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High-Quality Parallel-Ray X-Ray CT Back
Projection Using Optimized Interpolation

Michael T. McCann, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract— We propose a new, cost-efficient method for comput-
ing back projections in parallel-ray X-ray CT. Forward and back
projections are the basis of almost all X-ray CT reconstruction
methods, but computing these accurately is costly. In the special
case of parallel-ray geometry, it turns out that reconstruction
requires back projection only. One approach to accelerate the
back projection is through interpolation: fit a continuous rep-
resentation to samples of the desired signal, then sample it at
the required locations. Instead, we propose applying a prefilter
that has the effect of orthogonally projecting the underlying
signal onto the space spanned by the interpolator, which can
significantly improve the quality of the interpolation. We then
build on this idea by using oblique projection, which simplifies
the computation while giving effectively the same improvement
in quality. Our experiments on analytical phantoms show that
this refinement can improve the reconstruction quality for both
filtered back projection and iterative reconstruction in the high-
quality regime, i.e., with low noise and many measurements.

Index Terms— X-ray tomography, computed tomography,
interpolation, reconstruction algorithms.

I. INTRODUCTION

IN X-RAY CT (and the closely-related SPECT and
PET [1]), the underlying physical model only has mean-

ing in the continuous domain, but reconstruction algorithms
necessarily work on discrete signals: vectors and matrices.
Therefore, we must chose a discretization scheme; i.e., fix
how to represent a continuously-defined signal with a discrete
one. In almost every case, this means that a continuous
function, f (x), is expressed (possibly only implicitly) as a
weighted sum of kernels, f̂ (x) = ∑

k c f [k]ψk(x). The choice
of these kernels critically impacts the quality and speed of CT
reconstruction. On one hand, the best quality will be obtained
when the discretization can well approximate the signal to
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be reconstructed. On the other hand, to be practical, the
discretization must allow fast forward and/or back projection,
since these operations are the bottleneck of nearly all recon-
struction methods. Unfortunately, these two criteria conflict:
forward and back projection require repeatedly evaluating
the X-ray transform of the discretization kernel, with the
number of evaluations growing with the size of the (non-
zero) support of the kernel. But, the kernels with the best
approximation properties tend to be large or have complicated
X-ray transforms.

One solution is to use a kernel with a good
size/approximation trade-off and store its complicated
X-ray transform in a lookup table. This was the
approach of [2] with separable B-splines and [3]
with the more-general box splines. Or, the same
X-ray transforms can be computed approximately, for
example approximating the X-ray transform of a voxel
with a rectangle [4] or trapezoid [5], or of a separable
B-spline with another separable B-spline of the same
degree [6]. Another approach is to use isotropic kernels
(also called blobs), which simplify projection because their
X-ray transforms do not depend the projection direction.
These can also be accelerated via lookup table [7], [8].
The downside is that isotropic kernels cannot satisfy the
partition-of-unity property [9], which is necessary to ensure
that the discretization error vanishes as the sampling step
tends to zero. Using strips that match the geometry of the
sensor [10], [11] is another way to enable fast forward and
back projections, in exchange for increased approximation
error. Finally, the discretization may be implicit; e.g., the
filtered back projection (FBP) algorithm [12] presupposes
a separable sinc discretization (because the projections
are assumed to be bandlimited during filtering), but, in
practice, the back projection step relies on some faster
interpolation.

Though they are nonstandard in medical imaging, CT
systems with parallel-ray geometry (where measurements of
the sinogram are taken on a regular grid for each of a dis-
crete set of projection directions) are used for phase-contrast
X-ray imaging [13], [14], electron tomography [15], and
single-particle cryo-electron microscopy [16]. In this case, the
forward model, H , has the property that its normal operator,
H T H , is linear and shift-invariant. The result is that iterative
reconstruction requires only a single back projection followed
by one filtering operation per iteration, rather than the usual
one forward and one back projection per iteration. This was
noted first by [17] and extended recently by our group to
3D [8]. While this result only strictly holds in the bandlimited
case, both groups opted instead to use discretizations with
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Fig. 1. Comparison of standard interpolation (dashed) and orthogonal
projection (dotted) of a signal (solid). The standard interpolation matches
the signal exactly at its knots, while the orthogonal projection is the best
piecewise-linear fit.

limited spatial support. This geometry also enables the back
projection to be cheaply computed with convolution followed
by interpolation. Using this approach, the cost of back pro-
jection is not tied to the support of the discretization kernel,
but rather to the size of the interpolation kernel. The benefit
of this is that it enables the use of large discretization kernels
without a cost penalty; e.g., in the current work, we use the
separable sinc as a discretization kernel, which matches the
bandlimited assumption.

