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Abstract

Background

Although it is well recognized that autism is associated with altered patterns of over- and

under-connectivity, specifics are still a matter of debate. Little has been done so far to syn-

thesize available literature using whole-brain electroencephalography (EEG) and magneto-

encephalography (MEG) recordings.

Objectives

1) To systematically review the literature on EEG/MEG functional and effective connectivity

in autism spectrum disorder (ASD), 2) to synthesize and critically appraise findings related

with the hypothesis that ASD is characterized by long-range underconnectivity and local

overconnectivity, and 3) to provide, based on the literature, an analysis of tentative factors

that are likely to mediate association between ASD and atypical connectivity (e.g., develop-

ment, topography, lateralization).

Methods

Literature reviews were done using PubMed and PsychInfo databases. Abstracts were

screened, and only relevant articles were analyzed based on the objectives of this paper.

Special attention was paid to the methodological characteristics that could have created

variability in outcomes reported between studies.

Results

Our synthesis provides relatively strong support for long-range underconnectivity in ASD,

whereas the status of local connectivity remains unclear. This observation was also mirrored

by a similar relationship with lower frequencies being often associated with underconnectiv-

ity and higher frequencies being associated with both under- and over-connectivity. Putting
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together these observations, we propose that ASD is characterized by a general trend

toward an under-expression of lower-band wide-spread integrative processes compensated

by more focal, higher-frequency, locally specialized, and segregated processes. Further

investigation is, however, needed to corroborate the conclusion and its generalizability

across different tasks. Of note, abnormal lateralization in ASD, specifically an elevated left-

over-right EEG and MEG functional connectivity ratio, has been also reported consistently

across studies.

Conclusions

The large variability in study samples and methodology makes a systematic quantitative

analysis (i.e. meta-analysis) of this body of research impossible. Nevertheless, a general

trend supporting the hypothesis of long-range functional underconnectivity can be observed.

Further research is necessary to more confidently determine the status of the hypothesis of

short-range overconnectivity. Frequency-band specific patterns and their relationships with

known symptoms of autism also need to be further clarified.

Introduction

It is well recognized that autism and autism spectrum disorder (ASD)–hereafter used inter-

changeably–is associated with altered patterns of connectivity, compared to neurotypical (NT)

controls. Increased interest in connectivity reflects a shift from understanding the biological

basis of autism as focal brain abnormalities affecting specific systems towards an overall pat-

tern of brain reorganization. Moreover, new evidence on early development of white matter

tracks suggests that connectivity could be among the earliest markers of autism, with initial

signs emerging within the first year of life [1–3].

Although the autistic brain was initially hypothesized as exhibiting a pattern of overall

underconnectivity [4,5] or by long-range underconnectivity and local overconnectivity [6], a

more subtle mixture of hypo- and hyper-connectivity is now emphasized [7]. Often, findings

remain unreplicated and conclusions divergent regarding the nature of altered connectivity in

autism. Several reasons may explain the differences in findings and conclusions including con-

ceptual (e.g., definitions, theoretical models), methodological (e.g., measurement modalities

and paradigms, participant characteristics), or analytical (e.g., quality control and processing

pipelines).

Previous literature reviews have partially addressed questions about connectivity in autism.

These reviews have predominantly focused on structural connectivity using diffusion imaging

[8–10] and correlated activity using functional magnetic resonance imaging (fMRI) [10–12].

In contrast, other aspects of connectivity including functional and effective connectivity of

electrophysiological activity reported in electroencephalography (EEG) and magnetoencepha-

lography (MEG) have not been the focus of systematic synthesis (however, see [13] for a narra-

tive synthesis of coherence in EEG resting state). Yet, such syntheses are paramount in getting

a clear view of the relationship between brain connectivity and autism considering that 1) dif-

ferent recording modalities can provide contrasting points of view on mechanisms altering

brain connectivity (e.g., synaptic functions, degree of myelination, inhibitory/excitatory bal-

ance, network properties) and 2) their results are not necessarily in good agreement [14].

Because of their high temporal resolution and their direct relationship with neuronal activity
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(as opposed to a proxy such as hemodynamic), EEG/MEG connectivity analyses can provide

valuable information about dynamic activation and deactivation of functional networks. Fur-

ther, these can be observed for different oscillatory frequencies depending on the role of each

network in integration versus segregation of information, on top-down versus bottom-up

propagation of signals, and the tasks or functions they support. Synthesizing evidence about

altered functional network connectivity in autism is essential for establishing a coherent theo-

retical account of the pathophysiology of the condition. Thus, our goal is to fill knowledge

gaps by comprehensively reviewing literature on EEG/MEG functional and effective brain

connectivity in autism, with a focus on factors influencing over versus under connectivity. We

begin with an overview of relevant connectivity concepts and measurement approaches.

