face, face recognition has

recently been reported to reach close to human-level performance [Taigman et al., 2014].

In very recent years, the usage of facial image analysis methods is on the rise in areas such as

marketing and emotion analysis [Ahn and Picard, 2014, Ringeval et al., 2015], face-tracking

systems to increase safety in cars [Dong et al., 2009, Gao et al., 2014], as well as in medicine

[Baynam et al., 2011, Claes et al., 2012, Zhao et al., 2013, Kosilek et al., 2015], to name just a

few. Facial landmarks detection and tracking is an extremely active field and recent progresses

allow for fast and robust face trackers [Cao et al., 2012, Kazemi and Sullivan, 2014, Xiong and

De la Torre, 2015, Ren et al., 2016]. These can detect and interpret specific features of the face,

based on landmark positions, making them suitable for facial morphology analysis, or facial

morphometry.

In this thesis, we focus on medical applications, in anesthesiology, of facial image analysis

and, more specifically, facial morphometry. Prior to an operation which requires the patient to

be under general anesthesia, the priority of the anesthesiologist, after having induced general

anesthesia, is to ventilate the patient and secure his airways. Indeed, the patient is under the

influence of drugs, whose main effects are the loss of consciousness, analgesia and muscular

paralysis, and is unable to breath by himself. A standard way to enable mechanical ventilation

is by introducing a tube in the trachea of the patient, through the vocal chords. This routine

medical act is called tracheal intubation. For a large majority of patients, tracheal intubation

does not present any difficulty, but for less than 10% of the patients, tracheal intubation can be

difficult and put the patient at risk. Thus, detection and anticipation of difficult airway in the

preoperative period is crucial for patients’ safety. Research in anesthesiology have associated
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a certain number of morphological features of the face and neck with higher risk of difficult

intubation.

Detecting and analyzing these features, and potentially others, in order to predict the difficulty

of tracheal intubation in a robust, objective, and automatic manner can therefore improve pa-

tients’ safety. In the first part of this thesis, we thus describe advanced 2D facial image analysis

methods to detect morphological features related to difficult intubation, hypothesizing that

they could improve the prediction of difficult intubation. We demonstrate that the proposed

method yields performance similar to state-of-the-art multifactorial tests performed manually

by experienced anesthesiologists but does not require any measurement on the patient other

than frontal and profile photographs, making it practical even for untrained personnel.

Nevertheless, the 2D methods used in this part suffer from limitations due to the loss of

information happening during the 3D to 2D projection. In order to infer information that is

contained in the 3D morphological structure of the face and neck, such as, hypothetically, the

difficulty of intubation, first retrieving this 3D structure could help. Similarly to many inverse

problems, this is only possible with strong priors about the structure, such as for example,

a 3D face model. In the second part of the thesis, we focus on the first steps to build such

a 3D face model, namely the recording of 3D facial surfaces of a population of 120 subjects,

performing different facial expressions, and the nonrigid registration of these scans, such that

statistical analysis can be applied.

In the next section, we detail the structure of this thesis and describe the relationship between

its two parts and how chapters are interlinked with each other. Finally, the last section of this

chapter lists the contributions of this thesis in a clear and succinct way.

Outline of the thesis

From a high level point-of-view, the core of this thesis is divided into two parts, each one

presenting different research aspects of the same problem. In order to see clearly the link

between these two parts and understand their relationship, one needs to keep in mind the

focus of this work: predict the difficulty of intubation of patients using facial image analysis

methods in order to improve the patients’ safety.

Within that scope, part I presents different medical applications, in link with the prediction

of difficult intubation: first, a Mallampati classification system, and second, a method for

fully automatic prediction of difficult tracheal intubation. In these applications, key features,

in terms of representation power for classification, are morphological features of the face.

These morphological features are extracted from images using state-of-the-art 2D facial image

analysis methods and, as such, suffer from limitations inherent to 2D methods. Specifically,

these limitations are a high sensitivity to head pose variations and self occlusions and are due

to the loss of information happening during the projection from the 3D world to the 2D image

plane.
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With respect to these limitations, a 3D method presents the advantage that, using a 3D model,

the variation due to head pose is usually decoupled from the variation due to the identity and

expression of the subject. Part II describes the initial steps required to build a 3D model of

the face that could be used to extract morphological features in the scope of the prediction

of difficult intubation. Specifically, these steps are the recording of a database of 3D scans of

expressive faces from a variety of subjects and the re-parameterization of these scans into a

common representation, which allows for statistical modeling. Ultimately, such a 3D statistical

model of the face contains enough prior information about the 3D structure of face, such

that this structure can be recovered even from new, unseen, and possibly self occluded, 2D

images. The applications in which a 3D statistical model of the face is useful are not limited

to the medical ones described in this thesis but also include expression recognition, mood

or state-of-mind prediction, or visual speech recognition. As such, we are confident that the

model resulting from this work will be useful in other applications as well.

At a finer level, this thesis is divided into chapters, which aim to be self-contained while

presenting related aspects of this work. Chapter 1 is an introduction to 2D facial image

analysis methods and provides background informations about the methods that were used

throughout this thesis. Chapter 2 through chapter 4 constitute the part I described above

while chapter 5 and 6 constitute part II. Finally, the last chapter, Conclusions, concludes this

thesis and discusses some future perspectives. In the remaining of this section, we describe

explicitly the contributions of each chapter and how they fit in the global scope of this thesis.

Chapter 1: Overview and benchmarking of 2D facial image analysis methods. This chap-

ter describes a typical 2D facial image analysis pipeline and representative methods for face

detection and facial landmark localization. It is intended as a smooth introduction to this

field and a technical overview of the different categories of methods. Moreover, we perform

a quantitative comparison of four well-known methods for facial landmarks localization on

two different publicly available databases. In part I, these methods are essential tools used

to extract morphological features from the face in the scope of the prediction of difficult

intubation. In part II, they play a major role in the pre-processing of the 3D scans, namely in

rigid registration.

Part I

Chapter 2: Introduction to the prediction of difficult tracheal intubation. This chapter

specifically introduces the first part of this thesis. In this chapter, we first review some of the

definitions of the difficult tracheal intubation and discuss their ambiguity. Then, we review

existing automatic and manual methods of prediction of the difficult tracheal intubation and

discuss their limitations. This chapter aims at providing a basic understanding of the difficult

tracheal intubation prediction problematic to the reader without a medical background. A

significant part of this chapter has been published, as introductory material, in [Cuendet et al.,

2015] ©2015 IEEE.
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Chapter 3: Automatic Mallampati classification. This chapter presents a method to classify

images of patients, with the mouth wide open and the tongue protruding to its maximum,

according to their modified Mallampati score, a simple indicator of potential difficulty to

intubate. To the best of our knowledge, this is the first work proposing an automatic system to

assess the modified Mallampati score from images. This work has been published in [Cuendet

et al., 2012].

Chapter 4: Automatic prediction of difficult tracheal intubation. In this chapter of part

I, we present a completely automatic method, based on facial morphometry, to predict a

patient’s difficulty of intubation with performance comparable to medical diagnosis-based

predictions by experienced anesthesiologists. A large part of this chapter has been published

in [Cuendet et al., 2015] ©2015 IEEE, and a patent is pending for this method [Schoettker et al.,

2014].

Part II

Chapter 5: Background. This chapter introduces the second part of this thesis and provides

some background about the different 3D methods used in this part. It first reviews existing

databases of 3D facial scans and compares them to the new database of 3D facial expressions

scans which we introduce in this thesis. It also provides a comprehensive description of the

acquisition of 3D scans using a Microsoft Kinect®. Finally, spectral geometry processing

methods on 3D meshes are introduced.

Chapter 6: Spectral nonrigid registration. The nonrigid registration of scans is the first

step towards building a 3D statistical model from these. This chapter presents a novel 3D

spectral nonrigid registration method and demonstrates its effectiveness on EPFL3DFace, a

new database of facial expressions scans. A large part of this chapter has been submitted for

publication in [Cuendet et al., 2017] and is currently under review.

Conclusions. To conclude this thesis, this chapter reviews key findings from our work and

addresses future perspectives.

Contributions

The main contributions of this thesis are summarized below:

• A comprehensive overview of a selection of important methods in face detection and

facial landmark localization with a comparative benchmark presenting quantitative

results on two publicly available databases;
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• A Mallampati classification method, based on active appearance model (AAM) coef-

ficients, trained and tested on images of the mouth cavity of 100 patients annotated

by experienced anesthesiologists, which yields a high classification accuracy of 95%

[Cuendet et al., 2012];

• A large database of facial images of patients, captured during the preoperative anesthesia

consultation in two different hospitals

• A fully automatic method to predict patients’ difficulty of intubation from facial images

with performance comparable to those obtained by trained anesthesiologists [Schoet-

tker et al., 2014, Cuendet et al., 2015];

• A large 3D facial expressions database, containing 35 different expressions performed

by 120 subjects, suitable for a variety of applications in facial image analysis, such

as expression recognition, mood detection, visual speech recognition, or 3D facial

morphometry;

• A novel 3D spectral nonrigid alignment method using an implicit surface representation

and a spectral embedding of the template as deformation model, thus reducing the

number of free parameters in the optimization by a factor close to 100 [Cuendet et al.,

2017].
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1 Overview and benchmarking of 2D
facial image analysis methods

The human face is the feature that allows us humans to easily recognize individuals. It conveys

essential information about one’s identity and, even amongst people we do not know, the face

allows us to infer important characteristics such as their gender, their approximate age, or

their origin or ethnicity. The human face is also an essential factor in physical attractiveness

[Zhang et al., 2017].

The role of the human face in interpersonal communication is critical. If as much as two third

of the communication between two people, or one speaker and a group of listeners, is indeed

happening nonverbally, a large part of that nonverbal communication is conveyed by the

face. The emotional state of a person and its intensity are communicated by the face, but also

the behavioral intentions of that person. The relatively recent field of Affective computing is

defined as computing that relates to, arises from, or influences emotions by Rosalind Picard in

her seminal work [Picard, 1995]. In recent years, the advances in this interdisciplinary area at

the frontiers of computer science, signal processing, wearable device technology, psychology,

and neuroscience among many others have been enabled by using facial cues, among others.

In verbal communication, and more specifically for speech recognition, the movements of

the mouth are important cues in noisy conditions. By analyzing these movements, hearing-

impaired people can even perform lip-reading. The eyes and the direction of the gaze provide

information about where a person is porting his attention. As we will further discuss in this

thesis, the human face can even provide information about one’s health.

The identity of a person and the different characteristics linked to it, the expression of emo-

tions, and the cues for nonverbal communication conveyed by the face can be captured

visually. In that context, vision is a modality which is particularly cheap and easy to use:

a simple camera records the information, it is non-invasive, and the visual information is

continuously available (as opposed to audio for example, which could capture information

only when the person is speaking).

Probably due to the importance of the aforementioned applications, as well as the extreme

availability of face images, a lot of efforts have been put into developing better and faster
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algorithms and methods to analyze face images. Facial image analysis has been an extremely

popular research topic, in the last twenty years, and has been built on top of some of computer

vision’s greatest success stories.

In the scope of this thesis, these algorithms are essential tools for the medical applications

presented and discussed in part I. Some of the methods introduced in part II, though handling

three dimensional (3D) data, also make use of some of the algorithms introduced in this

chapter. The information presented in this chapter also allows to better understand the

advantages and limitations of each of the methods and will serve as background to motivate

the development and the use of 3D models in part II of this thesis. Indeed, part II presents

some work towards 3D models of the face in order to avoid limitations inherent to methods

working on two dimensional (2D) images such as self occlusions or sensitivity to head pose

variations.

This chapter thus provides a technical description of the most important elements of a typical

2D facial image analysis pipeline. We first describe such a pipeline from a high-level point

of view in section 1.1. Section 1.2 then describes two popular methods for face detection. In

section 1.3, we give some insights about the four main categories of face alignment methods

for facial landmark localization. We describe representative approaches from each of these

four categories, thus providing a comprehensive overview of existing face alignment methods.

These methods are then benchmarked on publicly available datasets and the results of this

benchmark are presented and discussed in section 1.4. Finally, we summarize and conclude

this chapter in section 1.5.

1.1 Introduction

Let us consider that we have an image containing one or several human faces. Without

loss of generality, we can consider only one face in the image and apply the same reasoning

independently on each face when several faces are present. From that input, our goal is to

automatically extract some information, which obviously depends on the application: if we

are interested in facial recognition, we might want to extract the identity of the person present

in the image, or in the case of age and gender classification, we would like to obtain the age

and gender of that person. As described in part I of this thesis, we might also be interested in

predicting whether performing tracheal intubation on that person might be difficult or not.

For some applications, the temporal evolution of the information might also be important:

for example, in facial expression recognition, we might be interested not only in the facial

expression of the subject at one instant, but also in the temporal evolution of the subject’s

facial expression. The same reasoning applies for gaze tracking, where, as the name suggests,

we would like to extract the temporal evolution of the direction of the gaze and not just one

direction at one given moment.

At a high level, a typical pipeline in facial image analysis is thus composed of the following

modules: face acquisition (face detection and facial landmark localization), feature extraction,
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Figure 1.1 – Facial image analysis pipeline

and classification. Such a typical pipeline is illustrated in figure 1.1.

Face acquisition aims at the localization of the face in the image. This step is generally divided

into two. First, a face detection step provides the rough location of the face in the image

(if any). This provides the region of the image, generally as a rectangle, in which there is a

face. Secondly, a facial landmark localization step aligns a known model of the face to the

image with a face alignment method and allows to extract finer information, such as the

locations of semantic landmarks on the face. This second step typically provides a set of facial

landmarks, which are semantically meaningful, such as the corners of the eyes and mouth

or the contour of the chin. The result is generally a vector containing the locations of the

predefined landmarks in the image. These two tasks will be discussed in greater details in

the next sections 1.2 and 1.3 of this chapter. Then, features are extracted. They can be of

two types: either appearance based or geometric. Appearance based features are extracted

from the texture of the image whereas geometric features are computed from the locations

of the facial landmarks. This results in a new vector containing the features. Finally, relevant

information is extracted from the feature vector using a classifier or a regressor if the desired

output value is continuous. Upstream, this classifier needs to be trained from a large number

of samples for which the ground-truth is available. It should also be noted that the dimension

of the feature space can potentially be very high. In such cases, a dimensionality reduction

algorithm can be beneficial, especially when the number of samples available for training the

classifier is limited.

When the information that we are extracting from faces evolves over time and if we are

interested in that temporal evolution, the input of the pipeline is generally not just one image

anymore, but a sequence of images, such as a video. The face acquisition step is slightly

different in that case and makes use of tracking to avoid having to detect the face if its position

has not changed significantly. We will not go further into details about face tracking, as this is

not relevant in the scope of this thesis. Instead, we focus on face detection and alignment in

2D images. Two methods for face detection are presented in section 1.2. The main classes of

methods for facial landmark localization using face alignment are introduced in section 1.3.
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1.2 Face detection

Given an image, it is necessary to first check for the presence of a face as well as its location

and size in the image. A face detector thus takes the whole image as input and performs an

exhaustive search in it. As the only available information is provided by the pixel values, i.e.

the texture of the image, face detection is intrinsically an appearance-based method. Because

of the lack of prior information about the location and scale of a face, the whole image needs

to be processed. A very common strategy is to use a sliding window: a window whose size

approximately corresponds to the size of the object to be detected, in our case a face, is slid at

each position in the image successively across the whole image. For each position, the image

is cropped to the size of that window and its content is considered as a candidate face. Either

the raw pixels, or extracted features, are then fed to a classifier which outputs a decision about

whether the content of the window is a face or not. As the size of the face is also unknown, the

operation is generally repeated after down-sampling the image by different factors. This way,

the size of the window remains the same, and thus the feature representation of a face does not

change, but the image is processed at different scales. This is equivalent to looking for faces

of different sizes. It should be noted that this strategy is common to many object detection

methods and not just face detection. The problem of face detection is just a particular instance

of the more generic problem of object detection and most of what will be introduced in this

section applies to object detection in general. We choose to exemplify the process of object

detection with faces as this is how these detectors are used in facial image analysis as well as

in the scope of this thesis and because we hope that this will only make the description clearer

to the reader.

As described above, the detection can be computationally expensive. A trade-off has thus to

be found between simple features and classifiers, which might be fast but have difficulties

to generalize and not be very accurate, and more accurate methods, which generalize better

but are usually slower. Some of the challenges in face detection are the large changes in

appearance introduced by head pose, facial expressions or occlusions. In order to be as robust

as possible to these changes, a face detector generally requires several thousands of face and

non-face example images for its training. Face detection is critical, as it is the first step of the

pipeline. If no face is detected, no analysis can be performed.

In the remaining of this section we will first introduce the first real-time face detection method

and probably the most used one, still today: the Viola-Jones face detector [Viola and Jones,

2001, Viola and Jones, 2004]. We then introduce a second very popular method, based on the

idea of pictorial structures [Fischler and Elschlager, 1973]: the part-based detector of Yang

and Ramanan [Yang and Ramanan, 2011, Yang and Ramanan, 2013]. These are the two face

detectors that were used in the work presented in this thesis. Moreover, they lie at opposite

ends of the spectrum of solutions in terms of trade-off between speed and accuracy: the

Viola-Jones face detector is fast but not very accurate and not very robust against variations

of head pose and facial expressions whereas the part-based detector of Yang and Ramanan

is slow but can detect parts with a relatively high accuracy even with a lot of variations in
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1.2. Face detection

their relative positions. They are also representative instances of the two general schemes

in face detection methods, as defined in [Zafeiriou et al., 2015]: Viola Jones is based on a

rigid template, learned via a boosting based method, and the part-based detector of Yang and

Ramanan is a deformable model that describes the face by its parts.

For a more complete review of the different methods that have been developed for face

detection, we refer the reader to [Yang et al., 2002, Zhang and Zhang, 2010], and to the recent

survey by Zafeiriou et al. [Zafeiriou et al., 2015].

1.2.1 Viola-Jones face detector

The Viola-Jones face detector, introduced in [Viola and Jones, 2001, Viola and Jones, 2004],

describes a real-time method for face detection. An implementation of the Viola-Jones face

detector is freely available1 in the OpenCV library [Bradski, 2000].

The Viola-Jones face detector is defined by three main elements. The first one is the type of fea-

tures that is used, which are reminiscent of Haar Basis functions. A new image representation

called integral image allows to compute these features in a very efficient way, in constant time.

The second key element of the method is the use of a variant of AdaBoost to perform feature

selection and learn the classifier. The third key element is the use of a cascade of classifiers,

which allows to speed up the classification of candidate regions. We will now discuss in more

details each one of these three key components.

Haar-like features

There are good reasons to use features rather than the raw pixel intensities directly. The

first one is that features can encode domain specific knowledge that would otherwise be

difficult to learn from a limited quantity of training data. Features thus encode a higher level

representation of the raw data. Of course, this also applies to other sorts of problems in

machine learning, in a lot of different domains, and is not limited to face detection or even to

image analysis. The second reason, more specific to that particular method, is that it is faster

to process features rather than pixel intensities.

The Haar-like features used in the Viola-Jones face detector are basically differences between

the sums of all pixels’ values in different adjacent rectangular regions, as depicted in figure 1.2.

These features can be computed very efficiently using a novel representation of the input

image called an integral image. A given pixel value in the integral image contains the sum of

1The open source OpenCV library can be downloaded from http://www.opencv.org
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(a) (b) (c)

Figure 1.2 – Examples of Haar-like features shown relative to the detection window. For each
example, the sum of the pixel values in the grey area is subtracted from the sum of pixel
values in the white area. A different number of rectangles can be used: (a) 2 rectangles, either
vertically (like this example), or horizontally stacked, (b) 3 rectangles, and (c) 4 rectangles. The
size and position of each feature are different.

1 2

34

A B

C D

Figure 1.3 – The value of the integral image at location 1 is the sum of all pixel values in
rectangle A. The value of the integral image at location 2 is the sum of all pixel values in
rectangles A and B. Similarly the value of the integral image at location 4 is the sum of all pixel
values in rectangles A and C. Finally, the value of the integral image at location 3 is the sum
of all pixel values in rectangles A, B, C, and D. The sum of pixel values in the rectangle D can
be computed as Iint(3)+ Iint(1)− Iint(2)− Iint(4), so accessing only four values of the integral
image. The second half of the feature (in dark) is computed in a similar way and because the
rectangles are adjacent the total number to access to the integral image is only six.

all the pixels above and to the left of that pixel in the original image (see eq. (1.1)).

Iint(x, y) = ∑
x ′≤x,y ′≤y

I (x ′, y ′), (1.1)

where Iint denotes the integral image, I the original one, and (x, y) is the pixel position within

the image.

Figure 1.3 illustrates how the sum of pixel values in any rectangle can be computed by reading

four values in the integral image independently of the size of the rectangle. The complexity to

compute the Haar-like features is thus constant.
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1.2. Face detection

Feature selection and classification with AdaBoost

The second key element of the Viola-Jones face detector is the feature selection and classifi-

cation scheme using AdaBoost [Freund and Schapire, 1995]. Feature selection is critical as

the number of features that are extracted from each detection window is much larger than

the number of pixels in the corresponding image patch. For patches of size 24x24 pixels,

thus containing 576 pixels, the exhaustive set of features is over 180000. The basis of the

feature space is thus overcomplete and a small amount of these features can be combined to

be discriminant. The role of feature selection is thus to find this limited set of discriminant

features.

Once features have been extracted, both for positive examples (faces) and negative ones (non-

faces), in principle any classifier could be used to learn a decision function. The Viola-Jones

face detector uses the AdaBoost learning algorithm [Freund and Schapire, 1995]. The main

idea is to combine a number of weak classifiers, whose accuracy does not need to be very good

but just above random chance, in order to get a strong classifier. In addition, by enforcing that

each weak classifier is using only one feature, keeping a limited number of weak classifiers T

also performs feature selection, since these T classifiers are only using at most T features out

of the complete set of features. A weak classifier h j (x) thus consists of one feature value φ j , a

threshold θ j , and a parity value p j indicating the direction of the inequality sign in equation

(1.2).

h j (x) =
⎧⎨
⎩1 if p jφ j < p jθ j

0 otherwise
, (1.2)

where x is a sub-window of an image from which the feature φ j is extracted.

Cascade of classifiers

The third key element of the Viola-Jones face detector is the use of a cascade of classifiers in

order to speed up the classification process. The idea is to first reject as many of the negative

sub-windows as possible while retaining most of the positive instances, i.e. minimize false

negatives. In the early stages of the cascade, simpler classifiers are trained using AdaBoost

(see previous section). Their threshold is adjusted so as to minimize false negatives to reject

the majority of sub-windows before more complex classifiers are used in subsequent stages to

achieve low false positive rates. The numbers of features in the first five stages of the cascade

are 1, 10, 25, 25, and 50. These first layers are thus very fast and allow to reject most of the

negative sub-windows very early in the classification process. At each stage, only sub-windows

classified as positive are passed to the next classifier. Negative results are directly rejected.

This structure of the classification process can be seen as a degenerate decision tree [Fleuret

and Geman, 2001].

In summary, the simplicity of the features and the weak classifiers, as well as the cascade
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Chapter 1. Overview and benchmarking of 2D facial image analysis methods

Figure 1.4 – Illustration of the concept of pictorial structures.

classification scheme of the Viola-Jones face detector, make it a relatively fast face detector.

On the other hand, it is not very robust against large appearance changes due, for example,

to occlusions, head pose variations, or large facial movements, such as opening the mouth

wide or sticking the tongue out. In the next section, we describe another method for face

detection which aims at modeling the face as an ensemble of parts, which can each have

different appearances.

1.2.2 Parts based face detector

One fundamental limitation of the Viola-Jones face detector comes from its holistic repre-

sentation of a face. As detailed in section 1.2.1, the face detector is trained to recognize a

face as a whole, in any given sub-window. There are two main potential drawbacks with that

holistic representation. The first one is that the global appearance of a face is impacted a lot

if some parts of the face are occluded. The detector might thus be less robust to occlusions.

The second drawback is that it is not possible to model separately different appearances

corresponding to different head poses.

The pictorial structures representation introduced by Fischler and Elschlager [Fischler and

Elschlager, 1973] provides a framework in which an object is modeled as a collection of

parts arranged in a deformable configuration. Figure 1.4 illustrates the concept of pictorial

structures. That framework is quite general, as it does not impose a particular appearance

representation for the parts, neither does it specify the type of connections between parts.

Felzenszwalb and Huttenlocher [Felzenszwalb and Huttenlocher, 2005] proposed a statistical

formulation and efficient algorithms to learn pictorial structures from example images and

match these to new unseen images, in order to use pictorial structures for object recognition.

A natural way to describe the arrangement of parts is by using an undirected graph G = (V ,E ).

The vertices of the graph V = {v1, ..., vn} are the parts and there is an edge (vi , v j ) ∈ E for each

pair of connected parts. A particular instance of the pictorial structure is then described by a

configuration of parts L= {l1, ..., li } where each li specifies the location, or the location and
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1.2. Face detection

orientation of the part vi . Intuitively, given an image and a configuration of parts L, the score

s of that configuration in given by eq. (1.3).

s(L) = ∑
i∈V

mi (li )+ ∑
i , j∈E

di j (li , l j ), (1.3)

where mi (li ) measures a local score as the degree of match when part vi is placed at the

location li in the image and di j (li , l j ) is the score associated with the deviation of vi and v j

from their expected locations and orientations.

In [Felzenszwalb et al., 2010], Felzenszwalb et al. present a complete object detector with

discriminatively trained part-based models. The features used are histogram of oriented

gradients (HOG) [Dalal and Triggs, 2010] and the classifier is a latent support vector machine

(SVM).

With this formulation, the first limitation of an holistic representation has been addressed.

Local parts are modeled independently and if one of them is occluded, but most of the others

agree with the model, the score will still be high. This is, in a nutshell, the main advantage of

local methods over holistic methods.

Yang and Ramanan further extended the idea of parts-based detector by adding a mixture of

non-oriented pictorial structure [Yang and Ramanan, 2011] [Yang and Ramanan, 2013]. As

mentioned at the beginning of this section, different head poses or facial expressions yield

variations in appearance of the face. These variations are modeled separately in a mixture of

pictorial structures associated with each part. The mixture component of part vi is denoted ti

and called type. Types can thus model different expressions or different head poses. Moreover,

it also becomes possible to model co-occurrence constraints that favor certain combinations

of part types. Equation (1.4) describes the co-occurrence model.

s(T ) = ∑
i∈V

bti

i + ∑
i , j∈E

b
ti ,t j

i j , (1.4)

where s is the score of the types T = {ti }, i = 1, ...,n, the first term bti

i favors particular types for

each part, and the second term b
ti ,t j

i j favors particular co-occurrences of types ti and t j for

parts vi and v j . As an example, on a lateral view of the face, all parts are viewed from the side

and thus the types should all be those corresponding to a lateral view. It is not very likely that

one part is viewed from the side and another one from the front.

