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Abstract—This paper presents an extension of block-based
motion estimation for omnidirectional videos, based on a trans-
lational object motion model that accounts for the spherical
geometry of the imaging system. We use this model to design
a new algorithm to perform block matching in sequences of
panoramic frames that are the result of the equirectangular pro-
jection. Experimental results demonstrate that significant gains
can be achieved with respect to the classical exhaustive block
matching algorithm in terms of accuracy of motion prediction.
In particular, average quality improvements up to approximately
6 dB in terms of Peak Signal to Noise Ratio (PSNR), 0.043 in
terms of Structural SIMilarity index (SSIM), and 2 dB in terms
of spherical PSNR, can be achieved on the predicted frames.

Index Terms—omnidirectional video, motion estimation,
equirectangular panorama, block matching

I. INTRODUCTION

The videos captured by fully omnidirectional cameras are
usually stored as rectangular panoramic videos, resulting from
the projection of the spherical surface to a plane [1]. Panoramic
videos can be encoded using classical block-based transform
encoders [2]. However, they significantly differ from cartesian
videos captured by perspective cameras, for which the en-
coders have been optimized. Particularly, since the sphere that
typically supports omnidirectional signals is not a developable
surface, warping distortions and discontinuities may appear in
panoramic videos. These inevitably modify the statistics of the
signal. An adaptation of the encoding tools used by block-
based encoders to account for the characteristics of panoramic
videos is thus expected to improve the compression efficiency
as well as the image quality.

Motion estimation is a key step in video compression. Its
goal is to predict the motion occurring in a sequence of frames
so that the temporal redundancy in the video can be reduced
and compact video representations can be achieved. In block-
based encoders, motion estimation relies on block matching
algorithms [3], which identify for each block (i.e., a squared
region non-overlapping with any other region in the frame) in
a frame at time t1 (anchor frame), the matching block in a
frame at time t2 (target frame) among a set of candidate blocks
within a search window. The best matching block is the one
that minimises the reconstruction error: the block in the anchor
frame can be represented by translating the matching block in
the target frame by a displacement vector (motion vector). The
anchor frame can then be predicted by using the target frame

and the motion vectors. A low energy error signal is eventually
encoded to compensate for potential prediction errors.

Classical block matching algorithms assume that the video
has been captured by a perspective camera and that any motion
of an object in space can be modelled by block translations
in the imaging plane, i.e., the video frame. According to this
translational motion model, a constant displacement on the
motion plane corresponds to a constant displacement on the
imaging plane. Additionally, since the camera field of view is
limited, the object may disappear from the image, when mov-
ing outside the field of view. This model is however not correct
for panoramic videos. The omnidirectional imaging surface
can be modelled as a sphere, thus, a constant displacement on
the motion plane corresponds to a non constant angular dis-
placement on the spherical imaging surface (Fig. 1). Also, the
camera field of view is unlimited, so a projection of the object
onto the imaging surface always exists. Finally, the projection
used to map the spherical surface into a panoramic frame (map
projection) introduces warping distortions, modifying further
the motion vectors and the area of the projected object.

To solve this problem, we introduce an object motion model
that accounts for the omnidirectional camera model and the
projection used to create the panoramic video. Second, we
design an adaptation of the block matching algorithm for
panoramic videos, based on the proposed motion model. We
consider panoramic videos resulting from the equirectangular
projection (defined in Section III-A), since this is one of
the most commonly used projections nowadays. The pro-
posed approach could however be adapted to any projection.
Experimental results show that our method outperforms the
exhaustive block matching algorithm (EBMA) [3] in terms of
accuracy of the motion estimation. Furthermore, our solution
is compatible with the classical block-based encoding flow and
only requires minimal modifications of the decoder behaviour.
As such, it could easily be implemented in existing compres-
sion engines.

In Section II, we review related works on models of complex
motions in perspective videos as well as on motion estimation
for omnidirectional videos. Our motion model and block
matching algorithm are described in Sections III and IV,
respectively. The test conditions considered to evaluate the
performance of our method and the experimental results are
discussed in Section V. Conclusions are drawn in Section VI.