In this paper, we propose a new interpolation scheme for
parallel-ray X-ray CT back projection. Drawing on techniques
from image resizing [18], [19], we apply a prefilter that has
the effect of projecting the underlying signal onto the space
spanned by the interpolator (Figure 1). This process creates
an interpolation function that is the best possible fit (in the L2
sense) to the signal. The outcome is a significant improvement
in the back projection quality over the standard approach. In a
further refinement, we show that nearly the same improvement
can be obtained by instead using oblique projection, which
simplifies the computation. Though this approach can be
applied to any discretization scheme, we use the separable
sinc basis. Not only does this enable analysis of spatial and
angular sampling with the sampling theorem (along the lines
of [20]), but it also makes H T H exactly shift invariant,
enabling iterative reconstruction at the same speed as FBP (in
the limit of high reconstruction size). This is because the cost
of both FBP and the iterative method is dominated by the back
projection (at a cost proportional to the number of pixels in the
reconstruction times the number of views). The only additional
computation required by the iterative method is a fixed number
of filtering operations. Using a sinc discretization along with
oblique interpolation allows efficient and high-quality parallel-
ray X-ray CT reconstructions.

The outline of the paper is as follows. In Section II, we
formulate the X-ray reconstruction problem and the back
projection operation. In Section III, we describe the standard
interpolation approach to back projection and propose two
optimized interpolators based, respectively, on orthogonal and
oblique projections. In Section IV, we describe a specific
implementation of these methods using B-splines and separa-
ble sinc discretization. In Section V, we compare the proposed

methods to standard interpolation in terms of speed and
accuracy, both for back projection alone and for reconstruction
of digital phantoms.

II. BACK PROJECTION

In this section, we fix our notation and formulate the back
projection operation. We then show how this operation can be
accelerated with interpolation.

A. Notation

We use lowercase letters for functions, infinite sequences,
and scalars (e.g., f , g, and λ). To differentiate functions
and sequences, we use parentheses for functions and square
brackets for the sequences (e.g. f (x) versus g[m]). Uppercase
letters indicate operators (e.g., H : l2(Z) → l2(Z)). We use
boldface lowercase letters for vectors (e.g., x, m, and θ ) and
boldface uppercase letters for matrices (e.g. H, P, and �).
Other symbols are defined as they are used.

B. Problem Setting

Let f be function of R
d , f : R

d → R (usually with d ∈
{2, 3}). The X-ray transform of f , denoted Pθ { f }, computes
the line integrals of f along the direction specified by a unit
vector θ ∈ R

d . It is defined as

Pθ { f } (y) =
∫

R

f (tθ + PT
θ⊥y)dt, (1)

where y ∈ R
d−1 is a coordinate on the detector plane, PT

θ⊥ is a
d × (d − 1) matrix that has as its columns an orthogonal basis
for the detector plane (which is the orthogonal complement
of θ , a line in 2D or a plane in 3D), and PT

θ⊥y is a vector
specifying the offset of the line.

We fix a discretization scheme of the form

f (x) =
∑

k∈Zd

c f [k]ψ (x − �xk) , (2)

where ψ is a discretization kernel, k is an integer multi-index,
and �x is a d × d diagonal matrix containing the sampling
step in each of d dimensions. This gives the discrete forward
model, H , defined as

g[m] = (H c f )[m] =
∑

k∈Zd

c f [k]Pθ {ψ} (�ym − Pθ⊥�xk),

where, paralleling Eq. (2), m is an integer multi-index with
m ∈ Z

d−1 and �y is a (d − 1) × (d − 1) diagonal matrix
containing the sampling step in the projection domain in each
of d − 1 dimensions.

