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The Robustness of Deep Networks
A geometrical perspective  

Deep neural networks have recently shown impressive clas-
sification performance on a diverse set of visual tasks. 
When deployed in real-world (noise-prone) environments, 

it is equally important that these classifiers satisfy robustness 
guarantees: small perturbations applied to the samples should 
not yield significant loss to the performance of the predictor. 
The goal of this article is to discuss the robustness of deep 
networks to a diverse set of perturbations that may affect the 
samples in practice, including adversarial perturbations, ran-
dom noise, and geometric transformations. This article further 
discusses the recent works that build on the robustness analysis 
to provide geometric insights on the classifier’s decision sur-
face, which help in developing a better understanding of deep 
networks. Finally, we present recent solutions that attempt to 
increase the robustness of deep networks. We hope this review 
article will contribute to shed ding light on the open research 
challenges in the robustness of deep networks and stir interest 
in the analysis of their fundamental properties.

Introduction
With the dramatic increase of digital data and the development 
of new computing architectures, deep learning has been devel-
oping rapidly as a predominant framework for data representa-
tion that can contribute in solving very diverse tasks. Despite 
this success, several fundamental properties of deep neural 
networks are still not understood and have been the subject 
of intense analysis in recent years. In particular, the robust-
ness of deep networks to various forms of perturbations has 
received growing attention due to its importance when applied 
to visual data. That path of work has been mostly initiated by 
the illustration of the intriguing properties of deep networks 
in [1], which are shown to be particularly vulnerable to very 
small additive perturbations in the data, even if they achieve 
impressive performance on complex visual benchmarks [2]. 
An illustration of the vulnerability of deep networks to small 
additive perturbations can be seen in Figure 1. A dual phenom-
enon was observed in [3], where unrecognizable images to the 
human eye are classified with high confidence by deep neural 
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networks. The transfer of these deep networks to critical appli-
cations that possibly consist in classifying high-stake infor-
mation is seriously challenged by the low robustness of deep 
networks. For example, in the context of self-driving vehicles, 
it is fundamental to accurately recognize cars, traffic signs, 
and pedestrians, when these are affected by clutter, occlusions, 
or even adversarial attacks. In medical imaging [4], it is also 
important to achieve high classification rates on potentially 
perturbed test data. The analysis of state-of-the-art deep clas-
sifiers’ robustness to perturbation at test time is therefore an 
important step for validating the models’ reliability to unex-
pected (possibly adversarial) nuisances that might occur when 
deployed in uncontrolled environments. In addition, a better 
understanding of the capabilities of deep networks in coping 
with data perturbation actually allows us to develop important 
insights that can contribute to developing yet better systems.

The fundamental challenges raised by the robustness of deep 
networks to perturbations have led to a large number of impor-
tant works in recent years. These works study empirically and 
theoretically the robustness of deep networks to different types 
of perturbations, such as adversarial perturbations, additive ran-
dom noise, structured transformations, or even universal pertur-
bations. The robustness is usually measured as the sensitivity of 
the discrete classification function (i.e., the function that assigns 
a label to each image) to such perturbations. While robustness 
analysis is not a new problem, we provide an overview of the 
recent works that propose to assess the vulnerability of deep 
network architectures. In addition to quantifying the robustness 
of deep networks to various forms of perturbations, the analy-
sis of robustness has further contributed to developing important 
insights on the geometry of the complex decision boundary of 
such classifiers, which remain hardly understood due to the very 
high dimensionality of the problems that they address. In fact, 
the robustness properties of a classifier are strongly tied to the 
geometry of the decision boundaries. For example, the high insta-
bility of deep neural networks to adversarial perturbations shows 
that data points reside extremely close to the classifier’s decision 
boundary. The study of robustness is, therefore, not only interest-
ing from the practical perspective of the system’s reliability but 
has a more fundamental component that allows “understanding” 
of the geometric properties of classification regions and derives 
insights toward the improvement of current architectures.

This overview article has multiple goals. First, it provides 
an accessible review of the recent works in the analysis of 
the robustness of deep neural network classifiers to different 
forms of perturbations, with a particular emphasis on image 
analysis and visual understanding applications. Second, it 
presents connections between the robustness of deep networks 
and the geometry of the decision boundaries of such classi-
fiers. Third, the article discusses ways to improve the robust-
ness in deep networks architectures and finally highlights 
some of the important open problems.

Robustness of classifiers
In most classification settings, the proportion of misclassified 
samples in the test set is the main performance metric used 

to evaluate classifiers. The empirical test error provides an 
estimate of the classifier’s risk, defined as the probability of 
misclassification, when considering samples from the data dis-
tribution. Formally, let us define n  to be a distribution defined 
over images. The risk of a classifier f  is equal to

	 ( ) ( ( ) ( )),R f f x y xP
~x

!=
n

� (1)

where x  and ( )y x  correspond, respectively, to the image 
and its associated label. While the risk captures the error of  
f  on the data distribution ,n  it does not capture the robust-

ness to small arbitrary perturbations of data points. In visual 
classification tasks, it is desirable to learn classifiers that 
achieve robustness to small perturbations of the input; i.e., 
the application of a small perturbation to images (e.g., addi-
tive perturbations on the pixel values or geometric transfor-
mation of the image) should not alter the estimated label of 
the classifier.

Before going into more detail about robustness, we first 
define some notations. Let X  denote the ambient space where 
images live. We denote by R  the set of admissible perturba-
tions. For example, when considering geometric perturbations, 
R  is set to be the group of geometric (e.g., affine) transfor-
mations under study. Alternatively, if we are to measure the 
robustness to arbitrary additive perturbations, we set .R X=  
For ,r R!  we define :T X Xr "  to be the perturbation opera-
tor by ;r  i.e., for a data point , ( )x T xX r!  denotes the image 
x  perturbed by .r  Armed with these notations, we define the 
minimal perturbation changing the label of the classifier, at ,x
as follows:

	 ( )   ( ( )) ( ),argminr x r f T x f xsubject to rR
r R

!=
!

