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Economic Advantages of Office Buildings Providing
Ancillary Services with Intraday Participation

Faran A. Qureshi, Ioannis Lymperopoulos, Ali Ahmadi Khatir, and Colin N. Jones

Abstract—Controlling the consumption profile of office build-
ings can be used to provide balancing services to the power
grid at a financial benefit without violating its thermal comfort
constraints. The economic advantage of such a service is a
reduction in the total operating cost, but also an increase in
average occupants’ comfort when using our control scheme. We
study these effects for the case of participating in the secondary
frequency control market of Switzerland. Moreover, we examine
the advantages of engaging in the intraday energy market. We
propose a method for solving the flexibility bidding problem for
a building in order to partake in the ancillary services market.
The proposed solution is based on the combination of a new
intraday control policy and two-stage stochastic programming.
We also study the sensitivity of this economic benefit to electricity
pricing. Our findings are based on extensive simulations with
real data for energy prices, ancillary service bids, meteorological
records and the frequency control signals for the year 2014 as
transmitted by Swissgrid.

Index Terms—demand response, building control, secondary
frequency control, smart grids, stochastic optimization, MPC.

I. INTRODUCTION

POWER grid operators are required to balance electricity
production and consumption to guarantee the stability

of the power system and the quality of the power output.
A special set of reserves and services is dedicated to this
operation, known as Ancillary Services (AS). The heart of AS
is the frequency control service that responds to power grid
contingencies at various time scales [1]. The system opera-
tors procure such standby capacity from Ancillary Services
Providers (ASP). Traditionally, those have been generating
units, while today flexible loads or storage systems can act
also as ASPs [2].

Most imbalances were up to recently due to the stochastic
fluctuation of consumption (with the exception of generating
contingencies). The growing participation of renewables in the
energy generation mix is increasing further the requirements
for fast responding AS [3]. Since this trend is expected to
continue, efficient and economic dispatch of AS will be a
crucial part of modern power systems.

In aggregate, office buildings are a significant part of the
electrical consumption. Moreover, they are a load coupled
to thermal capacity and usually equipped with a controllable
Heating Ventilation and Air conditioning (HVAC) system. In
addition, large office buildings are commonly equipped with
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a central building management system which automates the
control process of thermal comfort. The main target of the
control effort is to maintain occupant comfort despite external
effects (weather, occupancy, etc) at the minimum operational
cost. We propose here that participation in the AS can further
reduce the costs with a positive impact in average comfort.

Various studies have demonstrated the ability of buildings
to shift their power consumption from peak to off-peak hours
without sacrificing occupant comfort [4]. In [5], the authors
propose a robust optimization based approach to evaluate the
flexibility of a building HVAC system. A robust optimiza-
tion based hierarchical control scheme was presented in [6]
enabling an aggregation of commercial buildings providing
also AS to the grid. [7] discussed a contract design problem
for aggregators providing AS. Control of air handing units
to track a regulation signal was demonstrated by [8]. [9],
[10] presented experimental studies verifying a building’s
capability to provide ancillary service. A method based on
robust optimization to characterize a building’s consumption
flexibility as a virtual battery, enabling it to offer it to the
grid was presented in [11]. Most works focus on the technical
capability of buildings providing AS, without assessing the
economic feasibility or taking into account a realistic market
structure, while the solution of the bidding problem does
not consider participation on the intraday energy market.
Finally, no analysis on how to optimize financial performance
by incorporating all mechanisms (weekly bids, day-ahead
auctions, intraday market) of the energy and AS market has
been performed.

Participation in the intraday energy market gives the capac-
ity to the building to change its contracted power consumption
during the course of the day. By doing so, the building may
effectively charge / discharge its stored energy. [12] proposed
a method to charge / discharge the storage system (acting as
an ASP) at a frequency slower than the tracking signal using
intraday market, bilateral agreements, or pooling with a power
plant such that a smaller storage size is required to provide
frequency tracking services.