In the X-ray reconstruction problem, we have g and aim to
recover f (expressed in terms of its coefficients, c). Practically,
we measure g for each of a discrete set of views (called a
sinogram); however, because the X-ray transform is linear, we
present everything here for a single view with the understand-
ing that multiple views are handled by iterating over each and
summing the results. When ψ is bandlimited and the sinogram
is properly sampled in space, the system can be inverted by
deconvolving the back projected measurements, H T g, by the
kernel corresponding to the normal operator, H T H [8]. Our
focus here is the the back projection because it presents the
computational bottleneck.
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C. Back Projection

Back projection requires computing, for each k ∈ Z
d ,

(H T g)[k] =
∑

m∈Zd−1

g[m]Pθ {ψ} (�ym − Pθ⊥�xk). (3)

If the reconstruction and measurement grids are square with
side length K and M , respectively, this costs O(K 2 M) opera-
tions in 2D and O(K 3 M2) operations in 3D: for each k in the
reconstruction, we sum over each m in the sinogram. This cost
can be reduced to O(K 2) (or to O(K 3), in 3D), if ψ is chosen
so that Pθ {ψ} has a small spatial support. Back projection
can be very expensive in practice, which has lead to the
development of various methods to accelerate the computation
via interpolation either in space or Fourier domain, at the cost
of some loss of accuracy.

In preparation for our subsequent discussion of interpola-
tion, we rewrite (3) as samples of a continuous function,

(H T g)[k] = r(Pθ⊥�xk) = (h ∗ Pθ {ψ})(Pθ⊥�xk), (4)

where h(y) = ∑
m∈Zd−1 g[m]δ(y − �ym). This convolutional

form reveals that calculating the values of r on any grid
with a sampling step �y/n for n ∈ Z is possible with a
discrete convolution between an upsampled version of the
measurements, and a sampled version of the X-ray projection
of the discretization kernel, p[m] = Pθ {ψ} (

�ym
/

n):

r

(
�ym

n

)

= (Un g ∗ p)[m],

where Un is upsampling-by-n, i.e. Ung[kn] = g[k]. As a
result, we can compute these values efficiently with the FFT.
Unfortunately, the points where we must sample r for back
projection are not on this grid, and so we must interpolate
them.

III. INTERPOLATION

We now describe how interpolation can be used to compute
back projections and present our proposed optimized interpo-
lators.

A. Standard Interpolation

The standard approach in interpolation (e.g., image rotation
or rescaling) is to fit a continuous representation to the
discrete samples at hand and to sample it at the desired points
(Figure 1). For back projection, this amounts to evaluating r
on a fine grid and using, e.g., bilinear interpolation to find
the necessary values. This has been [21] and continues to
be [8] standard in tomography. Explicitly, we pick a generating
function, ϕ, and approximate r as

r̃(y) =
∑

m∈Zd−1

c[m]ϕ
(

n�−1
y y − m

)
, (5)

where c is chosen such that r̃((�y/n)m) = r((�y/n)m) (note
that we use c here and c f in (2) to denote a sequence of
coefficients, but not to imply that these sequences are the
same). If the generating function is interpolatory (e.g., B-
splines of degree 0 or 1, corresponding to nearest neighbor or

bilinear interpolation), then c[m] = r((�y/n)m). In general,
however, this simple resampling relation does not hold.

Doing this results in a significant speedup if the support
of ϕ is much smaller than that of Pθ {ψ}. This is because
the number of nonzero terms in either (3) or (5) that must
actually be computed depends on the spatial support of ϕ and
Pθ {ψ}, respectively. In 3D, the computational cost goes from
O(K 3 M2) to O(K 3W 2), where W is the width of the support
of ϕ: for each k in the reconstruction, we compute (5), which
has the same form as the sum in (3), except that we can choose
ϕ to have a small spatial support. Computing r is just a (d−1)-
dimensional filtering operation and, in most practical cases, so
is computing c, meaning that these costs are negligible.

B. Interpolation With Orthogonal Projection

The strategy of standard interpolation is to find a continuous
function that matches r exactly on a grid of points. Inspired by
work on image resizing [18], we propose instead to compute
the least squares projection of r onto the space spanned by the
generating function, ϕ. The resulting interpolator, r̃ , will be, by
construction, closer (in the L2 sense) than any other one using
the same generating function; e.g., for linear interpolation, this
process will return the best piecewise linear approximation to
the function r (see Figure 1). Our motivation is that making
r̃ closer (in the L2 sense) to r should improve the accuracy
of the interpolation at the points Pθ⊥�xk, resulting in a more
faithful back projection.

