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Abstract
Subspace based techniques, such as i-vector and Joint Fac-

tor Analysis (JFA) have shown to provide state-of-the-art per-
formance for fixed phrase based text-dependent speaker verifi-
cation. However, the error rates of such systems on the random
digit task of RSR dataset are higher than that of Gaussian Mix-
ture Model-Universal Background Model (GMM-UBM). In this
paper, we aim at improving i-vector system by normalizing the
content of the enrollment data to match the test data. We esti-
mate i-vectors for each frames of a speech utterance (also called
online i-vectors). The largest similarity scores across frames be-
tween enrollment and test are taken using these online i-vectors
to obtain speaker verification scores. Experiments on Part3 of
RSR corpora show that the proposed approach achieves 12%
relative improvement in equal error rate over a GMM-UBM
based baseline system.
Index Terms: speaker verification, i-vectors, content matching

1. Introduction
The state-of-the-art techniques in Speaker Verification (SV)
such as i-vector and Joint Factor Analysis (JFA) have shown
to provide high performance for a variety of conditions includ-
ing long duration utterances [1, 2]. When applied to forensics or
voice-based access control, systems are often asked to deal with
short recordings of speech. However, the performance of text-
independent SV systems on short test utterances is far from be-
ing acceptable for any deployable system [3]. The performance
can be enhanced considerably by constraining the speakers to
utter a specific phrase [4, 5]. This form of authentication is re-
ferred to as text-dependent SV.

There are various strategies to implement a text-dependent
system. In fixed-phrase based text-dependent SV, the phrase of
the test data is expected to be identical to the enrollment (as
shown in column 1 of Table 1). In case it is not, the system can
reliably detect the mismatch and reject the claim. In many text-
dependent applications, we would like to impose lesser con-
straint on the speaker while maintaining the same level of ac-
curacy of the fixed-phrase based systems. In one of the scenar-
ios, the words of the test phrase are subset of the content of the
enrollment. A potential example is when speaker models are
created by pooling all N phrases uttered by the speaker during
enrollment, while during test phase, the speaker utters only one
of theN phrases. Experiments in [6] show that the state-of-the-
art i-vector system performs worse for this task compared to the
fixed phrase based SV.

In this paper, we are interested in designing a SV system
to better understand the effect of content in these two text-
dependent scenarios:
(a) Seen: We create the scenario as considered in [6] by using
the phrases from RSR dataset. The enrollment data is created
by pooling all the phrases spoken by the speaker. The test data

Table 1: A valid enrollment-test phrase pair for text-dependent
speaker verification systems for different tasks. We use sample
phrases from RSR dataset.

Tasks Enrollment phrase Test phrase

Fixed-phrase “the redcoats “the redcoats
ran like rabbits” ran like rabbits”

{ “the redcoats any of the
Seen ran like rabbits”, “only enrollment

lawyers love phrases
millionaires”, · · · }

Random-Digits { “five”, “four”, · · · , { “two”,
“ten” } “five”, · · · }

consists of a single phrase as illustrated in Table 1 (Column 2),
and
(b) Random-Digits: the enrollment phase consists of the speaker
uttering permutations of ten digits. During testing, the speaker
is prompted to utter five digits only as shown in Table 1 (Col-
umn 3).

Various techniques have been explored that aim at ex-
ploiting the content information of the test data for Seen and
Random-Digits tasks [7, 8, 6]. In [7], content information is
used by extracting an i-vector for every linguistic unit of the
utterance for the Random-Digits task. It has been shown that
significant gain in performance can be achieved using this ap-
proach. In [6], posteriors estimated using a Deep Neural Net-
work (DNN) are used for i-vector extraction for the Seen task.
This approach outperforms a Gaussian Mixture Model (GMM)
based i-vector system, as the DNN is trained for content dis-
crimination. Furthermore, an approach that scales sufficient
statistics of the enrollment to match test statistics is proposed
as a way to successfully deal with content mismatch [6].

The approaches described above perform content match-
ing in the i-vector framework using context-dependent state
(senone) posteriors estimated using DNN. Nevertheless, esti-
mating senone posteriors from Automatic Speech Recognition
(ASR) word recognition lattices instead of the DNN forward
pass improves the performance of the i-vector system for text-
independent SV system [9]. These senone posteriors incorpo-
rate the information of both the acoustic (incorporating also lex-
ical model) and language models. In this work, we apply the
senone posteriors estimated from ASR word recognition lattices
for the Seen and Random-Digits tasks.