This paper is an extension of our previous work [13], where
a preliminary economic analysis of an office building pro-
viding ancillary service (without participating in the intraday
market) to the grid in Switzerland was presented. Here we
refine these results by incorporating more realistic conditions.
Moreover, an approximate solution method is proposed for the
stochastic bidding problem (faced by the building providing
ancillary services) with intraday market participation. We
propose a methodology to design the intraday control policy
separately before formulating the bidding problem. A simula-
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tion study is carried out evaluating the economic potential of
an office building in Lausanne providing secondary frequency
control service to Swissgrid, the Swiss Transmission System
Operator (TSO). We study also the additional economic ben-
efit of participating in the Swiss intraday market. Providing
secondary frequency control to the grid results in savings for
the building which are further increased by participating in
the intraday market. Furthermore, we obtained the counter-
intuitive result of increased occupants’ comfort at a reduced
price for buildings providing secondary frequency control to
the grid. This is because of the extra energy consumed to
provide flexibility to the grid. Finally, we investigate the
sensitivity of the economic advantages to the electricity price.

The swiss AS market structure is described in Section II, the
problem formulation and modeling is presented in Section III,
followed by the proposed approximate solution method in
Section IV, results and detailed simulation study is presented
in Section V, and finally conclusions are drawn in Section VI.

Notation: Bold letters denote sequence of vectors over
time, the length of which is clear from context, e.g., e =
[eT0 , e

T
1 , ..., e

T
N−1]T .

II. SWISS ANCILLARY SERVICES AND SPOT MARKET

To maintain grid stability, the grid operator employs three
different levels of control, namely, primary, secondary, and
tertiary frequency control to achieve balance of production
and consumption at various time scales [1], [14]. In this paper
we focus on the secondary frequency control for Swissgrid.

A. Secondary Frequency Control

Swissgrid procures secondary control reserve capacity in a
weekly auction from a set of pre-qualified ASPs. Swissgrid
activates the acquired reserve capacity by sending a real-time
activation signal to all eligible ASPs (the eligibility is decided
in a weekly auction). The activation signal for each ASP is
proportional to its accepted capacity and is a scaled version of
the normalized activation signal which is called the automatic
generation control (AGC) signal in Switzerland.

The ASP could be either a generator or a load, e.g.,
for surplus energy in the grid, a generator ASP reacts by
decreasing its production or equivalently a load ASP reacts by
increasing consumption. We focus only on loads here, and all
references to ASP is from a load point of view. By convention,
a positive AGC signal refers to loads consuming more and vice
versa.

The ASPs participate in the Swiss secondary frequency
control service in two phases (offline and online). During the
offline phase an auction is conducted every week, where all
ASPs declare their available flexibility γ, for the upcoming
week, in reference to their nominal (baseline) power consump-
tion ē. The flexibility is offered as the maximum scaling of
AGC signal a, the ASP will be able to track, at a specific
price. The baseline consumption is declared either in the day-
ahead or intraday energy market. During the online phase, an
AGC signal is propagated from Swissgrid, which all ASPs are
required to track. Tracking the signal means that the difference
between the total power consumption (on a second by second

calculation) of the ASP and its baseline power consumption
is close to the scaled version of the signal γa according to
requirements published by Swissgrid. Details of the costs,
benefits and structure of these phases and the energy markets,
are discussed below.

B. Offline / Bidding Phase

1) Weekly AS Capacity Auction: Every week, the ASP bids
a certain capacity γ MW in the secondary frequency control
market. This is the flexibility in terms of maximum deviation
from the baseline power consumption that the ASP can offer
to the grid, and in turn, receives a reward

Rcapacity(γ) := ccapacityγ (1)

where ccapacity is the bid price of the ASP.
2) Day Ahead Auction: Each day, the ASP participates in

the day-ahead spot market to buy the baseline power profile
ē MWh for each 15 min increment of the next day. Its cost is
defined as

Cbaseline(ē) := cTelectricityē (2)

where celectricity is the electricity price which is the sum
of the day-ahead spot market price, distribution charges, and
taxes. celectricity is unknown at the time of bidding the
capacity γ. Note, that the distribution charges and taxes may
differ depending on the physical location of the ASP within
Switzerland and the level of the distribution network at which
it is connected to the grid.

C. Online Phase

1) Intraday Transaction Cost: As the day progresses, the
ASP can re-adjust its baseline power consumption in the
intraday market. The ASP can buy or sell energy m MWh
for any hour of the day, at least 75 min1 before the hour-of-
interest, from other market participants. This means that the
ASP can still modify its predefined baseline power schedule.
Participation in the intraday market is optional and the ASP
may decide not to alter its baseline. The cost of intraday
transactions is defined as

Cintraday(m) := cTintradaym (3)

where m is the intraday power and cintraday is the intraday
transaction price. Note that the intraday transaction price may
vary with the time of purchase of the intraday power, however,
we consider all intraday transactions to be exactly 75 min
before the time-of-interest. cintraday can be higher or lower
compared to the electricity price celectricity. The intraday cost
Cintraday may be either positive or negative, depending on net
buying or selling of energy.