Connectivity: A multi-faceted concept

Brain connectivity is a broad, multi-faceted concept [15]. In human neuroscience, connectivity

can refer to physical interconnection of brain regions through bundles of axons (structural/
anatomical connectivity), to statistical dependencies (e.g., correlation, coherence, consistency

in phase-lag) between time series of cerebral activity in different brain regions (functional con-
nectivity), or to causal interactions between brain regions (directed/effective connectivity) [16].

Structural/anatomical connectivity is generally assessed with deterministic or probabilistic

tractography of diffusion weighted images recorded using magnetic resonance imaging (MRI)

scanners. The two other types (i.e., functional and effective) are assessed mainly using electro-

magnetic (e.g., electroencephalography (EEG), magnetoencephalography (MEG), local field

potentials (LFP), spike trains), hemodynamic (e.g., functional MRI (fMRI) or near infra-red

spectroscopy (NIRS)) and, to some extent, nuclear recordings (e.g., positron emission tomog-

raphy (PET), single-photon emission computed tomography (SPECT)).

Although the term connectivity is often used interchangeably in the literature to denote any

or all of these variants, different measures can show surprisingly little agreement [14,17]. Aside

from measurement issues and biases, a few reasons may explain the discrepancy among mea-

sures. One of these reasons is the complexity of the relationship between structural and func-

tional connectivity. For example, neural networks have an intricate structure of excitatory and

inhibitory neurons forming local microcircuits (i.e., “a minimal number of interacting neu-

rons that can collectively produce a functional output” [18]), which synaptic connectivity can

either amplify or attenuate measures of functional connectivity. How this micro-connectivity

impacts on macroscopic structural and functional connectivity is unclear. Functional connec-

tivity can also be modulated by factors independent from structural connectivity (e.g., synaptic

depression, properties of sensory afferent signals) and can appear through indirect paths, not

structurally connected by a direct track but functionally coordinated by an intermediate struc-

ture (e.g., cortico-thalamo-cortical pathways) not considered by direct structural connectivity.

Similarly, different modalities of functional connectivity show complex interdependencies.

For example, the relationship between electrical and hemodynamic activity has been shown to

depend on frequency and spatial scale, with particular EEG rhythms generating region-depen-

dent variations in blood oxygen levels and glucose metabolism [19,20]. Cross-frequency

dependencies can even be observed between recording modalities. For example, slow hemody-

namic rhythms are known to be correlated with the amplitude of fast gamma-band EEG/MEG

activity [21,22].

Furthermore, it is worth remembering that functional connectivity is generally based on

similarity of signals observed between pair of regions and, in most cases, no control of the

potential contribution of a third sources is made. This situation may be improved by multivar-

iate approaches [23], but it seems unlikely to be completely controlled, particularly for cortical
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activity initiated by subcortical structures (e.g., thalamo-cortical pathways) since such third

sources are generally hidden (i.e., not measured) and are therefore difficult to estimate and

mitigate [24]. The situation is much different when assessing structural connectivity by mea-

suring the area of a fiber bundle section linking two regions. In the latter case, there is no

potential hidden third source confound. Therefore, different forms of connectivity need to be

treated as different, yet related, constructs. Integrating knowledge from EEG/MEG with other

functional (e.g., fMRI, PET) or structural (e.g., tractography) modalities is expected to be a

fruitful avenue because of possible complementarity between modalities, but it must be per-

formed very cautiously in view of many potential pitfalls.

Connectivity hypotheses in ASD

The large amount of literature on connectivity in autism yields multiple distinct hypotheses

about the nature of over- and/or under-connectivity. We considered three classes of inter-

related hypotheses regarding connection length, topological specificity, and developmental

effects.