Equation (1.3) thus becomes eq. (1.5).

s(I ,L,T ) = ∑
i∈V

w ti
i ·φ(I , li )+ ∑

i , j∈E
w

ti ,t j

i j ·ψ(li − l j )+ s(T ), (1.5)

where s is the score of a particular configuration L of types T , on the image I , w ti
i is a learned

template for part vi tuned for type ti , φ(I , li ) is a feature vector extracted from location li on

the image, w
ti ,t j

i j is the spring template, with a given rest location and rigidity, for the pair of
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parts vi and v j tailored for the types ti and t j , and ψ(li , l j ) is the relative location of part vi

with respect to part v j , modeled with a quadratic function.

With the mixture of parts, the second limitation of a holistic representation has also been

addressed. Different head poses or facial expressions can now be modeled separately. In this

thesis, we use an open-source implementation2 of the parts-based detector described in [Yang

and Ramanan, 2011].

In this section, we have introduced the first step of a facial image analysis pipeline, face

detection, through two methods for face detection, the holistic Viola-Jones face detector

and the local parts-based detector of Yang and Ramanan. We will not go into more details,

even though there is a lot more to say, especially about training as well as about the practical

implementation of the detectors. The main goal of this section is to provide insights about

these two detectors in order to better understand the choices that were made later in the

thesis.

1.3 Facial landmark localization

The second step of face acquisition, in the facial analysis pipeline (see fig. 1.1), is facial

landmark localization. From the location of a face in the image provided by the face detector,

as described in section 1.2, semantic facial feature points are detected. These facial landmarks

correspond to fiducial facial parts, such as the corner of the eyes, the tip of the nose or the

contour of the mouth. The number and the type of facial landmarks can vary and they mostly

depend on the method and the application scenario. Generally speaking, localizing more

facial landmarks provides richer information, although the detection becomes more time-

consuming. Figure 1.5 shows a typical set of 68 facial landmarks. Those were defined in the

Multi-PIE database [Gross et al., 2010] and later adopted for the annotations of the 300 Faces

In-The-Wild Challenge [Sagonas et al., 2015].

Facial landmark localization is an extremely active research area, with many related research

topics and real-world applications. Despite the vast amount of methods that have been

published in that area in the past 20 years, Wang et al. [Wang et al., 2014] proposed to group

them into four categories, based on how the shape and appearance variations are modeled.

These four categories are: active appearance model (AAM)-based methods, constrained local

model (CLM)-based methods, regression-based methods, and other methods. Figures 1.6 and

1.7 show a timeline for the development of facial landmark localization methods in these four

categories. As illustrated already with the two examples of face detector presented in section

1.2, there are two main approaches to model the appearance of a deformable object such as

the face: local methods and holistic methods.

In this section, a number of methods will be introduced, spanning each one of these four

2This C++ implementation developed and maintained by Hilton Bristow, Willow Garage is available on Github:
https://github.com/wg-perception/PartsBasedDetector

16



1.3. Facial landmark localization

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

* * *
* *

* * *

*

*

*

*

*

* * * * *

*
* *

*** *

* *
*

**

*
* * * * *

*
*

***
*

* * * * ****

1

2

3

4

5

6

7

8 9 10

11

12

13

14

15

16

17

18

19 20 21
22 23

24 25 26

27

28

29

30

31

32 33 34 35 36

37
38 39

40
4142

43

44 45
46

4748

49
50 51 52 53 54

55

56
575859

60
61

62 63 64

65666768

Figure 1.5 – 68 facial landmarks as defined in the Multi-PIE database [Gross et al., 2010]

categories. We do not aim at providing an exhaustive survey of face alignment methods but

would like to provide a comprehensive overview of some of the most representative ones. For

more complete recent surveys, we refer the reader to [Wang et al., 2014] and [Sagonas et al.,

2015].

AAM-based methods use a holistic model of appearance. Moreover, both the shape variations

and the appearance variations are represented as linear models and are usually coupled.

These methods are described in subsection 1.3.1. CLM-based methods typically model the

appearance variation locally around each facial landmarks independently using local experts.

Each local expert allows to compute a response map around each facial landmarks. The

facial landmark localizations are then predicted from these response maps, refined by a shape

prior. CLM-based methods are described in subsection 1.3.2. More recently, regression-

based methods have become very popular. They estimate the shape by learning a regression

directly from the appearance to the facial landmarks. They do not define an explicit shape

or appearance model. These methods, and more specifically the supervised descent method

(SDM) of Xiong and De la Torre [Xiong and De la Torre, 2013], which is used throughout

this thesis, are described in 1.3.3. Finally, the category of other methods contains graphical

model-based, joint face alignment methods, independent facial feature point detectors, and

deep learning-based methods.

The facial landmark localization problem can be described as an image alignment problem. In

this thesis, we use these two terms interchangeably. Image alignment is the process consisting
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Figure 1.6 – Timeline of the development of CLM and AAM-based methods in facial landmark
localization. This figure is based on an original figure from [Wang et al., 2014].
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Figure 1.7 – Timeline of the development of Regression-based and other methods in facial
landmark localization. This figure is based on an original figure from [Wang et al., 2014].
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of rigidly moving and non-rigidly deforming a template to minimize its distance to a query

image. Since Lucas and Kanade’s seminal work [Lucas and Kanade, 1981], image alignment

has become one of the most widely used techniques in computer vision. Its applications to

faces include face fitting [Matthews and Baker, 2004], tracking [Black and Jepson, 1998] or face

coding [Baker et al., 2004]. With the introduction of active shape models (ASMs) [Cootes et al.,

1992] and active appearance models (AAMs) [Cootes et al., 2001] [Matthews and Baker, 2004]

generative model-based face alignment has become very popular.

Image alignment process is characterized by three elements: template representation, distance

metric, and optimization scheme. As examples, the template can be represented using a simple

image patch, or the more sophisticated ASM or AAM, the mean square error (MSE) between

the warped image and the template is one of the most widely used distance metrics and for the

optimization, gradient descent methods are commonly used to iteratively update the shape

parameters.

All these methods are supervised learning-based methods and thus can be decomposed into

two phases: the learning phase and the fitting phase. During the learning phase, a large

number of training images and ground truth facial landmark localizations are provided to the

algorithm which learns its internal representations and parameters from those. During the

fitting phase, the facial landmarks are localized on a previously unseen image on which only

the location of the face is known, as provided by the face detector.

1.3.1 Active appearance models (AAM)

In the case of AAM, the template representation uses linear subspaces to model the object’s

shape and its shape-free appearance. Combined AAMs further model the correlation between

the shape and appearance variations using an additional joint eigenspace, as described in

the seminal work of Cootes et al. [Cootes et al., 1998]. Independent AAMs, on the other hand,

consider two separate linear subspaces for the shape and the appearance. This presents

advantages at fitting time and allows the use of the efficient inverse compositional method, as

described in [Matthews and Baker, 2004].

Training Given a training set of face images, each image is manually annotated with a set of

L 2D landmarks, {(xi , yi )}, i = 1, ...,L. These images are first rigidly aligned using Procrustes

analysis [Goodall, 1991]. This step removes variations due to rigid transforms in the set of

training shapes to keep only variations due to local, nonrigid shape deformation.

The collection of landmarks, or shape vector, s = (x1, y1, x2, y2, ..., xL , yL)T of one image is

treated as one observation from the random process defined by the shape model. AAMs

model both the shape variations and appearance variations as linear models. The resulting

model thus describes the shape, s, as a linear combination of a reference shape and linear

20



1.3. Facial landmark localization

bases as shown in equation (1.6).

s(α) = s0 +Psα= s0 +
n∑

i=0
αi si , (1.6)

where s0 is a reference shape, Ps = {si } is the matrix containing the set of orthonormal shape

basis vectors si , describing the modes of variation of the shape, and α = (α1,α2, ...,αn)T

are the shape parameters. The modes of variation are computed by performing principal

component analysis (PCA) on the set of aligned training shapes and keeping the eigenvectors

corresponding to the largest eigenvalues. The reference shape of the linear model, s0, is often

the mean shape of the set of aligned training shapes.

In order to model the shape-free appearance, a warping function from the model coordinate

system to the coordinates in the image observation is defined as W (x, y ;α), where (x, y) is

a pixel coordinate within the face region defined by the mean shape s0 and α are the shape

parameters. This warping function is usually a piecewise-affine warp for each triangle in s0.

We denote the resulting warped image as an N-dimensional vector I (W (x ;α)), where x is the

set of all pixel coordinates within the mean shape s0. Given the shape model, each facial image

is warped into the mean shape via the above warping function. Similarly to the shape model,

PCA is applied to the set of shape-normalized appearances from all training images and the

resulting model represents an appearance as described in equation (1.7).

A(x ;β) = A0(x)+Paβ= A0(x)+
m∑

i=0
βi Ai (x), (1.7)

where A0 is the mean appearance, Pa = {Ai } is the matrix containing the set of orthonormal

appearance basis vectors Ai , describing the modes of variation of the appearance, and β=
(β1,β2, ...,βm)T are the appearance parameters.

The shape and appearance of a face can thus be described by the vectors α and β. Combined

AAMs concatenate these two vectors into a single vector b as described by equation (1.8).

b =
(

Wsα

β

)
=

(
Ws P T

s (s −−− s0)

P T
a (A −−− A0)

)
, (1.8)

where Ws is a diagonal matrix that weights each shape parameter to compensate for the

difference in units between shape parameters and texture parameters. PCA is applied on b

and results in eigenvectors Q and combined appearance parameters c , controlling both the

shape and texture parameters as shown in equation (1.9).

b =
(

Qs

Qa

)
c . (1.9)

As the model is a linear model, the shape and the texture can be expressed directly as functions
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of c , as shown in equation (1.10).

s(c) = s0 +PsWsQs c , A(x ;c) = A0(x)+PaQa c . (1.10)

Fitting The fitting procedure is based on an analysis by synthesis approach. The intuition

is to find the optimal parameters such that the synthesized image is as similar as possible to

the observed image. Usually, the MSE between the warped observation and the synthesized

appearance instance is used as the distance metric and the resulting cost function to minimize

is described in equation (1.11).

J (α,β) = 1

N

∑
x∈R(s0)

‖I (W (x ;α))− A(x ;β)‖2 = 1

N

∑
x∈R(s0)

‖E (x)‖2, (1.11)

where N is the total number of pixels within the face region R(s0) defined by the mean shape.

The difference between the warped observation and the synthesized appearance instance is

the error image, E (x). It should be noted that this cost function is generally noisy with a lot of

local minima and no guarantee for the global minimum to be at the right location.

There are various approaches to minimize the cost function of equation (1.11). A natural

way is to use a standard gradient descent optimization algorithm. This approach is very slow

because the partial derivatives and gradient direction need to be recomputed at each iteration.

An alternative fitting approach is to linearize the relationship between the parameters α and

β and the error described in equation (1.11). In practice, additive increments Δα and Δβ are

computed as linear functions of the error image, E (x), as described in equation (1.12).

Δαi =
∑

x∈R(s0)
Rα,i (x)E (x), Δβi =

∑
x∈R(s0)

Rβ,i (x)E (x). (1.12)

The parameters are then updated in the following manner: α ← α+Δα and β ← β+Δβ.

These additive increments are considered to be constant with respect to α and β. The update

functions can be estimated by systematically perturbing the model parameters Δα and Δβ and

saving the corresponding error image E (x). The values of Rα(x) and Rβ(x) are then estimated

by linear regression.

Baker and Matthews [Baker and Matthews, 2004] showed that AAM-based image alignment

algorithms can be classified by two criteria: how the updates are made, these are either additive

or compositional, and in which reference frame the optimization is performed. The reference

frame is either the model reference frame, in which case the image is warped to the reference

shape s0 of the model, in a forward manner, or the image itself, in which case the generated

texture is warped to the image in an inverse manner.

In order to be generic, we assume a warping function W (x , p), parametrized by p . Following

an iterative approach as introduced above, at each iteration of the algorithm, the parameters

are updated by Δp in order to improve the match. The optimization over the update Δp thus
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I (x)

A0(x)

W (x ; p)
(Known)

W (x ; p+Δp)
(Estimated)

Figure 1.8 – Forward additive. This figure is based on an original figure from [Matthews and
Baker, 2004].

I (x)
I
(
W (x ; p)

)

A0(x)

W (x ; p) ◦W (x ;Δp)
(Update)

W (x ; p)
(Known)

W (x ;Δp)
(Estimated)

Figure 1.9 – Forward compositional. This figure is based on an original figure from [Matthews
and Baker, 2004].

falls into one of the four following cases.

Forward additive Choose Δp to minimize equation (1.13) and update the parameters in

the following way p ← p +Δp . This is illustrated in figure 1.8.

J (p) = ∑
x∈R(s0)

‖I (W (x , p +Δp))− A(x , p)‖2. (1.13)

Forward compositional Choose Δp to minimize equation (1.14) and update the parameters

in the following way W (x , p) ←W (x , p)◦W (x ,Δp). This is illustrated in figure 1.9.

J (p) = ∑
x∈R(s0)

‖I (W (W (x ,Δp), p))− A(x , p)‖2. (1.14)
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I (x)
I
(
W (x ; p)

)

A0(x)

W (x ; p) ◦W (x ;Δp)−1

(Update)

W (x ; p)
(Known)

W (x ;Δp)
(Estimated)

Figure 1.10 – Inverse compositional. This figure is based on an original figure from [Matthews
and Baker, 2004].

Inverse additive Choose Δp to minimize equation (1.15) and update the parameters in the

following way p ← p +Δp .

J (p) = ∑
y∈R(s)

‖I (y)− A(W −1(y , p +Δp), p)‖2. (1.15)

Inverse compositional Choose Δp to minimize equation (1.16) and update the parameters

in the following way W (x , p) ←W (x , p)◦W (x ,Δp)−1. This is illustrated in figure 1.10.

J (p) = ∑
x∈R(s0)

‖I (W (x , p))− A(W (x ,Δp), p)‖2. (1.16)

The Inverse Compositional AAM (AAM-IC) method proposed by Matthews and Baker [Matthews

and Baker, 2004] greatly improves the performances by switching the role of the template and

the input image which allows to precompute some of the parameters.

It has been observed that alignment performance of the AAM degrades quickly when they are

trained on a large data set and fit to images that were not seen during the AAM training [Gross

et al., 2005]. For a more complete overview of AAMs, we refer the interested reader to the very

complete technical report by Cootes and Taylor [Cootes and Taylor, 2004].

1.3.2 Constrained Local Model (CLM)

CLM has been proposed by Cristinacce and Cootes [Cristinacce and Cootes, 2006]. The main

difference with regards to AAM is the shape-free model of texture, which takes into account

small patches around landmarks instead of the whole region defined by the mean shape. The

template representation is thus not an holistic representation of the face anymore, but has a
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more local character.

Training The shape model is exactly the same as for AAMs. The collection of annotated

landmarks s = (x1, y1, x2, y2, ..., xL , yL)T of one image is treated as one observation from the

random process defined by the shape model described in equation (1.6). This shape model is

learned by performing PCA on the aligned training examples, in the same way as for AAMs.

Unlike AAMs, the appearance of the local region around each landmark is modeled inde-

pendently. These local patch experts are learned such that, when cross-correlated with an

image region containing the corresponding facial landmark, they yield a strong response at

the landmark location and weak responses everywhere else. This can be done either genera-

tively [Cristinacce and Cootes, 2006] or discriminatively, by learning a classifier or a regressor

[Cristinacce and Cootes, 2007].

Fitting CLM fitting, from a high level point of view, is defined as the search for the shape

model parameters which jointly minimize the misalignment error over all landmarks, given by

local patch experts, while regularized by the shape model as described in equation (1.17).

J (α) =
n∑

i=1
Di (xi , I )+R(α), (1.17)

where Di , the data term, is the misalignment error of landmark i and R is the regularization

term, penalizing complex deformation of the shape.

The main challenges in optimizing efficiently equation (1.17) come from the data term Di ,

which can have many local minima, as well as from potential outlying detections. A number

of different strategies have been proposed to handle these challenges and optimize equation

(1.17) efficiently.

If the location of the maximum in each response map μ = (μ1, ...,μn)T can be determined,

the data term becomes simply the distance between each landmark and the location of the

maximum in the corresponding response map and the shape is regularized with the norm of

the shape coefficients vector in order to avoid outliers, as shown in equation (1.18).

J (α) =
n∑

i=1
wi‖xi −μi‖2 +‖α‖2, (1.18)

where the weights wi show the confidence over the location of the maximum in the ith response

map.

For more details and for a review of different optimization strategies, we refer the reader to

[Saragih et al., 2011].
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1.3.3 Regression-based face alignment

Regression-based methods for face alignment were introduced relatively recently. One of the

most influential early regression-based face alignment method is the Explicit Shape Regression

by Cao et al. [Cao et al., 2012].Unlike AAM-based methods and CLM-based methods, in which

a parametric shape model was trained, regression-based methods do not use any shape model.

Instead, the locations of landmarks are inferred by directly learning a vectorial regression

function from the image. The regressor is trained to minimize the alignment error over training

data in a holistic manner in two respects. First, all facial landmarks are regressed jointly and

second, the image features for each facial landmark are not necessarily computed from the

local neighborhood around these landmarks. Moreover, boosted regression is often used

in order to gradually converge towards the shape. The first regressors handle large shape

variations but do not fit accurately and the last ones handle only small shape variations but

provide higher accuracy. Thus, each regressor refines the localization of the landmarks by

producing a vectorial update Δs, which is added to the current landmark locations estimate.

The high level idea of cascaded regression-based methods is summarized in algorithm 1.

Algorithm 1 Cascaded shape regression

Require: Image I , initial shape s0

Ensure: Estimated shape sT

1: for t = 1 to T do
2: φt =Φt (I , st−1) � Compute shape-indexed features
3: Δs = Rt (φt ) � Apply regressor
4: st = st−1 +Δs � Update shape
5: end for

The key differences between particular regression-based approaches are the type of features

and the regressor. The type of features that are used as input to the regression and the regressor

are interdependent.

In this chapter, we will introduce two recent regression-based facial landmarks localization

methods: the supervised descent method (SDM) [Xiong and De la Torre, 2013] and the local

binary features (LBF) method [Ren et al., 2014]. We use our own implementation of the SDM

in both parts of this thesis, with some additional improvements over the original method, as

described in [Qu et al., 2015]. Specifically, these improvements are a more robust regression,

through the use of iteratively reweighted least squares (IRLS), RootSIFT features, and a coarse-

to-fine fitting strategy and in-plane pose normalization during shape update. We also use our

own implementation of the LBF, following the original paper [Ren et al., 2014].

Supervised descent method (SDM)

In order to minimize nonlinear least squares functions, Xiong and De la Torre introduce a

supervised descent method (SDM) [Xiong and De la Torre, 2013] and show how it achieves

state-of-the-art performances on facial landmarks localization.
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Training The problem of localizing L facial landmarks s = (x1, y1, ..., xL , yL)T in an image

I ∈Rm×1, can be posed as

f (s0 +Δs) = ‖Φ(I , s0 +Δs)−φ∗‖2
2, (1.19)

where Φ is a feature extraction function and φ∗ =Φ(I , s∗) represents the features extracted

from the locations of the manually labeled landmarks s∗. Note that Φ depends both on the

image I and the facial landmark locations s. Such features are referred to as shape-indexed

features. The goal of the SDM is to learn descent directions that produce a serie of updates

Δst+1 = st +Δst , starting from s0 and converging to s∗, in the training data.

Specifically, if we assume that Φ is twice differentiable, we can apply a second order Taylor

expansion to equation (1.19) as shown in (1.20).

f (s0 +Δs) ≈ f (s0)+ J f (s0)T Δs + 1

2
ΔsT H(s0)Δs, (1.20)

where J f (s0) and H(s0) are the Jacobian and the Hessian of f evaluated at s0. In the following,

we will omit s0 to improve the readability. To find the optimal update Δs, equation (1.20) can

be differentiated with respect to Δs and set to zero as shown in equation (1.21). The condition

that Φ be differentiable is necessary for the derivation but will be dropped.

∂ f (s0 +Δs)

∂Δs
= J f +HΔs = 0 (1.21)

⇐⇒ Δs = −H−1 J f =−2H−1 J T
h (φ0 −φ∗),

where the chain rule was used to show that J f = 2J T
h (φ0 −φ∗), where φ0 =Φ(I , s0). The first

update can thus be seen as a projection of Δφ0 =φ0 −φ∗ onto the row vectors of matrix R0 =
−2H−1 J T

h . R0 is a descent direction and produces an update starting from s0 and converging

to the annotations s∗ in the training data.

The computation of this descent direction is impractical as it requires Φ to be two times

differentiable or to compute expensive numerical approximations for the Jacobian and the

Hessian. Moreover, the optimal update is given as a function of the annotations φ∗, which

are only known at training time, but not during fitting. In order to be able to use the descent

direction during fitting, equation (1.21) is rewritten as a generic linear combination of the

feature vector φ0 and a bias term b0 as described in equation (1.22).

Δs = R0φ0 +b0. (1.22)

Both R0 and b0 are learned during training.

Given a set of training images {I i } and corresponding landmark locations ground truth {si∗},

R0 and b0 are learned by minimizing a linear least squares problem, which can be solved

in closed form. For each image, the expected loss between the predicted and the optimal
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landmark displacement is minimized under different initializations si
0.

arg min
R0,b0

∑
I i

∑
s i

0

‖R0φ
i
0 +b0 −Δsi

∗‖2. (1.23)

The choice of the feature extractor Φ is completely free. The operator does not need to be

differentiable and can be non-linear. In the original formulation of the SDM, the features

are scale-invariant feature transform (SIFT) features [Lowe, 2004] and Qu et al. propose a

comprehensive comparison of features to use in the SDM [Qu et al., 2015]. They also propose

to solve the linear least squares problem with a regularization term and to use Iteratively

Reweighted Least Squares [Green, 1984] in order to be less sensitive to noisy data samples.

Fitting As it is unlikely that the SDM can converge in a single iteration, unless f is a quadratic

function, the algorithm generates a sequence of updates, as described in algorithm 1. For

each iteration, the fitting is extremely simple. It is a linear regression from the feature vector,

computed at the landmark previous locations st−1, to an update Δst , which is added to the

current landmark locations estimate, as described in equation (1.24).

st = st−1 +Rt−1φt−1 +bt−1, (1.24)

where φt−1 =Φ(I , st−1) is the feature vector extracted at previous landmark locations.

It can be seen from equation (1.24) that the limiting factor, in terms of speed, is the compu-

tation of the features. The alignment itself is limited to a matrix multiplication. With that

respect, simpler features, which are faster to compute, have the potential to speed up the

fitting of regression-based methods. This is a key point of the next method presented, the LBF.

Local Binary Features (LBF)

Ren et al. propose to use a local approach, as opposed to the SDM holistic approach, based

on local binary features [Ren et al., 2014] [Ren et al., 2016]. Their claim is that computing the

features locally helps to reduce the size of the feature pool and avoid two issues caused by a

large feature pool: the training costs to learn the most discriminative feature combination are

too high and, more importantly, many features are noisy and hinder the learning process.

Moreover, the SDM’s hand-crafted SIFT features are replaced by a set of local binary features,

which are learned from training data. Learning the features from data is interesting in general,

as it learns task-specific features. Once they have been learned, these are extremely fast to

compute, as they are based on pixel differences. The authors report localization rates above

3000 fps, at fitting time, for the Multi-PIE 68 landmarks shown in figure 1.5.
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1.3. Facial landmark localization

Figure 1.11 – Local binary features (a) Local feature mapping functions Φl
t encode the local

region around each landmark into a binary feature vector; all local binary feature vectors are
concatenated to form high-dimensional binary features. (b) Random forest are used as local
mapping functions. This figure is inspired from Figure 2 in [Ren et al., 2014].

Training Both the linear regression matrix Rt and the feature mapping function Φ(I , s) are

learned in two consecutive steps.

First, Φt is decomposed into a set of per-landmark independent local feature mapping func-

tions {Φ1
t , ...,ΦL

t }. Each one is learned by independently regressing the ith landmark in the

corresponding local region. All local features are concatenated into Φt . Then, Rt is learned by

linear regression, similarly to the SDM. This two-stage process is repeated stage-by-stage in a

cascaded fashion.

Each local feature mapping function is learned using a standard regression forest [Breiman,

2001], whose target is the ground truth shape increment, Δs∗, as shown in equation (1.25).

The features used as split nodes in the trees are pixel-difference features, similarly to [Cao et al.,

2012]. For each split node, 500 randomly sampled features are tested and the one producing

maximum variance reduction is selected. After training, the leaves of the trees store 2D offset

vectors that are the average of all the training samples in each leaf. The random forest thus

effectively performs feature selection on the multitude of local pixel-differences.

min
w l

t ,Φl
t

∑
i=1

‖πl ◦Δsi
∗ −w l

tΦ
l
t (I i , si

t−1)‖2
2, (1.25)

where i iterates over the training samples, operator πl extracts (Δxl∗,Δyl∗) from the vector Δsi∗,

thus making πl ◦Δsi∗ the ground truth 2D-offset of the l th landmarks, in i th training image. If

D is the total number of leaves in the forest, wl
t is a 2-by-D matrix, which columns store the

2D offset vector of each leaf and Φl
t is a D-dimensional binary vector containing ones if the

test sample reaches the corresponding leaf node and zeros otherwise. Each Φl
t is thus a sparse
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binary vector with as many non-zero elements as there are trees in the forest. These are the

local binary features and are illustrated in figure 1.11.

Learning each local random forest results in both Φl
t , the feature vector, and wl

t , the local

regression. These are discarded and instead, all local feature vectors are concatenated into Φt ,

as shown in figure 1.11. A global linear regression Rt is then learned by minimizing equation

(1.26).

min
Rt

N∑
i=1

‖Δsi
∗ −RtΦt (I i , si

t−1)‖2
2. (1.26)

Fitting Similarly to the SDM, the algorithm generates a sequence of updates, as described in

algorithm 1. At each iteration, a linear regression is performed from the binary feature vector

computed at the landmarks’ previous locations st−1 to an update Δst which is added to the

current landmarks’ locations estimate.

With respect to the SDM, the LBF method is much faster, as we will show in the benchmark in

section 1.4. This is mainly due to the fact that the features are faster to compute.