For the moment, we take a sampling step of one; i.e.,
n�−1

y y = y. Let V (ϕ) denote the space spanned by the integer
shifts of ϕ and let Pϕr denote the orthogonal projection of r
onto this space. Then,

(Pϕr)(y) =
∑

m∈Zd−1

〈
r, ϕ̊(· − m)

〉
ϕ(y − m), (6)

where ϕ̊ ∈ V (ϕ) is the unique dual of ϕ so that〈
ϕ, ϕ̊(· − m)

〉 = δ[m]. Substituting r from (4) gives

(Pϕr)(y) =
∑

m∈Zd−1

((Ung) ∗ q)[m]ϕ(y − m) (7)

where q[m] = (Pθ {ψ} ∗ ϕ̊)(−m). The full development of
this expression relies on the linearity of the inner product and
changes of variables; we leave it to the supplementary material
for brevity. For the general case where n�−1

y y �= y, we rescale
by 1/n, giving

(Pϕr)(y) =
∑

m∈Zd−1

((Ung) ∗ q)[m]ϕ(n�−1
y y − m), (8)

where

q[m] = n

det(�y)
(Pθ {ψ} ∗ ϕ̊(n�−1

y ·))
(

−�y

n
m

)

.

We leave the implementation details of (8) to Section IV, and,
again, we leave further development of the expression to the
supplementary material. We also note that it is a specific case
of the method described in [19] and the references therein.

In contrast to the standard interpolation in (5), the orthog-
onal interpolation does not require the interpolator to exactly
match the underlying signal at the knots. We compare these
interpolation strategies in Figure 1.
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Fig. 2. The four phantoms used in our experiments. (a) spot. (b) blob.
(c) blobs. (d) filament.

Fig. 3. Timing comparison. Line style indicates B-spline degree (solid,
dashed, dotted corresponding to n = 0,1,3). For each style, there is a pair of
lines: the top and bottom line have measurement densities of one and two,
respectively. (a) exact. (b) standard. (c) orthogonal. (d) oblique.

C. Interpolation With Oblique Projection

The main drawback of the orthogonal projection in (8) is
that it requires continuous inner products between Pθ {ψ} and
ϕ̊; these integrals are costly to compute accurately. We instead
propose an oblique projection: we project r onto V (ϕ2) such
that the error is orthogonal not to V (ϕ2), but to a different
space, V (ϕ1). We denote this as Pϕ2,ϕ1r . Intuitively, when
V (ϕ1) and V (ϕ2) are similar (as will be the case when they
are both useful for interpolation), Pϕ2,ϕ1r and Pϕ2r will be
close; [19] formalizes this with a theorem that states that the
oblique projection has error no more than 1/ cos(θ12) times
that of the orthogonal projection, where θ12 is the largest
angle between the subspaces. The advantage of the oblique
projection is that ϕ1 can be chosen to simplify the inner
product computations, while ϕ2 can be chosen to give superior
interpolation.

The oblique projection is similar to the orthogonal one, (8),
with the addition of discrete filtering operation:

(Pϕ2,ϕ1r)(y) =
∑

m∈Zd−1

(d ∗(Un g) ∗ q)[m]ϕ2(n�−1
y y − m),

(9)

Fig. 4. Back projection accuracy comparison for the blob dataset. Line
style indicates method (solid, dashed, and dotted corresponding to standard,
orthogonal, and oblique, respectively) and the stacked plots are for spline
degrees zero, one, and three (bottom to top). The oblique projection is an
excellent approximation of the orthogonal one. (a) blob, λx = λy. (b) blob,
λx = 2λy .

where

q[m] = n

det(�y)
(Pθ {ψ} ∗ ϕ1(−n�−1

y ·))
(

−�y

n
m

)

and the filter d is given by
(

〈
ϕ1(y − m′), ϕ2(y)

〉
y

m′
∗ d[m′]

)

[m] = δ[m],

where
m′
∗ denotes discrete convolution over m′. For a ver-

ification that (9) indeed provides an oblique projection as
described above, please refer to the supplementary material.
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Fig. 5. Back projection error of the standard and oblique interpolation
methods for the blob phantom (measurement density two, spline degree one
and upsampling rate two). The images are normalized individually to show
the distribution of errors. The error of the oblique method is less structured
than that of the standard method, which fits the intuition from Figure 1.
(a) standard, 114 dB. (b) oblique, 132 dB.