Over- and under-connectivity in relation with connection length. A popular hypothesis

considers autism to be characterized by long-range underconnectivity potentially combined

with local overconnectivity [6,25–27]. This hypothesis is predominantly supported by struc-

tural and functional MRI and post-mortem immunocytochemistry investigations. For the

structural part, this pattern can be explained by ASD-related abnormalities at the cellular level:

• long-range structural underconnectivity can result from a degradation of fiber bundles

[1,28–40], with many studies reporting decreased fractional anisotropy and/or higher mean

diffusivity in ASD for the superior longitudinal fasciculus, occipitofrontal fasciculus, unci-

nate fasciculus, inferior longitudinal fasciculus, cingulum, and corpus callosum [41];

• local structural overconnectivity can result from a decrease of apoptosis, axonal pruning,

and dendritic degradation, and from an increase of neurogenesis [42].

However, local connectivity may often be obfuscated by long-distance connections (e.g., in

presence of long-range crossing fibers in diffusion imaging). In such cases, long-range under-

connectivity makes local connectivity more clearly observable without meaning that there is a

true increase in local connectivity (i.e., there is an augmentation of the relative number of local

connections because of a loss of long-distance connections, but there is no augmentation in

their absolute number).

For the functional part, many fMRI studies reported long-range underconnectivity in ASD,

whereas local overconnectivity has been reported less consistently [26,43,44]. In a recent

review of the literature, 26 out of 33 fMRI studies were shown to report reduction or loss of–

sometime local but most often long-range–connectivity in ASD [41]. The prefrontal cortex

and the posterior cingulate cortex were most often shown to exhibit long-range underconnec-

tivity. Other regions (e.g., precuneus, anterior cingulate cortex, superior temporal gyrus, poste-

rior superior temporal sulcus, anterior insula, parietal lobule) showed primarily long-range

underconnectivity, but were also associated in some studies with long-range overconnectivity.

Various experimental observations have been proposed as potential correlates or causes for

local functional overconnectivity, such as smaller but more numerous cortical neurons and

mini-columns, which might indicate a bias toward local processing [45]. It may also be caused

by a higher excitatory/inhibitory ratio favoring local interactions [46,47], for example through

a deficient GABAergic signaling [48]. Appropriate GABAergic activity is also important for

normal operation of local circuitry such as appropriate functional segregation of mini-column

through lateral inhibition provided by GABAergic basket cells [49]. It is also involved in
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generation of gamma-band activity through parvalbumin-expressing fast-spiking interneurons

[50]. Activity in the gamma-band is associated mostly with local computation [51,52], it is

involved in many processes (e.g., perceptual binding and selective attention [53]) showing

alteration in ASD, and abnormalities in this frequency band have been reported consistently

enough to be proposed as being a marker of ASD [54].

Finally, related to the hypothesis concerning long-range versus short-range connectivity,

the operational definition in the reviewed literature remains elusive. This is particularly prob-

lematic in EEG/MEG, since these modalities do not have a good spatial accuracy and compari-

son of nearby pairs of sensors (i.e., local connections) is confounded with volume conduction

(see the discussion for more on this topic). One possible definition–and the one we use in this

review–for EEG/MEG long-range connectivity is that it reflects inter-lobar or inter-hemi-

spheric connections. However, we also interpret evidence showing a graded response of con-

nectivity with respect to distance, for example, when the connectivity is correlated with the

inter-sensor distance.

Topological specificity. Evidence for altered connectivity in various brain regions comes

from investigations of brain structure (MRI, diffusion imaging, post-mortem immunocytochem-

istry, etc.). ASD-related abnormalities have been documented in the frontal lobe [25,55,56],

including abnormal organization of neurons and microglial cells [57]. Evidence from fMRI sup-

ports a pattern of underconnectivity from frontal to other brain regions [58]; i.e., lower frontal to

parietal connectivity [59] and reduced antero-posterior connectivity [58,60]. However, these stud-

ies were conducted in adults and may therefore be characterizing a cascade effect that appears

over development. For example, underconnectivity in 24-month-olds with ASD have been shown

to be predominantly in occipital regions, with important abnormalities in temporal lobes, but

almost no abnormalities in frontal areas [61].

Abnormal connectivity between the occipital lobe and the other regions is also often

reported; an observation that might be related with structural and functional abnormalities in

processing of visual input in ASD [62–66]. In a large database of resting-state fMRI recordings,

underconnectivity was also found in all lobes, but particularly for the temporal, whereas over-

connectivity was mainly affecting connectivity with subcortical structures, particularly for con-

nections linking the thalamus and the globus pallidus to the primary parietal sensorimotor

regions [67].