In the past, selecting common set of words or phones be-
tween the enrollment and test utterance [10, 11] have shown
to increase SV performance. We refer to the process of trans-
forming the enrollment utterance to match the lexical content
as content normalization. We present an approach to perform
content normalization by selecting regions explicitly in the en-
rollment data to match the test data by employing speaker in-
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formative features. In our previous work [12], we found that
features estimated using i-vector extractor (also termed as on-
line i-vectors) are beneficial for the fixed phrase task. We use
the online i-vectors for the Seen and Random-Digits tasks as it
has been shown to contain speaker-content informative charac-
teristics [12].

The paper is organized as follows: Section 2 presents the
baseline systems while Section 3 describes SV using posteri-
ors generated by ASR and the content normalization technique.
Sections 4 and 5 describe the experimental setup for the eval-
uating the system and discuss the achieved results by various
systems. Finally, the paper is concluded in Section 6.

2. Baseline Systems
The state-of-the-art text-independent SV approach to model
speakers is built around total variability subspace technique [2].
This approach assumes that the invariant speaker characteristics
lie in a low dimensional subspace of mean GMM supervectors.
A speaker model is represented by a fixed-dimensional vector
called i-vector.

In [6], DNNs were used to cluster the acoustic space into
linguistic units such as senones, making it easier to focus on the
content of each utterance. The posterior probabilities of each
of the senones were then used for i-vector extraction. A poste-
rior normalization technique was further proposed to scale the
zero-th and first order statistics of the enrollment data to match
those in the test data [6]. The technique is described as follows.
Let Ne and Nt be the zero-th order statistics of the enrollment
and test utterances respectively, and Fe and Ft be the first order
statistics of the enrollment and test utterances respectively. The
new statistics for the enrollment are obtained as

N
′
e = βNe (1)

F
′
e = βFe, (2)

where β is a normalization constant, which is defined as Nt/Ne.
When Ne or Nt is 0, β is set to zero as well. The details of the
technique can be found in [6]. We consider the following as
the baseline systems, (a) GMM-Universal Background Model
(UBM), and (b) i-vector system using the posterior normaliza-
tion technique.

3. Posteriors and Content Matching
In this work, we use two techniques to perform content nor-
malization, (a) one based on DNN posterior estimation and (b)
using online i-vectors. Both are described in the following sec-
tion.

3.1. Posteriors from ASR decoder

An i-vector system involves the estimation of zero-th and first
order statistics as a prior step to computing the i-vectors. The
state-of-the-art SV systems compute these statistics using the
senone posteriors obtained at the output of the DNN [6, 13].
Therefore, the DNN acts as a short-term content estimator in
terms of senones.

In this work, senone posteriors are obtained after decoding
using language and lexical models, in the context of an ASR
system. In [9], it was shown that senone posteriors obtained
after ASR decoding performed better than those obtained after
a DNN forward pass. The former posteriors are smoothed by
using language constraints and drastically improve the phone
accuracy.

In our work, we use a lattice decoder [14], based on a
Weighted Finite State Transducer (WFST), that outputs a graph
of hypothesized sequences of words. Senone posterior probabil-
ities are estimated from the acoustic scores at the nodes of the
lattice, after the forward-backward recursion, for each frame.
These are used for i-vector extraction. For content normaliza-
tion, we use the posterior normalization technique as proposed
for the baseline system [6].

3.2. Content normalization using i-vectors

In the past, strategies to exploit phonetic information have been
successful for text-dependent SV. In [7], i-vectors are extracted
for each of the senone units, which are then clustered to obtain
speaker representation for the phone classes for Random-Digits
task. In [6], they analyze the performance of i-vector system
for Seen task. Experiments using state-of-the-art techniques
show that content mismatch has a strong impact on the SV per-
formance [6] and normalizing posteriors reduces the error rate
considerably. Recent results show that selecting common lin-
guistic units between enrollment and test data produces low er-
ror rate [11, 15] for text-independent SV. Motivated by these
results, we hypothesize that normalizing the content of the en-
rollment data with speaker and content informative features will
be beneficial for the Seen and Random-Digits tasks.

In our previous work [12, 16], we used online i-vectors as
features to Dynamic Time Warping (DTW) algorithm for fixed
phrase based text-dependent SV task. Significant gain in per-
formance was observed as opposed to using the conventional
i-vectors which suggests that these features contain sufficient
speaker and content information. We use online i-vectors as
features for performing content normalization.