1.4 Benchmark

In this section, the landmarks localization methods introduced in section 1.3 are benchmarked

in terms of speed and accuracy. As part of this thesis, a C++ library for facial landmark

localization and derived applications, lts5-face, was developed. The SDM and LBF have been

implemented in that library, whereas the AAM3 and CLM 4 are largely based on publicly

available C++ implementations. The benchmarking framework was also implemented in the

C++ library and takes advantage of the availability of the custom implementations or wrappers

for each method, in order to compare them in a consistent way, in particular with respect to

the timing of the different steps. In this benchmark, we use the Viola-Jones face detector to

detect faces in the training and testing images. Images in which the face is not detected are

discarded from the database. On the two databases used in this benchmark, the Viola-Jones

face detector detects 99.8% and 97.3%, respectively.

In the next subsections, we first describe the datasets that we used in order to train and test

each face model in subsection 1.4.1. Then, we present the benchmark’s results and shortly

discuss them in subsection 1.4.2.

3Active Appearance Models C++ Library, available at https://github.com/greatyao/aamlibrary
4CLM implementation available at https://github.com/takiyu/CLM
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(a) Session 1 (b) Session 2 (c) Session 3 (d) Session 4

Figure 1.12 – Examples of frontal face images from XM2VTS database of subject 001 across
four recording sessions.

1.4.1 Datasets

In the past two decades, a certain number of databases of face images and ground-truth

landmarks annotations have been proposed and used by the research community to compare

facial landmark localization methods. If the images themselves are easy to acquire and

massively available on the internet, for example on social networks, the same does not apply

to landmarks annotations. Obtaining these still requires a lot of manual work. Moreover, these

annotations result from a subjective process and can vary between different annotators. It is

thus often a good practice to collect annotations from different annotators and fuse them in a

way that privileges a consensus between them.

An important characteristic of a database is whether it has been captured in controlled con-

ditions or in uncontrolled conditions, i.e. in-the-wild. Databases captured in controlled

conditions exhibit well defined variations in term of illumination, occlusions, head pose and

facial expressions. They are usually less challenging for facial landmark localization methods

as they exhibit altogether less variation than in-the-wild databases. Conversely, in-the-wild

databases aim at providing benchmark conditions closer to real-world scenarios, without any

control on illumination, occlusions, head pose and facial expressions. Their images are often

collected from publicly available sources on the internet.

In this benchmark, we present results on one database captured in controlled conditions, the

XM2VTS database [Messer et al., 1999], and one in-the-wild database, 300 Faces in-the-Wild

Challenge (300-W) [Sagonas et al., 2013b, Sagonas et al., 2015]. For both of them, annotations

are provided by [Sagonas et al., 2013a] and follow the Multi-PIE markup illustrated in figure

1.5.

The XM2VTS database [Messer et al., 1999] contains 2360 frontal images of 295 different

subjects. The subjects were recorded in front of a blue background and were illuminated

from both left and right sides with diffusion gel sheets to keep this illumination as uniform

as possible. For each subject, eight shots were recorded during four distinct sessions over a

period of four months. Figure 1.12 shows one shot of each session for subject 001, as examples.

The database was split arbitrarily into a training set and a testing set. The training set contains

1184 images of the first 148 subjects and the testing set 1176 images of the last 147 subjects.
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(a) LFPW (b) Helen (c) AFW (d) IBUG

Figure 1.13 – Examples of face images from 300-W database taken from each pre-existing
databases and IBUG.

Note that all images of any given subject are either in the training set or in the testing set

and no subject appears both in the training and the testing set. The Viola-Jones face detector

correctly detects 99,8% of the testing set images, that is 1174 images out of 1176. The two

images in which no face is detected are removed from the testing set. In both cases, the face is

not detected due to an extreme pose, the head being tilted down, with the lower part of the

face being out of the image.

The 300 Faces in-the-Wild Challenge (300-W) [Sagonas et al., 2013b, Sagonas et al., 2015]

database5 was introduced for the first Automatic Facial Landmark Detection in-the-Wild

Challenge held in conjunction with the International Conference on Computer Vision 2013. It

is composed of face images from several pre-existing databases: Label Face Parts in the Wild

(LFPW) [Belhumeur et al., 2011], containing 811 training and 224 test face images downloaded

from the web on sites such as google.com, flickr.com and yahoo.com, Helen [Le et al., 2012],

containing 2000 training and 330 test face images downloaded from flickr.com and Annotated

Faces in the Wild (AFW) [Zhu and Ramanan, 2012], containing 337 face images downloaded

from flickr.com. In addition, it contains 135 face images from a new IBUG database. We

used the training sets of LFPW and Helen, as well as the complete IBUG and AFW database,

as training set and the testing sets of LFPW and Helen as testing set. Thus, we use in total

3283 training images and 524 testing images. The Viola-Jones face detector correctly detects

97.3% of the faces in the testing set, that is 539 out of 554 images. The face detector fails to

detect more faces, due to the unconstrained nature of the database: more images present large

head-pose, bad illumination, or partial occlusion. The images in which no face is detected are

removed from the testing set.
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Figure 1.14 – Average face alignment time and its standard deviation for AAM, CLM, LBF, and
SDM methods.

1.4.2 Results

We first compare each methods in terms of average alignment time. Given a face region from

the face detector, we record the time it takes to perform facial landmark localization for each

test image of the XM2VTS database and report the average over the 1176 images of the testing

set. Note that the alignment time is independent of both the training and the testing set and

solely depends on the complexity of the method. Figure 1.14 presents the results for the four

methods benchmarked here: AAM, CLM, LBF and SDM.

The AAM uses the inverse compositional method and a four stages multi-resolution pyramid.

It is the slowest method with the face alignment taking 48.4ms in average. This is due to the

need to perform a warp of the input image at each step. The CLM is around 7 times faster,

with the alignment taking 7.3ms in average, but the comparison is not completely fair as it

is the only method that does not build a pyramid. Regression methods are also much faster

than the AAM, with the SDM being approximately 3 times faster with the alignment taking

16.9ms in average. It uses a 4 stages pyramid. The LBF used in this benchmark is trained with

a 5 stages pyramid, 5 trees per landmarks, or 340 trees in total, and a maximum depth of 5 for

each tree. The LBF benefits from very simple features, which are thus fast to compute, and is

approximately 10 times faster than the SDM with the alignment taking 1.8ms in average.

Then we compare the different methods in terms of accuracy. A common metric for compar-

5The 300-W database is available at https://ibug.doc.ic.ac.uk/resources/300-W/
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Table 1.1 – Results on the XM2VTS scenario

Method RMSE CED(0.05) CED(0.1) CED(0.2)
AAM 0.1240 0.0051 0.3134 0.9421
CLM 0.0864 0.1311 0.7521 0.9719
LBF 0.0452 0.7402 0.9642 0.9957
SDM 0.0375 0.8577 0.9931 0.9991

ing facial landmark localization methods is the root mean square error (RMSE) between the

ground truth and the computed facial landmarks over the complete set of facial landmarks,

normalized by the inter-ocular distance. This metric is referred to as the normalized RMSE

and the smaller its value, the better. The normalized RMSE is informative to compare the

overall performances of different methods on a given database, but it does not provide any

information about the distribution of the errors across the landmarks. Often, landmarks which

define external contours of the face, for example those along the chin, are less accurately local-

ized than landmarks within the face, such as those around the eyes or the mouth. Normalized

RMSE also does not provide information about the distribution of the errors across images.

Moreover, it is negatively influenced by even a small number of outliers.

In order to get a more detailed understanding of the distribution of the errors across images,

the cumulative error distribution (CED) is very often used. It represents the percentage of the

images in the database for which the error is smaller than a given value. We also report values

of the CED for different errors level: 0.05, 0.1, and 0.2. These values indicate the percentage

of the test images for which the normalized RMSE is smaller than 5%, 10%, and 20% of the

inter-ocular distance, respectively. In [Dantone et al., 2012] and [Burgos-Artizzu et al., 2013],

the authors consider that a normalized error higher than 0.1 is a failure. Even though that

threshold might be rather conservative, it gives an intuitive understanding of what can be

considered a good performance. These metrics are computed and compared across three

different test scenarios: the XM2VTS scenario, the 300-W scenario and the cross-databases

scenario.

XM2VTS results

In this scenario, each model is trained on XM2VTS training set and tested on XM2VTS testing

set. This corresponds to the less challenging scenario, as both the training and testing set

exhibit limited variation. Moreover, the training set is representative of the testing set, as both

are part of the same database.

Table 1.1 presents the RMSE, and the three values of the CED obtained on the XM2VTS

database and figure 1.15 presents the corresponding CED. A few examples of alignments from

the testing set of the XM2VTS database are shown in figure 1.16 for each of the methods.
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Figure 1.15 – Cumulative error distribution on the XM2VTS database.

Figure 1.16 – Examples of fits on the XM2VTS database with the AAM (first row), the CLM
(second row), the LBF (third row) and the SDM (last row). The annotations are in green ( ) and
the resulting facial landmarks are superimposed in red ( ). From left to right, simpler to more
challenging images. Every methods succeed on the left most image and fail on the right most
image.

35



Chapter 1. Overview and benchmarking of 2D facial image analysis methods

Table 1.2 – Results on the 300-W scenario

Method RMSE CED(0.05) CED(0.1) CED(0.2)
AAM 0.8571 0.0 0.0 0.0018
CLM 0.1667 0.0055 0.1892 0.7514
LBF 0.0838 0.1725 0.8071 0.9666
SDM 0.0756 0.2338 0.8757 0.9907
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Figure 1.17 – Cumulative error distribution on the 300-W database

Even on this database, captured in controlled conditions, the AAM results in an RMSE ap-

proximately three times higher than the SDM and LBF, the two regression-based methods. It

shows that the AAM’s performances on previously unseen subjects, even on mostly frontal

images, without facial expressions or occlusions, are limited. Only 31.34% of the testing set

has a normalized error lower than 0.1. On the other hand, regression-based methods perform

very well, 96.42% and 99.31% of the faces in the testing set are fitted with a normalized error

smaller than 0.1, using LBF and SDM, respectively. The RMSE of the LBF is only 0.77% above

the RMSE of the SDM. These two methods are thus very similar in terms of performances

while the LBF is approximately 10 times faster than the SDM. This represents a real advantage

in real-time tracking applications.

300-W results

In this second scenario, each model is trained on 300-W training set and tested on 300-W

testing set. As detailed in section 1.4.1, 300-W is an in-the-wild database and as such is much
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Figure 1.18 – Examples of fits on the 300-W database with the AAM (first row), the CLM (second
row), the LBF (third row) and the SDM (last row). The annotations are in green ( ) and the
resulting facial landmarks are superimposed in red ( ).

more challenging than XM2VTS.

Table 1.2 presents the RMSE, and the three values of the CED obtained on the 300-W database

and figure 1.17 presents the corresponding CED. A few examples of alignments from the

testing set of the 300-W database are shown in figure 1.18 for each of the methods.

On this challenging, in-the-wild database, the AAM performances are extremely bad, showing

the AAM’s incapacity to learn a proper representation of a face on a training set with as much

variation. The RMSE of the CLM has doubled with respect to the first scenario on the XM2VTS

database and only 18.92% of the faces in the testing set are fitted with a normalized error

smaller than 0.1. The two regression-based methods still perform well and the difference

between them remains close to 0.8%.

Cross-databases results

In the third scenario, each model trained on XM2VTS training set is tested on 300-W testing

set. This is the most challenging scenario. The training set exhibits limited variations in terms

of head pose, facial expressions, and illumination. The testing set, on the other hand, exhibits

large variations with respect to these factors.

Table 1.3 presents the RMSE, and the three values of the CED obtained on the 300-W database
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Table 1.3 – Results on the cross-database scenario

Method RMSE CED(0.05) CED(0.1) CED(0.2)
AAM 0.2126 0.0 0.0130 0.5306
CLM 0.1812 0.0 0.1336 0.6698
LBF 0.1653 0.0019 0.1837 0.7570
SDM 0.1162 0.0186 0.5492 0.9165
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Figure 1.19 – Cumulative error distribution on the cross-database scenario

and figure 1.19 presents the corresponding CED.

Except for the AAM, the performances decrease with respect to the second scenario, which is

using the same testing set but a different training set. In contrast to the 300-W scenario, the

AAM did learn a representation of the face from the more constrained training set of XM2VTS.

Figure 1.20 shows a comparison between alignments obtained on the testing set of the 300-W

database when training the model on the same database or on the more consistent training set

of the XM2VTS database. Nevertheless, all methods except the AAM suffer from the fact that

the training set is not representative of the testing set in terms of variation, since it is recorded

in constrained conditions.

1.5 Conclusion

In this chapter, we have described a typical facial image analysis pipeline and representative

methods used in the face acquisition step. A face detector first detects faces in the image and
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(a) (b) (c) (d)

Figure 1.20 – AAM improvement when trained on the XM2VTS training set. The annotations
are in green ( ) and the resulting facial landmarks are superimposed in red ( ). (a) and (c)
Results on an image from the 300-W testing set when trained on the 300-W training set. (b)
and (d) Results on an image from the 300-W testing set when trained on the more consistent
XM2VTS training set.

returns the corresponding bounding boxes. In section 1.2, we have described two standard

methods for face detection: the Viola-Jones face detector and Yang and Ramanan’s parts-

based detector. The Viola-Jones face detector, the first real-time face detector, is fast but its

performances are hindered by its holistic representation of the face. This makes it less suitable

to detect faces in a collection of images containing a lot of variation in terms of head pose,

facial expressions, or occlusions. Conversely, Yang and Ramanan’s local parts-based detector

overcomes the limitations of a holistic model but is also slower, thus not being adapted to

real-time performances.

From the bounding box of a face, a plethora of methods have been proposed to perform facial

landmark localization. In section 1.3, we have presented a categorization of these methods

into four categories and a timeline of their development, spanning more than 20 years. We

have also described four of these methods, from three different categories: the AAM, a simple

CLM, the SDM and the LBF.

Finally, in section 1.4 we have proposed a benchmark of these four methods on two different

publicly available databases, the XM2VTS database, recorded in controlled conditions, and the

300-W database, an in-the-wild database. In our benchmark, the SDM performs consistently

better than the other methods and requires around 17ms in average to localize landmarks

on a face. In terms of performance, the LBF is very close to the SDM on both databases and

presents the additional advantage of being almost 10 times faster, with only 1.8ms in average

per face. This makes it very suitable for real-time applications or applications on mobile

platforms.

In general, we have tried to give an overview of the core methods in facial image analysis. We

hope that this chapter can provide a smooth introduction to this field and help the newcomer

to understand its development and the remaining challenges.
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Part I2D facial image analysis for
automatic prediction of difficult

intubation
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Overview

In this first part, we focus on difficult intubation prediction, a medical diagnosis problem in

anesthesiology. In chapter 2, we first introduce the topic by reviewing some definitions and

existing methods of prediction of the difficult tracheal intubation and discuss their limitations.

This chapter aims at providing a basic understanding of the difficult tracheal intubation pre-

diction problem, from a medical point-of-view, to the reader without a medical background.

Chapter 3 presents a method to classify images of patients, with the mouth wide open and the

tongue protruding to its maximum, according to their modified Mallampati score, a simple

indicator of potential difficulty to intubate, described in chapter 2. This method is trained and

tested on 100 patients annotated by experienced anesthesiologists. We first extract appearance

based features, derived from the active appearance model (AAM) shape-free appearance

component, then perform feature selection with a linear support vector machine (SVM), and

finally classify each image into one of the four modified Mallampati score. Our system achieves

a high accuracy of 95% in a leave-one-subject-out cross validation scheme. Even though the

clinical value of the modified Mallampati score is criticized, when this test is used alone, it is

often used in most of the multifactorial tests. As such, the results obtained in this chapter can

be considered as encouraging preliminary results for integration of the modified Mallampati

classification into a more complete, fully automated method, which would consider other

factors as well.

In the final chapter of this initial part, chapter 4, we present a completely automatic method,

based on facial morphometry and extending our work on modified Mallampati, to predict a

patient’s difficulty of intubation with performance comparable to medical diagnosis-based

predictions by experienced anesthesiologists. We also give insights on the possible limitations

of the method and comment on the utility of a three dimensional (3D) face model and analysis

methods, as presented in part II.

The different contributions of this part have been published in [Cuendet et al., 2012] and [Cuen-

det et al., 2015]. A patent is also pending for the method described in chapter 4 [Schoettker

et al., 2014].
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2 Introduction to the prediction of diffi-
cult tracheal intubation

The priority of the anesthesiologist, after having induced general anesthesia is to ventilate

the patient and secure his airways. As the patient is under the influence of drugs, whose

main effects are the loss of consciousness, analgesia, and muscular paralysis, he is unable to

breath by himself and mechanical ventilation is mandatory. Despite all the advancements

in anesthesiology, difficult airway management still represents a major cause of anesthesia-

related injuries with potential life threatening complications [Peterson et al., 2005]. Recent

analysis of airway management related claims in the UK [Cook and Macdougall-Davis, 2012]

and in the USA [Metzner et al., 2011] show that respiratory events, most of them being difficult

intubation or inadequate ventilation, come first in the proportion of cases with poor clinical

outcomes, ranging from severe harm to brain damage or death. The worst case scenario in

airway management is the "Can’t intubate, can’t ventilate" situation, in which the patient

is impossible to be ventilated by face mask and intubated with an endotracheal tube. The

estimated incidence of such a situation is estimated between 0.01 and 3 in 10’000 cases [Heard

et al., 2009]. Nowadays, up to one third of all deaths attributed to anesthesia are consecutive

to the inability to either ventilate or intubate [Hove et al., 2007]. Numerous technical advances

have allowed facilitation of intubation by improving the view at laryngoscopy [Aziz et al.,

2011, Teoh et al., 2010, Serocki et al., 2010] or monitoring the placement of the endotracheal

tube [Juan et al., 2002, Räsänen et al., 2006]. Yet, difficult intubation still remains an area of

concern [Cook and Macdougall-Davis, 2012, Hung et al., 2016].

Detection and anticipation of difficult airway in the preoperative period is crucial for patients’

safety. In cases of suspected difficulty, specific equipment and personnel will be called upon

to increase safety and the chances of successful intubation. In daily practice, anesthesiologists

predict the difficulty of tracheal intubation with bedside tests, which correlate poorly with

the ground truth. Experienced anesthesiologists associate, in addition to the available bed-

side tests, a global clinical judgment, probably based on a larger number of morphological

parameters than those contained in the available bedside tests described in this chapter. Nev-

ertheless a high proportion of patients with a difficult airway remain undetected despite the

most careful preoperative airway evaluation. According to the Danish Anaesthesia Database
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(a) Grade 1 (b) Grade 2 (c) Grade 3 (d) Grade 4

Figure 2.1 – Four grades of the Cormack-Lehane classification of the laryngoscopic view.

[Nørskov et al., 2015], which included 188,064 patients, the diagnostic accuracy of the anesthe-

siologists’ predictions of difficult laryngoscopic intubation and difficult mask ventilation was

poor. Specifically, out of 3391 difficult intubations, 3154 (93%) were unanticipated and out of

857 cases of difficult mask ventilation, 808 (94%) were unanticipated.

In this chapter, we aim to provide the necessary background to the reader without a medical

training, in order to understand the difficult tracheal intubation prediction problem. We first

review the definitions of the difficult tracheal intubation in section 2.1. A major problem when

defining the difficulty of tracheal intubation is the inherent variability in which the difficulty is

evaluated: different conditions, at different moments, and with different anesthetists influence

the difficulty of tracheal intubation. In section 2.2, we then review existing methods and

bedside tests for the prediction of difficult tracheal intubation. We then summarize and

conclude this chapter in section 2.3.

2.1 Definitions of the difficult tracheal intubation

For the last 30 years, numerous definitions have been proposed and used by anesthesiologists,

but no unique definition of difficult intubation exists. The vast majority of endotracheal

intubations are performed using a laryngoscope which allows the visualization of the larynx

and the placing of the endotracheal tube between the vocal cords, into the trachea. Thus,

one of the first attempt to define difficult intubation objectively was by associating a difficult

intubation with a difficult laryngoscopy.

2.1.1 Cormack-Lehane classification of the laryngoscopic view

Cormack and Lehane proposed a classification of the laryngoscopic view using four grades

based on the visibility of laryngeal structures or glottic exposure [Cormack and Lehane, 1984].

Figure 2.1 illustrates the view of the different anatomical structures for each grade of the

Cormack-Lehane classification.

This classification was later modified by Yentis and Lee who proposed to divide the original

grade 2 into grade 2a and grade 2b [Yentis and Lee, 1998]. The later classification is used to
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define the difficult laryngoscopy as a view corresponding to grade 3 or grade 4. Nevertheless,

it has recently been pointed out by Krage et al. that the reproducibility of this classification is

limited [Krage et al., 2010]. Moreover, a poor view of the vocal cords can increase the difficulty

of the intubation but other factors, such as the position of the head of the patient or the

experience of the anesthesiologist also have influence on the success of the intubation.

Various national societies of anesthesiology have set their own definitions of difficult in-

tubation. In France, the Société Française d’Anesthésie et Réanimation (SFAR) qualifies an

intubation as difficult "When more than two laryngoscopies are performed and/or an alter-

native technique is used after head position optimization, with or without external laryngeal

manipulation" [Diemunsch et al., 2008]. In the USA, the American Society of Anesthetists (ASA)

says of an intubation that it is difficult " when tracheal intubation requires multiple attempts,

in the presence or absence of tracheal pathology" [Caplan et al., 2003, Apfelbaum et al., 2013].

Despite the need for a standard classification of the difficult intubation in the medical commu-

nity, no such uniform definition has been widely adopted. Thus, the incidence and the factors

associated with difficult intubation vary from one institution to another and are virtually

impossible to compare directly. The incidence of difficult laryngoscopy in the operating room

has been reported to range from 0.3% to 13% [Naguib et al., 1999].

2.1.2 Adnet’s Intubation Difficulty Scale

In an attempt to provide a definition of the difficult intubation, Adnet et al. proposed the

intubation difficulty scale (IDS) [Adnet et al., 1997], taking into account the number of attempts,

the number of operators directly attempting the intubation, the use of alternative devices or

techniques, the glottic exposure or the lifting force applied during laryngoscopy.

Their hypothesis is that what characterizes the difficulty of an intubation is how much it

deviates from an ideal intubation performed without effort, on the first attempt, with full

visualization of the laryngeal aperture and vocal cords abducted. Such an ideal intubation

would get a score of 0. The more the intubation deviates from that situation, the more the

score increases, as shown in table 2.1. Thus, the IDS is a quantitative measure of the difficulty

of a specific intubation act of a patient. Nevertheless, there are no guarantees that the same

patient would get the same IDS score when intubated by a different anesthetist in different

conditions. The difficulty of intubation associated with each IDS score is given in table 2.2.

2.2 Methods of prediction of the difficult tracheal intubation

Prediction of difficult endotracheal intubation has been largely explored in the past twenty-

five years by anesthesiologists. Several physical and morphological characteristics have been

identified as predictors of difficult laryngoscopy or difficult intubation. Those include: obesity,

poor mobility of the head and neck, poor mobility of the jaw, receding mandible, long upper
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Table 2.1 – Intubation Difficulty Scale [Adnet et al., 1997]

Parameter Rule
Number of attempts >1 Every additional attempt adds 1 pt N1

Number of operators >1 Every additional operator adds 1 pt N2

Number of alternative techniques Each alternative technique adds 1 pt N3

Cormack grade - 1 Apply Cormack grade for first oral attempt.
For successful blind intubation N4 = 0

N4

Lifting force required
Normal N5 = 0

Increased N5 = 1
Laryngeal pressure Sellick’s maneuver adds no points

Not applied N6 = 0
Applied N6 = 1

Vocal chords mobility
Abduction N7 = 0
Adduction N7 = 1

IDS
∑7

i=1 Ni

Table 2.2 – Degree of difficulty given the IDS score [Adnet et al., 1997]

Score Degree of difficulty
0 Easy intubation
0 < IDS ≤ 5 Slight difficulty
5 < IDS Moderate to Major difficulty
IDS =∞ Impossible intubation

incisors, decreased mouth opening, or small interincisor gap with the mouth fully open,

shortened thyromental distance (TMD), short neck and small neck circumference. Several

difficult intubation bedside screening tests exist.

2.2.1 Patil-Aldreti test, or thyromental distance

The thyromental distance (TMD), or Patil-Aldreti test, is the distance from the upper edge of

the thyroid cartilage to the chin, measured with the head fully extended. A short thyromental

distance equates to an anterior lying larynx that is at a more acute angle and also results in

less space for the tongue to be compressed by the laryngoscope blade. A thyromental distance

greater than 7 cm is usually associated with easy intubation whereas a thyromental distance

smaller than 6 cm may predict a difficult intubation.

However, with a sensitivity of 48% and a specificity of 79% in predicting difficult intubation

[Baker et al., 2009], this distance is not a good predictor by itself and is often used in combina-

tion with other predictors. The ratio of height to thyromental distance (RHTMD) improves the

accuracy of predicting difficult laryngoscopy compared to TMD alone with a sensitivity and

specificity of 77% and 54% respectively [Krobbuaban et al., 2005].
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I II III IV

Figure 2.2 – The four grades of the Mallampati score
(source: Wikimedia Commons, author: Jordi March i Nogué, CC-BY-SA 3.0)

2.2.2 Mallampati score

Originally described by Mallampati et al. [Mallampati et al., 1985] and modified by Samsoon

and Young [Samsoon and Young, 1987], the Mallampati score assesses the airway according to

the visibility of oropharyngeal structures observed on a sitting patient with the mouth wide

open and the tongue out. The hypothesis of the author is that the larger the base of the tongue,

the more it overshadows the larynx, resulting in a poor laryngoscopic view and a potentially

difficult laryngoscopy. The volume of the tongue is thus an important, yet difficult to assess,

parameter when assessing the difficulty of endotracheal intubation. Since it is not possible to

determine the volume of the tongue relative to the capacity of the oropharyngeal cavity, it is

logical to infer that the base of tongue is disproportionately large when it is able to mask the

visibility of the faucial pillars and uvula.

The score ranges from class 1 to class 4. Class 1 indicates full visibility of the oropharyngeal

structure: the soft palate, fauces, uvula, and pillars are visible. Class 2 indicates a reduced

visibility: only soft palate, fauces, and uvula are visible. Class 3 indicates a limited visibility:

the soft palate and only the base of the uvula are visible. Class 4 indicates no visibility: the soft

palate is not visible at all. Figure 2.2 illustrates the four grades of the Mallampati score.