Implementing this projection only requires continuous inner
products between Pθ {ψ} and ϕ1 and between ϕ1 and ϕ2. In
the next section we show how a particular selection of these
functions makes the computation simple.

IV. IMPLEMENTATION

Our discussion so far has been general with regard to the
selection of the discretization and interpolation functions. We
now fix these and present the entire reconstruction algorithm.

A. Discretization Kernel

We use the separable sinc as our discretization kernel,

ψ(x) =
d∏

i=1

sinc(xi/λi ),

where sinc(x) = sin(πx)/(πx). When d = 2, we have

Pθ {ψ} (y) = λ1λ2

λmax
sinc(y/λmax),

where λmax = max(|�xPT
θ⊥|). This can be shown using the

Fourier central slice theorem [22]. When d = 3, the X-
ray transform is considerably more complicated. A useful
intermediate case is when there is a fixed projection axis, i.e.,
PT

θ⊥[·, 2] = [
0 0 1

]T
. In this case,

Pθ {ψ} (y) = λ1λ2

λmax
sinc(y1/λmax) sinc(y2/λ3),

where λmax = max(|�xPT
θ⊥[·, 1]|).

B. Interpolation Using B-Splines

B-splines are a good choice for the interpolation function
due to their limited spatial support and good approximation
properties [23]. In the standard interpolation approach in
2D, this means interpolating using (5) with ϕ(y) = βa(y)
and c = (ba)−1 ∗ r , where (ba)−1 is the direct B-spline
filter associated with the B-spline of degree a and can be
implemented efficiently [24].

Fig. 6. Back projection accuracy versus time for the standard (filled dots)
and oblique (hollow dots) methods for the blob phantom with �x = 2�y; up
and left is better. The oblique method provides higher SNR with essentially
the same runtime as the standard method.

In the case of orthogonal projection in 2D, letting ϕ(y) =
βa(y) gives

q[m] = (b2a+1)−1[m] m∗ (Pθ {ψ} ∗ βa)

(
λy

n
m

)

,

where the matrix of sampling steps, �y, has been replaced
with a scalar, λy , because y is now a scalar rather than a vector.
In words, this equation states that the sequence q[m], which is
needed for orthogonal or oblique interpolation (equations (8)
and (9)), comes from a B-spline interpolation of the sequence
formed by sampling the continuous convolution between the
X-ray projection of the discretization kernel, Pθ {ψ}, and a B-
spline. The inner convolution will require computing definite
integrals of polynomials times sinc. Specifically, for a = 0,

q[m] = n

λy

λy
n (m+1/2)∫

λy
n (m−1/2)

Pθ {ψ} (y)dy, (10)

where the direct B-spline filter does not appear because
(b1)−1 = δ[m], which is the convolutional identity (or,
equivalently, because degree-zero B-splines are interpolating).
For a = 1, q[m] is equal to

n

λy
(b3)−1 m′

∗
λy
n (m

′+1)∫

λy
n (m

′−1)

(

1 −
∣
∣
∣
∣

n

λy
y − m′

∣
∣
∣
∣

)

Pθ {ψ} (y)dy.

For the sinc kernel, the a = 0 case is known as the sine
integral and can be computed efficiently [25] or stored in a
lookup table. As a increases, however, these integrals become
unwieldy and slow to compute. This is a problem because we
would ideally interpolate with at least a = 3.

To avoid this complicated integration, we use oblique pro-
jection with ϕ1(y) = β0(y) and ϕ2(y) = βa(y). Then we
can interpolate with (9) using q[m] from (10) and d[m] =
(ba+1)−1[m].



4644 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017

Fig. 7. Accuracy comparison for iterative reconstruction. Line style indicates method (solid for standard and dashed for oblique) and the stacked plots are
for spline degrees zero, one, and three (bottom to top). The black triangle marks the highest possible SNR in this discretization scheme. The accuracy for
the spot phantom saturates immediately, but high quality interpolation is necessary to reach the maximum reconstruction SNR for the other two datasets.
(a) spot, λx = 2λy . (b) blob, λx = 2λy . (c) blobs, λx = 2λy . (d) filament, λx = 2λy .