The strategy to perform content normalization is as follows.
Online i-vectors are estimated for each speech frame with a con-
text of 10 frames (i.e. sufficient statistics are estimated with a
window size of 21 frames). This leads to a sequence of on-
line i-vectors corresponding to an utterance. Enrollment and
test content are matched by computing the maximum similarity
scores from each online i-vector in test to all instances in en-
rollment. As many scores as the number of speech frames in
test utterance are obtained. Finally, these scores are averaged
to obtain a global similarity score. The rationale behind this
approach is to choose the closest frame in the enrollment data.
The accumulated global score is obtained as follows

s(X,Y) =
1

C

∑
j

min{d(xi,yj),∀i = {1, 2, · · · , R}},

(3)
where X = {x1, x2, · · · , xR} and Y= {y1, y2, · · · , yC} repre-
sent set of i-vectors for the enrollment and test data, the function
d(xi, yj) computes the distance between the i-vectors xi and
yj . The score s(X,Y) represents the accumulated distance be-
tween the closest speech frames. We used cosine distance met-
ric to compute the dissimilarity between two online i-vectors.
A threshold on the cosine distance can be applied to detect if a
test frame is not present in the enrollment data.

The content normalization technique described above does
not assume phonetic label of the speech frame. In a sce-
nario, when phonetic alignments are obtained using the text-
transcripts, the minimization of Equation 3 could be performed
by iterating over the same phonetic category of the enrollment
data.



3.3. PLDA as a feature extractor

The online i-vector representation contains other information in
addition to the speaker content. In order to factor out the chan-
nel effects, a PLDA model is trained as the back-end classifier
with online i-vectors as features. In our previous work [12],
PLDA trained with speaker-phone pairs was used for fixed
phrase based text-dependent SV task. In this paper, we explore
speaker-word combination as classes definition for the training
the PLDA. A speech recognizer is employed to align the de-
velopment data with the word labels. Online i-vectors corre-
sponding to word boundaries are subsequently used as features
for the PLDA model. The PLDA model is then used to project
the online i-vectors using the parameters of the model to obtain
channel compensated vectors as done in [17, 12]. We refer to
these vectors as plda-vectors.

4. Experimental Setup
In this section, we describe the experimental setup for the base-
line and proposed systems.

4.1. Evaluation and Training Data

We performed experiments on Part1 and Part3 portion of the
RSR dataset [18, 5, 19], restricting to female speakers only. We
evaluated our systems on these two text-dependent tasks:
(a) Seen: We created the following test set as described in [6]
to evaluate our techniques. The data of each of the speakers in-
volves 15 pass-phrases with three sessions for each pass-phrase,
for a total of 45 utterances. The total duration of the enrollment
of a speaker is 90 s. The test utterance consists of a speaker
uttering a phrase with a duration of 2 s. For this task, the evalu-
ation trials consist of 4’410 target and 211’680 impostor trials.
For both the tasks, the Fisher female subset English was used
as the training data. It contains about 1.3 k utterances with 120
hours of speech data. For the Seen task, the Speaker Recog-
nition Evaluation (SRE) data from SRE 04 to 08 was used for
training the back-end classifier.
(b) Random-Digits: This subset contains 49 speakers pronounc-
ing random sequence of digits. The protocol described in [18]
was adopted to perform text-dependent SV. Three utterances
(with an average duration of 12 s) are used for creating the
enrollment model. The enrollment utterance consists of the
speaker uttering 10 digits. The test utterance consists of 5 dig-
its with an average duration of 2 s. For this task, the evaluation
trials consists of 5’283 target and 253’584 impostor trials. The
Part3 of RSR dev portion was used as the development data. We
used 1’264 utterance consisting of 47 speakers pronouncing ten
digits.

4.2. I-vector system

The front-end SV system extracts Mel Frequency Cepstral Co-
efficients (MFCC) of 20 dimensions from 25 ms of frame of
speech signal with 10 ms sliding window and delta, double delta
features appended to it. Short time gaussianization is applied to
the features using a 3 s sliding window [20, 21]. The dimen-
sionality of i-vector extractor is set to 400.

4.3. ASR system

DNN acoustic model is trained as a part of the ASR system. It
is trained with MFCCs with 4 hidden layers each of dimension
1’200. The output layer has 1.9 k senone units including 20
silence units. The same ASR system is designed for both tasks.