Contrary to hypotheses about deficiency in specific regions, an alternative hypothesis sug-

gests an overall non-topographically-specific alteration of brain connectivity in ASD. Support

for this hypothesis is based on evidence of a more randomly connected brain in ASD [68],

which results in a cross-interaction between the degree of connectivity of brain regions and

the diagnosis of ASD; i.e., ASD shows an increase (respectively, a decrease) in connectivity for

pairs of regions which display low (respectively, high) connectivity in controls [69].

Developmental hypotheses. The typical developmental course of connectivity remains

poorly understood but its determinants (e.g., pruning, myelination) and its indexes (e.g., frac-

tional anisotropy, magnetization transfer ratio) appear to follow an inverted U-shape trajec-

tory during maturation, which progress from posterior to anterior regions and from primary

to association cortical areas. These maturational patterns appear to differ in autism from very

early in development [1,2]. Diffusion imaging shows early elevated fractional anisotropy (1.8–

3.3 year-old range in [70]; 1.5–5.8 year-old range in [71]; elevated at 6 month-old followed by

reduction to below controls at 24 month-old in [1]) followed by a reduction below neurotypi-

cal values later in life (7–33 year-old in [28]; 14.6 ± 3.4 year-old in [72]). This observation sug-

gests a possible age-related inversion of trends in measured connectivity (i.e., from initial

overconnectivity to later underconnectivity) potentially due to slight differences in develop-

mental trajectories. Interesting relationships might be hypothesized linking this potential
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initial overconnectivity with the early overgrowth of the brain in ASD [55,73] and the early

maturation of white matter tracts previously reported in toddlers and young children with

ASD [1,70,71,74]. Because early stages of typical development involve initial structural over-

connectivity followed by a pruning of connections in the maturing brain [75], differences in

maturation rates can be expected to modulate the degree of connectivity. For example, a delay

in the onset of axonal remodeling could drive brain overgrowth, yielding an abnormally large

brain and therefore abnormal long-distance connections. Such connections are more likely to

be pruned given that this process is driven by competition for neurotrophins [76], and the

increased conduction delays and cellular costs associated with longer fibers puts them at a dis-

advantage in this competition. Thus, a delay in the onset of axonal remodeling could drive

brain overgrowth and thereby favor short-distance connections over long-distance connec-

tions via typical developmental mechanisms [77,78].

Differences in developmental trajectories of brain connectivity observed with EEG/MEG

might also be exacerbated if excitatory and inhibitory neurons mature at different speeds (e.g.,

a slower rate of reduction of intra-cellular chloride ionic concentration during development

would result in delayed transition of GABAergic neurons from excitatory to inhibitory [48]).

Such an altered development would shift the normal evolution of the excitatory/inhibitory

ratio (already known to be abnormal in ASD [47]). In turn, it is likely that this imbalance

would influence the degree of functional connectivity in cortical pyramidal neurons, the cell

population generally considered as the main source for observable EEG/MEG activity. Simi-

larly, differences in maturation of feedforward versus feedback pathways might be responsible

for some transient developmental aberration in overall connectivity. Since feedback connec-

tions develop later than feedforward [79] and ASD is a developmental disorder, feedback pro-

jections could be preferentially altered.

Regarding which brain region might show the largest developmental differences, fMRI

studies have reported the default mode network as being particularly vulnerable to ASD

[80,81]. The associated brain regions would show a slower maturation than in neurotypical

controls. Among the structures involved in this network, the impact of slower maturation is

likely to be more prominent for the frontal lobe since it is one of the last structures to mature

in the brain, a process that continues up to the mid-twenties [82].

Scope of the review

Taken together, these different hypotheses demonstrate the complexity of the impact of ASD

on connectivity, which is most probably characterized by both generalized atypicality (e.g.,

long-range underconnectivity, increased randomness in connection patterns) and more local-

ized abnormalities (i.e., specific deficits in some nuclei or brain regions) that develops during

the first years of life.

Although the current body of evidence related to connectivity comes mostly from fMRI

[10–12] or from structural approaches using diffusion imaging [8–10], there has been an

increase in complementary methods. Specifically, EEG/MEG functional and effective connec-

tivity can reveal qualitatively different results which are important to our understanding of

how the brain wiring is altered in autism. Evidence synthesis on that topic is currently missing.

Therefore, in this paper, we comprehensively review the literature on EEG/MEG functional

and effective brain connectivity in autism, against the different hypotheses described above,

particularly focusing on factors influencing overconnectivity versus underconnectivity.