Various meta-analysis reported different sensitivity and specificity for the Mallampati and

modified Mallampati tests. In [Cattano et al., 2004], the authors reported a sensitivity and a

specificity of 35% and 91% respectively. In [Lundstrøm et al., 2011], the authors included 55

studies and 177088 patients and reported a sensitivity of 0% to 100% and a specificity of 44%

to 100%. They computed a receiver operating characteristic (ROC) curve and the area under

the curve (AUC) was 0.753 which categorize the diagnostic test as good. In [Lee et al., 2006],

the reported AUC for the Mallampati and modified Mallampati tests are respectively 0.58 and

0.83. In those studies, the authors agree that the clinical value of the Mallampati test is limited

as it has poor to moderate discriminative power when used alone.
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Table 2.3 – Wilson Risk Sum Score [Wilson et al., 1988]. IG = interincisor gap; SLux = subluxation
(maximal forward protrusion of the lower incisors beyond the upper incisors)

Risk factor Level Variable
Weight 0 < 90kg

1 90−110kg
2 > 110kg

Head and neck movements 0 > 90◦

1 About 90◦ (i.e., ±10◦)
2 > 90◦

Jaw movement 0 IG ≥ 5cm or SLux > 0
1 IG < 5cm and SLux = 0
2 IG < 5cm and SLux < 0

Receding mandible 0 Normal
1 Moderate
2 Severe

Buck teeth 0 Normal
1 Moderate
2 Severe

2.2.3 Upper lip bite test

The upper lip bite test, proposed by Khan et al. [Khan et al., 2003] evaluates the ability of

the patient to cover his upper lip with the lower incisors by moving forward the lower jaw in

a movement of prognathism. The results range from grade I to grade III where grade I and

II predicts easy laryngoscopy whereas grade III predicts difficult laryngoscopy. The authors

initially observed a sensitivity of 76.5% and a specificity of 88.7%. Those results were confirmed

in a recent study in which the authors obtained 78.95% and 91.96% respectively [Khan et al.,

2009].

Eberhart et al. conducted a comparison between Mallampati score and upper lip bite test

on 1107 patients [Eberhart et al., 2005] and concluded that both tests are poor predictors for

difficult laryngoscopy when used as single preoperative bedside screening tests.

None of those simple tests have been shown to be accurate in predicting airway management

problems. Their sensitivity and predictive positive values are generally low, precluding an

accurate prediction of difficult endotracheal intubation. Thus, several studies have been

proposed to derive a score from multivariate analysis. The three most common multivariate

bedside screening tests are the Wilson risk sum score, the Arné model and the Naguib model

and are detailed here after.

2.2.4 Wilson risk sum score

The Wilson risk sum score [Wilson et al., 1988] scores five of the aforementioned factors from 0

to 2: the weight, the vertical head and neck movement, the jaw movement, or prognathism, the
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Table 2.4 – Arné simplified score model [Arné et al., 1998]

Risk factor Score
Previous knowledge of difficult intubation

No 0
Yes 10

Diseases associated with difficult intubation
No 0
Yes 5

Clinical symptoms of airway pathology
No 0
Yes 3

IG and mandible subluxation
IG ≥ 5cm or SLux > 0 0

3.5cm < IG < 5cm and SLux = 0 3
IG < 3.5cm and SLux < 0 13

Thyromental distance
≥ 6.5cm 0
< 6.5cm 4

Maximum range of head and neck movement
more than 100◦ 0

About 90◦ (±10◦) 2
less than 80◦ 5

Mallampati score
class 1 0
class 2 2
class 3 6
class 4 8

Total possible 48

receding mandible and buck teeth as detailed in table 2.3. By varying the threshold values on

the sum of those scores, the true positive rate and false positive rate of difficult laryngoscopy

assessment are varied. The authors initially proposed a threshold value of 4, i.e. a score greater

or equal to 4 predicts a difficult endotracheal intubation. In [Shiga et al., 2005] the authors

compiled a meta-analysis of 5 studies including 6076 patients with a threshold value of 2 and

reported a pooled sensitivity of 46% (95% CI, 36–56) and a pooled specificity of 89% (95% CI,

85–92). In [Naguib et al., 2006], with a thresold value of 4, the authors reported a sensitivity of

40.2% (95% CI, 30.0–50.0) and a specificity of 92.8% (95% CI, 88.0–98.0).

2.2.5 Arné model

Arné et al. proposed a simplified score model [Arné et al., 1998]. In addition to the mor-

phological criteria such as interincisor gap, ability to prognate, thyromental distance and

range of head and neck movement, it also considers the medical history of the patient and
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the Mallampati score, as detailed in table 2.4. In [Arné et al., 1998] the authors computed the

optimal threshold using a ROC curve. They reported an AUC of 95.6% and a sensitivity of 93%

(95% CI, 80.1-98.5) and specificity of 93% (95% CI, 91.4-94.5).

2.2.6 Naguib models

Naguib et al. performed a clinical, radiologic and 3D computer imaging study [Naguib et al.,

1999] on 57 patients among which 25 had an unanticipated difficult intubation. A multivariate

discriminant analysis was performed on the clinical measurements and identified four risk

factors that correlated with the difficult laryngoscopy and intubation: thyrosternal distance

(TSD), thyromental distance (TMD), neck circumference (NC) and Mallampati classification.

They proposed the following discriminant function based on these clinical criteria only:

l = 4.9504+1.1003·TSD−2.6076·Mallampati+0.9684·TMD−0.3966·NC.

In [Naguib et al., 2006] Naguib et al. introduced a new logistic regression analysis and iden-

tified four risk factors correlated with difficult laryngoscopy and intubation: the TMD, the

interincisor gap (IG), the height and the Mallampati score. They proposed the following

discriminant function:

l = 0.2262−0.4621·TMD+2.5516·Mallampati−1.1461·IG+0.0433·height.

The authors reported an AUC of 90% when tested on 194 patients. In [Langeron et al., 2012]

the authors report an AUC of 66% for the same test conducted on 1655 patients among which

101 (6.10%) were difficult to intubate.

2.2.7 Comparison of multivariate models and other tests

Table 2.5 shows the predictive performance of those four multivariate models, as reported in

[Naguib et al., 2006]. Figure 2.3 shows the corresponding ROC curves. The authors recruited

194 patients (97 with a difficult airway and 97 controls) over a period of 5 years. For the

purpose of their study, unanticipated difficult intubation was defined as difficult laryngoscopy,

corresponding to a grade 3 or 4 Cormack and Lehane laryngoscopic view, and difficult tracheal

intubation, with 2 or more attempts at placing the endotracheal tube, or the use of an alter-

native device, such as laryngeal mask airway or bougie, when using optimal head and neck

positioning (the sniffing position). Positive predictive value (PPV) and negative predictive

value (NPV) were calculated based on a prevalence of difficult intubation of 5.8%, as reported

in a recent meta-analysis [Shiga et al., 2005]. Note that the sensitivity, specificity and AUC are

the most appropriate measures to compare performance between datasets, mainly due to the

class imbalance problem.
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2.2. Methods of prediction of the difficult tracheal intubation

Table 2.5 – Comparison of four multivariate tests [Naguib et al., 2006]

Model Sens. Spec. PPV NPV AUC Acc.
Wilson model[Wilson et al., 1988] 40.2 92.8 25.6 96.2 79.0 66.5
Arné model [Arné et al., 1998] 54.6 94.9 39.7 97.1 87.0 74.7
Naguib model I [Naguib et al., 1999] 81.4 72.2 15.3 98.4 82.0 76.8
Naguib model II[Naguib et al., 2006] 82.5 85.6 26.1 98.8 90.0 84.0
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Figure 2.3 – Comparison of the ROC curves of four multivariate tests [Naguib et al., 2006]

Recently, Fritscherova et al. [Fritscherova et al., 2011] conducted a case-control study on 148

patients and concluded that the three statistically higher predictors were the interincisors

distance, the TMD and a decreased temporomandibular joint movement.

As none of those tests fulfill the high sensitivity and high positive predictive value criteria,

anesthesiologists themselves do not agree on the usefulness of such a prediction [Yentis,

2002, Orozco-Díaz et al., 2010].

New technological approaches aimed at craniofacial phenotyping, using still photographs,

x-ray technologies or laser scanning with an automated three-dimensional rendering, have

been recently applied to the detection of difficult airways.

Suzuki et al. calculated five ratios and angles from measurements derived from placement

of anatomic markers on patients’ photographs [Suzuki et al., 2007] demonstrating that the

submandibular angle seemed to be associated with difficult tracheal intubation. They also

used morphing software to construct “average” easy and difficult to intubate faces.
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Chapter 2. Introduction to the prediction of difficult tracheal intubation

The improved availability of cone-beam computed tomography, 3D imaging and computer

simulation has been used by Schendel and Hatcher for evaluation of the airway [Schendel

and Hatcher, 2010]. In the recent years, some studies took advantage of machine learning

[Langeron et al., 2012] or statistical face models [Connor and Segal, 2011] in order to provide

better prediction and defend the usefulness of preoperative difficult tracheal intubation

prediction. However, these newer methods require either x-ray or computed tomographic

imaging methods with issues such as availability, cost and radiation dose to the patient. More

recently, Cattano et al. proposed a new assessment form on airway prediction but showed

that it did not improve resident ability to predict a difficult airway [Cattano et al., 2013].

Finally, the number of patients considered to validate those newer approaches is often low. For

instance, in [Connor and Segal, 2011] the authors reported results on a validation set of only

20 difficult and 20 easy patients thus not demonstrating the generalizability of the proposed

method. In comparison, our proposed method, described in chapter 4 has been developed

and validated using more than nine hundred patients.

2.3 Conclusion

In this chapter, we first emphasized the importance of the detection and anticipation of

difficult airway for patients’ safety. Despite numerous technical advances, difficult intubation

still remains an area of concern, according to recent studies.

Different definitions of difficult tracheal intubation are also introduced in this chapter. The

diversity in these definitions and lack of reproducibility, due to the influence of the conditions

and personnel, make it difficult to compare the incidence and the factors associated with

difficult tracheal intubation between institutions. Nevertheless, Adnet’s intubation difficulty

scale (IDS) takes into account several important indicators, showing a deviation from an ideal

intubation, and can be considered as a standard for quantifying the difficulty of a tracheal

intubation.

We also reviewed some of the most common bedside tests and showed that, as none of those

tests fulfill the high sensitivity and high positive predictive value criteria, anesthesiologists

themselves do not agree on their usefulness. Moreover, most of these bedside tests are based on

morphological characteristics, which are difficult to extract in an objective, reproducible way,

even by trained anesthesiologists. Based on that assessment, we hypothesize that an automatic

method, based on facial morphometry, could fill the gap by extracting morphological features

in an objective way and learning which features are the most discriminative, in terms of

difficult tracheal intubation prediction.

54



3 Automatic Mallampati classification

3.1 Introduction

Assessment of difficult tracheal intubation prior to anesthesia induction is an important

research topic in anesthesia and several screening tests have been proposed, detailed in

section 2.2. Among them, the modified Mallampati score [Samsoon and Young, 1987] is

commonly used by anesthesiologists to predict the difficulty of intubation. This score classifies

the airway into 4 classes according to the visibility of the oro-pharyngeal structures observed

on a patient opening the mouth and sticking his tongue out. Figure 3.1 shows one real example

of each class and can be compared with the schematic representation of figure 2.2.

Although it has been shown to have little discriminative power in predicting tracheal intuba-

tion difficulty when used alone, the modified Mallampati test is still an important source of

information when used in combination with other measures [Lundstrøm et al., 2011]. Among

the various commonly used predictive models of difficult intubation, which use the modified

Mallampati test, lies the Arné model where a simplified score is computed depending on

certain physiological factors and the medical history of the patient [Arné et al., 1998]. Another

similar scoring was put forward by Naguib et al. who performed a clinical study [Naguib et al.,

1999] to identify four risk factors that correlated with the difficult intubation, among which

is the modified Mallampati score. As these and many other studies show, the Mallampati

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

Figure 3.1 – Modified Mallampati classification and AAM mask
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classification is an essential factor in the difficult intubation prediction, Mallampati score 1

and score 4 showing especially strong correlation with easy and difficult intubation respec-

tively. Therefore, an automatic and objective classification of the modified Mallampati score

is an important step in the process of developing an automatic difficult intubation assessment

system. This will allow us to eliminate inaccurate classifications or inter-physician variations

which are generally due to incorrect points of view.

In this chapter, we propose an effective method to assess the modified Mallampati score

of patients from a frontal image of the head of the patient, with the mouth open and the

tongue protruding to its maximum. For that purpose, we use active appearance model (AAM)

to describe the shape of the opening and the texture of the back of the throat. The most

important coefficients of the projection of a new image on the AAM principal components are

then used to perform classification using support vector machine (SVM).

The rest of the chapter is organized as follows: section 3.2 describes the proposed methodology,

section 3.3 contains information about the dataset and the data collection, section 3.4 details

the results we obtain with the proposed algorithm and finally section 3.5 concludes this

chapter.

3.2 Methodology

The method proposed in this chapter is based on two main components: we use AAMs to

extract features, based on shape and appearance of the buccal cavity, and different SVMs to

perform feature selection and classification.

3.2.1 Active appearance models

Active appearance models [Cootes et al., 2001] are statistical models of deformable objects

which contain both the shape and texture variation among a set of training images of the

object. The training process of AAMs consists first of obtaining statistical shape and texture

models separately by applying a principal component analysis (PCA):

s(α) = s0 +Psα and A(β) = A0 +Paβ, (3.1)

where s0 and Ps represent the mean shape and the eigenvectors of the covariance matrix of

the shape, and A0 and Pa represent those of the texture. In order to obtain a combined model

of appearance, the model parameter vectors α and β are concatenated and a third PCA is

applied to this concatenated vector, as described in equation (3.2).

s = s0 +Qs c and A = A0 +Qac , (3.2)

where c is the complete appearance model parameters vector, and Qs and Qa are the principal

modes of the combined variation, retaining a certain amount of the total variance.
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Using this model a new instance of the object can be generated by altering the model param-

eters c . The idea of the AAM search algorithm is then to synthesize a new example by the

adjustment of model parameters, and it is generally treated as a minimization problem of the

difference between the synthesized image and the original unseen image. We refer the reader

to chapter 1, and more specifically to subsection 1.3.1, for a more detailed description of AAM.

In this work, we define an AAM consisting of 12 points located on the lower edge of the upper

lip, or the upper incisors, depending on their visibility, and on the line on the back of the

tongue, such that the parts defining the modified Mallampati score are included in the object.

The region modeled by this AAM is shown by the yellow contour in figure 3.1. The AAM

fits perfectly to the Mallampati classification case, not only because it efficiently segments

the object and models the shape and texture variations among different subjects, but it also

includes certain preprocessing steps such as shape alignment and texture warping which

make us invariant to factors like translation, in-plane rotation and scaling.

We have manually annotated 100 images of different subjects and trained an AAM using these

manual annotations. Then, we project these manually annotated points and the texture

contained inside their convex hull onto the three different eigenspaces defined by the AAM

model. We thus obtain for each subject the model parameter vectors α, β, c , which constitute

our complete set of features.

At this stage, we use the manual annotations of the mouth to calculate the model parameters

to exclude the effect of model fitting accuracy in the classification process. We thus only use

the representation part of the algorithm, and not the search part. In the next chapter of this

thesis, using a state-of-the-art landmark detector, i.e. not necessary an AAM, will allow us to

automatically segment the contour of the mouth. This will provide full automatization of the

system, while keeping the representation used here.

3.2.2 Feature selection and classification

Once we obtain the full set of features (the three different model parameter vectors), we

perform a selection of features on these three sets separately. By discarding irrelevant and

redundant features, feature selection provides performance improvement in classification.

This is due to the fact that the AAM parameters are ordered depending on the ratio of the total

variation they explain and since this variation is not necessarily caused by the different Mal-

lampati classes, certain coefficients introduce noise, if taken into account. Feature selection is

thus a crucial step in the classification process.

In order to select the most relevant subset of features, we train linear SVMs in a recursive

manner, removing one feature at each iteration, in a backward feature elimination manner,

similarly to what is done in [Guyon et al., 2002]. Linear SVM is a supervised learning method

used for binary classification. The model resulting from a linear SVM is a hyperplane of the
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form:

w · x −a = 0, (3.3)

which maximizes its distance to the nearest training data point of both classes. The normal

vector to the hyperplane, w , can be seen as feature weights where the highest weight indicates

the feature that contributes the most to separating the two classes. At each iteration ordering

the features in decreasing order of weight wi and eliminating the feature with the lowest

weight allows obtaining a ranking of the features. Feature selection is then performed by

selecting the N first features, as a subset, where N < p, the total number of features. As linear

SVM is a binary classifier, six different classifiers are trained, in a 1-against-1 fashion, resulting

in six different rankings of features.

Then, once we obtain the feature subsets using these rankings, we train six different SVM

with radial basis function (RBF) kernel using the publicly available LibSVM implementation

[Chang and Lin, 2011]. Once again the SVM are trained in a 1-against-1 fashion as better

results are generally obtained by this method, compared to other multi-class strategies such as

1-against-all [Hsu and Lin, 2002]. Details of the cross-validation and parameter optimization

are presented in the results section. The final classification of the modified Mallampati score

is then obtained by majority voting of these 6 classifiers.

3.3 Dataset

The dataset used is composed of 100 images of different subjects, equally balanced between

classes. The images are acquired at the University Hospital in Lausanne (CHUV), and the

subjects are actual patients who undergo the regular preoperative assessment for anesthesia

prior to their elective surgeries. The recording process of the images is part of a larger project

on the automatic assessment of difficult tracheal intubation. The subjects included in this

dataset are aged between 24 and 81 and the proportion of female subjects is 39%.

The assessment of the ground truth for the modified Mallampati score is then performed by

experienced anesthesiologists only on the basis of these images. The Mallampati classification

depends highly on the angle of view of the mouth in the images. The images were taken by

trained staff such that the head is positioned to obtain the best visibility of the oropharyngeal

features.

3.4 Results and discussion

In this section we report the results of the classification using the leave-one-subject-out cross

validation method. For each of the 100 subjects we train six different SVMs, one for each pair

of classes. Each time the kernel and regularization parameters of the SVMs are optimized

using a 5-fold cross validation on the 99 samples in the training set. The corresponding sample
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Figure 3.2 – Classification accuracy vs number of features

that was left out is then classified by the six binary SVMs and the final modified Mallampati

score is obtained by majority voting.

Feature selection is a key step in the proposed method as explained in subsection 3.2.2.

Indeed, we see from the analysis of the feature rankings that, in general, the coefficients

corresponding to principle modes explaining a very small portion of the total variance are

assigned higher weights. The optimal number of features used by each of the six SVMs is

experimentally determined by comparing the overall accuracy obtained by using different

numbers of features. Figure 3.2 shows the classification accuracy with respect to to the number

of features.

We have performed the tests using the coefficients obtained from the shape model, texture

model, and the combined appearance model separately to identify which type of features

is the most efficient in discriminating the different Mallampati classes. For each model we

keep a number of principal components explaining more than 99.99% of the total variance,

resulting in a total of 23 shape features, 100 texture features, and 99 combined features, which

are then ranked using the linear SVM method explained in subsection 3.2.2.

Intuitively, the information about the modified Mallampati score is contained mainly in the

texture, rather than the shape of the mouth opening. This hypothesis is confirmed by the

poor results obtained when using only the coefficients α modeling the variations in the shape.

Conversely, using only the coefficients β leads to performance of the same quality as using

the coefficients c , modeling the complete appearance. It can thus be concluded that taking

into account the shape does not help to improve the classification performance, as shown in
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Table 3.1 – Confusion Table, OA=0.979

1 2 3 4
1 21 2 0 0 0.913
2 0 25 0 0 1
3 0 0 24 0 1
4 0 0 0 25 1

1 0.926 1 1

figure 3.2.

The best classification performance is obtained using 33 features of the texture model. Table

3.1 presents the confusion table for the corresponding leave-one-out cross validation test. The

classification of 3 of the 100 samples was ambiguous due to an equal number of votes in the

majority voting scheme. These samples are discarded in the calculation of the final accuracy

and not included in the confusion table. In order to avoid such ambiguities, a probabilistic

weighting of each classifier in the voting scheme can be used. 95 of the rest of the 97 are

correctly classified, corresponding to a 97.94% overall accuracy and 100% recall and precision

for Mallampati class 4, which is an important indicator of difficult intubation.

3.5 Conclusion

In this chapter, we proposed an AAM based method to assess the modified Mallampati score

of patients from an image of the mouth cavity. We selected the relevant features obtained by

the AAM using linear SVM and obtained the classification by majority voting of six different

binary SVM classifiers. We performed tests on images of 100 patients and showed that with

the optimal number of features we can correctly classify 95% of the total samples, taking into

account the 3 samples that were ambiguously classified.

To the best of our knowledge this is the first work proposing an automatic system to assess the

modified Mallampati score from images. The modified Mallampati score is often criticized

for the lack of objectivity in the way practitioners assess it, especially due to the angle of view.

This leads to different scores on the same patient, when examined by different practitioners.

In a future work, the proposed image based method can be extended to analyze videos

and will allow objectively assessing the modified Mallampati score. In the scope of this

thesis, and difficult tracheal intubation prediction, we consider this work as encouraging

preliminary results on the subtask of Mallampati classification. This work thus provides an

essential element to be integrated into an automatic difficult intubation assessment system,

as presented in the next chapter.
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4 Automatic prediction of difficult tra-
cheal intubation

4.1 Introduction

In this chapter, we describe a clinical application of facial image analysis to detect morpholog-

ical traits related to difficult intubation, hypothesizing that advanced facial image analysis

methods could improve the prediction of difficult intubation and identify relevant characteris-

tics helping the prediction.

Our proposed method has been developed and validated using more than nine hundred

patients. It does not require any medical history or measurement on the patient other than

frontal and profile photographs, making it practical even for untrained personnel. The process-

ing of the photographs is completely automatic and does not require any manual initialization.

In order to assess its performance in a real-world scenario, we present results including all

levels of difficulty and not only very easy and difficult patients. We demonstrate that the

proposed method performs as well as state-of-the-art multifactorial tests performed manually

by experienced anesthesiologists.

The rest of this chapter is organized as follows: the data collection process and setup is

described in section 4.2. In section 4.3, we describe the face models training and fitting

processes as well as the learning process. The results obtained are presented in section 4.4

and compared to diagnosis based prediction results. Finally, conclusions and a discussion of

future research topics are given in section 4.5.

4.2 Data Collection

Since March 2012, at the University Hospital in Lausanne (CHUV), adult patients, undergoing

general anesthesia requiring tracheal intubation and related to any type of elective surgical

procedures except obstetric and cardiac surgery, have been preoperativelly recruited. The

study has been approved by the Human Research Ethics Committee (Ethical approval num-

ber 183/09, Chairperson Prof R. Darioli) from the Ethical Committee of the Canton of Vaud,
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Figure 4.1 – Photo booth at CHUV

Switzerland. Each patient gets appropriate information about the research by the anesthesiol-

ogist during the preoperative consultation and gives his or her written consent to participate

in the study.

4.2.1 Setup

We developed and set up a photo booth-like equipment, depicted in figure 4.1, in the surgical

pre-hospitalization center to collect multi-modal data on recruited patients. These data

include frontal and profile photos and videos taken with two HD webcams, one in front and

one on the left side of the patient at approximately 40 cm. We also record the voice of the

patient and capture depth maps with a Microsoft Kinect®.

While sitting in the photo booth, the patient is asked to perform different facial motions as well

as head motions. Those include: neutral expression, opening the mouth, sticking the tongue

out, lateral rotation and vertical extension of the head. A graphical user interface, developed

on Matlab, allows an operator to guide the patient through the different poses he has to take

and to capture the data at the appropriate moment.

4.2.2 Demographics

We also collect patient demographics such as age, gender, weight, height and presence of

denture during the preoperative anesthesia consultation. Details of peroperative airway

management by the in-charge anesthetist are introduced after the operation in a dedicated

database. These include information on ease of face-mask ventilation, laryngoscopic grade

[Yentis and Lee, 1998] with an appropriate size MacIntosh blade, years of training of intubator,

where a minimum of 2 years training in anesthesia was mandatory, lifting force necessary for

intubation, either normal or increased, usage of accessory means such as external laryngeal

manipulation, intubation bougie, stylet, or video-laryngoscopic equipment, and injuries re-

lated to airway management. Number of airway providers and number of intubation trials are

also recorded. The intubation difficulty scale (IDS) [Adnet et al., 1997] is routinely calculated.
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Mean [min,max]
Age 53 [17, 92]

Height [cm] 169.5 [142,205]
Weight [Kg] 76.8 [40,160]

Gender [M/F] 488/482
Total 970

(a) Patients’ population metadata

25 50 75
age

0

20

40

60

80

100

n
u

m
b

er
o

fs
u

b
je

ct
s

Distribution of the patients age

(b)

140 160 180 200

height

0

50

100

150

200

n
u

m
b

er
o

fs
u

b
je

ct
s

Distribution of the patients height

(c)

50 100 150

weight

0

50

100

150

n
u

m
b

er
o

fs
u

b
je

ct
s

Distribution of the patients weight

(d)

Figure 4.2 – Patients’ population metadata and histograms of (b) patients’ age (c) patients’
height (d) patients’ weight

This information allows obtaining a ground truth for the intubation difficulty.

In the two years period from March 2012 to March 2014, we have recorded 2725 patients. The

ground truth is available for 970 of those, as detailed in section 4.3.3. Figure 4.2 shows the

metadata of the patients’ population used in this work.
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4.3 Methods

Given a set of images for each patient, we make use of facial image analysis methods in order

to extract meaningful features from the face and neck. The location of the face in the image

is provided by a face detector and used as initialization for the face alignment algorithm,

which provides the localization of the facial landmarks. The features include simple distances

between selected facial landmarks as well as information on the global shape or texture

variation of the head. In a second step, the statistical relevance of those features is computed

in order to discover which of them are relevant in the scope of prediction of difficult intubation.

The most relevant features are then fed to a classifier. The classifier learns how to discriminate

between easy, intermediate and difficult to intubate patients.

4.3.1 Detecting the face and tracking the landmarks

Facial image analysis methods often include two main parts: first we need to determine auto-

matically the rough location of a face in the image using a face detector, then precise locations

of each landmark are found by accurately fitting a model of the face on the image. Features

are computed using individual landmark positions as well as their global configuration and

finally a classifier is trained according to the task. For more details about facial image analysis

pipeline, see chapter 1.

Face detector

In order to initialize the fitting of the face model, both the rough location of the face in the

image, as well as its scale, need to be determined.

We use Yang and Ramanan’s Parts Based Detector [Yang and Ramanan, 2011] in order to detect

the face in the images. This method is a general, flexible mixture of parts model able to capture

contextual co-occurrence relations between parts, augmenting standard spring models that

encode spatial relations. It has been shown to perform very well on face detection [Zhu and

Ramanan, 2012] and to be particularly reliable for extreme head poses. The good flexibility of

the method allows us to train a single detector for all frontal images, even though the patients

are performing very different facial motions, such as opening the mouth widely or sticking out

the tongue. An additional detector is trained for profile images as many parts of the frontal

images are not visible in the profile images. We use a manually annotated subset of our data to

train both detectors. For the frontal detector, the training set consists of 406 annotated images

including neutral face, mouth open and tongue out images. Both the original image and the

horizontal flip of the image are used. For the profile detector, the training set consists of 134

annotated images.