Swissgrid remunerates the ASP by measuring its total power
consumption ei every 15 min. Financial adjustments are made
based on the 15 min measurements, and have two parts, (i):
The AGC Tracking Reward - Incentivizing the price of energy
consumed / produced by AGC tracking, and (ii): Tracking
Error Penalty - penalizing the tracking errors.

1Minimum lead time of 75 min was applicable in 2014. Since 16 July 2015
this has been reduced to 60 min.
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2) AGC Tracking Reward: If the received AGC signal is
positive, the ASP increases its consumption. This extra energy
is charged at a reduced price cAGC as a bonus. Similarly,
for tracking a negative AGC signal, the ASP decreases its
consumption, and in turn, receives a rebate at a price bAGC
on unused energy. The total reward received by the ASP for
tracking the AGC signal γa is therefore given as

RAGC(γ,a) := −cTAGC max{γa, 0}+ bTAGC max{−γa, 0}
(4)

where cAGC ≤ celectricity ≤ bAGC .
3) Tracking Error Penalty: The tracking service provided

by the ASP, during the online tracking phase, is the difference
between the total power consumption e, and the net baseline
schedule ē + m. The tracking error ε is defined as

ε = e− ē−m− γa (5)

Swissgrid imposes penalties Cpenalty on ε to maintain tracking
quality. Different penalties are paid for positive and negative
tracking error and the total penalty is given as

Cpenalty(ε) := cTpenalty max{ε, 0} − bTpenalty max{−ε, 0}
(6)

where cpenalty is the cost, and bpenalty is the rebate paid for
tracking errors. Readers are referred to [15] for more details
of the Swiss AS market.

Finally, the Swissgrid regulations require the tracking errors
to be smaller than a predefined ratio q of the offered capacity
γ, resulting in the following linear constraint

‖e− ē−m− γa‖∞ ≤ qγ (7)

III. PROBLEM FORMULATION

In this section we formulate the bidding problem for partici-
pating in the secondary frequency control service of Swissgrid.

A. Building Thermodynamics
A state space model of the building thermodynamics is

extracted from an EnergyPlus model, using the MATLAB
toolbox OpenBuild [16]. EnergyPlus models are high fidelity,
but due to their complexity, are not fit for optimization. The
OpenBuild toolbox extracts all relevant data and constructs a
linear continuous-time state space model of the thermodynam-
ics. The procedure used is based on first principles modeling.
The physical phenomena incorporated in OpenBuild include
heat transfer through conduction, convection, long-wave radia-
tion, and short-wave radiation. The impact of external weather
conditions (outside temperature, solar gain, etc.), and internal
gains (heat transfer due to occupants, electrical equipment, and
lights) is also added to the model as a disturbance input. The
quality of the building models obtained from OpenBuild have
been validated through a comparison study with the original
high fidelity EnergyPlus models. See [16] for further details.

The continuous-time linear model obtained from OpenBuild
is approximated using the standard Hankel-Norm model reduc-
tion method and discretized. Finally, we obtain a model of the
following form:

xi+1 = Axi +Buui +Bddi

yi = Cxi
(8)

where xi ∈ Rn is the state, ui ∈ Rm is the thermal power
input to each zone of the building, di ∈ Rp is the disturbance
input (outside temperature, solar gain, internal gains, etc.), and
yi ∈ Rq is the temperature in each zone at time step i.

The temperature in each zone influences occupants comfort,
and therefore it is controlled to stay within certain acceptable
bounds. This is incorporated as a linear constraint on the
output of the system. We define the comfort constraint of level
θi, at time step i, by |yi−Tref| ≤ θi, where Tref is the optimal
zone temperature, and θi is the deviation from the optimal
temperature. The thermal input to each zone of the building is
constrained by the physical limits of the HVAC system, which
translates into an input constraint.

We define the set of admissible thermal power trajectories
as the set of all the possible thermal power inputs that the
building can consume, over a horizon N , while meeting the
comfort requirements and actuator limitations, described as

U(x) =

u

xi+1 = Axi +Buui +Bddi
|Cxi − Tref| ≤ θi
ui ∈ U
x0 = x, ∀i = 0, . . . , N − 1.

 (9)

where x is the initial state of the building and U is the set
defining the actuator limits.