978-1-5090-3649-3/17/$31.00 ©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148032005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


xs

yszs motion 
plane

spherical 
camera

(a)

xs

zs

(b)

Fig. 1. Omnidirectional camera and example of motion plane (a). View for
ys = 0 (b): a constant displacement on the motion plane (red) corresponds to
a nonconstant angular displacement on the spherical imaging surface (black).

II. RELATED WORKS

The translational motion model used by traditional video
encoders cannot accurately describe complex motions in per-
spective videos. Partitioning the frame in blocks of variable
sizes [4] or using high-order motion models [5], [6] have
been proposed as solutions to overcome the limitations of this
model, at the price of an overhead to signal the partitions and
increased complexity. Such solutions may also improve mo-
tion estimation in omnidirectional videos, as demonstrated in
[7], where a rate-distortion optimal selection of translational,
affine or quadratic motion model has been investigated for
panoramic videos resulting from cylindrical or equirectangular
map projection. Nevertheless, they do not take into account the
spherical camera geometry and the map projection, thus, for
example, they are unable to handle discontinuities.

A solution to perform motion estimation directly in spher-
ical domain has been proposed in [8]. It is based on a multi-
resolution decomposition of the spherical images, in order
to improve the consistency of the motion estimation, and
determines pairs of similar solid angles, instead of blocks of
pixels. Due to the fact that the matching is performed on solid
angles, this solution is not compatible with the block-based
coding flow that requires an estimation of motion for each
block of the panoramic video input to the encoder.

Finally, block matching algorithms adapted to the geometry
of fish-eye and catadioptric images have been proposed in
[9], [10], [11], [12]. Due to the specificity of the considered
acquisition systems, these algorithms are however not directly
applicable to video sequences acquired with fully omnidirec-
tional multi-dioptric camera systems available nowadays.

III. CAMERA AND MOTION MODEL

A. Omnidirectional camera model

An omnidirectional central camera can be modelled as
an ideal spherical sensor [13]: the camera, located at the
origin of the right-handed world coordinate system, projects
the point P = (X,Y, Z)T in the 3D space to the point
ps = (xs, ys, zs)

T on the spherical imaging surface of radius
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Fig. 2. The omnidirectional camera model (a) and the result of the equirect-
angular map projection (b).

r, i.e., the viewing sphere, with ps = rP/||P|| (Fig. 2 (a)).
Each point on the sphere surface can be identified by its
elevation ε = π/2 − cos−1(zs/r) (|ε| ≤ π/2 ) and azimuth
α = arctan2(ys, xs) (−π ≤ α < π). For simplicity, r can be
set to 1.

In practice, the omnidirectional image defined on the sphere
is represented as a planar rectangular image, by applying
a map projection, such as the equirectangular, cube, or do-
dechaedron one [14]. When the equirectangular projection is
applied, each point on the sphere surface is projected onto
a plane by using its elevation and azimuth as coordinates
on the plane, i.e., pp = (xp, yp) = (α, ε) (Fig. 2 (b)).
This projection results in a horizontal stretching of the area
elements defined on the spherical surface, by a factor 1/ cos(ε)
[15]. Despite the strong distortions, this projection is still the
most common nowadays, due to its simplicity. Thus, this is
the map projection that we consider in this paper.

B. Motion model

Traditional motion models that are successfully used in
video coding approximate any motion in space by translations
of blocks on a motion plane parallel to the imaging plane.
This is usually a good approximation for natural scenes that
are far enough from a static camera. We build on the same
assumptions and extend the model to omnidirectional cameras.