Although it is currently unclear if local connectivity in EEG/MEG should be assessed by com-

paring the activity between pairs/groups of sensors or alternatively using single point measure-

ments across a whole group of sensors (e.g., through spectral power), this review is limited to
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studies measuring connectivity using the former approach. Complementary review of other

novel methods to characterize brain activity in ASD such as quantitative EEG can be consulted

elsewhere (e.g., see [83,84]).

Methods

Our review focuses on original research assessing functional and effective connectivity as mea-

sured by EEG or MEG. Searches on PubMed and PsychInfo executed on March 6th 2016 using

the research string “(EEG OR MEG OR electroencephalo� OR magnetoencephalo�) AND con-

nectivity AND autis�” returned 102 and 67 hits respectively. Only journal and conference

papers published in English were reviewed.

Studies were retained if they presented original experimental findings on participants with

an ASD phenotype, including individuals diagnosed at any age as well as studies comparing

low versus high-risk infants defined by the presence or absence of an older sibling diagnosed

with ASD. One study correlating ASD traits in a neurotypical population with differences in

connectivity features was also included.

We excluded articles discussing functional or effective brain connectivity without reporting

new experimental results on this topic. We also excluded articles reviewing neurofeedback

approaches using connectivity measurements, methodological articles proposing new

approaches for assessing brain connectivity, and studies inferring on connectivity only

through indirect measurements, e.g., EEG/MEG complexity, ERP timing, spectral power, or

local inter-trial synchronization.

Appraisal of methodological quality of included studies was conducted by one of the

authors (COR). This led to exclusion of one study due to probable methodological issues

related to multiple comparisons, confounders, and mismatching statistics [85], and of a second

study because of a too small sample (i.e., two subjects per group [86]). A third study [87] was

retained but interpreted with caution because of inappropriate control of multiple statistical

comparisons. In that study, the authors addressed the problem of multiple comparisons by

computing, for each node of their graphs, an average t-value from 48 leave-one-subject-out t-

tests. However, if standard statistical hypotheses are valid (normality, absence of outliers, etc.),

this “bootstrapped” evaluation of the mean t-value will converge toward the t-value for the

whole sample (i.e., the uncorrected t-value). However, t-tests are still being computed at every

node resulting in N independent statistical tests with an alpha-threshold at 0.05, which will

provide up to 5% of false positives under the null hypothesis. The “leave-one-out” approach

does nothing to correct for these multiple comparisons.

A total of 52 papers were retained, 31 using EEG [88–118] and 21 using MEG [87,119–

138]. The selection process is depicted in Fig 1. For each study, one of the authors (COR)

extracted methodological dimensions that potentially impacted results and conclusions,

such as:

• connectivity metrics;

• recording parameters (sampling frequency, reference electrode, electrode grid density);

• experimental paradigms (e.g., resting-state, event-related experiments, sleep studies);

• sample characteristics (age, gender, IQ, diagnostic confirmation method, sample size).

The wide variability in study characteristics along these methodological dimensions pre-

cluded a meta-analysis to address the main objectives of the review. Instead, we synthesized

and critically appraised findings of the over-arching hypothesis that ASD is characterized by
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long-range underconnectivity and local overconnectivity (as a valid generalization of a more

complex phenomenon), and systematically reported results related to factors that can impact

this hypothesis (exceptions to the generalization; development, topography, lateralization).

Fig 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart describing the paper selection process.

https://doi.org/10.1371/journal.pone.0175870.g001
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Results

Synthesis per methodological dimensions

We first synthesized included studies across several methodological dimensions that may

account for some inconsistencies in including connectivity metrics, recording parameters,

experimental paradigm, and sample characteristics. Outcome of this analysis can be found as

supplementary documents S2 File along with tables (see S1 and S2 Tables) summarizing the

information extracted for included studies (split by EEG vs. MEG).

ASD is characterized by long-range underconnectivity; Local

overconnectivity remains uncertain

As reviewed in the introduction, a prominent hypothesis is that autism is characterized by

local overconnectivity and long-range underconnectivity [25,26]. EEG/MEG studies provide

partial support for this hypothesis with some studies showing both phenomena in ASD popu-

lation [90,114]. This distribution of under/overconnectivity is also correlated with the presence

of autistic traits in the neurotypical population [89].