B. HVAC System and Thermal Storage

Thermal storage constitutes an integral part of modern
HVAC systems. Storage systems are installed for two main
reasons. Firstly, to reduce the operational cost by shifting
electrical power consumption from expensive peak hours to
cheaper off-peak hours. Secondly, to reduce the size of the
heating / cooling system required to meet the peak thermal
load. A generic thermal storage model takes the following
form

si+1 = αsi + βinei − βoutpi (10)

where si ∈ R is the state of the storage, ei ∈ R is the electrical
power consumed, and pi ∈ R is the thermal power out of the
storage at time step i. Moreover, α is the dissipation rate of
the storage, βin is the coefficient of performance (COP) of the
HVAC system, and βout is thermal power loss in discharging
the storage. The COP of the heating / cooling system is defined
as the net efficiency of converting electrical power to thermal
power.

The storage state is constrained by the physical size of
the storage (si ∈ S), and the electrical power input is
constrained by the power rating of the installed (heating /
cooling) equipment (ei ∈ E). We define the set of all the
possible electrical and thermal power consumption trajectories,
over a horizon N , as the set of admissible electrical and
thermal power which is given as

S(s) =

(e,p)

si+1 = αsi + βinei − βoutpi
si ∈ S
ei ∈ E
s0 = s, ∀i = 0, . . . , N − 1.

 (11)

where s is the initial state of the storage.



4

Thermal storage is assumed to be in parallel operation with
the building and at the output of the HVAC. Thus, the electrical
heating / cooling system can either provide the thermal power
to the building directly, or charge the thermal storage. On
the other hand, the building can use both the storage and the
heating / cooling system to meet its thermal load. This implies
that the total thermal power consumed by the building is equal
to the thermal power output of the storage and is expressed as
the following linear constraint

p = Γu (12)

where Γ := IN ⊗ 1T , with IN an identity matrix of size N ,
and ⊗ is the Kronecker product.

C. Bidding Problem

The objective of the bidding problem is to select the
capacity bid γ, and the baseline power consumption for the
first day ē, which minimizes the expected operational cost,
while maintaining occupant comfort with high probability. The
total cost of operation is the sum of all the costs and rewards
introduced in Section II, while the operational constraints are
expressed by (7), (9), (11), and (12). We formulate the bidding
problem as the following optimization problem

minimize
γ,πē,πe,πm,πu

Cbaseline(ē)−Rcapacity(γ)

+Ea[Cpenalty(ε)−RAGC(γ,a)
+Cintraday(m)]

s.t. u ∈ U
(e,p) ∈ S
p = Γu
‖e− ē−m− γa‖∞ ≤ qγ
γ ≥ 0
ē = πē(a), e = πe(a)
u = πu(a), m = πm(a)

(13)

where the AGC signal a is uncertain, and the decision vari-
ables are the baseline power consumption ē, the capacity
bid γ, the total electrical power consumption e, the intraday
transaction m, and the the thermal power consumption of the
building u. Since the final cost depends on the realization of
the AGC signal, we take its expectation over a. Typically, the
comfort constraints are formulated as chance constraints while
the operational and tracking constraints are handled in a robust
fashion.

At the time of the decision, the AGC signal is unknown,
therefore (13) is a multi-stage uncertain optimization problem
[17]. The problem uncertainty is revealed at different stages,
and it is possible to re-adjust the control action accordingly.
The capacity γ and the baseline for the first day ē are the
first stage variables, while e, m, u, and baseline for the rest
of the week ē are the subsequent stage variables. Therefore,
for subsequent stage variables, the goal is to optimize over
the control policies ē = πē(a), e = πe(a),u = πu(a),m =
πm(a), rather than a fixed trajectory over the whole horizon.
Furthermore, the policies must be causal, i.e., the decision at
time step i depends only on the realization of uncertainty until
time i.

Multi-stage uncertain optimization problems are known to
be intractable [17], thus obtaining an exact solution of the
bidding problem (13) can become challenging especially for
long time horizons.

IV. APPROXIMATE SOLUTION METHOD

In this section we present an approximate solution method
for the bidding problem (13). The key idea is to separate the
intraday control policy from the bidding problem and to solve
it independently. We first present the proposed causal intraday
control policy which is a function of previously received AGC
signal a. Next, the bidding problem is approximated by a two-
stage stochastic optimization problem using the pre-defined
intraday policy.