C. Reconstruction

We have so far described interpolation approaches to com-
puting the back projection, H T g. But we need to verify these
approaches in the context of a full reconstruction system. To
do this, we solve the optimization problem

arg min
c f

‖g − H c f ‖2
2.

We do not include a regularization term because we assume
we are in the high-quality regime, i.e., low noise and many
measurements. We solve this using the steepest descent algo-
rithm [26], which requires computation of H T g and iterative
applications of H T H . We have already discussed the former,
and the latter is accomplished by convolutions with the discrete
kernel

h[k] = (Pθ {ψ} ∗ Pθ {ψ} (−·))(Pθ⊥�xk).

For more details on the equivalence of this kernel and the
normal operator, see [8]. In the case of the sinc kernel, the
autocorrelation is simple to compute in closed form (the
autocorrelation of a sinc is another sinc). In our experiments,
we initialized the algorithm with an image of all zeros and
stopped after 200 iterations, which was more than enough to
show convergence empirically.

We also compare the methods using a FBP with Ram-Lak
filtering [12]. This is implemented via MATLAB’s iradon
routine modified so as to use our back projectors.

V. EXPERIMENTS AND DISCUSSION

We now present our experiments and discuss the results.
Throughout, we compare the exact back projection (3), the
standard interpolation (5), and the orthogonal (8) and oblique
interpolation (9). We use four analytical phantoms: spot, blob,
blobs, and filament (Figure 2). These are respectively, a single
large ellipse, a single large Kaiser-Bessel window [27], a
random collection of 100 small Kaiser-Bessel windows, and
two filaments created by placing small Kaiser-Bessel windows

Fig. 8. Absolute reconstruction error for the standard and oblique methods on
the blobs phantom (measurement density two, spline degree one, upsampling
rate two). The images use the same scale to show the relative size of errors.
Error in the back projection propagates to the reconstruction in a complicated
way, but, in general, the standard method gives a less faithful reconstruction
in the areas where the phantom varies most rapidly. (a) standard, 68 dB.
(b) oblique, 76 dB.

along a biased random walk. We generate sinograms from
these phantoms according to (1) and, as our focus here is
purely on the accuracy of the back projection, we do not add
noise. We note that the spot phantom has a large amount of
high frequency content because of its sharp edges. The blob
phantom is much smoother, though not strictly bandlimited.
The blobs and filament phantoms are more complex, while
remaining smooth and limited in space.

A. Speed and Accuracy of Back Projection

In the first experiment (Figures 3, 4, 5, and 6), we compare
the speed and accuracy of the methods on back projection
only (no reconstruction) in 2D. For each phantom, we fix the
sampling steps to be equal in all dimensions, �x = λx Id and
�y = λy Id−1, and set λx to be an integer multiple of λy;
this sets the density of the measurements with respect to the
reconstruction step. We compute the analytical projection from
V = 101 views (all methods have linear runtime in the number
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Fig. 9. Accuracy comparison for FBP reconstruction. Line style indicates method (solid for standard and dashed for oblique) and the stacked plots are for
spline degrees zero, one, and three (bottom to top). (a) spot, λx = 2λy . (b) blob, λx = 2λy . (c) blobs, λx = 2λy . (d) filament, λx = 2λy .

of views; we select this number simply to provide accurate
timing results). We then compute the back projection using
each of the described methods. We measure the accuracy of
the back projection in terms of the signal to noise ratio in
dB (SNR, defined as 10 log10(

∑
k |g[k]|2/∑

k |g̃[k]−g[k]|2),
where g is the exact adjoint and g̃ is the estimate).

To compare the speed of the methods, we compute back
projections for upsampling rate 1, reconstruction size 322,
642, 962, …, 2562 pixels, measurement density 1 and 2, and
spline degree 0, 1, and 3. All computations were performed
on the same powerful desktop computer (Mac Pro with
two 2.66 GHz 6-Core Intel Xeon processors and 48 GB of
RAM) using Matlab. For the exact method, (3) is computed
by looping over views and m, with the calculation over k
being vectorized. Both the standard interpolation and oblique
interpolation use a loop over views, Matlab’s conv command
for convolutions (experimentally faster than explicitly using
FFTs), and compiled C code for spline interpolation and
evaluation. The orthogonal interpolation uses the same code as
the oblique, except that it also includes numerical integration
using Matlab’s integral command.