Table 2: Performance of the different baseline systems in terms
of EER (%). The GMM-UBM provides the best performance
among the baseline systems in both evaluation tasks.

Systems/Tasks Seen(%) Random-Digits (%)

IvecGMM
PLDA 16.5 17.3

IvecDNN
PLDA 11.6 15.2

PN-IvecGMM
PLDA 12.3 15.8

PN-IvecDNN
PLDA 8.6 14.4

GMM-UBM 4.5 8.6

It employs a CMU dictionary with 42 k words, similar to [3].
The ASR system is validated on a separate subset consisting of
200 utterances from the Fisher database with 3gram word LM.
The Word Error Rate (WER) on the validation set is 24.4%.
The senone posteriors extracted from the DNN forward pass
are used to estimate the parameters of the i-vector model. We
used the conventional ASR decoder parameters to obtain word
recognition lattices [14] (beam width of 13). The same type of
lattices has been used previously for various tasks [22, 23, 24].
From these lattices, we obtain the senone posteriors, by fixing
the acoustic scale parameter to 0.01, in order to obtain i-vectors
that follow a Gaussian distribution. Furthermore, we observed
that higher acoustic scale (> 0.01) leads to i-vectors with high
kurtosis and thus making the PLDA model ineffective.

5. Experimental Results and Discussions
In this section, we describe the results obtained with the base-
line and the proposed SV systems. The various systems consid-
ered in this paper are the following:

• GMM-UBM: a universal GMM is created using the
training data (UBM). The speaker models are obtained
from this UBM using Maximum-a-Posteriori (MAP)
adaptation.

• IvecPLDA: the conventional i-vector systems for speaker
recognition. The systems using GMM, DNN and de-
coded ASR lattice posteriors are referred to as IvecGMM

PLDA,
IvecDNN

PLDA and IvecDNN-dec
PLDA respectively.

• PN-IvecPLDA: the systems using posterior normalization
technique as explained in Section 3.1. The systems using
GMM, DNN and decoded ASR lattice posteriors for i-
vector extraction are referred to as PN-IvecGMM

PLDA , PN-
IvecDNN

PLDA and PN-IvecDNN-dec
PLDA respectively.

• CN-Ivec: the SV systems applying content normal-
ization technique using i-vectors as explained in Sec-
tion 3.2. The systems using GMM, DNN and decoded
ASR lattice posteriors for i-vector extraction are referred
to as CN-IvecGMM , CN-IvecDNN and CN-IvecDNN-dec re-
spectively.

• CN-IvecDNN
PLDA: a PLDA model is trained on top of the on-

line i-vectors as the channel compensation model. We
explore the use of speaker-phone and speaker-word pairs
to train the PLDA. The systems trained on plda-vectors
(estimated using online i-vectors with DNN and decoded
ASR posteriors) with speaker-phone pairs are referred to
as CN-IvecDNN

PLDA,p and CN-IvecDNN-dec
PLDA,p, while the systems

trained on plda-vectors trained with speaker-word labels
are referred to as CN-IvecDNN

PLDA,w and CN-IvecDNN-dec
PLDA,w



Table 3: Performance of the different SV systems (using senone
posteriors extracted from decoded ASR lattices) in terms of
EER(%). The PN-IvecDNN-dec

PLDA performs the best among the other
systems for Seen task.

Systems/Tasks Seen (%) Random-Digits (%)

IvecDNN-dec
PLDA 10.9 18.9

PN-IvecDNN-dec
PLDA 5.6 15.7

5.1. Baseline SV systems

Table 2 shows the performance of various i-vector and GMM-
UBM based SV systems for the Seen and Random-Digits tasks.
We observe that performance of the systems on Seen is signif-
icantly worse than the fixed phrase based text-dependent sys-
tem [12]. Lower bound for Seen task is 2.3% Equal Error Rate
(EER) for the case when the phrases of the enrollment are iden-
tical to the test [12]. The posterior normalization technique
is used to exploit the content of the enrollment data. We ob-
serve that this approach reduces the error rates by 26% relative
(11.6% to 8.6% absolute) and 5% relative (15.2% to 14.4% ab-
solute) EER for the Seen and Random-Digits tasks. Further-
more, we observe that incorporating the phonetic information
(with DNN and decoded ASR posteriors) helps the SV. The
GMM-UBM provides the best performance among the base-
line systems considered in this paper. The EER for this sys-
tem is comparable to the results published in literature [25, 7].
We applied T-norm on the scores produced by the GMM-UBM
system. We observe that T-norm reduces from 10.5% to 8.6%
absolute EER for the Random-Digits task.