A. Intraday Control

The AGC mean might exhibit a considerable bias in either
direction for short time horizons. This creates an amount
of extra energy consumed or removed from the building
compared to its baseline (nominal) consumption.

The building may decide to participate in the intraday mar-
ket to counteract such temporal deviations of AGC from zero
mean. This implies that the building may re-adjust its baseline
(declared) power consumption, depending on its current state
and the net energy deviation derived from AGC. For example,
if the cumulative sum of the AGC signal on a certain day is
positive, i.e., the building consumed extra energy to track the
AGC, then, it may compensate for that by reducing its future
baseline consumption. Thus, by participating in the intraday
market, the building may effectively offer a higher tracking
capacity to the grid for the same physical storage size.

We define the residual tracking signal r as the sum of the
received AGC and the intraday transaction, i.e., the signal
required to be tracked by the building after making the
intraday adjustments to the baseline power consumption. The
normalized residual tracking signal is given as

r = a + m̄ (14)

where m̄ is the normalized intraday transaction. m̄ denotes the
intraday transaction corresponding to the received normalized
AGC signal a. Total intraday transaction m = γm̄ is a scaled
version of m̄.

We here propose a causal control policy of intraday trans-
action m̄ = πm(a), such that the residual tracking signal has
a smaller bias (cumulative sum) over the horizon, and a mean
closer to zero. The cumulative sum of a signal a, from time
step j to k is defined as âkj =

∑k
i=j ai. The intraday control

policy is then

πm̄(a) =


m̄

∣∣∣∣∣∣∣∣∣∣∣∣

m̄i+1 =

argmin
m̄i+1

r̂i0 + m̄i+1 + Ea[âi+1
i ]

s.t. r̂i0 = r̂i−1
0 + m̄i + âii−1

r̂−1
0 = 0, m̄0 = 0, â0

−1 = 0

∀i = 0, ..., N − 1.


(15)

where m̄i is the normalized intraday action at time step i, r̂i0
is the cumulative sum of the residual tracking signal from time
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step 0 to i, and âi+1
i is the cumulative sum of the AGC signal

received between time step i and i + 1. Note that (15) is a
causal multi-stage control policy. At time step i, the control
policy (15) measures the cumulative sum of the received AGC
signal in the interval i − 1 to i and updates the cumulative
sum of the residual tracking signal r̂i0 using the previously
optimized intraday action m̄i. Then, the intraday action for the
next time step m̄i+1 is optimized by minimizing the expected
value of the cumulative sum of the residual tracking signal at
the next time step. The AGC signal at the next time step is
not yet realized and is uncertain. This procedure is repeated
recursively, as the uncertainty is revealed. The expected value
can be estimated at each step using scenarios of the AGC
signal.

Remark 1. The actual tracking signal is a scaled version of
a. Similarly, the actual intraday transaction is m = γm̄, and
the resulting residual tracking signal required to be tracked
by the building after making intraday adjustments is a scaled
version of r.

Remark 2. The intraday transaction will incur a cost
Cintraday(m) = cTintradayγm̄ as already defined in Section II.
Note that this part of the total cost in the bidding problem is
now a function of γ only, since m̄ is already fixed with the
intraday policy (15).

Remark 3. Note that given the scenarios of the normalized
AGC signal over the horizon aj , the control policy (15) can be
used to obtain the resulting scenarios of the intraday action
m̄j , and the residual tracking signal rj .

B. Two-stage Stochastic Approximation
To approximate the bidding problem we reduce the multi-

stage structure of the optimization to two stages. The causality
requirements are relaxed, and it is assumed that after the first
stage variables are selected, the uncertainty is revealed over
the whole horizon in the second stage, and it is possible to re-
adjust the second stage control actions after the uncertainty is
realized. The first stage variables are γ, and ē over the whole
week, while e and u are the second stage variables. Instead
of the multi-stage policy e = πe(a), and u = πu(a), a two-
stage control policy is used for the second stage variables. The
intraday control policy m = πm(a) is already fixed, and is
not an optimization variable anymore. Moreover, the received
AGC signal is transformed to the residual tracking signal r
using (14).