The frontal face detector performs very well and detects 100% of the frontal faces in the 2910

images of the 970 patients performing all facial motions. This set includes 2553 unseen images,

64



4.3. Methods

i.e. not used for training the face detector. The profile face detector, on the other hand, fails

to detect the face of only 4 patients, which are removed from the final analysis, reaching a

detection rate of 99.56% on unseen images. The detection of the face provided by the face

detector is then used to initialize the fitting process of the face model.

Face model for the image alignment problem

Finding the precise location of each pre-defined facial landmark in a new, unseen image is

considered as an image alignment problem. Image alignment is the process consisting of

rigidly moving and non-rigidly deforming a template to minimize its distance to a query image.

Image alignment process is characterized by three elements: template representation, distance

metric and optimization scheme.

In this work, we follow the image alignment method described in [Xiong and De la Torre,

2013]. The template is non-parametric and consists of scale-invariant feature transform (SIFT)

features [Lowe, 2004] extracted from patches around each landmark. This non-parametric

shape model is able to better generalize than other parameterized appearance models (PAMs)

in unseen situations and this representation is robust against changes in illumination. The

squared difference between the SIFT features values computed in the aligned image and in the

template is used as the distance metric. This results in the following minimization problem

over Δs:

f (s0 +Δs) = ‖Φ (I , s0 +Δx)−φ∗‖2
2 , (4.1)

where s0 is the mean shape, Δs is the update of the shape, I is the image, Φ is a non-linear

feature extraction function, in our case the SIFT features, and φ∗ =Φ(I , s∗) represents the

SIFT values in the manually labeled landmarks.

The supervised descent method (SDM) optimization scheme, thoroughly described in [Xiong

and De la Torre, 2013], learns a series of descent directions and re-scaling factors, equivalent

to the Hessian in the case of Newton’s method, such that it produces a sequence of updates

st+1 = st +Δst starting from s0 that converges to s∗ in the training data. s0 is the initial

configuration of the landmarks provided by the face detector which corresponds to an average

shape, scaled and translated, and s∗ is the correct configuration of the landmarks, generally

obtained by manual annotations of the images.

Definition of the templates In the scope of this work, we define one template per facial

motion, necessary to get accurate landmark positions on photos with different facial motions.

In order to train these models, we have defined one neutral and frontal template with 99 points,

two different frontal 99 points templates with large facial motions, one with the mouth open

and the second with the mouth open and the tongue out, and one profile template consisting

of 52 points. We then manually annotated images for each of those templates to train the face
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Figure 4.3 – Details of the four templates, each corresponding to a facial motion: (a) frontal,
neutral, 99 points (b) frontal, mouth open, 99 points (c) frontal, tongue out, 99 points (d)
profile, neutral, 52 points. In green, the anatomical and morphological features described in
section 4.3.2.

model described above. Figure 4.3 shows the facial landmarks configuration corresponding to

each template. The facial landmarks are in white and are linked by red segments, for better

visualization.

The template corresponding to a neutral position and neutral expression contains landmarks

for each eyebrow, eye, the nose, the mouth, and the chin; it has 99 points in total, as shown in

figure 4.3a. It also includes points on the neck in order to assess neck characteristics, such

as its width. The two templates corresponding to images with extreme facial motions, i.e.

mouth open and tongue out, have the same points as the neutral 99 points template as shown

in figures 4.3b and 4.3c. The landmarks defining the internal perimeter of mouth opening

follow teeth or lips, depending on what is present in the image. The same set of landmarks was

used for assessing the tongue out movement with a segmentation of the oral cavity, allowing

grading of an automated modified Mallampati classification, as presented in chapter 3. The

segmentation of the oral cavity is shown in yellow in figure 4.3c. For profile images, a template

of 52 points was defined and is depicted in figure 4.3d. The points on the jaw and the neck

allow assessing jaw movement while performing mandibular movement.

Validation of the face model In order to validate the face model, we use K-fold cross-

validation. For each model, the images from one fold are kept for testing the model while the

images from all other folds are used to train the model. The greater the number of folds, the

more training images are used at each run. The obtained model is then fitted on the annotated

images in the excluded fold and the obtained landmark positions are compared to the manual

annotations. This procedure is repeated for each fold. This way, the model is tested on each

available annotated image. Note that the face detector is first run on the images in order

to initialize the face model. We thus test the whole pipeline at once. In order to quantify

the evolution of the error with respect to the number of training images, we run this K-fold

cross-validation scheme for each model with 2, 3, 4, 5 and 10 folds. These correspond to 50%,
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(a) (b) (c) (d)

+3σ
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Figure 4.4 – Distribution of the errors, i.e. differences between the landmark positions obtained
automatically and the manual annotations, on each landmark for the four templates: (a)
frontal, neutral, 99 points, (b) frontal, mouth open, 99 points, (c) frontal, tongue out, 99 points,
(d) profile, neutral, 52 points.

66.6%, 75%, 80% and 90% of the annotations used for training. The total number of annotated

images is 150 for each of the frontal models and 92 images for the profile model.

Figure 4.4 shows the distributions of the errors for each landmark and each model, when

trained and tested using 10 folds cross-validation, which corresponds to using 90% of the

annotations for training. During the testing step, the error between each landmark and the

corresponding annotation is computed for each test image. We then report these errors on the

mean shape of each model and fit a Gaussian function for better visualization.

The quality of the model varies from one model to the other. The profile model is the least ac-

curate, as shown in figure 4.4d, but is also trained on fewer images. Moreover, the annotations

might be less consistent from one training image to the other, due to the increased difficulty

of annotating the profile face. The points on the chin and the neck, from the profile model, do

not correspond to any salient landmarks on the images, therefore increasing the annotation

difficulty, as well as decreasing the face tracker ability to precisely locate these landmarks.

Figure 4.5 shows the mean point-to-point error normalized by the distance between the eyes

for the three frontal models. Amongst those, the two models with the mouth open and the

tongue out exhibits a larger normalized point-to-point error than the neutral one. Again, the

points on the chin and the neck are the less accurate, as shown in figure 4.4. It should be

noted that the points around the mouth are reasonably accurate and these are also the most

interesting for our application. The points around the eyes are the most accurate, thus making

them good candidates for normalization. It can be seen that removing the landmarks from the

chin and the neck from the mean computation improves the mean point-to-point error by

15% to 25% depending on the model. Indeed, those landmarks are significantly less accurate

than the rest of the model, as discussed earlier. In the final application, all available annotated

images are used for training. Thus, the actual performance of the models will be better as they
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Figure 4.5 – Mean point-to-point error (distance between the landmark positions obtained
automatically and the manual annotations) normalized by the distance between the eyes

will have been trained with more annotated images.

4.3.2 Computing the features

Most of the anatomical and morphological features of interest consist of distances between

landmarks on the face and the neck. The aligned template gives the positions of these land-

marks after fitting the face model on the subject image. Specifically, these distances are: the

vertical distance between the upper lip and the nose, the vertical distance between the lower

lip and the tip of the chin, the width of the neck, the width of the face, and the height of the

face, all five computed on the frontal neutral image, as depicted by lines 1-5, respectively,

in figure 4.3a. They are the thyromental distance (TMD) in neutral position, the distance

between the angle of the mandible and the tip of the chin, the distance between the hyoid

bone and the chin, and the distance between the hyoid bone and the thyroid cartilage, all four

computed on the profile neutral image, as depicted by lines 1-4, respectively, in figure 4.3d.

Finally, they are the height of the mouth opening, the width of the mouth opening, and the

area of the mouth opening, all three computed from the frontal image with the mouth open,

as depicted by lines 1-2 and surface 3, respectively, in figure 4.3b. In addition, we compute the

distance between the eyes on all frontal images. This distance is used to normalize the features

listed above allowing us to be more robust against moderate head pose variations, and to be

able to compare them between patients. Indeed, the fact that all patients do not sit at the exact

same distance to the camera and do not have the same head pose introduces an important
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bias in the features. After normalization, all distances are divided by the distance between the

eyes. This one exhibits small variations between subjects, is most likely not correlated with

difficult intubation and can be computed reliably from the landmarks around the eyes as they

are very accurate.

In addition to the distances between landmarks, we also consider coefficients from a principal

component analysis (PCA) on the shape and coefficients from a PCA on the texture, for the

inside of the mouth on the frontal model with tongue out, as features. Specifically we compute

these coefficients in the following manner:

To compute the PCA-coefficients on the shape, we consider the set of face images used for

training, each image having a set of v two dimensional (2D) landmarks, returned by the face

tracker, [xi , yi ], i = 1,2, ..., v . The collection of L landmarks of one image is treated as one

observation from the random process defined by the shape model s = (x1, y1, x2, y2, ..., xL , yL)T .

Eigenanalysis is applied to the observation set, keeping 98% of energy, and the resultant model

represents a shape as

s(p) = s0 +
n∑

i=0
pi si , (4.2)

where s0 is the mean shape, si is the i th shape basis and p = (p1, p2, ..., pn)T are the shape

parameters.

These parameters p provide information on the global variation of the shape. They are ranked

by the value of their corresponding eigenvalue, in a decreasing order, or, similarly by the

amount of total variance of the training data that they explain. The first modes of variation

explain the bigger amount of total variance and are thus likely to explain the variance of the

data due to head pose, gender or other factors that are not significant in the prediction of the

difficult intubation. On the other hand, the last ones only explain a small amount of the total

variance and merely model the effect of noise in the annotations. Even though not all coeffi-

cients are relevant for classification, each of them has the advantage of encoding a variation

mode affecting the relative configuration of several landmarks by itself. Thus, by selecting a

few, relevant coefficients, we can potentially get information about global configurations of

landmarks, or global morphology of the face, correlated with difficult intubation.

To compute the PCA-coefficients on the texture, we first compute a piecewise affine transform

between the landmarks segmenting the oral cavity on each image, as shown by the yellow

contour in figure 4.3c, and the same landmarks on the mean shape. The texture inside those

landmarks is then warped onto the mean shape and normalized to zero mean and unit

standard deviation. At training time, the warped and normalized texture from the images

in the training set are used to compute a PCA basis. Similarly to the PCA on the shape, the

eigenvectors corresponding to the biggest ordered eigenvalues and explaining 75% of the

texture variance are kept while the others are discarded. At testing time, the warped and

normalized texture from the images in the testing set is then projected on that basis, resulting
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in a vector of coefficients used as features. For more details, the reader is referred to chapter 3,

in which the same method is used for automatic Mallampati classification.

Section 4.3.3 provides more details about the feature selection techniques that have been used

to find those relevant coefficients.

4.3.3 Classification

Class definitions

In order to train and test the system, each patient is assigned one of the following labels,

considered as ground truth and related to their difficulty of intubation: easy, intermediate or

difficult. As no precise definition of the difficult intubation has been unanimously accepted,

this classification is obtained by combining two complementary definitions, namely the widely

accepted definition of the difficult laryngoscopy, which considers a laryngoscopy as difficult

if the Cormack-Lehane view of the larynx is graded III or IV [Cormack and Lehane, 1984]

and the definition based on the IDS proposed by Adnet [Adnet et al., 1997], which considers

an intubation as difficult if the IDS is greater than 5. We refer the reader to chapter 2, and

more specifically 2.1 for complete definitions and a discussion about the Cormack-Lehane

classification of the laryngoscopic view and Adnet’s IDS. We use this broader definition of the

difficult intubation in order to remove, as much as possible, the subjectivity of using only the

laryngoscopic grade, while still assigning laryngoscopic grades III and IV to the difficult class.

More specifically, the class labels are defined as follows:

easy I DS = 0, this implies a laryngoscopic grade of I and a successful intubation at the first

attempt;

intermediate 0 < I DS ≤ 5 and laryngoscopic grade smaller than III;

difficult I DS > 5 , or laryngoscopic grade of III or IV.

Out of the 2725 patients who have been recorded, information allowing to compute the IDS

is available for 34.4% and laryngoscopic grade for 51.4%. For the rest of the patients, the

anesthesiologist may not have filled the ground truth form that allow us to collect these

data. Table 4.1a shows the distribution of patients according to the laryngoscopic view for

all recorded patients and for the subset of patients with available ground-truth and face

detection. The laryngoscopic view was observed by the anesthesiologist at the intubation time.

It should be noted that the classes are largely unbalanced, higher laryngoscopic grades being

rarely observed which makes the classification task more challenging. Table 4.1b shows the

classification of the recruited patients according to their IDS score. The same remark applies

regarding high IDS scores.

Table 4.1c shows the distribution of each class according to the classification described above

for the 966 patients used in total. The easy, intermediate and difficult labels are used as ground

70



4.3. Methods

Table 4.1 – Distribution of the patients according to different criteria used to define the ground-
truth: (a) Patients laryngoscopic grade (LG) distribution as observed by the anesthesiologist at
intubation time (b) Patients IDS score distribution (c) Final ground truth labels distribution.

(a)

recorded patients 966 used patients
LG [ % ] [ % ]
1 1083 77.30 708 73.29
2a 208 14.85 158 16.36
2b 57 4.07 47 4.86
3 40 2.85 40 4.14
4 13 0.93 13 1.35

(b)

IDS score Difficulty [ % ]
0 Easy 561 59.87
0 < IDS ≤ 5 Slight Difficulty 353 37.67

5 < IDS Moderate to Major 23 2.46

(c)

Difficulty [ % ]
Easy 561 58.07
Intermediate 345 35.72

Difficult 60 6.21

truth. Note that this does not directly correspond to the IDS because 8 patients with I DS ≤ 5

have a laryngoscopic grade greater than II and are labelled as difficult and 29 other patients

with a laryngoscopic grade greater than II have missing IDS score.

Data partition for training and testing and class imbalance problem

The feature selection, the choice of the hyper-parameters, and the training of the classifier

are performed on a subset of patients: the training set. A distinct subset of patients is then

used to test the classifier and compute the different metrics assessing its performance: the

testing set. The partition of the original data into these two subsets is random but the original

distribution of classes is maintained; we perform stratified partitioning. In order to compute

proper statistics for the results, these training and testing sets are generated several times,

each time with different random partitions of the patients.

Note that both the training and the testing set follow the same class distribution as the original

dataset. As previously discussed, the occurrence of difficult laryngoscopy has been reported

to range from 0.3% to 13% [Naguib et al., 1999]. More recently the occurrence of difficult

intubation has been reported between 4.5% and 7.5% in the overall population [Shiga et al.,

2005]. In the present dataset, 6.21% of the patients fall in the difficult class. From a machine

learning point of view, skewed distributions of classes make the learning of concepts more

difficult. This is known as the class imbalance problem. Even a relatively small imbalance ratio

of the order of 10:1, as in our case, is sufficient to hinder the learning process.
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Artificially balancing the classes is possible using sampling methods. However, those methods

present some significant drawbacks [López et al., 2013, He and Garcia, 2009, Galar et al., 2012].

Undersampling from the majority class, or classes, allows reducing the imbalance ratio or even

totally compensating for the class imbalance. But removing samples from classes may result in

loss of information, thus potentially penalizing the classifier’s performance. In the other case,

oversampling from the minority classes allow for the same reduction of class imbalance but

presents a different drawback. Replicating samples tends to lead to overfitting. Even though

more complex techniques exist, several problems prevent from finding a good approximation

of the original class density function, for example small disjuncts or class overlapping.

In this work, we consider binary classifiers. To overcome the class imbalance problem, we use

the fact that for each sample, probabilistic classifiers compute confidence values of belonging

to each class. The classifier then usually assigns the most probable label to each sample

by maximizing P ( j |x), the posterior probability of classifying a sample x as j . Nevertheless,

in cost-sensitive learning, given a cost matrix defined as C (i , j ) the misclassification cost of

classifying an instance from its actual class j into the predicted class i , the minimum expected

loss can be determined as:

R(i |x) = ∑
j∈{0,1}

P ( j |x) ·C (i , j ) , (4.3)

where R is the Bayes risk and P ( j |x) is the posterior probability.

Elkan [Elkan, 2001] showed that modifying the classifier’s threshold, in other worlds choosing

the positive class if its confidence value is greater than a threshold but not necessarily greater

than the confidence value of the other class, has the same effect as sampling in terms of bias

but without the drawbacks mentioned above. Thus, defining a threshold θ for the classifier

allows compensating for the bias towards the majority class. Specifically, in cost-sensitive

learning the optimal threshold θ∗ of a classifier with respect to a given cost matrix is defined

as:

θ∗ = C (1,0)

C (1,0)+C (0,1)
. (4.4)

In binary classification, C (1,0) represents false positive (FP) and C (0,1) represents false nega-

tive (FN). The prior probabilities of the negative and positive samples, p(0) and p(1) respec-

tively, are proportional to the number of samples in the original training set. As doubling FN

or halving FP has the same effect as doubling p(1), we train the classifier on the complete,

unbalanced, training set, and when testing it on the test set, the threshold θ is set to the

imbalance ratio between the classes, as described in equation (4.5).

θ = F P

F P +F N · p(0)
p(1)

= 1

1+ p(0)
p(1)

≈ p(1)

p(0)
, (4.5)

where p(0)
p(1) is larger than 1 as the positive class, with the label difficult, is the class for which we
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have less samples.

As modifying the threshold of the classifier is equivalent to sampling, we compare three

methods of choosing this threshold:

• the class imbalance ratio method as described above in equation (4.5),

• minimizing the distance between the corresponding point on the ROC curve and the

(0,1) point, i.e. the upper left corner, and

• maximizing the Youden index, i.e. the vertical distance between the corresponding

point on the ROC curve and the line of no-discrimination.

The latter two methods use four fold cross-validation on the training set to learn the optimal

threshold. In order not to hinder the learning process when training the classifier on an

unbalanced set, we use the receiver operating characteristic (ROC) curve and its area under the

curve (AUC) as criterion. The ROC curve is generated by plotting the false positive rate (FPR)

against the true negative rate (TPR) for all values of the classifier threshold. Independently of

what kind of classifier is used, we train it such that the ROC curve generated from the output

confidence values maximizes the AUC, since AUC is insensitive to the class imbalance. As a

post-processing step, we then compute the threshold to apply on the confidence values in

order to obtain the final classification of each sample.

Feature selection and classification

Feature selection is performed on the training set. The goal is to determine which features are

the most relevant for difficult intubation prediction. Amongst the complete set of features, only

these most relevant features are then used to train the classifier. Reducing the dimensionality

of the data, as well as removing noisy, irrelevant features from the data helps improving the

classification performance.

Random Forest classifiers provide a feature importance measure which allows for feature

ranking and selection [Breiman, 2001]. The feature importance is measured by randomly

permuting the feature in the out-of-bag samples and calculating the percent increase in

misclassification rate as compared to the out-of-bag rate with all variables intact. From the

ranking of the features according to their importance, we only keep the k best and discard all

the rest. The parameter k is considered a hyper-parameter and its best value is found using

grid-search and K-fold cross-validation on the training set at the same time as the classifier

hyper-parameters.

For the final classification, a second Random Forest classifier is used. Random Forest classifiers

are known to be less prone to overfitting, due to their use of bagging. Indeed, the training

algorithm for Random Forest aims at constructing a forest of trees, where for each tree it

randomly samples, with replacement, in the training set and trains the tree, by considering
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only a random subset of the features at each splitting node. The hyper-parameters of the

classifier are selected using four fold cross-validation on the training set. Specifically, those

hyper-parameters are the following: the number of the k best features to keep, in the range

20-180 by step of 10, and the percentage of features to consider at each node when looking

for the best split, in the range 0.5
�

N - 2
�

N , where N is the total number of features. We

use entropy as the splitting criterion, as it is less sensitive to class imbalance than the usual

accuracy [He and Garcia, 2009]. Our implementation uses Scikit-learn [Pedregosa et al., 2011],

a python machine learning library.

4.4 Results

First, we analyze which features are selected and their relevance with respect to existing

prediction methods in section 4.4.1. Then, we present two scenarios: an easy versus difficult

classification considering easy control patients and difficult ones in section 4.4.2, as well as

a more realistic difficult intubation prediction scenario where all patients are considered in

section 4.4.3. The second one would correspond to a real-world scenario where each and

every incoming patient gets a prediction.

4.4.1 Analysis of selected features

Figure 4.6 shows histograms of the 5 most selected features by the random forest. These

features are the only features selected for all partitions (100 out of 100). The ANOVA F-values

and corresponding p-values have been computed for each of those features. Except for the

shape coefficient 29 of the model with tongue out, all other features show an F -value > 15 and

a corresponding p-value < 10−4. Those are thus informative by themselves, but not the shape

coefficient 29, which is informative only in combination with other features. A Gaussian is

fitted to the data for each class and each feature for better visualization. Nevertheless, some

features do not follow a Gaussian distribution, especially for the difficult class.

Except for the height of the mouth opening, all selected features are coefficients from the shape

model. The interpretation of these coefficients is not straight-forward as they model global

variations of the shape. In order to better understand which morphological characteristics

are used to compute the decision, figure 4.7 shows the variations explained by the shape

coefficient from the image taken with the mouth open. Figure 4.8 and figure 4.9 show the

variations explained by different shape coefficients from the image taken with the tongue

out. In figure 4.7 and figure 4.8, the left and right subfigures show the shape corresponding to

a value of the coefficient equal to −3σ and +3σ respectively, whereas the central subfigure

shows the mean shape with the variation of the landmark positions when the coefficient is

continuously changed from −3σ to +3σ.

In figure 4.7, it can be seen that the largest variation in the shape is due to the movements of the

landmarks around the mouth. A low value of this coefficient thus represents a configuration
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Figure 4.6 – Histograms of the five most selected features: (a) p29 (shape coefficient 29) from
tongue out image (b) p2 from mouth open image (c) p7 from tongue out image (d) height of
the mouth opening (e) p1 from tongue out image
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Figure 4.7 – Mouth open model variations of p2. (a) −3σ shape (b) variations overlaid on the
mean shape (c) +3σ shape
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Figure 4.8 – Tongue out model variations of p7. (a) −3σ shape (b) variations overlaid on the
mean shape (c) +3σ shape

of the landmarks corresponding to a face with the mouth widely open, whereas a high value

corresponds to a mouth much less open. The classifier thus selected a feature which makes

perfect sense as a decreased mouth opening is known as a predictor of difficult intubation by

the anesthesiologists, as described in chapter 2 and more specifically in section 2.2.

In figure 4.8 it can be seen that the largest variation in the shape is due to the movements of the

landmarks around the eyes, which are not relevant, as well as the movements of the landmarks

on the back of the tongue. A low value of this coefficient thus represents a configuration of the

landmarks corresponding to a poor visibility of the oro-pharyngeal structures whereas a high

value corresponds to a much clearer view of those structures. A small value of that coefficient
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Figure 4.9 – Mouth open and tongue out model variations for (a) p1 (b) p29 (on a different
scale)

thus could indicate a bigger tongue, i.e. a tongue with a larger volume. This information is

similar to what is indirectly assessed in the modified Mallampati test, as described in section

2.2, and is thus relevant to our classification task, from an anesthesiology point-of-view.

The interpretation of the two coefficients in figure 4.9 is not as straight-forward as for the

other coefficients. Those are also less relevant. Indeed, the shape coefficient 1 corresponds

to the second largest eigenvalue and thus models a lot of variation in the shape due to many

different parameters, whereas the shape coefficient 29 is statistically not relevant by its own

with an F-value of 0.43 and a corresponding p-value of 0.51. Those coefficients are merely

shown for the completeness of the results.

4.4.2 Easy vs difficult classification

In this scenario, we followed the same protocol as Naguib did in his comparative study of

four multi-variate difficult tracheal intubation models [Naguib et al., 2006], in which for each

difficult patient, an easy one is selected as control patient. In our case, we do not enforce

a one to one correspondence, but keep the imbalance between the classes. Removing the

intermediate patients, we end up with two disjoint classes: the easy and the difficult patients.

We use 80% of the patients for training and 20% for testing. The partition is repeated 100

times randomly and the results are averaged over those different partitions. This results in 496

training patients (448 easy and 48 difficult) and 125 test patients (113 easy and 12 difficult).

The performances of the classifier are reported in table 4.2, along with the results reported

in the literature for four manual tests [Naguib et al., 2006], and a previous attempt for semi-

automatic difficult intubation prediction from [Connor and Segal, 2011]. We report the mean

77



Chapter 4. Automatic prediction of difficult tracheal intubation

Table 4.2 – Comparison of our results on the Easy vs difficult problem with four multivariate
tests [Naguib et al., 2006] and a semi-automatic method [Connor and Segal, 2011] in terms of
sensitivity (Sens.), specificity (Spec.), and AUC

Model Sens. [95% CI] Spec. [95% CI] AUC
Wilson model[Wilson et al., 1988] 40.2 [30.0, 50.0] 92.8 [88.0, 98.0] 79.0
Arné model [Arné et al., 1998] 54.6 [45.0, 65.0] 94.9 [90.0, 99.0] 87.0
Naguib I model [Naguib et al., 1999] 81.4 [74.0, 89.0] 72.2 [63.0, 81.0] 82.0
Naguib II model [Naguib et al., 2006] 82.5 [73.0, 89.0] 85.6 [77.0, 91.0] 90.0
Connor [Connor and Segal, 2011] 90.0 80.0 84.0
Ours 81.0

class imbalance 79.7 [77.4, 81.9] 67.4 [66.4, 68.4]
distance to (0,1) 77.1 [74.8, 79.4] 70.6 [69.4, 71.8]
Youden index 78.9 [76.5, 81.3] 66.7 [64.7, 68.6]

values of the sensitivity and specificity with their 95% confidence interval (CI).

As can be seen in table 4.2, our fully automatic system achieves comparable performance on

the easy vs difficult intubation classification as compared to manual assessment performed

by experienced anesthesiologists using state-of-the-art multifactorial tests. In this binary

example, the only metric that can be compared directly is the AUC. All other metrics reported

can be tuned by varying the threshold of the classifier, depending on the importance given

to sensitivity or specificity. This can be seen by comparing the three methods to compute an

optimal threshold. The class imbalance method provides the higher sensitivity, which, in this

application, is an important metric, as it is critical to detect as many difficult intubations as

possible, even at the cost of more false positives.

Figure 4.10 presents the averaged ROC curve over the 100 partitions. In violet, we regenerated

the ROC curve corresponding to the validation set in [Connor and Segal, 2011]. We used the

values of each samples in the validation set provided in [Connor and Segal, 2011] to compute

TPR and FPR for all thresholds. The highlighted performance point on the mean ROC curve

has been obtained by setting the threshold of the classifier to the class imbalance ratio. This

corresponds to the results reported in table 4.2.