) � (2)

where · R  is a metric on .R  For notation simplicity, we omit 
the dependence of ( )r x)  on f, , ,R d  and operator T. Moreover, 
when the image x is clear from the context, we will use r)  to refer 
to ( ) .r x)  See Figure 2 for an illustration. The pointwise robust-
ness of f  at x  is then measured by ( ) .r x R

)  Note that larger 
values of · R  indicate a higher robustness at .x  While this 
definition of robustness considers the smallest perturbation ( )r x)  
(with respect to the metric · Rh that causes the classifier f  to 

(a) (b) (c)

FIGURE 1. An example of an adversarial perturbations in state-of-the-art 
neural networks. (a) The original image that is classified as a “whale,” (b) 
the perturbed image classified as a “turtle,” and (c) the corresponding 
adversarial perturbation that has been added to the original image to fool 
a state-of-the-art image classifier [5]. 
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change the label at ,x  other works have instead adopted slightly 
different definitions, where a “sufficiently small’’ perturbation 
is sought (instead of the minimal one) [7]–[9]. To measure the 
global robustness of a classifier ,f  one can compute the expecta-
tion of ( )r x R

)  over the data distribution [1], [10]. That is, the 
global robustness ( )ft  is defined as follows:

	 )( ) ( ) .f r xE R~x
t =

n
^ h � (3)

It is important to note that in our robustness setting, the perturbed 
point ( )T xr  need not belong to the support of the data distribution. 
Hence, while the focus of the risk in (1) is the accuracy on typical 
images (sampled from ),n  the focus of the robustness computed 
from (2) is instead on the distance to the “closest” image (poten-
tially outside the support of )n  that changes the label of the clas-
sifier. The risk and robustness hence capture two fundamentally 
different properties of the classifier, as illustrated in “Robustness 
and Risk: A Toy Example.” 

f (x2) = 2

f (x1) = 1

Tr∗ (x1)

x2

x1

B

T

FIGURE 2. Here, B  denotes the decision boundary of the classifier 
between classes 1 and 2, and T  denotes the set of perturbed versions 
of x1  (i.e., ),{ ( ): }T x rT Rr 1 !=  where we recall that R  denotes the set 
of admissible perturbations. The pointwise robustness at x1  is defined as 
the smallest perturbation in R  that causes x1  to change class.

To illustrate the general concepts of robustness and risk of 
classifiers, we consider the simple binary classification task 
illustrated in Figure S1, where the goal is to discriminate 
between images representing vertical and horizontal stripes. 
In addition to the orientation of the stripe that separates the 
two classes, a very small positive bias is added to pixels of 
first-class images and subtracted from the pixels of the imag-
es in the second class. This bias is chosen to be very small, in 
such a way that it is imperceptible to humans.; see Figure S2 
for example images of class 1 and 2 with the pixel values, 
where a denotes the bias.

It is easy to see that a linear classifier can perfectly sepa-
rate the two classes, thus achieving zero risk (i.e., ( ) ).R f 0=  
Note, however, that such a classifier only achieves zero risk 
because it captures the bias but fails to distinguish between 
the images based on the orientation of the stripe. Hence, 
despite being zero risk, this classifier is highly unstable to 
additive perturbation, as it suffices to perturb the bias of the 
image (i.e., by adding a very small value to all pixels) to 
cause misclassification. On the other hand, a more complex 
classifier that captures the orientation of the stripe will be 
robust to small  perturbations (while equally achieving zero 
risk),  as changing the label would require changing the 
direction of the stripe, which is the most visual (and natural) 
concept that separates the two classes.

Robustness and Risk: A Toy Example

(a)

(b)

FIGURE s1. (a) The images belonging to class 1 (vertical stripe and 
positive bias) and (b) the images belonging to class 2 (horizontal 
stripe and negative bias).

a1 + a

1 – a

–a

(a) (b)

FIGURE s2. (a) An example image of class 1. White pixels have value 
,a1+  and black pixels have value a. (b) An example image of class –1. 

White pixels have value ,a1-  and black pixels have value a- . The 
bias a is set to be very small, in such a way that it is imperceptible.



Observe that classification robustness is strongly related 
to support vector machine (SVM) classifiers, whose goal is to 
maximize the robustness, defined as the margin between sup-
port vectors. Importantly, the max-margin classifier in a given 
family of classifiers might, however, still not achieve robust-
ness (in the sense of high ( )).ft  An illustration is provided in 
“Robustness and Risk: A Toy Example,” where a no zero-risk 
linear classifier—in particular, the max-margin classifier—
achieves robustness to perturbations. Our focus in this article 
is turned toward assessing the robustness of the family of deep 
neural network classifiers that are used in many visual recog-
nition tasks. 

Perturbation forms 

Robustness to additive perturbations
We first start by considering the case where the perturbation 
operator is simply additive; i.e., ( ) .T x x rr = +  In this case, the 
magnitude of the perturbation can be measured with the p,  norm 
of the minimal perturbation that is necessary to change the label 
of a classifier. According to (2), the robustness to additive pertur-
bations of a data point x  is defined as

	   ( ) ( ).min r f x r f xsubject topr R
!+

!
� (4)

Depending on the conditions that one sets on the set R  that sup-
ports the perturbations, the additive model leads to different 
forms of robustness.

Adversarial perturbations
We first consider the case where the additive perturbations are 
unconstrained (i.e., ) .R X=  The perturbation obtained by solv-
ing (4) is often referred to as an adversarial perturbation, as it 
corresponds to the perturbation that an adversary (having full 
knowledge of the model) would apply to change the label of the 
classifier, while causing minimal changes to the original image.