Once the capacity γ and the baseline power consumption
ē are fixed in the first stage (the intaday transaction m is
also fixed), the best strategy is to minimize the tracking error
penalty Cpenalty, subject to the comfort requirements and the
operational constraints. We define C∗penalty as the optimal
value of the tracking penalty, given that the first stage variables
are fixed and the operational constraints are satisfied

C∗penalty(ψ, φ) := minimize
e,u

Cpenalty(e− ψ)

s.t. u ∈ U
(e,p) ∈ S
p = Γu
‖e− ψ‖∞ ≤ qφ

(16)

The approximate bidding problem is given as

minimize
ē,γ

Cbaseline(ē)−Rcapacity(γ)

+Ea[C∗penalty(ē + γr, γ)

−RAGC(γ,a) + Cintraday(γm̄)]
s.t. γ ≥ 0

(17)

where r is the normalized residual tracking signal defined by
(14), and m̄ is the normalized intraday transaction defined by
(15). The optimizer of (17) is the AGC tracking capacity γ
and the baseline power consumption ē for the whole week.

The two-stage stochastic optimization problem (17) can be
solved using the well known sample averaged approximation
method [17], where an implicit policy of the second stage
decision variables is defined by having separate trajectories
of the second-stage decision variables corresponding to each
sample of the uncertain variable a, resulting in the following
optimization problem

minimize
ē,γ

Cbaseline(ē)−Rcapacity(γ)

+ 1
Ns

Ns∑
j=1

[Cpenalty(ej − ē− γrj)

−RAGC(γ,aj) + Cintraday(γm̄j)]
s.t. uj ∈ U

(ej ,pj) ∈ S
pj = Γuj

‖ej − ē− γrj‖∞ ≤ qγ
γ ≥ 0, ∀j = 1, ..., Ns

(18)

where Ns is the number of samples of the normalized AGC
signal a and the corresponding samples of the normalized
residual tracking signal r. The superscript j defines the
second-stage decision variable corresponding to the jth sce-
nario of the uncertain parameter. Note, that for each sample of
the uncertain parameter aj there are separate trajectories of the
second stage optimization variables ej and uj , also implicitly
defining separate trajectories for pj and the state variables.

Note that the original bidding problem (13) is a multi-stage
uncertain optimization problem and is known to be intractable
[17], thus obtaining an exact solution is challenging. Problem
(16) is a linear program and (17) is the two-stage stochastic
optimization problem defining the approximate solution of the
bidding problem (13). Problem (18) is the scenario based
tractable solution of the two-stage stochastic optimization
problem (17), and can easily be transformed into a linear
programming problem, and thus large scale problems can be
solved efficiently using standard software tools.

V. SIMULATION ANALYSIS

This section presents the simulation study of the optimiza-
tion procedure and an analysis of the results. We define the
following simulation cases:
Minimum Cost - No AGC tracking: The building minimizes
its total energy cost of operation without participating in the
AS market. We employ for this case a minimum cost MPC
controller which has been widely studied in previous literature.
AGC Tracking - No Intraday: The building minimizes its
total cost of operation while providing the AGC tracking
service, without participation in the Swiss intraday market.
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Building
Floor Area (m2) 511
No. of Zones 5
Peak Occupancy (people/100m2) 5.4
Maximum thermal power input (per zone) 3.6 kW
Thermal Storage
Dissipation rate α 1
Average COP βin 2.4
Maximum electrical power consumption
of the heating / cooling system

7.5 kW

Maximum thermal energy capacity 150 kWh
Full charge / discharge time 8.3 h
Comfort
Optimum ALD comfort temperature Tref 23 ◦C
Temperature variation (office hours) 2 ◦C
Temperature variation (excl. office hours) 4 ◦C

TABLE I: Building and Simulation Parameters

AGC Tracking - Intraday: The building minimizes the total
cost of operation while providing the AGC tracking services
to the grid and participating in the intraday energy market.

For comparison, all the above cases are repeated with and
without a thermal storage tank in the HVAC system. The base
case is taken to be the minimum cost operation without thermal
storage tank.

A. Simulation Setup

The building employed in all simulations is the ASHRAE
standard EnergyPlus model of a five zone office from the
reference database of the U.S. department of Energy [18].
The building model is provided with typical usage patterns
of electrical equipment, lights and occupancy schedule. The
heating / cooling system and the thermal storage tank is sized
using EnergyPlus. We consider an ideal thermal storage. For
winter, this represents a hot water storage tank, while for
summer an ice storage system. Main parameters are given in
Table I. The assumptions of our simulations are listed below:
• Simulations are carried out for winter (weeks 2 to 10,

and 45 to 52) and summer (weeks 24 to 35) 2014.
• Recorded weather data of Lausanne for 2014 are used.
• Real energy prices for Lausanne for 2014 are used. We

obtain the spot (celectricity) and intraday index price
(cintraday) of electricity from the European Power Ex-
change (EPEX) [19].