Overall, the case for long-range underconnectivity is well supported. This is particularly

clear for the case of inter-hemispheric connections, for which a decrease in EEG/MEG func-

tional connectivity has been reported in many studies [93,94,96,100,107,114,134]. A smaller

number of studies report mixed long-range overconnectivity and underconnectivity [97] or

increased long-range connectivity in infants [113] and adolescents [116,117], in adult rapid-

eye movement (REM) sleep [108], and during a picture-naming task in adults [120]. Also,

some indication for long-range overconnectivity has been found during slow wave sleep [92],

although the effect was marginal (p-values = [0.1, 0.05]) when corrected for multiple compari-

sons. In sum, while ASD is characterized by a general long-range underconnectivity, it is likely

that this pattern is modulated by task requirements or developmental processes.

Local overconnectivity in ASD is less robustly established. A few studies report local over-

connectivity [89,90,114,117,139], while others found local underconnectivity in ASD

[96,97,125,130,140] or a mix of both patterns [112]. Similarly, indirect support for local over-

connectivity is provided by reports of an enhanced local synchronization [141], which can be

associated with higher local functional connectivity (i.e., functional connectivity is correla-

tional in nature and assesses how the activity between two regions is similar, which often

means synchronized). There are, however, many theoretical and practical issues related to the

definition and the reliable measurement of local connectivity in EEG/MEG (see the Discussion

section) which make it difficult to reach definitive conclusions.

The hypothesized pattern of long-range underconnectivity and short-range overconnectiv-

ity is paralleled by the general trends observed as a function of frequency (see Fig 2). Overall,

evidence suggests underconnectivity in ASD at lower frequencies (delta to beta bands) with

potential overconnectivity in higher bands. This tendency is particularly well illustrated in rest-

ing-state by the work of Ye and collaborators [138]. These general trends seem rather robust

despite the substantial methodological variability across studies, e.g., paradigms, samples, and

connectivity measures (S1 and S2 Tables). This pattern of results is different from reported

EEG power abnormalities in autism, which show a U-shape curve with increased low-fre-

quency (delta, theta) and high-frequency (beta, gamma) activity and reduced middle-ranged

frequencies (alpha) in ASD [13].

General underconnectivity in lower frequency bands has been observed as a function of the

number of autistic traits in a neurotypical sample [89] as well as for all age groups of ASD par-

ticipants (e.g., in infants and young children [91], in adolescents [93], and in adults [94]) and
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for a wide range of paradigms (e.g., resting-state [96], event-related [100], and sleep [105]),

suggesting that it is associated with neurodevelopmental abnormalities that are not limited to a

specific brain region or state [93]. Evidence of overconnectivity in high-frequency bands is

more scarce but accumulating, particularly in MEG studies (see Fig 2).

Tentative relationships can be proposed between frequency bands, the scale of connectivity,

and the degree of connectivity. The modulation of over vs. under connectivity depending on the

frequency band is consistent with slower oscillators involving more neurons in larger volumes

[52]. Such a relationship is to be expected from “wiring economy”. Indeed, the coordination of

higher frequency activity across regions requires faster communication. Therefore, for any given

distance between two regions, larger (and costlier) axons are required to coordinate faster fre-

quencies. In this context, it is more efficient to bias connectivity such that high-frequency band

Fig 2. Summary of band-specific increases versus decreases in EEG/MEG functional connectivity in ASD (compared to NT

controls). The “N” column list the total size of the sample (i.e., sum of participants in all groups). Frequency is varying along the x-

axis, from 1 Hz to 120 Hz.

https://doi.org/10.1371/journal.pone.0175870.g002
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activity is shared locally, whereas slower frequency bands are used for long-range interaction.

Thus, we expect high-frequencies to be preferentially associated with more localized processes

and activity in lower bands to be preferentially associated with more wide-spread integrative pro-

cesses. Indeed, integrative top-down processes (i.e., processes integrating a priori knowledge

about the world with incoming signals from the senses to generate a percept) involving long-

range connections are often associated with slower rhythms (delta, theta, alpha), whereas syn-

chronization of local cortical networks through bottom-up processes (i.e., processes modifying

the internal representation of the world to minimize its mismatch with information from the

senses) tends to be associated with faster frequencies (beta, gamma) [142,143]. Such a generaliza-

tion, however, will need further investigation in view of several exceptions (e.g., the existence of

large-axon long-range fast-spiking interneurons synchronizing high-frequency rhythms between

distant regions [144]). Further, both reports of MEG underconnectivity in high-frequency bands

are associated with long-range connections [87,134], with one of these studies explicitly limiting

its investigation to long-range inter-hemispheric connections [134].