As for comparison with the results reported in [Connor and Segal, 2011], we would like to

emphasize that such a comparison would not be a fair one. First, the authors of [Connor

and Segal, 2011] trained and tested their system only on male Caucasian patients, in order to

limit any potential confounding effects of gender and racial group. We report our results on a

much more representative population, as described in figure 4.2. Then, their method is not

fully automatic but semi-automatic as it requires manual placement of fiducial markers and

manual measurement of the TMD by an anesthesiologist. The number of patients considered

to validate their approach is much lower. The authors reported results on a validation set

of only 20 difficult and 20 easy patients thus not demonstrating the generalizability of the

proposed method. Finally, they state that they perform model selection such that they get the
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Figure 4.10 – Mean ROC curve for the easy vs difficult classification, with performance obtained
using the class imbalance threshold method, compared to the ROC curves of four multivariate
tests performed manually [Naguib et al., 2006] and the ROC curve obtained on the validation
set in [Connor and Segal, 2011]

best product of AUCs on the training and testing sets. Thus, they do not clearly separate the

data into training and testing sets and use the testing set to select the model. In addition, they

do not perform any kind of cross-validation and demonstrate results on a single partitioning.

Methodologically, there is no evidence in their work that similar results would be obtained

on an independent test set or a different partitioning of the data. In this work, on the other

hand, we present our results on multiple runs, each of them on randomly created independent

test sets. Although, in average, our AUC score (0.81) is lower than the AUC calculated on the

validation set in [Connor and Segal, 2011] (0.84), our results are better validated in a more

generalized way.

4.4.3 Real-world difficult intubation prediction

In the real-world difficult intubation prediction problem, the goal is to identify difficult to

intubate patients from all the others. Considering this task the problem remains a two-class

classification problem. Thus, we first group together the easy and intermediate classes and

relabel the new class as easy, which de facto represents the non-difficult to intubate patients.
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Table 4.3 – Comparison of our results on the Real-world problem

Model Sens. [95% CI] Spec. [95% CI] AUC
Real-world 77.9

class imbalance 77.7 [75.7, 79.7] 64.1 [63.2, 65.0]
distance to (0,1) 72.9 [70.3, 75.5] 68.4 [67.2, 69.5]
Youden index 74.8 [72.0, 77.5] 65.5 [63.5, 67.4]
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Figure 4.11 – Mean ROC curve for the real-world difficult intubation prediction

When a patient is diagnosed as difficult, it sends a strong signal to the anesthesiologists on

the potential difficulty of that patient, which is high. Thus, we do not consider only very easy

patients as control patients versus difficult ones, but instead we take into account all patients,

ranging from very easy to impossible to intubate without gap.

We use 80% of the patients for training and 20% for testing. The partitioning is repeated 100

times randomly and the results are averaged over those different partitions. This results in 772

training patients (724 easy and 48 difficult) and 194 test patients (182 easy and 12 difficult).

Note that in this case, the class imbalance is more severe, creating an additional challenge to

the fact that there is more variation among the samples as compared to the previous scenario.

The performances of the classifier are reported in table 4.3. Figure 4.11 presents the averaged

ROC curve over the 100 partitions.
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4.5. Conclusion

As can be seen in table 4.3, the performance of the system drop slightly when considering

all patients, without gap between the classes. We observe a 3.1% decrease on the AUC and

between -1.2% and -4.2% on the sensitivity and specificity. By considering all patients, the

variance of the data is larger. Thus the learning of concepts is hindered as this larger variance

can be seen as noise. Moreover, the absence of gap between the classes potentially decreases

the class separability, again hindering the learning of concepts. Indeed, the classes become

less distinct and when testing on a different dataset than that used for training, the chances

are higher that the classes overlap. Note that the definition of the ground truth also has an

importance in the performance of the system. More specifically, the subjectivity and poor

reproducibility of the Cormack-Lehane grade make the ground truth label less reliable.

4.5 Conclusion

In this chapter, we presented a completely automatic, facial morphometry based method

allowing predicting a patient’s difficulty of intubation with performance comparable to state-

of-the-art medical diagnosis based predictions by experienced doctors. Our method has been

validated on more than nine hundred patients, both in a research oriented scenario with

only easy and difficult patients and in a real-world oriented scenario where all patients are

considered.

The database used in this work is, to the best of our knowledge, the largest database of images,

videos, and ground truth data related to endotracheal intubation.

We showed that the learning process takes into account features which have been previously

shown to be clinically significant. Of course, the complete decision process takes into ac-

count many more variables than the important ones described in this chapter, but it seems

reasonable that important clues are also considered.

The open question of how to quantify a difficult intubation remains a penalizing factor for our

results. Indeed, the recognized subjectivity, as well as the large variability of the factors taken

into account in order to quantify the difficulty of intubation of a patient, create an additional

confound for the system. This raises the question of the direct clinical usefulness of such an

automatic tool. Yet we demonstrate that it can achieve close to human performance even with

such existing limitations. It is thus encouraging to further investigate the usage of facial image

analysis in the scope of difficult endotracheal intubation prediction.

A further limitation of the proposed method is its 2D nature. We assume the images to be

always frontal and use the distance between the eyes to normalize all morphological features

extracted from the face. Clearly, if the head-pose is not perfectly frontal, the normalization is

affected and that can potentially introduce noise in the features. With that respect, a three

dimensional (3D) model allows to decouple the head-pose and the shape and to remove the

effect of head-pose from the features. Moreover, extracting different features independently

from different views might be suboptimal. Reconstructing one single 3D shape from multiple
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Chapter 4. Automatic prediction of difficult tracheal intubation

views would also be enabled by a 3D model. In part II of this thesis, we present our work

towards such a 3D model.

Due to the rarity of patients difficult to intubate, obtaining a reasonable number of them

is a long term procedure. Thus, current and future development include the collection of

more data. Another future research axis is to use other modalities that may be indicative of

intubation difficulty. For this purpose, we also record the voice of the patient and the depth of

the mouth cavity using a Microsoft Kinect®. Further analysis of the data includes the use of

these two modalities.
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Overview

The focus of this second part is the development of a new three dimensional (3D) statistical

model of the face, which allows to overcome some of the limitations observed in the first

part of this thesis. More specifically, a statistical 3D facial model is needed to constrain the

inference of the 3D structure of a face from one or several two dimensional (2D) observations.

With that respect, it serves as a prior and describe what is a plausible 3D structure of a face.

This implies that the data that serve to build the model are critical as the plausibility of the 3D

structure of a face will be evaluated based on these.

As we will discuss in this part, essential variations in the 3D structure of a face come from

factors linked to the identity, for example the age, gender, and ethnicity, as well as from facial

expressions or movements. Thus, sampling from a representative population and including

representative facial expressions, depending on the applications, is crucial. Since there existed

no existing database of 3D facial scans containing both the same population and the required

facial expressions and movements for the application of predicting difficult tracheal intubation

described in part I, we recorded our own database, EPFL3DFace. This database will also be

useful to the community for applications in 3D facial image analysis.

In order to be able to use the raw 3D facial scans of EPFL3DFace to build a statistical model,

these need to be parameterized in a consistent way. Indeed, the vertices of the raw scans

do not share any order; the raw scans do not even have the same number of vertices. A

consistent parameterization is obtained by nonrigidly registering each scan to a template,

thus transferring the parameterization of that template to each scan. Since each scan will then

share a common parameterization with the same template, they will also share a common

parameterization between them and, thus, be registered.

In this part, we first review available 3D face databases and 3D statistical models of the face, in

chapter 5. We also compare our new database to existing ones, in terms of number of subjects,

expressions, vertices, and annotated landmarks. This chapter also provides an introduction

to important methods and algorithms used in the remaining of this part, namely the Kinect

Fusion algorithm and 3D spectral geometry processing methods.

Chapter 6 presents a novel 3D spectral nonrigid registration method using an implicit surface

representation and a spectral embedding of the template as deformation model. It also
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describes the new database EPFL3DFace in more details and provides results of our proposed

spectral nonrigid registration method. Finally, it gives insights on how such a model can be

exploited for the problematic presented in part I and similar applications.

The different contributions of this part have been described in a journal article [Cuendet

et al., 2017], which has been submitted to IEEE Transactions on Visualization and Computer

Graphics and is currently under review.
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5 Background

5.1 Introduction

Facial image analysis and synthesis have attracted a significant amount of attention in the

last two decades from the computer vision and computer graphics research communities.

These two communities have both tackled different but related problems: face recognition

[Min et al., 2014, Arar et al., 2012b, Ding et al., 2016], head pose estimation [Fanelli et al., 2012],

gaze tracking [Alberto et al., 2012, Arar et al., 2015], visual speech recognition, [Zimmermann

et al., 2016] facial expression recognition [Sandbach et al., 2012, Valstar et al., 2015, Jaiswal and

Valstar, 2016, Yüce et al., 2013], synthesis of three dimensional (3D) faces [Ichim et al., 2015],

facial animation [Weise et al., 2009, Cao et al., 2013, Weise et al., 2011], and face or expression

transfer [Thies et al., 2016, Arar et al., 2012a].

The approaches that address these problems can benefit from the availability of low-cost 3D

scanners such as the Microsoft Kinect® and take advantage of 3D facial images and 3D face

models to avoid limitations inherent to two dimensional (2D) images such as self occlusions

or sensitivity to head pose variations. Building a complete 3D face model from the ground

up is still very demanding as the amount of data required to obtain a model which takes

into account a large amount of variations in terms of identity and facial expressions is high

and not easily available from public databases. The variance in appearance is influenced by

factors such as age, gender and ethnicity, and when also taking facial expression variations

into account, sampling the space of combinations of all these variations simply becomes

intractable.

A certain number of databases consisting of 3D representations of the face have been pro-

posed. An important difference between the databases is whether or not the 3D shapes share

a common parametrization. Tasks like synthesis of 3D faces or facial animation require a

generative model of shapes. These generative models must be learned from a database of

consistently parametrized, i.e. registered, instances. Thus, the main challenge in construct-

ing a generative model is to re-parameterize the example surfaces such that semantically

corresponding points, e.g. the nose tips or mouth corners, share the same location in the
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parametrization domain. Existing 3D face models where 3D scans are registered and statistical

analysis is performed include the MPI 3D Morphable Model (3DMM) [Blanz and Vetter, 1999],

the multilinear face model [Vlasic et al., 2005], the Basel Face Model, [Paysan et al., 2009],

FaceWarehouse [Chen Cao et al., 2014], the Large Scale Facial Model (LSFM) [Booth et al.,

2016], the Surrey Face Model (SFM) [Huber et al., 2016] and the Robust Multilinear Model

(RMM) [Bolkart and Wuhrer, 2015], but amongst these, only FaceWarehouse and the RMM are

trained with a large number of subjects and different facial expressions. These 3D face models

are learned from large databases of 3D facial surfaces, containing representative examples

spanning the range of variations that the model will be able to capture. As an example, a

model learned only from 3D surfaces of neutral faces will not fit well on expressive faces nor

be able to capture the variation between a smiling face and a sad face.

In order to allow for statistical modeling, for example with a morphable model, a multilinear

model, a blendshape model, etc., the scanned 3D facial surfaces have to be put into dense

correspondence by nonrigidly registering the 3D surfaces. The general strategy is for each scan

to deform a template, the floating surface, or source S such that it matches the scan or target

surface T . The template parametrization is thus transferred to each of the scans. This nonrigid

registration problem is defined by three main elements: a similarity measure, a transformation

model, and an objective function. In this thesis, and more specifically in chapter 6, we propose

to compute a spectral embedding of the source and use that representation as a transformation

model, in order to constrain the possible deformations and enforce smooth deformations.

In this chapter, we aim to provide some background about the different 3D methods that

are used in this part of the thesis. We first review existing 3D databases of facial scans in

section 5.2. In section 5.3 we give a comprehensive description of the acquisition of 3D scans

using a Microsoft Kinect®, and more specifically of the Kinect Fusion algorithm [Newcombe

et al., 2011, Izadi et al., 2011], which provides high-quality 3D scans from multiple low-quality

depth maps. In section 5.4, we then introduce spectral geometry processing with the aim

of providing an intuitive comprehension of the spectral methods on 3D meshes, used in the

transformation model of the nonrigid registration method described in chapter 6. We then

summarize and conclude this chapter in section 5.5.

5.2 Existing 3D face databases

In the last twenty years, a certain number of databases consisting of 3D scans of the face

have been proposed. An important difference between the databases is whether or not the

3D shapes share a common parameterization. Table 5.1 lists databases in which the 3D

instances of faces are not registered, i.e. do not share a common parameterization. These

databases cannot directly be used to build a 3D statistical model, but, with a proper 3D

nonrigid registration method, the 3D scans they contain could be registered and subsequently

used in a 3D model.

Registered databases, on the other hand, usually serve directly to build a 3D statistical model
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Chapter 5. Background

of the face. Blanz and Vetter first introduced the term morphable model [Blanz and Vetter,

1999] to describe their parametric face modeling technique based on a large number of 3D

face scans. In order to establish correspondence between all individual face scans, they use

cylindrical coordinates both for color and geometry information and adapted the optical flow

algorithm to compute a vector field of displacement between points [Vetter and Blanz, 1998].

Their method is well suited for data acquired with a 3D scanner using cylindrical coordinates

or that can easily be converted to that particular planar representation.

In [Allen et al., 2003], the authors present a template-based nonrigid registration method

to compute dense point-to-point correspondence between surfaces with the same overall

structure, but substantial variation in shape, such as human bodies. They formulate this as an

optimization problem over a set of per vertex affine transformations. The objective function

includes three terms: a data term defined as the sum of squared distances between spatially

close vertices on the source and the target surfaces, a smoothness term which enforces that

neighboring affine transformations are as similar as possible and a marker term defined as the

sum of squared distances between a set of marker’s locations on the template surface and on

the target surface. By ensuring the smoothness of the transformations over the surface, they

define an as-rigid-as-possible per vertex affine transform further constrained with a set of 3D

marker locations. By using domain knowledge inherent in the template surface, this method

is robust to incomplete surface data and is able to fill in holes or poorly captured parts of the

surface.

Vlasic et al. [Vlasic et al., 2005] applied this template-fitting procedure to 3D face scans

and described multilinear face models for expression transfer. In [Mpiperis et al., 2008]

Mpiperis et al. follow a method similar to [Allen et al., 2003] but add an error term looking

for correspondences directed from the target surface to the source and not only in the other

direction. They claim that this is important at the beginning of the optimization process when

the source is far from the target and it helps avoiding local minima by making the resulting

vector field smoother.

Extending the idea of iterative closest point (ICP) [Besl and McKay, 1992] to nonrigid registra-

tion and in particular defining optimal steps using a series of stiffness weights to regularize the

deformation described in [Allen et al., 2003], Amberg et al. defined the optimal step nonrigid

iterative closest point (NICP) [Amberg et al., 2007]. They express the cost function as a least

squares problem, thus being able to determine in each step of the algorithm the optimal

deformation, in the sense that it exactly minimizes the cost function for fixed stiffness and

correspondences.

Further extending the method, Cheng et al. proposed to incorporate a statistical shape prior

[Shiyang Cheng et al., 2015] into the fitting procedure of NICP in order to avoid noisy fitting

results and even non-face like fitting due to its weak constraint on the shape geometry. The

statistical shape prior is a deformable 3D face model [Passalis et al., 2005, Kakadiaris et al.,

2007], whose optimal controlling parameters are solved in an alternating manner. Along the
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same line, Brunton et al. [Brunton et al., 2014] proposed a detailed review of statistical shape

models. They emphasize that to incorporate a statistical shape model to fit to data, instead

of a template-based approach with a NICP approach and regularization constraints, can

significantly reduce the search space. This results in the ability to reconstruct the underlying

shape in the presence of severe noise or occlusions.

Weise et al. [Weise et al., 2009] also followed a NICP approach, optimizing a cost function

composed of three terms. Nevertheless, they introduced a combination of point-to-point

distance and point-to-plane distance as discussed in [Mitra et al., 2004] in the data-term and

expressed the smoothness term as a membrane energy on the displacement vectors, using the

standard cotangent discretization of the Laplace-Beltrami operator.

Sumner et al. [Sumner et al., 2007] introduced an embedded deformation model composed

of a collection of affine transformations organized in a graph structure. One transformation

is associated with each node of a graph embedded in R3, so that the graph provides spatial

organization to the deformations. Each affine transformation induces a localized deformation

on the nearby space. That approach was later adapted by Li et al. [Li et al., 2009] to handle

motion in the data. This nonrigid registration approach is successfully used for real-time

performance-based facial animation in [Weise et al., 2011].

In [Zell and Botsch, 2013] Zell et al. extended the NICP approach to surfaces which cannot

be considered near-isometric and for which the closest point correspondences might be

invalid by first mapping the source and target surfaces into a simpler space and computing

correspondences there. The simpler space is a smoothed, feature-less version of the input

models computed by a joint fairing technique based on Laplacian smoothing. To compute

correspondences, they iteratively minimize a cost function, which includes three terms: a

data term and a marker term, similarly to previously described approaches, and a smoothness

term defined as the norm of the Laplacians of vertex displacements, similar to the one used in

[Weise et al., 2009].

Recently, Huber et al. released the Surrey Face Model (SFM) [Huber et al., 2016], a multi-

resolution 3D morphable face model trained with 169 subjects with a neutral facial expression.

Their nonrigid registration method was previously described in [Tena et al., 2006] and is an

iterative coarse to fine method based on [Zhili Mao et al., 2004]. This method comprises three

steps: first landmarks on the source and the target surfaces are brought into correspondence

using thin plate spline (TPS) interpolation technique. Then, corresponding points on the

source and the target are computed. The search for corresponding closest points takes into

account not only the distance between points on the source and the target surfaces but also

the angle between their normals, and the difference between curvature shape indices. Finally

the positions of the source points are optimized in an as-rigid-as-possible fashion.

Bolkart et al. [Bolkart and Wuhrer, 2015] emphasize the chicken-and-egg nature of the prob-

lem of training a new statistical face model: given a set of shapes and dense correspondences,

a statistical model can be learned and given a representative model, better correspondences
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can be computed among a set of shapes. They propose a fully automatic approach to optimize

the correspondences for 3D face databases based on multilinear statistical models using

groupwise multilinear correspondences [Bolkart and Wuhrer, 2015]. This method measures

the model quality and optimizes the registration in such a way that the quality of both the

model and the registration improve but an initial registration remains necessary. In their work,

they first use a blendshape model to address the expression fitting problem. The 3D blend-

shapes were manually generated using a commercial software. To further nonrigidly deform

the template corresponding to the correct expression, they use an embedded deformation

framework [Sumner et al., 2007]. This method was applied to two existing databases of 3D

facial surfaces, the Bosphorus database [Savran et al., 2008] and the BU-3DFE database [Yin

et al., 2006] and resulted in the Robust Multilinear Model (RMM) [Bolkart and Wuhrer, 2015].

As an alternative to NICP, some methods compute correspondences between two surfaces

by embedding the intrinsic geometry of one surface into the other using generalized multi-

dimensional scaling (GMDS) [Bronstein et al., 2006]. The good performance of this kind

of methods has been demonstrated for face recognition and are an alternative to deal with

variations due to facial expressions [Bronstein et al., 2007b, Bronstein et al., 2007a]. As GMDS

methods do not impose that close-by points on one surface map to close-by points on the

other, the results are often spatially inconsistent.

In existing 3D facial expression databases, only FaceWarehouse, a 3D facial expression database

for visual computing, released by Cao et al. [Chen Cao et al., 2014], has both a large number of

subjects and a variety of facial expressions. It consists of registered 3D surfaces of the head of

150 subjects performing 19 facial expressions plus a neutral face. The facial surfaces of the

subjects were acquired with a Microsoft Kinect®. To register the 3D scans together, they used

a two-step process, close to the NICP methods described above. In the first step, Blanz and

Vetter’s morphable model [Paysan et al., 2009] is automatically fitted and used as a parametric

template. The nonrigid alignment between the fitted model and each of the neutral scans is

then refined by allowing the obtained mesh to deform using a Laplacian-based mesh deforma-

tion algorithm [Huang et al., 2006]. Finally, the scans containing facial expressions are aligned

using a deformation transfer algorithm [Sumner and Popović, 2004] and refined with the same

Laplacian-based mesh deformation algorithm.

Table 5.2 provides a comparison of EPFL3DFace, our new face expressions database, with

respect to existing 3D face models and databases in which the facial surfaces have been reg-

istered and are in dense correspondence with each other. In existing 3D facial expression

databases, only FaceWarehouse [Chen Cao et al., 2014] has both a large number of subjects

and a variety of facial expressions. In comparison to that database, EPFL3DFace provides

additional visemes suitable for visual speech recognition applications, additional facial ex-

pressions, and an extreme facial movement. In total, EPFL3DFace contains 35 scans for

each subject, whereas FaceWarehouse contains 20 scans. In addition, FaceWarehouse and

EPFL3DFace contain subjects from different populations, mostly Asian in FaceWarehouse and

mostly Caucasian in EPFL3DFace, and can be considered as complementary in that respect.
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Vk

Nk

Tg ,k

Tg ,k−1

Sk

Tg ,k−1

V̂k−1

N̂k−1

Raw depth, Rk

MEASUREMENT

Compute surface vertices

and normal maps

POSE ESTIMATION

ICP between predicted

and measured surface

UPDATE

RECONSTRUCTION

Integrate surface measure-

ments into global TSDF

SURFACE PREDICTION

Ray-cast TSDF to compute

surface prediction

Figure 5.1 – Kinect fusion algorithm scheme

Chapter 6 provides more details about EPFL3DFace.

5.3 Acquisition of 3D scans with the Kinect

Microsoft Kinect® is a low-cost sensor platform that incorporates a structured light based

depth sensor. It can generate a 11-bit 640x480 depth map at 30Hz, using an on-board ASIC.

Nevertheless, these raw depth maps are very noisy and contain holes where no structured-light

depth reading was possible.

Microsoft Research presented the Kinect Fusion algorithm [Newcombe et al., 2011, Izadi et al.,

2011], which takes the real-time stream of noisy depth maps from the Kinect and performs real-

time dense simultaneous localization and mapping (SLAM). This allows to obtain a consistent

3D scene model incrementally, effectively integrating and denoising the noisy depth maps in

a global 3D reconstruction. The system is composed of four main blocs, as described in figure

5.1. From a raw depth map Rk , the measurement step computes the vertices’ positions Vk and

normals Nk . These are used to estimate the current pose Tg ,k of the sensor with respect to

the global scene, using an ICP algorithm. The pose of the sensor allows to integrate the raw

depth map into the global reconstruction Sk , stored as an implicit surface defined in a given

volume. Finally, from this implicit global reconstruction, the algorithm predicts a surface by

ray-casting the volume containing the implicit surface. Kinect Fusion algorithm is available in

an open-source lightweight implementation2. We also contributed to that implementation by

porting the color integration3. In the remaining of this section, we will detail each of these

four components.

2 https://github.com/Nerei/kinfu_remake
3 https://github.com/gcuendet/kinfu_remake
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5.3. Acquisition of 3D scans with the Kinect

5.3.1 Measurements

The raw depth map Rk , which provides calibrated depth measurements Rk (u) ∈ R at each

image pixel u = (u, v)T in the image domain u ∈U ⊂R2, is first filtered with a bilateral filter

[Tomasi and Manduchi, 1998]. From the filtered depth map Dk , each depth measurement

is back-projected to 3D space in order to compute vertices’ positions Vk as a point cloud, as

described in equation (5.1).

Vk (u) = Dk (u)K −1u̇ , (5.1)

where K is the camera calibration matrix, which transforms points on the sensor plane into

image pixels, and u̇ := (uT |1)T denotes the vector u in homogeneous coordinates.

From that point cloud, a normal map Nk is computed. It associates a normal vector Nk (u)

with each depth measurement by computing a cross product between neighbouring vertices,

as described in equation (5.2).

Nk (u) = ν [(Vk (u +1, v)−Vk (u, v))× (Vk (u, v +1)−Vk (u, v))] , (5.2)

where ν [x] = x
‖x‖2

. The vertex map and normal map are computed in a multi-scale fashion,

halving the resolution for each successive level of the pyramid by averaging and sub-sampling

the filtered depth map.

5.3.2 Pose estimation

In order to correctly integrate multiple views of the scene into the global 3D reconstruction, it

is necessary to compute the current pose of the sensor with respect to the global scene,

Tg ,k =
[

Rg ,k tg ,k

0T 1

]
, (5.3)

where Rg ,k is the rotation component of the pose and tg ,k is its translation component.

An ICP algorithm is used to estimate the sensor’s pose at each frame with respect to the current

global reconstruction. A fast projective data association algorithm [Blais and Levine, 1995] is

used to obtain correspondences and the pose is optimized with respect to the point-to-plane

error metric, as described in equation (5.4).

E (Tg ,k ) = ∑
u∈U

∥∥∥(
Tg ,kV̇k (u)− V̂ g

k−1(û)
)T

N̂ g
k−1(û)

∥∥∥
2

. (5.4)

Key points of the method are the fact that all vertices of the depth map are used to compute

the pose, and not only a limited subset, as is generally the case, and the fact that the pose of

the sensor in the current frame is computed with respect to the global reconstruction available

so far, and not the previous frame. These are made possible by an efficient implementation
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Chapter 5. Background

on the graphics processing unit (GPU) and the high frame-rate of the algorithm, limiting the

motion from one frame to the other.

5.3.3 Reconstruction update

Each consecutive raw depth map Rk , with its associated sensor pose estimate, Tg ,k is in-

tegrated incrementally into one single 3D reconstruction Sk using a discrete volumetric

truncated signed distance function (TSDF) [Curless and Levoy, 1996]. We denote the global

TSDF that contains a fusion of the registered depth measurements from frames 1, . . . ,k as

Sk (p) where p ∈R3 is a global frame point in the 3D volume to be reconstructed.

In this discrete volume, each voxel stores a running weighted average of its distance to the

assumed position of a physical surface. This can be seen as de-noising the global TSDF from

multiple noisy TSDF measurements. More specifically, two components are stored in each

voxel of the TSDF: the current truncated signed distance value Fk (p) and a weight Wk (p). The

expression of the truncated signed distance value Fk (p) is given in equation (5.5).

FRk (p) = Ψ
(
λ−1‖tg ,k −p‖2 −Rk (x)

)
, (5.5)

λ = ∥∥K −1ẋ
∥∥

2 ,

x =
⌊
π

(
K T −1

g ,k p
)⌋

,

Ψ(η) =
⎧⎨
⎩min(1, ημ )sgn(η) iff η≥−μ

null other wi se
,

where q =π(p) performs perspective projection of p ∈R3 = (x, y, z)T including dehomogenisa-

tion to obtain q ∈R2 = ( x
z , y

z )T , � ·� is a nearest neighbor lookup, and, thus, x is the nearest pixel

coordinate of where p would be projected on the image. Ψ(η) is the truncation function of the

TSDF, truncating |η| >μ, where μ is an estimate of the uncertainty on the depth measurement.