The optimization problem in (4) is nonconvex, as the con-
straint involves the (potentially highly complex) classification 
function .f  Different techniques exist to approximate adversarial 
perturbations. In the following, we briefly mention some of the 
existing algorithms for computing adversarial perturbations:

■■ Regularized variant [1]: The method in [1] computes adver-
sarial perturbations by solving a regularized variant of the 
problem in (4), given by

	 ( , , ),min c r J x r ypr
i+ + u � (5)

where yu  is a target label of the perturbed sample, J  is a loss func-
tion, c is a regularization parameter, and i  is the model param-
eters. In the original formulation [1], an additional constraint 
is added to guarantee [ , ],x r 0 1!+  which is omitted in (5) 
for simplicity. To solve the optimization problem in (5), a line  
search is performed over c  to find the maximum c 02  for 
which the minimizer of (5) satisfies ( ) .f x r y+ = u  While lead-
ing to very accurate estimates, this approach can be costly to 
compute on high-dimensional and large-scale data sets. More-

over, it computes targeted adversarial perturbations, where the 
target label is known.

■■ Fast gradient sign (FGS) [11]: This solution estimates an 
untargeted adversarial perturbation by going in the direction 
of the sign of gradient of the loss function:

( , ( ), ) ,J x y xsign xd ie ^ h

where ,J  the loss function, is used to train the neural network and 
i  denotes the model parameters. While efficient, this one-step 
algorithm provides a coarse approximation to the solution of the 
optimization problem in (4) for .p 3=

■■ DeepFool [5]: This algorithm minimizes (4) through an itera-
tive procedure, where each iteration involves the linearization 
of the constraint. The linearized (constrained) problem is 
solved in closed form at each iteration, and the current esti-
mate is updated; the optimization procedure terminates when 
the current estimate of the perturbation fools the classifier. In 
practice, DeepFool provides a tradeoff between the accuracy 
and efficiency of the two previous approaches [5].
In addition to the aforementioned optimization meth-

ods, several other approaches have recently been proposed 
to compute adversarial perturbations, see, e.g., [9], [12], and 
[13]. Different from the previously mentioned gradient-based 
techniques, the recent work in [14] learns a network (the 
adversarial transformation network) to efficiently generate a 
set of perturbations with a large diversity, without requiring 
the computation of the gradients.

Using the aforementioned optimization techniques, one 
can compute the robustness of classifiers to additive adver-
sarial perturbations. Quite surprisingly, deep networks are 
extremely vulnerable to such additive perturbations; i.e., 
small and even imperceptible adversarial perturbations can 
be computed to fool them with high probability. For example, 
the average perturbations required to fool the CaffeNet [15] 
and GoogleNet [16] architectures on the ILSVRC 2012 task 
[17] are 100 times smaller than the typical norm of natural 
images [5] when using the 2,  norm. The high instability of 
deep neural networks to adversarial perturbations, which 
was first highlighted in [1], shows that these networks rely 
heavily on proxy concepts to classify objects, as opposed to 
strong visual concepts typically used by humans to distin-
guish between objects. 

To illustrate this idea, we consider once again the toy clas-
sification example (see “Robustness and Risk: A Toy Example”), 
where the goal is to classify images based on the orientation of 
the stripe. In this example, linear classifiers could achieve a per-
fect recognition rate by exploiting the imperceptibly small bias 
that separates the two classes. While this proxy concept achieves 
zero risk, it is not robust to perturbations: one could design an 
additive perturbation that is as simple as a minor variation of the 
bias, which is sufficient to induce data misclassification. On the 
same line of thought, the high instability of classifiers to additive 
perturbations observed in [1] suggests that deep neural networks 
potentially capture one of the proxy concepts that separate the 
different classes. Through a quantitative analysis of polynomial 
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classifiers, [10] suggests that higher-degree  
classifiers tend to be more robust to per-
turbations, as they capture the “stronger” 
(and more visual) concept that separates the 
classes (e.g., the orientation of the stripe in 
Figure S1 in “Robustness and Risk: A Toy 
Example”). For neural networks, however, the 
relation between the flexibility of the archi-
tecture (e.g., depth and breadth) and adver-
sarial robustness is not well understood and 
remains an open problem.

Random noise
In the random noise regime, data points are 
perturbed by noise having a random direction in the input space. 
Unlike the adversarial case, the computation of random noise 
does not require knowledge of the classifier; it is therefore crucial 
for state-of-the-art classifiers to be robust to this noise regime. We 
measure the pointwise robustness to random noise by setting R  
to be a direction sampled uniformly at random from the 2,  unit 
sphere Sd 1-  in X  (where d  denotes the dimension of ) .X  There-
fore, (4) becomes

	 ( )   ( ) ( ),argminr x r f x r f xsubject tov 2
{ : }r v R

!= +
! !a a

* � (6)

where v  is a direction sampled uniformly at random from the 
unit sphere .Sd 1-  The pointwise robustness is then defined as 
the 2,  norm of the perturbation, i.e., ( ) .r xv 2

*

The robustness of classifiers to random noise has previously 
been studied empirically in [1] and theoretically in [10] and 
[18]. Empirical investigation suggests that state-of-the-art clas-
sifiers are much more robust to random noise than to adversar-
ial perturbations, i.e., the norm of the noise ( )r xv

*  required to 
change the label of the classifier can be several orders of mag-
nitudes larger than that of the adversarial perturbation. This 
result is confirmed theoretically, as linear classifiers in [10] 
and nonlinear classifiers in [18] are shown to have a robustness 
to random noise that behaves as

( ) ( )r x d r xv 2 2advH= ** ` j

with high probability, where ( )r x 2adv
*  denotes the robustness 

to adversarial perturbations [(4) with ] .R X=  In other words, 
this result shows that, in high-dimensional classification set-
tings (i.e., large ),d  classifiers can be robust to random noise, 
even if the pointwise adversarial robustness of the classifier is 
very small.