The results (Figure 3) show that the standard and oblique
methods are similarly fast and both much faster than the exact
method. By fitting a line to the log-log plot of this data, we
estimate that the exact method scales as O(K n) with n ≥
2.48, whereas the standard has n ≥ 1.13 and oblique has n ≥
1.43. This is in line with our analysis of (3), which predicts
O(K 3) for the exact method and O(K 2) for the other two.
The orthogonal method is much slower, except when the spline
degree is 0, because it relies on slow numerical approximation
of integrals. This also explains why it scales as O(K ) in this
experiment: the number of integrals is directly proportional to
number of measurements. At very large reconstruction sizes,
we would expect the interpolation to dominate the runtime,
returning it to O(K 2). Increasing the density of measurements
proportionally increases the runtime of the exact method, but
has much less effect on the standard and oblique methods.
Again, this is in line with our analysis because the dominant
factor in the runtime of the latter does not include the number

of measurement points. Finally, changing the spline degree has
the expected effect: the supports are one, two, and four pixels
(for B-spline degrees zero, one, and three, respectively) and
these act as multipliers on the runtime.

To compare the accuracy of the methods, we set the
reconstruction size to 65 × 65 pixels, vary the upsampling
rate between 1 and 4, set the measurement density to 1
and 2, and the spline degree to 0, 1, and 3. The results
(Figures 4 and 5) on all datasets showed that the orthogonal
and oblique methods are nearly identical, except that the
orthogonal method’s SNR is limited to 240 dB by the
accuracy of the numerical integration. For spline degree zero,
they also match the standard method, but they generally
outperform it when the spline degree is one or three. Varying
the dataset affected the performance of all the methods, with
the smoothest phantom, blob, giving the best SNR. And, in
the same vein, increasing the measurement density improved
the SNR, since doing this makes the signal being interpolated
more low-pass. Increasing the spline order or increasing the
upsampling rate both increase the SNR, but, as is common in
interpolation, using a better interpolator (higher-order spline)
is much more beneficial than upsampling. For almost all of
this range of SNRs, the best time/accuracy trade-off comes
from the oblique method (Figure 6).

B. Effect on 2D Reconstruction

We have shown so far that the oblique method consistently
outperforms the standard interpolation for computing the back
projection, but does this improvement in back projection
accuracy translate to an improvement in reconstruction accu-
racy? This is not a given because the methods have different
distributions of errors (Figures 1 and 5) and the reconstruction
process may have a complicated effect on these errors.

To test this, we compute unregularized reconstructions of
the same phantoms with the standard and oblique interpolation
methods. We estimate the L2 (i.e. continuous) accuracy of
the reconstruction by calculating the SNR between the recon-
struction and the ground truth sampled on a grid six times as
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Fig. 10. Effect of noise in the sinogram on reconstruction accuracy. Line
style indications method (solid for standard and dashed for oblique). The SNR
of the reconstruction never exceeds the SNR of the sinogram. (a) iterative,
β1. (b) iterative, β3. (c) FBP, β1. (d) FBP, β3.

fine as the reconstruction. To aid in the interpretation of the
results, we also compute the highest SNR achievable using the
sinc kernel for each phantom using a separate optimization.
We set the number of views to 400, the reconstruction size
to 129 × 129 pixels, and the measurement density to 2.
As before, we vary the upsampling rate between 1 and 4 and
set the spline degree to 0, 1, and 3.

The results for iterative reconstruction (Figures 7 and 8)
show a positive, saturating dependence on the quality of
the back projection. Saturation occurs at 23, 148, 116, and
83 dB for the spot, blob, blobs, and filament phantoms,
respectively. The low saturation point for the spot phantom
is due to its high-pass nature: the sharp edges in these signals
cannot be represented well by the sinc kernel (or by any
other commonly-used discretization scheme) and therefore the
error of the reconstruction is dominated by the error in the
discretization. For the other phantoms, we see that using
oblique projection increases the SNR of the reconstruction
for the middle range of interpolation quality: when either the
spline degree is one, or when the spline degree is three and
there is no upsampling. This makes sense given that we did not
observe oblique projection to increase the adjoint SNR much
for splines of degree zero in the previous experiment, and
because the reconstruction SNR saturates when using spline
degree three plus upsampling.