The expression of the weight Wk (p) is given in equation (5.6).

Wk (p) = cos(θ)

Rk (x)
, (5.6)

where θ is the angle between the associated pixel ray direction and the surface normal mea-

surement.

5.3.4 Surface prediction

At this point, the algorithm is integrating successive depth maps into a common volumetric

implicit representation of the 3D scene. It is thus possible, at each step k, to compute a dense

surface prediction by rendering the surface encoded in the zero level-set Fk = 0 of the TSDF.

This dense surface is stored as a vertex map V̂k and a normal map N̂k and is used in the next
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5.4. Spectral geometry processing

sensor pose estimation step, as illustrated in figure 5.1. In order to render the surface, a per

pixel raycast is performed [Parker et al., 1998].

5.4 Spectral geometry processing

In this section, we aim to give an intuitive comprehension of what is spectral geometry

processing, and more specifically spectral mesh processing. Since the seminal paper of Taubin

[Taubin, 1995], where spectral analysis of mesh geometry is used to describe mesh smoothing

as a low-pass filtering operation, this framework has been used in many different applications

and we do not aim to provide a complete review of all of them. We refer the reader to the

excellent introductory SIGGRAPH course of Lévy and Zhang [Lévy and Zhang, 2010] or Botsch

et al. book Polygon Mesh Processing [Botsch et al., 2010]. For more in depth coverage of the

topic, see the survey of Zhang et al. [Zhang et al., 2010] or the survey of Botsch and Sorkine

[Botsch and Sorkine, 2008].

In a nutshell, the framework of spectral methods for mesh processing is the following: the

eigendecomposition of a matrix representing a discrete linear operator, based on the topo-

logical or geometric structure of the mesh, is performed and the resulting eigenvalues and

eigenvectors are used as a new representation of the underlying mesh. The reason why these

methods are referred to a spectral might not be evident and comes from the relationship

between this type of spectral processing and the Fourier transform. We introduce spectral

mesh processing and its link to the Fourier transform in subsection 5.4.1. Then we provide

an overview of the challenges in discretizing the continuous Laplace operator in subsection

5.4.2 and present an efficient method to compute the eigenstructures of large matrices in

subsection 5.4.3.

5.4.1 Link with the Fourier transform

The mesh vertex coordinates vi = (xi , yi , zi )T can be considered as a 3D signal defined over

the underlying mesh graph. That is how Taubin [Taubin, 1995] first introduced the use of

mesh Laplacian operators in his seminal paper. The classical Fourier transform of a periodic

one dimensional (1D) signal can be seen as the decomposition of that signal into a linear

combination of the eigenvectors of the 1D Laplacian operator. A proof of that claim can be

found in Jain’s classic text on image processing [Jain, 1989]. Similarly, defining a discrete

Laplace operator on the mesh and projecting the mesh vertex coordinate signal onto the

eigenvectors of that Laplacian allows to extend the notion of Fourier transform to the manifold

setting.

The main objective is thus to define an appropriate discrete Laplace operator for the mesh.
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xi

x j

xk

1
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x j

xk

1
xi

x j

xk

1

Figure 5.2 – Barycentric basis functions used for interpolation on a triangle.

5.4.2 Discretization of the Laplace operator

In general, the Laplace operator is defined as the divergence of the gradient, Δ=∇2 =∇ ·∇.

For a function of two parameters f (x, y)in Euclidean space, the Laplacian is the sum of second

partial derivatives, as shown in equation (5.7).

Δ f = div∇ f = div

(
∂ f
∂x
∂ f
∂y

)
= ∂2 f

∂x2 + ∂2 f

∂y2 . (5.7)

In spectral mesh processing, we do not consider the Euclidean space, but the manifold defined

by the surface. The Laplace-Beltrami operator generalizes the concept of the Laplace operator

to surfaces and, similarly, is defined as ΔS f = divS∇S f for a function f defined on a manifold

surface S . We thus need to define appropriate divergence and gradient operators on manifolds.

In the rest of this chapter, we will drop the subscript S as it should be clear from context that

the operators on manifolds are considered.

Discrete gradient

In a triangle mesh, each triangle defines, via its barycentric coordinates, a segment of a

piecewise linear surface representation. We start by defining the gradient of a function defined

on such a piecewise linear triangle mesh. Such a piecewise linear function f , defined at

each mesh vertex as f (vi ) = f (xi ) = f (ui ) = fi , can be interpolated linearly on each triangle

(xi , x j , xk ) using barycentric basis functions as described in equation (5.8).

f (u) = fi Bi (u)+ f j B j (u)+ fk Bk (u) , (5.8)

where u = (u, v) are the local coordinates, in the triangle, of the surface point x in a 2D

conformal parameterization and B{i , j ,k} are the barycentric basis functions. These barycentric

basis functions are illustrated in figure 5.2. As can be seen in figure 5.2, the gradient of each

basis function is orthogonal to the opposite edge of the vertex corresponding to that gradient.
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5.4. Spectral geometry processing

It is given by equation

∇Bi (u) = (xk −x j )⊥

2AT
, (5.9)

where ⊥ denotes a counterclockwise rotation by 90deg in the triangle plane and AT is the

triangle’s area.

The gradient of f is given by equation (5.10).

∇ f (u) = fi∇Bi (u)+ f j∇B j (u)+ fk∇Bk (u) . (5.10)

We can observe that, since the barycentric basis functions sum up to one everywhere in the

triangle, Bi (u)+B j (u)+Bk (u) = 1, their gradient sum to zero, ∇Bi (u)+∇B j (u)+∇Bk (u) = 0

and we can rewrite equation (5.10) as equation (5.11).

∇ f (u) = ( f j − fi )∇B j (u)+ ( fk − fi )∇Bk (u) . (5.11)

Thus, the gradient of the piecewise linear function f is given by equation (5.12).

∇ f (u) = ( f j − fi )
(xi −xk )⊥

2AT
+ ( fk − fi )

(x j −xi )⊥

2AT
. (5.12)

Discrete Laplace-Beltrami operator

There are several ways to discretize the Laplace-Beltrami operator. The two most common

discretizations are probably the uniform graph Laplacian, first proposed in [Taubin, 1995], and

the cotangent formula. Without going into details, the uniform graph Laplacian only depends

on the connectivity of the mesh and, thus, suffers from one major disadvantage: it does not

adapt to the spatial distribution of vertices on the surface and, therefore, is not an appropriate

discretization for non-uniform meshes. In this thesis, we use the more accurate discretization

commonly referred to as the “cotangent formula”.

The cotangent formula discretization of the Laplace-Beltrami operator can be derived either

using a mixed finite element/finite volume method [Meyer et al., 2002], or using discrete

exterior calculus (DEC). Both derivations involve advanced mathematics that are beyond the

scope of this thesis. We refer the interested reader to [Lévy and Zhang, 2010] where both

derivations are presented.

In this section, we present a simplified derivation, presented in [Botsch et al., 2010], which

makes use of the divergence theorem for a vector-valued function f to integrate the divergence

of the gradient of a piecewise linear function over a local averaging area Ωi . The divergence

theorem, described in equation (5.13),∫
Ωi

div f (u)dΩ=
∫
∂Ωi

f (u) ·n(u)d s , (5.13)
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n

αi , j

βi , j

x j

xi
Ωi

xi

x j

xk

a

b

Figure 5.3 – Quantities used in the derivation of the discrete Laplace-Beltrami operator

replaces the integration over the averaging area Ωi by an integration along its boundary ∂Ωi ,

where n(u) is the outward pointing normal unit vector of that boundary. Equation (5.14)

shows how to apply the divergence theorem to the Laplacian.∫
Ωi

Δ f (u)dΩ=
∫
Ωi

div∇ f (u)dΩ=
∫
∂Ωi

∇ f (u) ·n(u)d s . (5.14)

By considering each triangle T separately and the edges’ midpoints a and b, as illustrated in

figure 5.3, we can plug in the definition of the gradient, which is constant within each triangle,

given in equation (5.12):

∫
∂Ωi∩T

∇ f (u) ·n(u)d s = ∇ f (u) · (a −b)⊥

= 1

2
∇ f (u) · (x j −xk )⊥

= ( f j − fi )
(xi −xk )⊥ · (x j −xk )⊥

4ΩT
+ (5.15)

( fk − fi )
(x j −xi )⊥ · (x j −xk )⊥

4ΩT
.

Let γ j , γk be the inner triangle angles at vertices v j , vk , respectively. Since AT = 1
2 sinγ j‖x j −

xi‖‖x j − xk‖ = 1
2 sinγk‖xi − xk‖‖x j − xk‖, cosγ j = (x j−xi )(x j−xk )

‖x j−xi ‖‖x j−xk‖ , and cosγk = (xi−xk )(x j−xk )
‖xi−xk‖‖x j−xk‖ ,

equation (5.15) simplifies to equation (5.16).∫
∂Ωi∩T

∇ f (u) ·n(u)d s = 1

2

(
cotγk ( f j − fi )+cotγ j ( fk − fi )

)
. (5.16)

Thus, integrating over the whole averaging region Ωi , we obtain∫
Ωi

Δ f (u)d A = 1

2

∑
v j∈N1(vi )

(
cotαi , j +cotβi , j

)
( f j − fi ) , (5.17)

where N1(vi ) is the one-ring neighborhood of vertex vi and the angles αi , j and βi , j are

illustrated in figure 5.3. The discrete average of the Laplace-Beltrami operator of a function f
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5.4. Spectral geometry processing

at a vertex vi over the region Ωi is finally described in equation (5.18).

Δ f (vi ) = 1

2Ωi

∑
v j∈N1(vi )

(
cotαi , j +cotβi , j

)
( f j − fi ) . (5.18)

This allows to discretized the Laplace-Beltrami operator Δ f at each mesh vertex vi by a linear

combination of the function values at vi and at its one-ring neighbors v j :

Δ f (vi ) = wi
∑

v j∈N1(vi )

wi , j
(

f (v j )− f (vi )
)

. (5.19)

Stacking the function values f (vi ) and Laplacians Δ f (vi ) for all n vertices allows to write the

discrete Laplacian of the mesh in matrix notation, as described in equation (5.20).⎛
⎜⎜⎝
Δ f (v1)

...

Δ f (vn)

⎞
⎟⎟⎠= D−1Q︸ ︷︷ ︸

L

⎛
⎜⎜⎝

f (v1)
...

f (vn)

⎞
⎟⎟⎠ . (5.20)

D = diag(w1, . . . , wn) is a diagonal matrix of vertex weights wi = Ωi and Q is a symmetric

matrix of edge weights.

Qi , j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
cot(αi , j )+cot(βi , j )

)
, when v j ∈N1(vi ) ,

−∑
vk∈N1(vi ) Qi ,k , when i = j ,

0 , otherwise.

(5.21)

5.4.3 Band-by-band eigendecomposition

The eigen-decomposition of the discrete Laplace operator is obtained by solving equation

(5.22) for the eigenvectors hk and eigenvalues λk .

−Lhk =λk hk (5.22)

The Laplace operator matrix L can be large, depending on the number of vertices of the mesh

n but is sparse. To compute the solutions of a large sparse eigenproblem, several iterative

algorithms exist. The publicly available library ARPACK4 provides an efficient implementation

of the implicit restarted Arnoldi method for iteratively solving large-scale sparse eigenvalue

problems.

There are two main obstacles to the computation of the eigen-decomposition of a large

discrete Laplacian matrix L:

• Iterative solvers perform better at computing high frequencies, i.e. eigenvectors associ-

4A C++ interface to the ARPACK Fortran package is available at https://github.com/m-reuter/arpackpp
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ated with high eigenvalues, but we are interested mainly in low frequencies.

• The computation time is superlinear with the number of eigenpairs and we need to

compute a large number of eigenvectors.

Both issues can be addressed by using the band-by-band algorithm proposed in [Vallet and

Lévy, 2008]. It takes advantage of the Shift-Invert spectral transform. First, the spectrum

is shifted by λS by replacing L with L −λSId and then swapped by inverting this matrix as

LSI = (L−λSId)−1. This allows to define a new eigenproblem, as desribed in equation (5.23),

which have the same eigenvectors as the original one and which eigenvalues are related to the

original ones by λk =λS + 1
μk

.

−LSI hk =μk hk (5.23)

It thus becomes possible to apply an iterative solver, which will return the high end of the

spectrum efficiently, i.e. the largest μk , which corresponds to a band of eigenvalues centered

around λS . The band-by-band algorithm 2 splits the computation into multiple bands and

obtain a computation time that is linear in the number of computed eigenpairs.

Algorithm 2 Band-by-band algorithm

1: λS ← 0 ; λl ast ← 0
2: while λl ast <ω2

m do
3: compute an inverse LSI of (L−λSId)
4: find the 50 first eigenpairs (hk ,μk ) of LSI

5: for k = 1 to 50 do
6: λk ←λS + 1

μk

7: if λk >λl ast then
8: write (hk ,λk )
9: end if

10: end for
11: λS ← max(λk )+0.4(max(λk )−min(λk ))
12: λl ast ← max(λk )
13: end while

5.5 Conclusion

In this chapter, we first reviewed existing databases of 3D facial scans, both unregistered and

registered, and nonrigid registration methods. A large number of unregistered databases

have been proposed, since the 2000s, for different applications such as face recognition and

identification, a early popular research topic in facial image analysis, or head pose estimation.

In the scope of this thesis, we would like to emphasize that, even though these databases

cannot be used directly to build 3D models of the face because their scans do not share a

common parameterization, they can be used with an appropriate 3D nonrigid registration
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method, such as the one proposed in chapter 6. This represents a large potential source of 3D

facial scans, which could augment registered databases, mostly with respect to neutral facial

expression scans.

In the second section of this chapter, we provided a introduction to the Kinect Fusion algo-

rithm, which allows to fuse noisy and incomplete depth maps from different points of view

into a high quality 3D reconstruction of the scene. We have used this algorithm to collect all

the data of the EPFL3DFace database, which we introduce in the next chapter 6.

Finally, we provided an overview of some important aspects of spectral geometry processing.

We make extensive use of spectral geometry processing in the next chapter of this thesis,

chapter 6. The use of these methods in computer graphics is relatively new and despite some

very good tutorials in the main conferences in the field [Lévy and Zhang, 2010, Chang et al.,

2010], resources that introduce these methods in an accessible way are scarce.
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6 Spectral nonrigid registration

6.1 Introduction

In this chapter, we describe a 3D nonrigid registration method based on a spectral embedding

of the source and an implicit representation of the target. In order to build a new 3D face

model, which is able to describe variations due to specific facial expressions as well as a

specific population, we recorded a new database of facial scans and applied the proposed

method to register these scans.

In this chapter, we first propose to compute a spectral embedding of the source and use that

representation to constrain the possible deformations. Deforming the source in the spectral

domain allows choosing which frequency band to focus on, depending on required properties.

In our nonrigid registration pipeline, we propose to embed the template in the spectral domain

using a manifold harmonics transform (MHT) [Vallet and Lévy, 2008] and use this embedding

as a surface deformation model. Indeed, by optimizing over the parameters corresponding to

lower frequencies, we enforce the deformation to be smooth. Moreover, depending on the

number of frequencies Mfreq chosen, the number of parameters to optimize, 3×Mfreq, is much

smaller than in the case of per-vertex affine transform, 12×Nvert as Mfreq < Nvert. As an example,

in our experiments, the template has Nvert = 11510 vertices. That would results in 138’120

parameters to optimize in a per-vertex affine transform model but our spectral embedding uses

500 basis functions, resulting in 1500 parameters to optimize in our transformation model,

thus reducing the number of parameters by a factor 92.

A second keypoint of our method is the implicit surface representation [Ohtake et al., 2003] of

the target three dimensional (3D) scans in order to overcome the problem of point correspon-

dence. We propose to represent the target as an implicit surface in order to avoid computing

correspondences, when evaluating the distance between the source and the target and the

gradient of that distance. By representing the target as an analytical implicit surface, defined

as the zero level-set of a squared distance function, the distance of any point to the surface

is obtained by evaluating the value of the implicit function at that point. Moreover, when

computing the implicit surface representation, the implicit function can approximate the
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original scan, rather than interpolate it, thus effectively removing noise and filling holes.

Finally, we contribute to the availability of more 3D facial surfaces by introducing EPFL3DFace,

a new database consisting of 120 subjects performing 35 expressions. We show that the

subspace spanned by our 120 subjects, among which 87% are Caucasian, extends the sub-

space spanned by the subjects from FaceWarehouse [Chen Cao et al., 2014], another publicly

available database of fully registered 3D facial scans including a variety of facial expressions.

Establishing correspondences from one surface to another has been investigated in several

fields and under different names such as nonrigid registration, alignment, matching, mesh

morphing, cross-parameterization or correspondence estimation. A few of the most relevant

methods are discussed hereafter and we refer the reader to the book of Bronstein et al. [Bron-

stein et al., 2008] or the surveys of Van Kaick et al. [van Kaick et al., 2011] and Tam et al. [Tam

et al., 2013] for more exhaustive reviews of the different methods.

In the remaining of this chapter, we describe the new nonrigid registration method that we

propose in section 6.2. We then introduce EPFL3DFace, our database of 3D facial expressions

in section 6.3 and present results achieved by the proposed method on the new database in

section 6.4. Finally section 6.5 summarizes the contributions of this chapter and discusses a

few directions for future work.

6.2 Methods

The complete alignment pipeline is composed of the following steps, described in detail in

the following subsections: first, the template is rigidly aligned to the target such that both

surfaces share the same scale, position and orientation in space. This initial rigid alignment

is described in subsection 6.2.1. The different parts of the nonrigid registration are then

described in subsection 6.2.2: the similarity measure using implicit surface representation,

the transformation model using Manifold Harmonics Transform (MHT), and the complete

objective function and optimization process.

6.2.1 Initial rigid 3D registration

Our scans are, in general, not rigidly aligned with the template. Before being able to nonrigidly

align the source to the target, it is essential to compensate for unknown rigid transformations

such as scale, translation and rotation.

3D feature points, or landmarks, are used to compute the rigid transform between the source

and the target such that the source is rigidly aligned to the target. First, 68 landmarks are

manually annotated on the source. Note that this is done only once as the sources used for

each expression are already registered.

Then, similar to the approach used in the LSFM [Booth et al., 2016], we automatically detect
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the same 68 landmarks on each target. An image is first generated by projecting the 3D

surface on the image plane of a frontal virtual camera. We then detect the landmarks on this

image using a state-of-the-art facial feature detection algorithm [Qu et al., 2015] based on the

supervised descent method (SDM) [Xiong and Torre, 2014]. In order to get the 3D positions

of the landmarks on the target, we back-project the two dimensional (2D) positions of the

landmarks with the known projection matrix of the virtual camera and intersect these rays

with the 3D surface. The landmarks on the jaw are often less precisely located on the 3D

surface due to the fact that the back-projected rays are almost tangential to the surface and

thus a small imprecision in 2D becomes a large error in the intersection. For that reason, we

discard these when computing the rigid transform.

Finally, the rigid transform, i.e. the translation and rotation between the two sets of 3D

landmarks is computed as a weighted least-squares problem using a singular value decom-

position (SVD) [Arun et al., 1987, Sorkine, 2009]. The scaling factor between the two sets is

retrieved as well. The scaling, translation, and rotation are applied to the source and the

resulting shape is used for the nonrigid registration described in the next section.

6.2.2 Nonrigid 3D registration

Each scanned 3D facial surface needs to be re-parametrized into a consistent form, where

the number of vertices, the triangulation, and the anatomical meaning of each vertex are

consistent across all surfaces. The general strategy is for each scan to deform a rigidly aligned

template, the source, S such that it matches the scan or target surface, T . The deformation

model, which ensures a meaningful deformation, is denoted by χ and the quality of the match

is measured by a similarity measure.

S = {pi |i = 1, ..., N S}
χ�−→ T = {qi |i = 1, ..., N T } . (6.1)

This dense correspondence problem is referred to as nonrigid registration and is defined by

three main elements:

• a similarity measure, dependent on the representations of the source S and the target

T ,

• a transformation model χ, which describes allowed deformations of the source, and

• an objective function, which combines the similarity measure and the transformation

model and is optimized with a numerical optimizer.

In the next subsections, we will detail each of these three elements.
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Similarity measure with implicit surface representation

In classical nonrigid iterative closest point (NICP) approaches, correspondences need to be

computed in order to be able to evaluate the distance between the source and the target.

These are unknowns as this is precisely what we are looking for in the first place. Several

iterative approaches have been proposed based on spatial proximity of points, either using a

point-to-point or a point-to-plane distance and looking for correspondences from the source

to the target or the opposite, or a combination of both [Weise et al., 2009, Mitra et al., 2004].

The correspondence problem gets even more complicated, when the quality of one or both

surfaces is low. In particular, holes and noisy parts in the target further complicate the search

for correspondence.

We propose to use an implicit surface representation for the target in order to avoid having

to estimate correspondences. The surface is then implicitly represented as the zero level-set

of a distance function d : R3 �→ R. Choosing carefully that function allows to approximate

the input surface rather than interpolate it, thus smoothing it and filling holes. In addition,

desirable properties of an implicit surface reconstruction method include speed and low

memory overhead.

As the value of the function is the signed distance to the surface, evaluating a distance between

the source and the target can be achieved by simply summing the squared value of the implicit

function at each vertex of the source, as described in equation (6.2). This does not require

searching for correspondences.

dist2(S ,T ) =∑
i
d
(
pi

)2 . (6.2)

Multilevel partition of unity (MPU) implicits provide fast, accurate, and adaptive reconstruc-

tions of complex shapes [Ohtake et al., 2003]. The main advantage of MPU is to define

approximants locally, thus avoiding the overhead of a global support, and integrate them

together by weighting each of them. The local approximants Qi , in each cell of the OCtree

are blent with smooth, local weights wi that sum up to one everywhere on the domain, as

described by equation (6.3).

f (x) ≈∑
i
φi (x)Qi (x) with

∑
i
φi ≡ 1 , (6.3)

where f (x) is the function to approximate and φi is the partition of unity function for a given

cell of the OCtree. The partition of unity functions are described by equation (6.4).

φi (x) = wi (x)∑n
j=1 w j (x)

. (6.4)

Following the original method, we use the quadratic B-spline b(t ) to generate weight functions
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wi (x) = b(
3|x −ci |

2Ri
+ 3

2
) , (6.5)

centered at ci and with a spherical support of radius Ri .

MPU uses a hierarchical structure to adaptively divide the region of space containing the input

set of shape vertices. We use an OCtree structure, starting from the bounding cube of the

shape and computing an approximation of the points enclosed in a sphere of radius R. The

radius of the sphere is proportional to the main diagonal d of the current cell R =αd . When

the computed local max-norm approximation error ε is greater than a user-specified threshold

ε0, the cell is subdivided and the process is repeated. This allows the OCtree to adapt to the

relation between local shape complexity and desired accuracy.

If the initial sphere does not contain enough points to compute the approximation, the radius

is iteratively increased until the sphere contains a user-defined minimum number of points

Nmi n . In that case, the cell is not further subdivided, independently of the approximation

error and unlike the original method in which the initial sphere needs to be empty to stop the

subdivision. The local max-norm approximation error ε is estimated according to the Taubin

distance [Taubin, 1995] and is given by equation (6.6).

ε= max
|pi−c |<R

|Q(pi )|/|∇Q(pi )| . (6.6)

The choice of the approximants allows to address different scenarios: locally planar surfaces,

surfaces with sharp edges, etc., as emphasized in [Ohtake et al., 2003]. Following the original

method, we implemented the bivariate quadratic polynomial and the general quadric approx-

imants. To give an intuition, the bivariate quadratic polynomial is best suited to approximate

local smooth patches, and the general quadric provides consistent approximations on larger

parts of the surface which might contain more than one sheet.

In practice, the surfaces we are implicitly representing, our scans, are mainly composed of local

smooth patches in the region of interest, the face region, and noisy boundaries. Therefore, we

only use the bivariate quadratic polynomial approximant. This and the choice of Nmi n have

shown to be critical, when implicitly representing the scans from our database as explained in

section 6.3.

Transformation model

When deforming the source toward the target, the transformation model defines the possible

transformations of the source in order to avoid overfitting, prohibit arbitrary deformations,

and favor reasonable ones and reduce the dimensionality of the problem. Intuitively, coarse,

global deformations should be applied first and then refined with fine, local deformations. In

general, smoothness should also be preserved.
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Figure 6.1 – Angles and local averaging area, Ωi , used in the discrete Laplace-Beltrami operator

Per-vertex displacements are thus modeled using spectral tools [Lévy and Zhang, 2010]. They

offer an intuitive control over deformations where coarse, global deformations are embedded

in the low frequencies and fine, localized deformations in the high frequencies. By selecting a

number of lower frequencies m � n, the number of vertices in the source, the dimensions

of the optimization problem are reduced. Moreover, the built-in smoothness of the low

frequencies helps to avoid overfitting.

The Laplacian framework and differential representations allow to describe surface meshes

through their differential properties. As a generalization of Fourier analysis the Manifold

Harmonics Basis (MHB) and corresponding Manifold Harmonics Transform (MHT) introduced

in [Vallet and Lévy, 2008] provide a re-parametrization tool which allows us to represent a

mesh with potentially fewer coefficients and more interestingly to constrain the deformation

of the mesh, when changing the coefficients in ways that preserve the smoothness of the

mesh.

Manifold harmonics are defined as the eigenfunctions of the discrete Laplace operator. The

basis vectors of the MHT are thus the eigenvectors hk of the discrete Laplacian as described in

equation (6.7).

hk = [H k
1 , ..., H k

n ] satisfies −Qhk =λDhk . (6.7)

The matrix Q is called the stiffness matrix and is defined by the cotangent formula:

Qi , j =
⎧⎨
⎩

1
2

(
cot(αi , j )+cot(βi , j )

)
when i �= j

−∑
k Qi ,k when i = j .

(6.8)

where the angles αi , j and βi , j are illustrated in figure 6.1.

The diagonal matrix D is called the lumped mass matrix and is defined by:

Di ,i =
∑

t∈St (i )
Ωt , (6.9)

where St (i ) denotes the set of triangles incident to i and Ωt the local averaging area of triangle
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t . In our case, we use the barycentric cell as local averaging area. The barycentric cell

connects the triangle barycenter with the edges’ midpoints. The eigendecomposition of

the discrete Laplacian described by equation (6.7) is computed using the band-by-band

algorithm described in [Vallet and Lévy, 2008], which takes advantage of the Shift-Invert

spectral transform.