Semirandom noise
Finally, the semirandom noise regime generalizes this addi-
tive noise model to random subspaces S  of dimension .m d#  
Specifically, in this perturbation regime, an adversarial pertur-
bation is sought within a random subspace S  of dimension .m
That is, the semirandom noise is defined as follows:

	 ( )   ( ) ( ).argminr x r f x r f xsubject to2S
r S

!= +
!

* � (7)

Note that, when ,m 1=  this semirandom 
noise regime precisely coincides with the 
random noise regime, whereas m d=  corre-
sponds to the adversarial perturbation regime 
defined previously. For this generalized noise 
regime, a precise relation between the robust-
ness to semirandom and adversarial pertur-
bation exists [18], as it is shown that

( ) ( ) .r x
m
d r x2 2advH=S

** c m

This result shows in particular that, even 
when the dimension m  is chosen as a small 
fraction of ,d  it is still possible to find 

small perturbations that cause data misclassification. In other 
words, classifiers are not robust to semirandom noise that is 
only mildly adversarial and overwhelmingly random [18]. This 
implies that deep networks can be fooled by very diverse small 
perturbations, as these can be found along random subspaces 
of dimension .m d%

Robustness to structured transformations
In visual tasks, it is not only crucial to have classifiers that are 
robust against additive perturbations as described previously. 
It is also equally important to achieve invariance to structured 
nuisance variables such as illumination changes, occlusions, or 
standard local geometric transformations of the image. Spe-
cifically, when images undergo such structured deformations, 
it is desirable that the estimated label remains the same.

One of the main strengths of deep neural network clas-
sifiers with respect to traditional shallow classifiers is that 
the former achieve higher levels of invariance [19] to trans-
formations. To verify this claim, several empirical works 
have been introduced. In [6], a formal method is proposed 
that  leverages the generalized robustness definition of (2) 
to measure the robustness of classifiers to arbitrary transfor-
mation groups. The robustness to structured transformations 
is precisely measured by setting the admissible perturba-
tion space R  to be the set of transformations (e.g., trans-
lations, rotations, dilation) and the perturbation operator T  
of (2) to be the warping operator transforming the coordi-
nates of the image. In addition, · R  is set to measure the 
change in appearance between the original and transformed 
images. Specifically, · R  is defined to be the length of 
the shortest path on the nonlinear manifold of transformed 
images { ( ): } .T x rT Rr !=  Using this approach, it is pos-
sible to quantify the amount of change that the image should 
undergo to cause the classifier to make the wrong decision. 
Despite improving the invariance over shallow networks, 
the method in [6] shows that deep classifiers are still not 
robust to sufficiently small deformations on simple visual 
classification tasks. In [20], the authors assess the robustness 
of face recognition deep networks to physically realizable 
structured perturbations. In particular, wearing eyeglass 
frames is shown to cause state-of-the-art face-recognition 
algorithms to misclassify. In [7], the robustness to other 
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forms of complex perturbations is tested, and state-of-the-art 
deep networks are shown once again to be unstable to these 
perturbations. An empirical analysis of the ability of cur-
rent convolutional neural networks (CNNs) to manage loca-
tion and scale variability is proposed in [21]. It is shown, in 
particular, that CNNs are not very effective in factoring out 
location and scale variability, despite the popular belief that 
the convolutional architecture and the local spatial pooling 
provides invariance to such representations. The aforemen-
tioned works show that, just as state-of-the-art deep neu-
ral networks have been observed to be unstable to additive 
unstructured perturbations, such modern classifiers are not 
robust to perturbations even when severely restricting the set 
of possible transformations of the image.

Universal additive perturbations
All of the previous definitions capture different forms of 
robustness, but they all rely on the computation of data-spe-
cific perturbations. Specifically, they consider the necessary 
change that should be applied to specific samples to change the 
decision of the classifier. More generally, one might be inter-
ested to understand if classifiers are also vulnerable to generic 
(data and network agnostic) perturbations. The analysis of the 
robustness to such perturbations is interesting from several 
perspectives: 1) these perturbations might not require the pre-
cise knowledge of the classifier under test, 2) they might cap-

ture important security and reliability properties of classifiers, 
and 3) they show important properties on the geometry of the 
decision boundary of the classifier.

In [22], deep networks are shown to be surprisingly vulner-
able to universal (image-agnostic) perturbations. Specifically, 
a universal perturbation v  can be defined as the minimal per-
turbation that fools a large fraction of the data points sampled 
from the data distribution ,n  i.e.,

	 ( ( ) ( )) ,argminv r f x r f x 1 subject to Pp ~r x
! $ e= + -

n
� (8)

where e  controls the fooling rate of the universal perturba-
tion. Unlike adversarial perturbations that target to fool a 
specific data point, universal perturbations attempt to fool 
most images sampled from the natural images distribu-
tion .n  Specifically, by adding this single (image-agnostic) 
perturbation to a natural image, the label estimated by the 
deep neural network will be changed with high probability. 
In [22], an algorithm is provided to compute such univer-
sal perturbations; these perturbations are further shown to 
be quasi-imperceptible while fooling state-of-the-art deep 
networks on unseen natural images with probability edg-
ing 80%. Specifically, the p,  norm of these perturbations 
is at least one order of magnitude smaller than the norm of 
natural images but causes most perturbed images to be mis-
classified. Figure 3 illustrates examples of scaled universal 

(a) (b) (c)

(d) (e) (f)

FIGURE 3. Universal perturbations computed for different deep neural network architectures. The pixel values are scaled for visibility. (a) CaffeNet, 
(b) VGG-F, (c) VGG-16, (d) VGG-19, (e) GoogLeNet, and (f) ResNet-152.
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perturbations computed for different deep neural networks, 
and Figure 4 illustrates examples of perturbed images.  When 
added to the original images, a universal perturbation is 
quasi-imperceptible but causes most images to be misclassi-
fied. Note that adversarial perturbations computed using the 
algorithms described in the section “Adversarial Perturba-
tions” are not universal across data points, as shown in [22]. 
That is, adversarial perturbations only generalize mildly to 
unseen data points, for a fixed norm comparable to that of 
universal perturbations.