5.2. SV systems using ASR lattice posteriors

We explore the application of posteriors estimated from word
recognition ASR lattices in an i-vector framework. Table 3
shows the performance of the i-vector systems using these
posteriors. We observe that IvecDNN-dec

PLDA outperforms IvecDNN
PLDA

for Seen task by 0.7% absolute EER. Significant gain in per-
formance is achieved by the PN-IvecDNN-dec

PLDA compared to PN-
IvecDNN

PLDA, with 35% relative (8.6% to 5.6% absolute) EER for
Seen. This indicates the importance of more accurate senone
alignments in obtaining better SV performance for this task.
However, performance of IvecDNN-dec

PLDA and PN-IvecDNN-dec
PLDA de-

grade for the Random-Digits task compared to the IvecDNN
PLDA.

One of the reasons could be that the performance of the ASR
system (unconstrained LM) is poor on the RSR dataset (∼ 80%
WER).

5.3. SV systems based on content normalization technique

As opposed to using posterior normalization, we also explore
content normalization using i-vectors, as described in Sec-
tion 3.2. Table 4 shows the performance of the proposed content
normalization based SV systems using posteriors from GMM,
DNN and decoded ASR lattices. We observe that the pro-
posed systems outperform the posterior normalization based
systems in Seen and Random-Digits tasks. In particular, the
CN-IvecDNN performs better than PN-IvecDNN

PLDA by 67% rela-
tive (8.6% to 2.8% absolute) and 15% relative (14.4% to 12.2%
absolute) EER for the Seen and Random-Digits tasks respec-
tively. This indicates the importance of the content normal-
ization technique using online i-vectors. We observe that CN-
IvecDNN

PLDA,p performs better than the GMM-UBM by 10% rel-
ative (8.6% to 7.7% absolute) EER. The CN-IvecDNN

PLDA,w fur-
ther improves upon CN-IvecDNN

PLDA,p by 0.2% absolute EER in

Table 4: Performance of the different SV systems (using con-
tent normalization technique) in terms of EER(%). The CN-
IvecDNN

PLDA,w performs the best among the other systems in Seen
task. The * indicates the system using text-transcript.

Systems/Tasks Seen (%) Random-Digits (%)

CN-IvecGMM 4.1 13.4
CN-IvecDNN 2.8 12.2
CN-IvecDNN-dec 4.3 15.5
CN-IvecDNN

PLDA,p 2.7 7.7
CN-IvecDNN

PLDA,w 2.7 7.5

CN*-IvecDNN
PLDA,w 2.5 7.6

Random-Digits task. Thus, training the PLDA using speaker-
word labels is more effective in the random digits task than the
speaker-phone pairs. We do not present all the results of content
normalization technique using plda-vectors with GMM, DNN
and decoded ASR posteriors as we did not obtain better perfor-
mance than CN-IvecDNN

PLDA,w.
We also explore the importance of the text-transcript for

the content normalization technique. An ASR system is used to
align the enrollment and test data with the ground truth. Scores
from the closest frames between the enrollment and test data are
accumulated by iterating over same phonetic classes. The EER
for the Seen task reduces by 0.2% absolute for the CN-IvecDNN

PLDA,w

system. However, for the Random-Digits task, we did not get
any improvement compared to 7.5% EER.

6. Conclusions
In this paper, we address a text-dependent SV task in which the
lexical content of the test data has been spoken by the speaker.
The conventional approach to tackle this problem is to incorpo-
rate content information in the i-vector framework using senone
posteriors (estimated from DNN). A posterior normalization
technique is applied to scale the sufficient statistics of the en-
rollment data to match the statistics of the test data. Significant
gain in performance is observed for the Seen task compared to
the baseline i-vector system.

We proposed to improve upon the baseline system by, (a)
enhancing the senone prediction accuracy of the DNN pos-
teriors, and (b) normalizing the content of the enrollment to
match the test using online i-vectors. We explore the use of
speaker-word pair to train the PLDA model on top of online
i-vectors. The PLDA is used to obtain channel compensated
vectors (plda-vectors). We observe that content normaliza-
tion using plda-vectors achieves the best results for Seen and
Random-Digits tasks with 40% and 12% relative EER over a
baseline GMM-UBM system.
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