The results for FBP (Figure 9) show the same trends, except
that the SNR saturates at a lower point. That is, iterative
reconstruction is more accurate than FBP when the back pro-
jection is highly accurate (including the case where the exact
back projection is used, experiments not shown). We attribute
this difference to the fact that the iterative method explicitly
finds the solution most consistent with the measurements,
while the FBP simply implements a discretized version of the
continuous inverse. Before the SNR saturates, however, the
advantages of optimized interpolation are larger for FBP than

Fig. 11. Accuracy comparison for iterative reconstruction in 3D. Line
style indicates method (solid for standard and dashed for oblique) and the
stacked plots are for spline degrees one and three (bottom and top). As in
2D, optimized interpolation improves the SNR of the reconstruction, up to a
point of saturation. (a) 3D blob, λx = 2λy . (b) 3D blobs, λx = 2λy .

for iterative reconstruction. We also note that for the blob and
blobs phantoms the FBP is actually better than the iterative
reconstruction for spline degree 0 and 1 (c.f. Figure 7 and
Figure 9). It seems that for these smooth phantoms, FBP is
more tolerant to inaccuracy in the back projection calculation
than is the iterative scheme.

C. Effect of Noise

We have so far shown experiments where the sinogram is
measured without noise. This is useful to highlight the effect
of the back projection accuracy, but unrealistic. To explore
the interaction between our proposed back projection method
and measurement noise, we repeat the 2D reconstruction
experiments but with different levels of Gaussian noise added
to the sinogram.

We report the results for the blobs dataset in Figure 10.
We observe that the SNR of the reconstruction never exceeds
the SNR of the sinogram. Conversely, noise in the sinogram
has little effect on the reconstruction error when the SNR of
the sinogram is above the SNR of the reconstruction. This
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result puts the 2D reconstruction results in perspective: to
see an improvement in reconstruction from using optimized
interpolation, the SNR of the sinogram must be above a
threshold which varies between 40 and 70 dB, depending on
the phantom.

D. Effect on 3D Reconstruction

Finally, we perform a proof-of-concept experiment for 3D
reconstruction with a fixed rotation axis. We set the number
of views to 200, the reconstruction size to 65×65×65 pixels,
and the measurement density to 2. We calculate the SNR on
a grid two times finer than the reconstruction. Based on the
results of the previous experiment, we only investigate the blob
phantom with spline degree 1 and 3.

The results (Figure 11) again show the same trends:
increasing the quality of the interpolation (i.e. using
more upsampling or a higher spline degree) improves the
reconstruction accuracy up to some limit, which is achieved
in our experiments at spline degree three with two times
upsampling. Before this limit, using oblique projection
improves the reconstruction accuracy.

VI. CONCLUSIONS

Using interpolation during the back projection step of
parallel-ray x-ray CT reconstruction decouples the choice
of discretization kernel from the runtime, allowing the use
of large discretization kernels with superior approximation
properties. In this paper, we took this to the logical extreme by
using the sinc kernel, which provides optimal discretization of
bandlimited signals. To improve the quality of the interpola-
tion, we proposed using projection-based interpolation, which
has been used for image resizing but is new in this context. Our
experiments show that using orthogonal projection improves
back projection accuracy, but is too slow to be practical for any
case except spline degree zero (nearest neighbor interpolation).
However, oblique projection provides the same accuracy, but at
a computational cost similar to that of standard interpolation.

We also show that this improvement in back projection
translates into an improvement in reconstruction quality, both
for FBP and iterative reconstruction. In practice, this improve-
ment will be most evident in the high-quality regime. Our
experiments show that the SNR of the reconstruction will
not exceed the SNR of the sinogram itself, with or without
improved back projection. Likewise, if the number of views is
too low (below half of the side length of the reconstruction) or
the spatial sampling too coarse (over twice the sampling step
in the reconstruction), aliasing artifacts will dominate. Barring
this, the interpolation error during back projection does limit
the SNR of the reconstruction and, for any given time budget
or target SNR, it is better to use oblique projection-based
interpolation than the standard kind.
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