Universal perturbations are further shown in [22] to trans-
fer well across different architectures; a perturbation com-
puted for a given network is also very likely to fool another 
network on most natural images. In that sense, such pertur-
bations are doubly universal, as they generalize well across 
images and architectures. Note that this property is shared 
with adversarial perturbations, as the latter perturbations 
have been shown to transfer well across different models 
(with potentially different architectures) [1], [23]. The exis-
tence of general-purpose perturbations can be very problem-
atic from a safety perspective, as an attacker might need very 

little information about the actual model to craft successful 
perturbations [24].

Figure 5 illustrates a summary of the different types of 
perturbations considered in this section on a sample image. 
As can be seen, the classifier is not robust to slight perturba-
tions of the image (for most additive perturbations) and natu-
ral geometric transformations of the image.

Geometric insights from robustness
The study of robustness allows us to derive insights about 
the classifiers and, more precisely, about the geometry of the 
classification function acting on the high-dimensional input 
space. We recall that : { , , }f C1X " f  denotes our C-class 
classifier, and we denote by , ,g gC1 f  the C  probabilities 
associated to each class by the classifier. Specifically, for a 
given , ( )x f xX!  is assigned to the class having a maximal 
score; i.e., ( ) { ( )}.argmaxf x g xi i=  For deep neural networks, 
the functions gi  represent the outputs of the last layer in the 
network (generally the softmax layer). Note that the classifier 
f  can be seen as a mapping that partitions the input space 
X  into classification regions, each of which has a constant 

(a) Wool (b) Indian Elephant (c) Indian Elephant (d) African Gray (e) Tabby (f) African Gray

(g) Common Newt (h) Carousel (i) Gray Fox (j) Macaw (k) Three-Toed Sloth (l) Macaw

FIGURE 4. Examples of natural images perturbed with the universal perturbation and their corresponding estimated labels with GoogLeNet. (a)–(h) Images 
belonging to the ILSVRC 2012 validation set. (i)–(l) Personal images captured by a mobile phone camera. (Figure used courtesy of [22].)

Pomeranian Marmoset Marmoset Marmoset Mosquito Net Persian Cat

(a) (b) (c) (d) (e) (f)

FIGURE 5. (a) The original image. The remaining images are minimally perturbed images (along with the corresponding estimated label) that misclassify 
the CaffeNet deep neural network. (b) Adversarial perturbation, (c) random noise, (d) semirandom noise with , ,m 1 000=  (e) universal perturbation, (f) 
affine transformation. (Figure used courtesy of [17].)



estimated label (i.e., ( )f x  is constant for each such region). The 
decision boundary B  of the classifier is defined as the union 
of the boundaries of such classification regions (see Figure 2). 

Adversarial perturbations
We first focus on additive adversarial perturbations and 
highlight their relation with the geometry of the decision 
boundary. This link relies on the simple observation shown 
in “Geometric Properties of Adversarial Perturbations.” The 
two geometric properties are illustrated in Figure 6. Note 
that these geometric properties are specific to the 2,  norm. 
The high instability of classifiers to adversarial perturba-
tions, which we highlighted in the previous section, shows 
that natural images lie very closely to the classifier’s decision 
boundary. While this result is key to understanding the geom-
etry of the data points with regard to the classifier’s decision 
boundary, it does not provide any insights on the shape of 
the decision boundary. A local geometric description of the 
decision boundary (in the vicinity of )x  is rather captured by 
the direction of ( ),r xadv*  due to the orthogonality property of 
adversarial perturbations (highlighted in “Geometric Proper-
ties of Adversarial Perturbations”). In [18] and [25], these geo-
metric properties of adversarial perturbations are leveraged 
to visualize typical cross sections of the decision boundary at 
the vicinity of the data points. Specifically, a two-dimensional 
normal section of the decision boundary is illustrated, where 
the sectioning plane is spanned by the adversarial perturba-
tion (normal to the decision boundary) and a random vector 
in the tangent space. Examples of normal sections of decision 
boundaries are illustrated in Figure 7.

Observe that the decision boundaries of state-of-the-art 
deep neural networks have a very low curvature on these 
two-dimensional cross sections (note the difference between 
the x  and y  axis). In other words, these plots suggest that the 
decision boundary at the vicinity of x  can be locally well 
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B

FIGURE 6. radv)  denotes the adversarial perturbation of x  (with ).p 2=   
Note that radv)  is orthogonal to the decision boundary B  and r 2adv =)

( , ).xdist B

–1
00 –7
5

–5
0

–2
5 0 25 50 75 10
0

12
5

15
0

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

x

–1
50

–1
00 –5
0 0 50 10
0

15
0

20
0

–2.5

0

2.5

5

7.5

10

12.5

x

–5

–2
.5 0

2.
5 5

7.
5

–1

0.75

–0.5

0.25

0

0.25

0.5

x

(b) (c)(a)

FIGURE 7. The two-dimensional normal cross sections of the decision boundaries for three different classifiers near randomly chosen samples. The section is 
spanned by the adversarial perturbation of the data point x  (vertical axis) and a random vector in the tangent space to the decision boundary (horizontal axis). The 
green region is the classification region of .x  The decision boundaries with different classes are illustrated in different colors. Note the difference in range between 
the x  and y axes. (a) VGG-F (ImageNet), (b) LeNet (CIFAR), (c) LeNet (MNIST). (Figure used with permission from [18].)