• The average weekly capacity price (γ), AGC tracking
bonus (cAGC , bAGC) and deviation penalty (cpenalty,
bpenalty) for the year 2014 are obtained from Swissgrid.

• We assume that the intraday market is liquid at all times.
• The historic normalized AGC signal (obtained from

Swissgrid) is split into weekly signals which are used
as scenarios. We draw Ns = 45 random scenarios of
the weekly AGC signal to solve the two stage program
(18). Ns is limited by the computational complexity of
the resulting optimization problem, however, sensitivity
studies suggest that the number is still representative of
the underlying probability distribution.

• The AGC signal of the year 2014 is obtained from
Swissgrid and is used in our simulations.

Remark 4. Building thermodynamics are slow, and are mod-
eled with a sampling time of 15 minutes. From comfort point-
of-view applying a fast thermal input signal is equivalent to
applying a 15 minutes average of the fast signal. Moreover,
most commercial HVAC systems (except electric heaters, and
fans) cannot be controlled at rates faster than 15 minutes.
Furthermore, all financial remuneration is cleared by Swiss-
grid using the 15 minutes average signals. Therefore, we
use 15 minutes average data (including AGC signal) in our
simulations. A device with fast dynamics (e.g. electric battery)
will be required in practice to alter the consumption with
high frequency. The size of the electric battery required to
support AGC tracking at high frequency is determined by the
worst-case energy content and power of the difference between
the AGC signal received every second and the 15 minutes
average AGC. This worst-case is estimated using historic
AGC scenarios and the analysis suggests that only a small
supporting electric battery with power limit of ±1kW, and a
capacity of 0.04kWh is required when following the remaining
of the AGC building tracked signal of ±1kW at a frequency
of 1s.

1) Computations: The simulations are performed in MAT-
LAB. The two-stage stochastic optimization problem (18)
is formulated as a linear program using the YALMIP [20]
toolbox for mathematical modeling and is solved using the
Gurobi solver. It takes 40 minutes on average to solve the
weekly bidding problem.

2) Solution Quality: The dispersion of the optimal cost is
numerically estimated to evaluate the solution quality. Approx-
imate two-stage stochastic program (18) is solved 20 times (for
each case) for week-3 using different set of randomly drawn
AGC scenarios. The estimated coefficient of variation (ratio
of standard deviation to expected value) of the optimal cost
is 0.028, and 0.0122 for AGC Tracking with, and without
intraday participation and without additional storage, while it
is 0.0019, and 0.0208 for the case of additional storage.

Small value of the coefficient of variation show that the
dispersion of the optimal cost is small, and that the solution
of (18) is a reasonable estimate of the stochastic programming
problem.

3) Comfort Measure: We use the ASHRAE Likelihood of
dissatisfied (ALD) as a measure of occupants’ comfort. ALD is
a function of the deviation of zone temperature from the ideal
temperature. ALD calculation is as a post-processing step and
not a part of the optimization problem. Long-term percentage
of dissatisfied (LPD) which is a function of ALD and the
occupancy rate is used to evaluate the average comfort per
week (for more details see [21]).

4) Simulation Run: The bidding problem (18) is solved
with a horizon of one week (as required by Swissgrid),
yielding the weekly capacity bid γ and the baseline power
consumption ē. As the AGC signal arrives for the concerned
week, in the real time phase, it defines the total power
consumption of the building, i.e., the sum of the baseline
power consumption and the scaled version of the received
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Fig. 1: Simulation result for week 46 (2014). Upper: Zone
temperatures. Middle Up: Baseline power consumption ē
(blue), total power consumption e (red). Middle: Residual
tracking signal γr. Middle down: Received AGC signal γa
(purple), intraday transaction m (green). Lower: Cumulative
sum of AGC (purple) / residual tracking signal (blue) / intraday
transaction (green).

AGC signal. An open loop optimization problem determines
the optimal distribution of thermal power in each zone of
the building, while respecting the operational constraints. This
gives us the resulting state trajectories. For the case where the
building participates in the intraday market, the control policy
(15) is used to obtain the intraday actions as described in
Section IV.