Any motion of an object in space is approximated by
translational movements on a motion plane whose normal
is perpendicular to the imaging surface (Fig. 3 (a)). Any
displacement on a plane at distance K > r from the camera
center can be represented as motion on the corresponding
tangent plane (K = r) (Fig. 3 (b)). Therefore, any motion of
an object in space is approximated by translational movements
on a motion plane tangent to the imaging surface at any
elevation and azimuth. In more details, the projection on the
sphere of a point pm = (x, y) on a motion plane tangent to
the sphere at po = (αo, εo) is the point ps = (α, ε) resulting
from the inverse oblique gnomonic projection [1] (Fig. 3 (c)),
with:

α = gα(x, y) = αo + tan−1

(
x sin η

γ

)
ε = gε(x, y) = sin−1

(
cos η sin εo +

y sin η cos εo
ρ

) (1)
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Fig. 3. Proposed object motion model. The camera is static and the object is
translating on a motion plane whose normal is perpendicular to the imaging
surface (a). Any displacement on a plane at distance K > r from the camera
center can be represented as motion on a tangent plane (K = r) (vertical
section shown in (b)). The projection of a point pm from the motion plane
tangent to the sphere at po to the sphere is ps (vertical section shown in (c)).

where γ = ρ cos εo cos η − y sin εo sin η, ρ =
√
x2 + y2 and

η = tan−1 ρ. Alternatively, the forward projection, from the
sphere surface to the motion plane, permits to compute pm

from ps as follows:

x = fx(α, ε) =
sin(∆α) cos(ε)

cosψ

y = fy(α, ε) =
sin(ε) cos(εo) − sin(εo) cos ε cos(∆α)

cosψ
(2)

where ∆α = α−αo, and ψ is the angular distance of ps from
po, such that cosψ = sin εo sin ε+ cos εo cos ε cos ∆α.

It is evident that a displacement dm = (δx, δy) of a
point pm on the motion plane corresponds to an angular
displacement ds = (δα, δε) of its projection ps on the sphere
surface that depends non linearly on the distance between pm

and po. Additionally, ds corresponds to a displacement dp on
the equirectangular plane that depends non linearly on εo.

Accordingly, if we consider a compact set of points on the
motion plane, its projection on the sphere surface results in a
change of the shape of the set of points. The distance between
the points will be further modified when these are projected
from the sphere to the equirectangular plane. Knowing the co-
ordinates of each point on the sphere corresponds to knowing
the position of its projection on the equirectangular image:
thus, the projection of a moving set of points on the motion
plane onto the equirectangular image, that is the imaging
plane, can be analytically determined.

IV. MODIFIED BLOCK MATCHING

We propose a new motion estimation algorithm adapted
to the spherical geometry. The proposed solution is based
on an adaptation of the classical exhaustive block-matching
algorithm (EBMA) that accounts for the change of shape of
an object translating in space when projected on the equirect-
angular imaging plane. The goal of the proposed adaptation is
to minimally modify a classical block-based hybrid transform
encoding pipeline when performing motion estimation on
equirectangular videos to account for the camera and motion
model detailed in Section III.

The equirectangular anchor and target frames, A and T ,
respectively, are regular lattices of pixels defined on the
equirectangular plane, i.e., A = A(pi) and T = T (pi),
where pi = (αi, εi) is the position of the i-th pixel in
the equirectangular plane (i.e., pp in Section III-A), with
i = [1,W × H], W and H being the equirectangular image
width and height in pixels. The anchor frame A is commonly
partitioned into N non-overlapping squared (or rectangular)
blocks such that:⋃

j∈N
Bj = A and Bj

⋂
Bk = ∅ (3)

where Bj represents the j-th image block, N = {1, 2, ..., N}
and j 6= k. Since the motion estimation process is carried out
independently for each block, we omit the subscripts j and i
for simplicity. Given the set of pixels in block B in the anchor
frame A, the classical EBMA finds the corresponding set of
pixels in the target frame T , which minimizes the prediction
error:

arg min
d∈Ω

∑
p∈B
|A(p)− T (p + d)|µ (4)

where d is the spatial displacement vector between pixels in
the anchor and target frames, i.e. the motion vector of B.
The search window Ω represents the set of candidate motion
vectors, which is typically defined as all the motion vectors
that have a norm smaller than a predefined threshold. When
µ = 1, the error measure is called sum of absolute differences
(SAD). According to the classical translational motion model,
every p ∈ B in A is moved to p + d in T . Thus, if B is
a squared (or rectangular) block, i.e., a set of L = Lw ×
Lh pixels arranged as a regular lattice on the digital image,
the corresponding set of pixels in T is also a squared (or
rectangular) block of L pixels.