Observation 
Let x X!  and ( )r xadv

)  be the adversarial perturbation, 
defined as the minimizer of (4), with p 2=  and .R X=  
Then, we have the following:
1)	 ( )r x 2adv

)  measures the Euclidean distance from x to 
the closest point on the decision boundary .B

2)	 The vector ( )r xadv
)  is orthogonal to the decision 

boundary of the classifier, at ( ).x r xadv+ )

Geometric Properties  
of Adversarial Perturbations
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approximated by a hyperplane passing through ( )x r xadv+ *  
with the normal vector ( ) .r xadv*  In [11], it is hypothesized that 
state-of-the-art classifiers are “too linear,” leading to decision 
boundaries with very small curvature and further explaining 
the high instability of such classifiers to adversarial perturba-
tions. To motivate the linearity hypothesis of deep networks, 
the success of the FGS method (which is exact for linear clas-
sifiers) in finding adversarial perturbations is invoked. How-
ever, some recent works challenge this linearity hypothesis; 
for example, in [26], the authors show that there exist adver-
sarial perturbations that cannot be explained with this hypoth-
esis, and, in [27], the authors provide a new explanation based 
on the tilting of the decision boundary with respect to the data 
manifold. We stress here that the low curvature of the decision 
boundary does not, in general, imply that the function learned 
by the deep neural network (as a function of the input image) 
is linear, or even approximately linear. Figure 8 shows illustrative 
examples of highly nonlinear functions resulting in flat deci-
sion boundaries. Moreover, it should be noted that, while the 
decision boundary of deep networks is very flat on random 
two-dimensional cross sections, these boundaries are not flat 

on all cross sections. That is, there exist directions in which 
the boundary is very curved. Figure 9 provides some illustra-
tions of such cross sections, where the decision boundary has 
large curvature and therefore significantly departs from the 
first-order linear approximation, suggested by the flatness of 
the decision boundary on random sections in Figure 7. Hence, 
these visualizations of the decision boundary strongly suggest 
that the curvature along a small set of directions can be very 
large and that the curvature is relatively small along random 
directions in the input space. Using a numerical computation 
of the curvature, the sparsity of the curvature profile is empir-
ically verified in [28] for deep neural networks, and the direc-
tions where the decision boundary is curved are further shown 
to play a major role in explaining the robustness properties 
of classifiers. In [29], the authors provide a complementary 
analysis on the curvature of the decision boundaries induced 
by deep networks and show that the first principal curvatures 
increase exponentially with the depth of a random neural net-
work. The analyses of [28] and [29] hence suggest that the 
curvature profile of deep networks is highly sparse (i.e., the 
decision boundaries are almost flat along most directions) but 
can have a very large curvature along a few directions.

Universal perturbations
The vulnerability of deep neural networks to universal (image-
agnostic) perturbations studied in [22] sheds light on another 
aspect of the decision boundary: the correlations between 
different regions of the decision boundary, in the vicinity of 
different natural images. In fact, if the orientations of the deci-
sion boundary in the neighborhood of different data points 
were uncorrelated, the best universal perturbation would cor-
respond to a random perturbation. This is refuted in [22], as 
the norm of the random perturbation required to fool 90% 
of the images is ten times larger than the norm of universal 
perturbations. Such correlations in the decision boundary are 
quantified in [22], as it is shown empirically that normal vec-
tors to the decision boundary at the vicinity of different data 
points (or, equivalently, adversarial perturbations due to the 
orthogonality property in “Geometric Properties of Adver-
sarial Perturbations”) approximately span a low-dimensional 

x

(a)

x

(b)

FIGURE 8. The contours of two highly nonlinear functions (a) and  
(b) with flat boundaries. Specifically, the contours in the green and yellow 
regions represent the different (positive and negative) level sets of ( )g x  
[where ( ) ( ) ( ),g x g x g x1 2= -  the difference between class 1 and class 2 
score]. The decision boundary is defined as the region of the space where 
( )g x 0=  and is indicated with a solid black line. Note that, although g  is 

a highly nonlinear function in these examples, the decision boundaries 
are flat.
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FIGURE 9. Cross sections of the decision boundary in the vicinity of data point .x  (a), (b), and (c) show decision boundaries with high curvature, while 
(d) shows the decision boundary along a random normal section (with very small curvature). The correct class and the neighboring classes are colored 
in green and orange, respectively. The boundaries between different classes are shown in solid black lines. The x and y axes have the same scale.
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subspace. It is conjectured that the existence of universal per-
turbations fooling classifiers for most natural images is part-
ly due to the existence of such a low-dimensional subspace 
that captures the correlations among different regions of the 
decision boundary. In fact, this subspace “collects” normals 
to the decision boundary in different regions, and perturba-
tions belonging to this subspace are therefore likely to fool 
other data points. This observation implies that the decision 
boundaries created by deep neural networks are not suffi-
ciently “diverse,” despite the very large number of parameters 
in modern deep neural networks. 

A more thorough analysis is provided in [30], where uni-
versal perturbations are shown to be tightly related to the cur-
vature of the decision boundary in the vicinity of data points. 
Specifically, the existence of universal 
perturbations is attributed to the existence 
of common directions where the decision 
boundary is positively curved in the vicin-
ity of most natural images. Figure 10 intui-
tively illustrates the link between positive 
curvature and vulnerability to perturba-
tions; the required perturbation to change 
the label (along a fixed direction v) of the 
classifier is smaller if the decision bound-
ary is positively curved, than if the deci-
sion boundary is flat (or negatively curved). 
With this geometric perspective, universal perturbations cor-
respond exactly to directions where the decision boundary is 
positively curved in the vicinity of most natural images. As 
shown in [30], this geometric explanation of universal per-
turbations suggests a new algorithm to compute such pertur-
bations as well as to explain several properties, such as the 
diversity and transferability of universal perturbations.