The simulation result for week 46 is shown in Fig. 1
to demonstrate the effect of the proposed methodology. The
received AGC signal is tracked while the zone temperatures
stay within constraints. The received AGC signal, the residual
tracking signal, the intraday transaction and their respective
cumulative sum are also shown in Fig. 1. It can be seen that
the causal intraday control policy (15) is effective in limiting
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Fig. 2: Percentage reduction in weekly operation cost com-
pared to the base case of minimum cost without additional
thermal storage. Solid line: AGC Tracking - Intraday case,
Dotted line: AGC tracking - No Intraday case. Red: Additional
thermal storage, Blue: No additional thermal storage.
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Fig. 3: Cost components for AGC tracking - Intraday with
additional storage.

the cumulative sum of the residual tracking signal.
Comprehensive simulation results are presented next to

study the financial aspect and benefit of participating in the
Swiss AS program.

B. Analysis of results

Economic Benefit: The building participating in the Swiss
AS, can reduce on average 18.8% its operational costs, while
participating in the intraday energy market reduced them to
35.3%. A building without extra storage saves on average
8.3% without, and 11.1% with intraday market participation.
The percentage reduction in operational cost for all cases is
depicted in Fig. 2. The percentage savings vary every week
depending on the outside weather condition, electricity price,
etc.
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On average, participating in the intraday market is advan-
tageous for the building (solid line is above dotted line for
most of the weeks). However, it is important to note that on
any specific week, e.g., week 45, the saving may be reduced
by participating in the intraday market. This is because the
intraday transaction cost for any specific week might be larger
than the benefit of having a residual tracking signal with low
energy.

Investing in the thermal storage system might be profitable
under certain conditions. Comparing the total cost of operation
when providing the ancillary service to the grid, with and
without thermal storage, suggests that having thermal storage
reduces the operating cost of the building on average 27.5%
with, and 12.4% without intraday market participation.

Figure 3 illustrates the various components of the opera-
tional cost. The two most important parts are the baseline
cost and the capacity bonus. Both, the tracking bonus and
the intraday transaction cost may be positive or negative
depending on the received AGC signal. The tracking error
penalty is negligible, and not shown in this figure.

Impact of AGC tracking on occupant’s comfort: The
occupants’ comfort is increased at a reduced cost (which
is counter-intuitive). This is mainly due to the extra energy
consumed to increase the baseline to provide (upwards and
downwards) flexibility. In other words, the minimum price
MPC aims at maintaining the temperature trajectories close to
the constraints, while the zone temperatures are excited within
the comfort limits when the building is participating in AGC
tracking service, resulting in improved comfort.

To generate Fig. 4 we gradually tighten the comfort con-
straints toward the ideal zone temperature, and re-run the
simulations for all cases (for week 4 and 29). Each of these
simulations gives us a point on the price vs comfort axis,
as shown in Fig. 4. For AGC tracking, the same comfort is
achieved at a lower cost. The AGC tracking case with the
presence of additional storage enables the building to attain
best comfort at least price when it also participates in the
intraday market. Similar trend is observed for summer and
winter weeks.

Sensitivity to price of electricity: The economic benefits
are sensitive to the electricity price. For a high electricity price,
it might not be worth consuming extra energy, to increase
the baseline for providing the AGC tracking capacity. As
outlined in Section II, the electricity price is the sum of the
spot electricity price, the distribution charges, and taxes. The
distribution charges vary within Switzerland depending on the
physical location of the load. The analysis presented so far is
for Lausanne with a distribution price of 100 CHF/MWh.

We study the impact of varying the distribution price
between (40 CHF/MWh and 160 CHF/MWh) the range seen
across Switzerland. Results are depicted in Fig. 5. The percent-
age reduction in operating cost increases with a decrease in the
distribution charge. Furthermore, for the case of AGC tracking
- No intraday and without additional storage, it is not worth
providing the tracking service to the grid for a distribution
price above 140 CHF/MWh. However, participation in the
intraday market still makes AGC tracking worthwhile for this
case.

Office buildings in locations with lower distribution prices
can benefit more from providing AS to the grid.

VI. CONCLUSION

We presented an approximate solution method to the
stochastic bidding problem with the possibility of participating
in the intraday energy market. The simulation results demon-
strated the effectiveness of the proposed strategy. Economic
benefit for a building providing secondary frequency control
to the grid varies with the availability of storage capacity
in its HVAC system. Participation in the intraday market
resulted in increased average benefit. Buildings providing
AGC tracking service achieved higher comfort at reduced
price. The economic benefit was sensitive to the electricity
price, and hence to the physical location of the building within
Switzerland.
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