The classical EBMA described above does not account for
the spherical geometry and the effect of the map projection.
According to the camera and motion model described in
Section III, a block B on the equirectangular anchor frame,
corresponds to a portion of spherical surface whose shape and
area actually vary with the elevation of the block on the sphere
(Fig. 4). This portion of spherical surface can be interpreted as
the projection on the imaging spherical surface of an object in
space. According to our translational motion model, an object
moves in space by translating on the motion plane (Fig. 5). By
varying the displacement of the object on the motion plane and
projecting its replica onto the spherical surface, we obtain a
set of candidate matching projected set of pixels on the target
frame (Fig. 6). Both the search window size and the shape
of the candidate set of pixels vary depending on the elevation
at which the block in the anchor frame is located. The best
matching set of pixels on the target frame is that whose pixels
are the most similar to the pixels in the anchor block.

Fixing the distance of the motion plane from the camera
and the amplitude of the displacement on the motion plane,
is equivalent to consider a motion plane tangent to the sphere
and a displacement on this plane that depends on the distance
of the object from the camera center, as discussed in Section



III-B. The closed form expression of the gnomonic projection
and its inverse can then be exploited to define the candidate
set of matching pixels and adapt the search range used by the
motion estimation algorithm, as follows:

1) First, the polar coordinates of the centroid of the block
B on the anchor equirectangular image, po = (αo, εo),
are associated to the origin of the motion plane tan-
gent to the sphere at po. Each pixel of the block
B has coordinates on the sphere p = (α, ε), where
α = [αo − (Lw − 1)∆α/2;αo + (Lw − 1)∆α/2] and
ε = [εo − (Lh − 1)∆ε/2; εo + (Lh − 1)∆ε/2], with
∆α = 2π/W , ∆ε = π/H .
When projected on the motion plane, these become:

q = (x, y) = (fx(α, ε), fy(α, ε)) (5)

where fx and fy are defined in Eq. (2). These points
define “the object” M on the motion plane, whose image
on the equirectangular imaging surface (i.e. the anchor
frame) is the block B (Fig. 4).

2) On the motion plane, M is assumed to undergo a
rigid translation, described by the displacement dm. The
candidate motion vectors on the motion plane form the
search window Ωm = {dm = (δx, δy) = (n∆x,m∆y)}
with n ∈ [−Ωx,Ωx] and m ∈ [−Ωy,Ωy], where
∆x and ∆y are the minimum horizontal and vertical
displacement on the motion plane, respectively, and Ωx
and Ωy define the horizontal and vertical size of the
search window (Fig. 5).
When the object M translates by dm, with dm ∈ Ωm,
its pixels have coordinates on the motion plane:

qdm = q + dm = (x+ δx, y + δy). (6)

The projection of these points back to the spherical, thus
equirectangular, domain (Fig. 6) yields to the coordi-
nates of each pixel in a candidate set of pixels in the
equirectangular target frame:

pdm = g(qdm) = (gα(x+ δx, y + δy),

gε(x+ δx, y + δy))
(7)

where gα and gε are defined in Eq. (1). The shape, area
and displacement of the set of corresponding pixels in
the target frame change depending on εo, δx and δy .
Since the position pdm of the candidate pixel might be
not on the regular lattice that defines the target frame,
bilinear interpolation on the equirectangular target frame
is used to determine the pixel value at the corresponding
position.

When an exhaustive search is performed on the omnidirec-
tional images, the block matching algorithm selects among all
motion vectors on the motion plane in the search window Ωm,
the one that corresponds to a set of pixels in the target frame
that minimises an error measure with respect to the block B
in the anchor frame:

d∗ = arg min
dm∈Ωm

∑
p∈B
|A(p)− T (pdm)|µ. (8)

A prediction error is further computed as E(p) = A(p)−
T (pd∗

) and coded along with the motion vector information.
At the decoder side, since the projections are analytically
known, the process can be inverted and the reconstructed
anchor block can be generated from the target block, the
prediction error and the motion vector on the motion plane.