Classification regions
The robustness of classifiers is not only related to the geom-
etry of the decision boundary, but it is also strongly tied to 
the classification regions in the input space .X  The classifi-
cation region associated to class { , , }c C1 f!  corresponds 
to the set of points x X!  such that ( ) .f x c=  The study of 
universal perturbations in [22] has shown the existence of 
dominant labels, with universal perturbations mostly fooling 
natural images into such labels. The existence of such domi-

nant classes is attributed to the large volumes of classifica-
tion regions corresponding to dominant labels in the input 
space :X  in fact, images sampled uniformly at random from 
the Euclidean sphere Sd 1a -  of the input space X  (where the 
radius a  is set to reflect the typical norm of natural imag-
es) are classified as one of these dominant labels. Hence, 
such dominant labels represent high-volume “oceans” in the 
image space; universal perturbations therefore tend to fool 
images into such target labels, as these generally result in 
smaller fooling perturbations. It should be noted that these 
dominant labels are classifier specific and are not a result of 
the visual properties of the images in the class.

To further understand the geometrical properties of classi-
fication regions, we note that, just like natural images, random 

images are strongly vulnerable to adversar-
ial perturbations. That is, the norm of the 
smallest adversarial perturbation needed to 
change the label of a random image (sam-
pled from X ) is several orders of magnitude 
smaller than the norm of the image itself. 
This observation suggests that classification 
regions are “hollow” and that most of their 
mass occurs at the boundaries. In [28], fur-
ther topological properties of classification 
regions are observed; in particular, these 
regions are shown empirically to be con-

nected. In other words, each classification region in the input 
space X  is made up of a single connected (possibly complex) 
region, rather than several disconnected regions.

We have discussed in this section that the properties and 
optimization methods derived to analyze the robustness 
properties of classifiers allow us to derive insights on the 
geometry of the classifier. In particular, through visualiza-
tions, we have seen that the decision boundaries on normal 
random sections have very low curvature, while being very 
curved along a few directions of the input space. Moreover, 
the high vulnerability of state-of-the-art deep networks to 
universal perturbations suggests that the decision bound-
aries of such networks do not have sufficient diversity. To 
improve the robustness to such perturbations, it is therefore 
key to “diversify” the decision boundaries of the network 
and leverage the large number of parameters that define the 
neural network.

radv
∗ radv

∗ radv
∗

x x x

v v
v

(a) (b) (c)

FIGURE 10. The link between robustness and curvature of the decision boundary. When the decision boundary is (a) positively curved, small universal 
perturbations are more likely to fool the classifier. (b) and (c) illustrate the case of a flat and negatively curved decision boundary, respectively.

The study of robustness 
allows us to derive insights 
about the classifiers and, 
more precisely, about 
the geometry of the 
classification function 
acting on the high-
dimensional input space.



Improving robustness
An important objective of the analysis of robustness is to contrib-
ute to the design of better and more reliable systems. We next 
summarize some of the recent attempts that have been made to 
render systems more robust to different forms of perturbations.

Improving the robustness to adversarial perturbations
We first describe the methods that have been proposed to 
construct deep networks with better robustness to adversarial 
perturbations, following the papers [1], [9] that originally high-
lighted the vulnerability of these classifiers. The straightfor-
ward approach, which consists of adding perturbed images to 
the training set and fine-tuning the network, has been shown 
to be mildly effective against newly com
puted adversarial perturbations [5]. To 
further improve the robustness, it is 
natural to consider the Jacobian matrix 

/g x2 2  of the model (with g the last layer 
of the neural network) and ensure that 
all of the elements in the matrix are 
sufficiently small. Following this idea, 
the authors of [31] consider a modi-
fied objective function, where a term is 
added to penalize the Jacobians of the 
function computed by each layer with 
respect to the previous layer. This has 
the effect of learning smooth functions with respect to the 
input and thus learn more robust classifiers. In [32], a robust 
optimization formulation is considered for training deep 
neural networks. Specifically, a minimization-maximiza-
tion approach is proposed, where the loss is minimized over 
worst-case examples, rather than only on the original data. 
That is, the following minimization-maximization training 
procedure is used to train the network:

	 ( , , ),min max J x r y
i

N

i i i
1

r Ui
i+

i
=

!
/ � (9)

where , ,Ni  and U  denote, respectively, the parameters of the 
network, the number of training points, and the set of plausible 
perturbations; and yi  denotes the label of .xi  The set U  is 
generally set to be the 2,  or ,3  ball centered at zero and of suf-
ficiently small radius. Unfortunately, this optimization prob-
lem in (9) is difficult to solve efficiently. To circumvent this 
difficulty, [32] proposes an alternating iterative method where 
a single step of gradient ascent and descent is performed at 
each iteration. Note that the construction of robust classi-
fiers using min-max robust optimization methods has been 
an active area of research, especially in the context of SVM 
classifiers [33]. In particular, for certain sets ,U  the objective 
function of various learning tasks can be written as a convex 
optimization function as shown in [34]–[37], which makes 
the task of finding a robust classifier feasible. In a very recent 
work inspired by biophysical principles of neural circuits, 
Nayebi and Ganguli consider a regularizer to push activations 
of the network in the saturating regime of the nonlinearity 

(i.e., the region where the nonlinear activation function is flat) 
[47]. The networks learned using this approach are shown to 
significantly improve in terms of robustness on a simple digit 
recognition classification task, without losing significantly in 
terms of accuracy. In [38], the authors propose to improve the 
robustness by using distillation, a technique first introduced 
in [39] for transferring knowledge from larger architectures to 
smaller ones. However, [40] shows that, when using more elab-
orate algorithms to compute perturbations, this approach fails 
to improve the robustness. In [41], a regularization scheme is 
introduced for improving the network’s sensitivity to perturba-
tions by constraining the Lipschitz constant of the network. 
In [42], an information-theoretic loss function is used to train 

stochastic neural networks; the result-
ing classifiers are shown to be more 
robust to adversarial perturbations than 
their deterministic counterpart. The 
increased robustness is intuitively due to 
the randomness of the neural network, 
which maps an input to a distribution 
of features; attacking the network with 
a small designed perturbation therefore 
becomes harder than for deterministic 
neural networks.