To compute the transform of the function x from geometric space to frequency space, x is

projected onto the manifold harmonics basis through the inner product. The MHT of x is a

vector [x̃1, x̃2, ..., x̃m] given by equation (6.10).

x̃k =< x, H k >= xT Dhk =
n∑

i=1
xi Di ,i H k

i . (6.10)

The inner product contains D in order to ensure orthogonality of the basis, as the Laplacian is

not symmetric, due to the weights Di ,i which scale the lines of Q.

The inverse transform, to map the function x̃ in frequency space into its geometric space is

given by equation (6.11).

xi =
m∑

k=1
x̃k H k

i . (6.11)

H is a basis containing the spectral modes of variation of the shape. We thus represent a new

shape as the original source shape p̄ and a linear combination of spectral deformations, as

described in equation (6.12).

p(α) = p̄ +Hα , (6.12)

where α is a vector of spectral coefficients. Setting α to zero yields the initial shape, without

deformation.

Furthermore, as described in section 6.2.1, the source has been rigidly aligned to the target

beforehand. Nevertheless, as pointed out by Blanz et al. [Blanz et al., 2004], the result of this

rigid pre-alignment is sub-optimal, since the optimal rigid alignment depends on the source

after deformation. Thus we need to include translation and rotation in the transformation

model. Translation is included in the first spectral basis, which is a constant vector, and we

include a linearized rotation similarly to [Blanz et al., 2004] as described in equation (6.13).

R v ≈cγsγ+cθsθ+cφsφ+v (6.13)

sγ =(−y1, x1,0,−y2, x2,0, ...)T

sθ =(0,−z1, y1,0,−z2, y2, ...)T

sφ =(z1,0,−x1, z2,0,−x2, ...)T .
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The complete transformation model is thus given by equation (6.14).

p(cγ,cθ,cφ,α) = p̄ +cγsγ+cθsθ+cφsφ+Hα . (6.14)

Objective function

Combining the transformation model and the implicit surface distance measure, we can eval-

uate the similarity between the deformed source and the target for a given set of parameters α,

cγ, cθ, cφ. We define the data fitting term Ed at a of our objective function as in equation (6.15).

Ed at a = dt (
p̄ +cγsγ+cθsθ+cφsφ+Hα

)
. (6.15)

We noticed that, due to the relatively low accuracy of the Kinect, the eye regions often do

not contain enough details to correctly align the eyes. This causes the eyes of the source to

slide on the flat region around the eyes of the target surface, ending in incorrect positions.

To further constrain the eye regions, we use 3D landmarks around the eyes. On the target,

these landmarks are detected with high accuracy during the rigid alignment step, whereas on

the source, they have been manually annotated. The landmarks detection and annotation

process is detailed in section 6.2.1. In order to constrain the eye regions, we add a term to the

objective function penalizing large distances between the landmarks on the source and the

corresponding landmarks on the target. This term is defined in equation (6.16).

El =
nl∑

i=1
‖p̂i − q̂i‖2

2 , (6.16)

where nl is the number of landmarks, p̂i are the landmarks on the source and q̂i are the

landmarks on the target.

As discussed in section 6.2.2, we want to favor low frequencies over high frequencies, thus we

add a regularization term Eb to penalize higher bending of the deformation. This regulariza-

tion term is defined in equation (6.17).

Eb = ‖ΛHα‖2
2 , (6.17)

where ΛH is a diagonal matrix of eigenvalues corresponding to the spectral bases.

A second regularization term Em penalizes the magnitude of the deformation, as defined in

equation (6.18).

Em = ‖α‖2
2 . (6.18)

112



6.3. EPFL3DFace database

20 40 60
age

0

10

20

30

n
u

m
b

er
o

fs
u

b
je

ct
s

(a)

Male

57.5%

Female

42.5%

(b)

South American

3.3%

Caucasian

87.5%

Asian

9.2%

(c)

Figure 6.2 – (a) Age, (b) gender and (c) ethnicity distributions of the subjects included in the
database

The complete objective function is given in equation (6.19).

E = Ed at a +β0El +β1Eb +β2Em . (6.19)

We use a gradient descent solver to minimize E . In our experiments, we chose β0 = 1e−4,

β1 = 2e−3 and β2 = 2e−4 empirically.

6.3 EPFL3DFace database

We have collected EPFL3DFace, a new 3D facial expressions database, for the study. The 3D

facial surfaces have been nonrigidly registered with the method presented such that they are all

in dense correspondence. This allows the use of EPFL3DFace database to train a 3D statistical

model of the face, for example a morphable model, a multilinear model or a blendshape model,

for a large variety of applications, such as but not limited to facial expression recognition,

visual speech recognition, morphological analysis of the face, etc.

We recorded 120 subjects performing 35 facial expressions, while sitting still on a rotating chair.

The subjects were facing a Microsoft Kinect® for Windows v.1 at a distance of 50-70 cm. A

screen in front of the subjects was displaying instructions on how to perform each expression

with visual examples. At the same time, an operator was explaining and demonstrating how

to perform the expression. Each subject had to perform each expression and stay perfectly

still, while the operator was rotating the chair at an angle of ±60◦ −90◦. This operation took

approximately 15 seconds on average.

Figure 6.2 shows the age, gender, and ethnicity distributions of the subjects included in

EPFL3DFace database. In general, the population is slightly biased towards young men, as

the subjects were recruited mainly in the electrical engineering department of the university.
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(a) (b) (c)

Figure 6.3 – Examples of scans from the database: (a) jaw forward (AU29), (b) viseme /uh/, (c)
surprise

With 43% women and 57% men, the gender distribution is still reasonably well balanced.

The ethnicity is strongly biased towards Caucasian, with 87% of the subjects included in the

database. This is a wanted feature of the database making it complementary to FaceWarehouse

[Chen Cao et al., 2014], which mainly contains Asian subjects. We discuss this aspect in more

detail in section 6.4.2. We also recorded the country of origin and the mother-tongue of the

subjects.

We recorded each subject with a neutral facial expression, with the eyes open, and then in-

structed them to perform different facial expressions. These include prototypical expressions:

anger, sadness, surprise, fear, disgust, happiness, and variants: anger with mouth slightly

open, sad surprise and grin. They also include specific action units (AU): closed eyes (AU43),

mouth open (AU25), brow lower (AU04), brow raiser (AU01), jaw left and right (AU30), jaw

forward (AU29), mouth left and right, dimples (AU14), chin raiser (AU17), lips funneler (AU22),

lips puckerer (AU18), lips roll (AU28), and cheek blow (AU33). Nine visemes are also included

representing the following phonemes /ah/, /uh/, /axr/, /eh/, /l/, /m/, /n/, /f/, /iy/ and one

extreme facial movement: biting their own top lip.

In order to generate a smooth and low-noise 3D mesh from noisy and incomplete depth maps,

we aggregated multiple depth maps from different view points in order to construct a full view

of the face for each expression and subject by using the Kinect Fusion algorithm1[Newcombe

et al., 2011, Izadi et al., 2011]. Thus, a 3D facial surface was obtained for each expression of

each subject. Figure 6.3 shows three examples of obtained scans.

1A lightweight, reworked and optimized version of KinFu, originally shared in PCL in 2011, is available on
https://github.com/Nerei/kinfu_remake
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6.3.1 Nonrigid alignment of the database scans

As mentioned in chapter 5, in order to allow for statistical modeling of the faces in EPFL3DFace

database, these need to be put in dense correspondence. We nonrigidly align all the scans in

the database such that all the expressions of all the subjects share a common parametrization

using the method described in section 6.2. This allows for statistical modeling of the variations

due both to the identity and the expression.

Our method is based on the deformation of a single template shape. The advantage of not

requiring a full statistical shape model (see chap. 5) but only a static template comes at the

price of a larger sensitivity to the initialization. This implies that in order to converge to the

target, the initial template to be deformed should be close already. Since we observed that the

3D shape of the face varies significantly due to changes in facial expressions, we decided to

use a separate template for each facial expression.

We take advantage of the FaceWarehouse [Chen Cao et al., 2014] database and compute one

mean shape for each expression. For each expression in EPFL3DFace, we select as template

the FaceWarehouse mean shape closest to that expression. Some expressions have direct

correspondences in both databases as the set of expressions from FaceWarehouse is included

in EPFL3DFace. For the remaining expressions in EPFL3DFace, we manually selected the

closest corresponding expression in FaceWarehouse.

An important advantage of using different templates for each expression is that we do not

need to perform any kind of expression transfer. Indeed, the templates of all expressions are

already registered together. After registration, the scans of different expressions are in dense

correspondence, since the templates used for registration are in dense correspondence.

In practice, we do not evaluate all the vertices of the source in the implicit function of equation

(6.2), but only the vertices lying on the face. Due to the fact that we use the closest expression

mean shape of FaceWarehouse as the source for each expression in EPFL3DFace, the topologies

of the source and the targets are very different. FaceWarehouse mean shapes are closed

surfaces, homeomorphic to a sphere, whereas the scans are bounded surfaces, homeomorphic

to a plane. Moreover, the scans of the head are only partial and information is missing on the

top and the back of the head. That is not the case with the FaceWarehouse shapes. Trying

to align all the vertices of such shapes onto our scans would not be reasonable as they do

not share the same topologies and do not contain the same information even though there

is an overlap. Thus, we define the set of landmarks lying on the face to use in the implicit

distance computation defined in equation (6.2). Note that the deformation is still applied to

the whole shape. In summary, the whole source shape is deformed such that the distance

between vertices on the face and the target is minimized.

This nonrigid alignment process is repeated for each scan in the database, resulting in a

database of registered 3D surfaces of 120 subjects, performing 35 different expressions and

facial movements. This database is available to the research community upon request.
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Figure 6.4 – Visualization of some of the spectral bases bi . The amplitude of the deformation
for each vertex is normalized over the first 500 bases where −A is the maximum deformation
amplitude towards the inside of the surface and +A the maximum towards the outside of the
surface.

6.4 Results

In this section we discuss qualitative results obtained with the proposed method on the

collected database. In subsection 6.4.1, we show a few of the manifold harmonic bases that are

used to constrain the nonrigid deformation as well as different reconstructions obtained with

a varying number of bases and discuss the influence of the number of bases. In subsection

6.4.2, we then show visual results and compare the obtained deformed shapes with their

corresponding targets. We also provide detailed visualization of the spectral deformation

process and analyze the evolution of the different terms in the objective function. Finally in

subsection 6.4.3, we visualize the manifolds of shapes and compare these manifolds between

an existing database, FaceWarehouse, and our new database.

The lack of ground truth is the main obstacle to a quantitative validation of the method.

Indeed, as it is a dense registration problem, the locations of each and every landmarks of the

source would need to be manually annotated. Depending on the number of vertices in the

source, this represents several thousands of 3D locations for each 3D face scan. Moreover, this

problem is largely under-constrained. Ultimately, the topology and geometry of the target

is transferred to the source, but these are not uniquely defined by the 3D locations of the

vertices. As an example, moving one vertex of the source along the surface of the target does

not necessarily change the quality of the alignment.

6.4.1 Spectral basis visualization

Figure 6.4 shows the first 3 bases and a few other bases corresponding to higher frequencies.

Note that basis 0 is constant and is not depicted in the figure. As expected, spectral bases

corresponding to lower frequencies show smoother deformations of the surface, whereas

higher frequencies provide more localized deformations. The choice of the number of bases

to consider in the deformation model is thus guided by the level of details at which the

deformation is expected to fit. A very important consideration is that this resolution is only the

resolution of the deformation and not the resolution of the obtained mesh. Indeed, the spectral

content of all other frequencies outside the frequency band considered in the deformation

116



6.4. Results

(a) N = 50
E = 78.28%

(b) N = 100
E = 82.13%

(c) N = 200
E = 85.66%

(d) N = 500
E = 90.02%

(e) N = 1000
E = 92.91%

(f) N = 2000
E = 95.52%

(g) N = 5000
E = 98.74%

(h) N = 10000
E = 99.95%

(i) original

Figure 6.5 – (a)-(h) Reconstructions of the FaceWarehouse neutral mean shape using the first
N bases, keeping E percent of the energy. (i) The original shape.

model is retrieved from the source shape p̄ in equation (6.12).

In order to get a better intuition of the resolution of the deformation, figure 6.5 shows different

reconstructions of the FaceWarehouse [Chen Cao et al., 2014] mean shape with neutral expres-

sion. These were obtained by computing the MHT, transforming the shape into the spectral

domain, setting all the spectral coefficients x̃ to zero except the first N coefficients and taking

the inverse transform to return to the spatial domain. In short, the source has been filtered

with a low-pass filter, whose cut-off frequency varies with the number of bases kept.

Experimentally, we found that keeping the first 500 bases is a reasonable trade-off between the

resolution of the deformation and the compactness of the deformation model. The energy of

the template that is kept in these 500 bases corresponds to 90.02% of the total energy. With 500

bases, the resolution of the deformation is sufficient to deform shapes with a given expression

toward the scans representing the same expression or close ones on subjects with different

identities, as explained in section 6.4.2.

6.4.2 Spectral alignment

We present the results of the complete nonrigid alignment process on a neutral scan of the

EPFL3DFace database in figure 6.6. Figure 6.6a shows the clean and normalized color scan

from the database. The corresponding mean shape from FaceWarehouse is then rigidly aligned

to the scan using 3D landmarks, as detailed in section 6.2.1. In that case, the source is the

neutral expression mean shape. The resulting scaled, translated, and rotated mean shape is

shown in figure 6.6b. That rigidly aligned source is then nonrigidly deformed following the

method described in section 6.2.2 and the result is shown in figure 6.6c. For better visual

comparison, the target is shown again, without texture, in figure 6.6d. It should be noted that

even though the rigid alignment does not retrieve the exact pose of the target, as shown by a

comparison of the head poses between figures 6.6a and 6.6b, this misalignment is corrected

during the nonrigid alignment by the linearized rotation term of the transformation model

described in equation (6.13). Figure 6.7 presents additional results on two subjects performing

seven other expressions or facial movements.
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(a) (b) (c) (d)

Figure 6.6 – Alignment results. (a) Color target (b) Rigidly aligned source (c) Result of the
nonrigid alignment (d) Target without color (for better comparison).

In order to get a better understanding of the spectral deformation process, figure 6.8 shows

the evolution of the different terms in the objective function as well as corresponding shapes,

magnitudes of deformation, and distances to the target for a few steps of the optimization.

Overall, the data term and the sum of all terms decrease with the number of iterations and

seem to have converged at the end of the optimization process. The role of the bending

regularization term is clear in the first steps of the optimization, where it prevents extreme,

non-realistic deformations to dominate as seen in iteration 1 in figure 6.8a.

6.4.3 Facial manifold visualization

In order to validate the intuition that training 3D face models using scans of people from

different populations yields different manifolds, we visualize the manifold of scans from the

FaceWarehouse database as well as EPFL3DFace using t-SNE [van der Maaten and Hinton,

2008]. Following the idea of Booth et al. [Booth et al., 2016], we train a simple principal

component analysis (PCA) model of the neutral faces in FaceWarehouse and EPFL3DFace,

project the training samples onto that d-dimensional subspace and use t-SNE to generate a

2D visualization of that subspace. We then label the samples according to which database

they belong to. Figure 6.9 shows the resulting visualization.

More specifically, we represent each shape as a vector S = (x0, y0, z0, ..., xk , yk , zk ), with k =
5956, the number of vertices lying on the face, as defined in section 6.3.1. We then compute

a PCA decomposition of the matrix whose rows are the shape vectors. Only the first 96

eigenvectors, which together explain more than 99% of the variance of the data, are kept.

Each shape is then projected on the PCA basis, thus effectively reducing the original high

number of dimensions of these. The new parametrization of the shapes in the PCA basis is the

input to the t-SNE algorithm. t-SNE then projects the data to a low-dimensional subspace,
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.7 – Alignment results on two subjects and seven different facial expressions. (a) Color
target (b) Rigidly aligned source (c) Result of the nonrigid alignment (d) Target without color
(for better comparison).
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Figure 6.8 – Evolution of the objective function and corresponding shapes during the opti-
mization (a) Evolution of the individual terms in the objective function as well as the total
cost for each iteration of the optimization. (b) The first row shows the distance to the target,
normalized over the whole sequence and the second row the amplitude of the deformation
for different steps of the optimization process, normalized in the same way.
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Figure 6.9 – Database subspaces visualization. FaceWarehouse, × Mean shape FaceWare-
house, Caucasian subjects from EPFL3dFace, Asian subjects form EPFL3dFace, South
American subjects from EPFL3dFace.

typically 2D, while preserving similarities between data points and allows to visualize the

structure of the data [van der Maaten and Hinton, 2008]. In this 2D space, we then label each

point, which corresponds to each shape, according to the database that shape belongs to. For

EPFL3DFace, we also chose to label the different ethnicities differently. This is not possible for

FaceWarehouse, as we do not have the ground truth labels for the ethnicity of the subjects.

In the visualization in figure 6.9, shapes from different databases appear to be clustered and

these clusters span different part of the subspace. Moreover, all the shapes from EPFL3DFace

are obtained by nonrigidly deforming the mean shape of the corresponding expression in

FaceWarehouse, represented as a cross in figure 6.9. This mean shape, the neutral expression

in that case, is thus effectively deformed in a way that is complementary to the existing shapes

in FaceWarehouse.

6.5 Conclusion

In this chapter, we introduce a new method to nonrigidly register a template to 3D surfaces.

We take advantage of spectral geometry processing methods and propose to use Manifold

Harmonics Transform (MHT) to constrain the deformation of the template, while enforcing

121



Chapter 6. Spectral nonrigid registration

smoothness and reducing the number of parameters in the deformation model. More ad-

vanced use of the spectral nature of that deformation model needs to be further investigated.

For example, it could be beneficial to select a different frequency band in which to deform the

template, depending on the template, the level of details and the application. In our case, we

show qualitatively that we obtain a reasonable level of details using only the first 500 spectral

bases.

In addition, we propose to use an implicit surface representation based on multilevel partition

of unity (MPU) for the target. This presents two main advantages: first, this new representation

of the target surface allows to denoise the surface by approximating rather than interpolating

it and fill in missing data. Second, the evaluation of the distance to the target is consid-

erably simplified and is reduced to evaluating the implicit function, avoiding the need for

correspondences.

Finally, we apply the proposed method on 3D facial scans in order to align them, or put

them in dense correspondence. This is required to perform statistical analysis on the set

of shapes and ultimately train a 3D statistical shape model. The nonrigidly registered set

of shapes constitutes a new database of 3D facial expressions, EPFL3DFace, containing 120

subjects performing 35 different facial expressions and movements. This database is available

to the research community upon request. We show that EPFL3DFace is complementary to

the existing FaceWarehouse database and that both of them can be combined such that the

number of subjects is increased by 80% and that they span a larger subspace.

EPFL3DFace and the presented spectral nonrigid alignment method constitute the first steps

towards a 3D model of the face including a representative population and a large number of

facial expressions and movements. From there, a statistical model can be learned using one of

the many formulations that have been proposed, from the initial morphable model [Blanz and

Vetter, 1999], based on a single dimension principal component analysis (PCA), to more recent

multilinear models [Vlasic et al., 2005], or blendshape models [Weise et al., 2011]. Such a 3D

face model can then be exploited in many different facial image analysis applications, such as

the difficult tracheal intubation problem presented in part I of this thesis. More specifically, it

acts as a prior to constrain the 3D reconstruction of the shape of the face from one or several

2D images. The morphological features would then be computed directly on the reconstructed

3D shape. This presents the advantages that these features can be invariant to the pose, as the

reconstructed 3D shape is pose independent, and that several views can be combined in order

to refine the 3D reconstruction.
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Conclusions

In this final chapter, we review our contributions and main findings and discuss their benefits

and limitations. We also present an outlook for future research perspectives, both in terms

of the methodology and the medical application we targeted in this thesis, the automatic

prediction of difficult tracheal intubation.

Summary and discussion of findings

In chapter 1, we have reviewed core components of a two dimensional (2D) facial image

analysis pipeline, namely face detection and facial landmarks localization. We have provided a

comprehensive introduction to the topic, by reviewing two face detectors, amongst which the

Viola-Jones face detector, probably the most used real-time face detection algorithm in the

past 15 years. We have provided a categorization of facial landmark localization methods and

a review of four of them, amongst which the supervised descent method (SDM), a state-of-the-

art regression-based method. These four methods were then benchmarked on two publicly

available databases. In order to give a comprehension of the advantages and limitations of

each method, we have discussed the results of the benchmark.

In chapter 3, we have presented a method to classify views of the mouth opening according

to the visibility of the oropharyngeal structures, as defined in the modified Mallampati score.

To the best of our knowledge, that is the first work proposing an automatic system for this

task. Using features from a linear texture model, our method correctly classifies 95 out of 100

samples, and reaches 100% recall and precision for Mallampati class 4, which is an indicator

of difficult intubation. The main limitation of the work, as presented in chapter 3, is that we

assume that the facial landmarks are known. We have later demonstrated, in chapter 4, that

these can indeed be localized and, thus, that automatic modified Mallampati score prediction

can be integrated in a more complete system to predict the difficulty of tracheal intubation.

In chapter 4, we have proposed a fully automatic, facial morphometry based method to

predict the difficulty of patients’ tracheal intubation. Our method was developed and tested

on the largest database of patients related to endotracheal intubation and reached an area

under the curve (AUC) of 81% on a research-oriented scenario and 77.9% on a real-world

scenario. We have demonstrated that the proposed method performs as well as state-of-the-
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art multifactorial tests performed manually by experienced anesthesiologists. Yet, it does not

require any measurement on the patient other than frontal and profile photographs, making

it practical even for untrained personnel. At its current level of performance, this method

already has the potential to reduce the costs, and increase the availability of such predictions,

by not relying on qualified anesthesiologists with years of medical training. Nevertheless,

we believe that, in order to reach its full potential and truly improve the patients’ safety, an

automatic method needs to reach superior performance. The main limitation for reaching

such performance is the lack of data, including the images of the patients’ face, but also a

reliable ground-truth. This implies two things; first, more patients need to be recorded, and

second, we believe that more work needs to be done in order to reach a reliable and objective

definition of a difficult tracheal intubation, as discussed in chapter 2. The class imbalance

between easy and difficult patients accentuates the need for more data. Indeed, even though

we developed and validated the proposed method on more than 900 patients, only 60 of them

were difficult to intubate. This shows that a large number of patients need to be recorded

in order to get a sufficient number of difficult patients. In the next section, we discuss a few

approaches to ease the data collection and increase the number of patients.

Another limitation of the methods presented in part I is the 2D nature of these methods.

The head-pose variations in between patients can affect the normalization of the features

and introduce noise in these. Moreover, the features from different views, typically from

frontal and profile views of the face, are extracted independently, which might be suboptimal.

These limitations have been the main motivation for the second part of this thesis and the

development of a three dimensional (3D) model of the face.

For this purpose, in chapter 6, we have proposed a 3D nonrigid registration method based on

spectral analysis on the mesh manifold. By constraining the deformation of a template in the

frequency domain, we have shown that smoothness of the deformation can be ensured by

optimizing it only in the low frequencies. This also allows to considerably reduce the number

of free parameters in the optimization. In our experiment, this number was reduced by a factor

of 92. We also proposed to represent the target mesh using an implicit surface representation,

based on multilevel partition of unity (MPU). By using a local approximant, as opposed to

non-local kernels in radial basis functions, in combination with an adaptive data structure,

it is possible to efficiently represent surfaces for any given level of accuracy. As the focus of

this work is the development of a 3D face model, adapted to the difficult tracheal intubation

prediction, we have demonstrated the applicability of our nonrigid registration method on

a new 3D facial expressions database, EPFL3DFace. This database contains 120 subjects,

performing 35 different facial expressions and movements, recorded with a Microsoft Kinect®.

One limitation of the methodology is the lack of comparison with other methods, for the

nonrigid alignment method as well as for the implicit surface representation. The comparison

is, indeed, difficult, as no ground truth is available in terms of alignment.
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Future perspectives

In this section, we list a few perspectives for future research, which were identified in the scope

of this thesis. First, we discuss a few research directions from a technical point-of-view to

further improve our spectral nonrigid registration method and any resulting 3D model. Then,

from a broader perspective, we suggest a few ideas to continue our work on the automatic

prediction of difficult tracheal intubation.

On spectral nonrigid registration and 3D face models

From the methodological point-of-view, there is room for more in depth exploration of the

influence of the different parameters of the method. As the method uses a spectral embedding,

the choice of the frequencies, or the frequency bands, is completely open. In this work, we

selected a low frequency band in order to ensure smoothness of the deformation, but different

frequencies could be used with different properties. Perhaps some of the most important

frequencies of a given input mesh could even be learned, which would allow to reduce further

the number of parameters.

We also mentioned that our database of 120 subjects could, in principle, be augmented with

nonrigidly registered scans from other databases. We believe that this would be an interesting

research direction and could lead to a more complete model, or to different models that could

adapt to different populations.

In the work presented in this thesis, we tackle the problem of nonrigid alignment, but we do

not train a complete model with the aligned scans. Different formulations of statistical models

have been proposed, from the initial morphable model [Blanz and Vetter, 1999], based on

a single dimension principal component analysis (PCA), to more recent multilinear models

[Vlasic et al., 2005], or blendshape models [Weise et al., 2011]. A thorough comparison of the

expressive power of different statistical models would be of high value.

On automatic prediction of difficult tracheal intubation

From the application point-of-view, we saw that the lack of data, in terms of patients’ record-

ings and ground-truth, was severely limiting the performance. Any development to ease the

data collection and increase the number of patients would thus be very beneficial. A portable

solution, for example on mobile, would allow for large-scale deployment of the data collection

process across hospitals, in a multi-centric fashion. Technically, such a solution is not a big

challenge and the obstacles would probably be more on a regulatory level.

Finally, a direct extension would be the application of the new 3D facial model to the difficult

tracheal intubation problem. As discussed extensively already, extracting the morphological

features directly from a 3D representation of the face presents significant advantages. More-

over, the applications of such a 3D model of the face are not limited to a specific problem in
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On automatic prediction of difficult tracheal intubation

anesthesiology. Many current applications of facial image analysis can benefit from the avail-

ability of such a model. As an example, recent work tries to uncover the relationships between

facial variation, modeled with a linear statistical model of the face, and a subset of candidate

genes [Claes et al., 2014]. This approach aims at identifying genes affecting normal-range

facial features as well as predicting the appearance of a face from genetic markers. Having

both the ability to reconstruct the 3D shapes of over 2700 patients’ faces, recorded in the first

part of this thesis, and the access to genomic information of these same patients, through the

hospital biobank, potentially enables contributions in this (futuristic) research topic.
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