motion plane 
with origin in 
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Fig. 4. A block B in the anchor equirectangular frame corresponds to a
portion of spherical surface, which can be interpreted as the image of an object
M in space, defined on a plane at a certain distance from the omnidirectional
camera. The spherical coordinates of the block centroid (αo, εo) identify the
origin of the plane. In the example αo = −23π/24 and εo = 7π/24.
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Fig. 5. According to the translational motion model the object M undergoes
rigid translations on the motion plane, each associated to a motion vector dm

on the motion plane. Examples of two object replica associated to two motion
vectors (a) and set of replica corresponding to motion vectors in Ωm (b).
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Fig. 6. By varying the displacement of the object M on the motion plane and
projecting its replica onto the spherical surface, we obtain the set of candidate
sets of pixels on the target equirectangular frame. In the example the block
B with αo = −23π/24 and εo = 7π/24.

V. RESULTS

We compared the performance of the proposed block match-
ing algorithm (360-EBMA) with a fixed accuracy to that of
classical EBMA with one-pixel and half-pixel accuracy, as
done in state of the art works on motion estimation.



We considered five YouTube 360-degree videos as test se-
quences: the first selected frame for each content is depicted in
Fig. 7. In all sequences the camera is static but different kinds
of motion are present, some deviating from our translational
motion model. To reduce the computational complexity of
the simulations, we resized the original 4K resolution frames
to 256 × 512 pixels. We extracted 10 consecutive frames
from each video sequence and applied the motion estimation
considering two different scenarios: in the first scenario, all
anchor frames are estimated based on one target frame, which
is the first frame in the set (configuration TAAA); in the
second scenario, each anchor frame is estimated based on its
previous frame (configuration TATA).

We considered a block size of 8×8 pixels, symmetric search
windows, a search field range of 8 pixels, i.e. each block was
compared to up to (8 ∗ 2 + 1)2 = 289 possible candidate
matching blocks, and µ = 1. For 360-EBMA, we fixed the
object displacement on the motion plane to ∆x = ∆y = 0.01.
These values correspond to a vertical or horizontal angular dis-
placement of one pixel on equirectangular content at 256×512
pixel resolution for a displacement from the origin of the
motion plane tangent to the sphere at the equator. This means
that the comparison with EBMA with half pixel accuracy
is unfair to our method: nevertheless, the results discussed
hereafter show that, on some content, our method can achieve
a better prediction even in this case.

Tables I and II report the average PSNR, SSIM [16] and
spherical PNSR (S-PSNR) [17] improvement achieved on the
predicted anchor frame when the prediction is done using
360-EBMA versus classical EBMA with one-pixel accuracy
and half-pixel accuracy. This is computed as mean difference
between the quality of each predicted anchor frame, with
respect to its original version, when the prediction is using
360-EBMA versus EBMA, across all anchor frames of each
content. The frame quality is assessed in equirectangular
domain by PSNR and SSIM and in spherical domain by S-
PSNR. For the S-PSNR computation, we considered spiral
sampling with a total of (W ×H)/4 samples.

Overall, it can be observed that the quality of the predicted
frames improves by using the proposed method, independently
from the metric, the anchor-target configuration, and the accu-
racy of the EBMA, for all contents apart from content 3. Also,
the gain obtained by using the proposed method is limited
and metric-dependent, for content 4. This can be explained by
the fact that these two videos are those where the proposed
motion model is less accurate, due to the presence of strong
non-translational motion. Quality improvements are higher for
the TATA configuration, as expected, due to the fact that we
considered a value of displacement ∆x and ∆y on the motion
plane that is small, thus more accurate when the anchor and
target frames are closer in time.

Fig. 8 shows one visual example of a portion of anchor
panoramic frame and its prediction obtained by using EBMA-
360 and EBMA. Fig. 9 shows where the blocks for which
a better matching is achieved when using 360-EBMA are
localised, for each content. The quality of the matching is

quantified as the Mean Squared Error (MSE) between the
matching candidate selected by each algorithm and the block
in the anchor frame. The improvement obtained by using our
method is linked to the object motion model, i.e., a better
matching block is selected by exploiting the assumptions on
the block warping due to the projections, as well as to the
azimuthal continuity, i.e., matching across the equirectangular
frame left and right borders. To quantify how much each
factor is contributing to the performance improvement, Table
III reports the total percentage of blocks on which the proposed
algorithm performs a better matching than classical EBMA
with one pixel accuracy, and vice versa, as average computed
across all frames and the two configurations, for each content.
It can be noticed that the improvement achieved by using our
method is mainly due to the accurate object motion model.