While all of these methods are 
shown to yield some improvements on 

the robustness of deep neural networks, the design of robust 
visual classifiers on challenging classification tasks (e.g., 
ImageNet) is still an open problem. Moreover, while the pre-
viously mentioned methods provide empirical results show-
ing the improvement in robustness with respect to one or a 
subset of adversarial generation techniques, it is necessary 
in many applications to design robust networks against all 
adversarial attacks. To do so, we believe it is crucial to derive 
formal certificates on the robustness of newly proposed net-
works, as it is practically impossible to test against all pos-
sible attacks, and we see this as an important future work 
in this area.

Although there is currently no method to effectively (and 
provably) combat adversarial perturbations on large-scale 
data sets, several studies [42]–[44] have recently considered 
the related problem of detectability of adversarial pertur-
bations. The detectability property is essential in real-
world applications, as it allows the possibility to raise an 
exception when tampered images are detected. In [42], the 
authors propose to augment the network with a detector net-
work, which detects original images from perturbed ones. 
Using the optimization methods in the section “Adversarial 
Perturbations,” the authors conclude that the network suc-
cessfully learns to distinguish between perturbed samples 
and original samples. Moreover, the overall network (i.e., 
the network and detector) is shown to be more robust to 
adversarial perturbations tailored for this architecture. In 
[43], the Bayesian uncertainty estimates in the subspace of 
learned representations are used to discriminate perturbed 
images from clean samples. Finally, as shown in [44], side 
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the vulnerability of deep neural 
networks to perturbations 
therefore goes beyond the 
practical security implications, 
as it further reveals crucial 
geometric properties of  
deep networks. 



information such as depth maps can be exploited to detect 
adversarial samples.

Improving the robustness to geometric perturbations
Just as in the case of adversarial perturbations, one popular 
way of building more invariant representations to geomet-
ric perturbations is through virtual jittering (or data aug-
mentation), where training data are transformed and fed 
back to the training set. One of the drawbacks of this approach 
is, however, that the training can become intractable, as the 
size of the training set becomes substantially larger than 
the original data set. In another effort to improve the invari-
ance properties of deep CNNs, the authors in [45] proposed 
a new module, the spatial transformer, that 
geometrically transforms the filter maps. 
Similarly to other modules in the network, 
spatial transformer modules are trained in 
a purely supervised fashion. Using spatial 
transformer networks, the performance of 
classifiers improves significantly, especial-
ly when images have noise and clutter, as 
these modules automatically learn to local-
ize and unwarp corrupted images. To build 
robust deep representations, [46] considers 
instead a new architecture with fixed filter 
weights. Specifically, a similar structure 
to CNNs (i.e., cascade of filtering, nonlinearity, and pool-
ing operations) is considered with the additional require-
ment of stability of the representation to local deformations, 
while retaining maximum information about the original 
data. The scattering network is proposed, where succes-
sive filtering with wavelets and pointwise nonlineari-
ties is applied and further shown to satisfy the stability 
constraints. Note that the approach used to build this scat-
tering network significantly differs from traditional CNNs, 
as no learning of the filters is involved. It should further 
be noted that while scattering transforms guarantee that 
representations built by deep neural networks are robust 
to small changes in the input, this does not imply that the 
overall classification pipeline (feature representation and 
discrete classification) is robust to small perturbations in 
the input, in the sense of (2). We believe that building deep 
architectures with provable guarantees on the robustness 
of the overall classification function is a fundamental open 
problem in the area.

Summary and open problems
The robustness of deep neural networks to perturbations is a 
fundamental requirement in a large number of practical appli-
cations involving critical prediction problems. We discussed 
in this article the robustness of deep networks to different 
forms of perturbations: adversarial perturbations, random 
noise, universal perturbations, and geometric transforma-
tions. We further highlighted close connections between the 
robustness to additive perturbations and geometric properties 
of the classifier’s decision boundary (such as the curvature). 

The importance of analyzing the vulnerability of deep neural 
networks to perturbations therefore goes beyond the practi-
cal security implications, as it further reveals crucial geo-
metric properties of deep networks. We hope that this close 
relation between robustness and geometry will continue to be 
leveraged to design more robust systems.

Despite the recent and insightful advances in the analysis 
of the vulnerability of deep neural networks, several chal-
lenges remain:

■■ It is known that deep networks are vulnerable to universal 
perturbations due to the existence of correlations between 
different parts of the decision boundary. Yet, little is 
known about the elementary operations in the architecture 

(or learned weights) of a deep network 
that cause the classifier to be sensitive to 
such directions.

■■ �Similarly, the causes underlying the 
transferability of adversarial perturba-
tions across different architectures are 
still not understood formally.

■■ �While the classifier’s decision boundary 
has been shown to have a very small 
curvature when sectioned by random 
normal planes, it is still unclear whether 
this property of the decision boundary 
is due to the optimization method (i.e., 

	 stochastic gradient descent) or rather to the use of piece-
wise linear activation functions.

■■ While natural images have been shown to lie very close to 
the decision boundary, it is still unclear whether there exist 
points that lie far away from the decision boundary.
Finally, one of the main goals of the analysis of robustness 

is to propose architectures with increased robustness to addi-
tive and structured perturbations. This is probably one of the 
fundamental problems that needs special attention from the 
community in the years to come.
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