(a) Content 1 (b) Content 2

(c) Content 3 (d) Content 4

(e) Content 5

Fig. 7. First frame of each video sequence considered as test material, in
equirectangular format.

Content ID Avg PSNR gain Avg SSIM gain Avg S-PSNR gain

TAAA TATA TAAA TATA TAAA TATA

1 4.71 5.05 0.016 0.01 1.141 1.413
2 1.63 1.97 0.023 0.012 0.861 1.017
3 -0.48 0.05 -0.016 -0.003 -0.045 -0.029
4 0.18 1.24 0.017 0.013 -0.142 0.755
5 6.14 6.1 0.043 0.022 2.421 2.967

TABLE I
AVERAGE QUALITY IMPROVEMENT ON PREDICTED ANCHOR FRAMES

WHEN USING 360-EBMA VERSUS EBMA WITH ONE-PIXEL ACCURACY.

VI. CONCLUSION

In this paper we have presented an extension of block-
based motion estimation for omnidirectional video sequences,
based on a translational object motion model that accounts
for the spherical geometry of the imaging system. We have
used this model to design a new algorithm (360-EBMA) to
perform block matching in sequences of panoramic frames that



Content ID Avg PSNR gain Avg SSIM gain Avg S-PSNR gain

TAAA TATA TAAA TATA TAAA TATA

1 3.29 4.06 0.008 0.007 0.18 0.64
2 0.54 1.14 0.013 0.009 -0.12 0.31
3 -1.34 -0.63 -0.035 -0.015 -0.92 -0.69
4 -0.15 0.46 0.004 0.006 -0.4 0.06
5 4.97 5.24 0.032 0.015 1.35 1.87

TABLE II
AVERAGE QUALITY IMPROVEMENT ON PREDICTED ANCHOR FRAMES

WHEN USING 360-EBMA VERSUS EBMA WITH HALF-PIXEL ACCURACY.

(a) Anchor (b) 360-EBMA (c) EBMA1pix (d) EBMA0.5pix

Fig. 8. Example of visual improvements in predicted anchor frame: portion
of anchor frame 248 of Content 1 (a) and its predicted version from frame
240 using 360-EBMA (b), EBMA with one pixel accuracy (c) and half pixel
accuracy (d).

are the result of the equirectangular projection. Experimental
results demonstrate that significant gains can be achieved with
respect to the classical EBMA in terms of accuracy of motion
prediction, even when the accuracy of the search is set to a
higher value for the EBMA. As future work, the model will
be extended to other map projections and enriched to take
into account motions other than translational ones as well
as camera ego-motion. Implementation in a complete video
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Fig. 9. Heat maps of 8 × 8 blocks for which EBMA-360 selects a better
matching block than classical EBMA with one or half pixel accuracy, for
configuration TAAA. The range is from 0 (EBMA-360 never outperforms
EBMA on a specific block) to 20 (EBMA-360 always outperforms EBMA
on a specific block).

Content ID 360-EBMA > EBMA 360-EBMA < EBMA

total az. continuity

1 7.39 % 0.15 % 2.19 %
2 8.54 % 0.17 % 2.7 %
3 23.15 % 0.55 % 30.01 %
4 19.74 % 0.74 % 6.92 %
5 22.88 % 1.35 % 4.44 %

TABLE III
AVERAGE PERCENTAGE OF BETTER MATCHING BLOCKS OBTAINED BY

USING 360-EBMA VERSUS CLASSICAL EBMA AT THE SAME ACCURACY
(360-EBMA > EBMA - THE PORTION OF BETTER MATCHING BLOCKS
DUE TO THE AZIMUTHAL CONTINUITY IS INDICATED) AND VICE VERSA

(360-EBMA < EBMA).

encoder and analysis of complexity will also be considered.
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