An alternative hypothesis from graph theory: A more uniform altered

connectivity in ASD

EEG and MEG connectivity studies using graph analysis generally report autism to be associ-

ated with sub-optimal network properties, such as less clustering, larger characteristic path,

reduced eigenvector centrality (a measure of the importance of nodes as communication

hubs), and an architecture less typical of small-world networks [89–91,114,133,135,136].

Small-world networks are thought to be striking an optimal balance between integration and

segregation, making them particularly efficient. This topography is present in a wide range of

contexts, such as in social networks or flight networks, but also in neural networks [145]. It is

characterized by each node having a relatively small number of neighbours but being able to

reach any other node by only a small number of steps (i.e., although they tend to form small

cliques, each node is separated from every other node by only a few levels of separation, thanks

to a relatively small number of “hub” nodes providing between-clique connectivity).

Neural networks in ASD have been shown to be more resilient because of their greater

homogeneity and their more uniform architecture [114]. This, in turn, results in a less optimal

balance between local specialization (segregation) and global integration [145]. Findings from

network analysis seems consistent with the hypothesis of a more randomly connected brain. It

has been supported as supported by EEG/MEG studies showing smaller patches (more local-

ized, less blended) of increased MEG signal complexity in controls compared to ASD [122], a

much more disorganized pattern of connectivity in ASD [119], and more redundant networks

in ASD (i.e., more randomness in a network increases redundancy and resilience but decreases

efficiency and specialization) [114].

However, these analyses have been performed on graph topologies, which preserve very little

relationship with spatial properties of brain activity. Specifically, edges of these graphs are not

weighted by the length of the connections and the angles between the edges are unspecified.

Therefore, the spatial arrangement of the nodes is lost and the results cannot be reconciled with

the findings reviewed above on the impact of connection length on over/underconnectivity.

Factors modulating connectivity patterns

Although the hypothesized pattern of over and under connectivity in autism is a valuable con-

ceptual generalization, many factors may modulate connectivity at a finer scale reflecting con-

text-dependent modulations in connectivity. Below we consider the factors that were prominent

in the reviewed of the literature.
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Lateralization. Many cognitive processes display brain lateralization, language being a

classical example. Since symptoms associated with autism are associated with lateralized cogni-

tive functions (e.g., executive functions and language), many studies have looked for and

found atypicalities in lateralization of brain functions in autism [146]. In the reviewed litera-

ture, many studies reported function- or structure-dependent EEG/MEG connectivity abnor-

malities related to ASD. The most evident are reports of abnormal lateralization of functional

connectivity, with an elevated left-over-right EEG and MEG functional connectivity ratio in

ASD.

For example, studying gamma-band connectivity in relation with face processing, a left-

ward (instead of the normal rightward) lateralization emerging around one year of life was

found [103]. The authors hypothesized that this abnormal lateralization might be related with

potential differences in face recognition in autism [147,148] because it suggests a more fea-

tural-based (processing and recognition of local features in a visual scene; typical of left hemi-

sphere) than configural-based (integration of all the parts of a stimulus in a coherent percept;

typical of right hemisphere) face recognition processes [149]. Also, in one-year-old infants at

high-risk for autism (HRA) that have later been diagnosed with ASD, an increase in the alpha-

band connectivity predominant in the left fronto-centro-parietal region during video watching

was found in one study [113], although a second study did not report any hemispheric differ-

ences between HRA infants and low-risk controls [115].

Similarly, an elevated long-range fronto-posterior functional connectivity in children with

ASD was observed prominently in the left-hemisphere [116]. Such increased left-hemisphere

coherence has also been observed in low-functioning ASD children when compared with

high-functioning ASD children [117].

A rightward reduction of beta-band connectivity (phase lag index) between the occipital

lobe and frontal, temporal, and parietal areas in a numerosity task (i.e., participants had to esti-

mate the number of dots either distributed to form an animal shape or randomly positioned)

was also reported in ASD [119]. The authors suggested impairment in the capacity of using a

global interpretation style (Gestalt perception; right hemisphere) in ASD and potentially a

shape recognition strategy relying too heavily on a local processing of visual information (left

hemisphere) [150]. This hypothesis seems to be coherent with the observed decrease in long-

range connectivity in ASD given that such connectivity is thought to be important for global

integration of widespread brain activity. Also consistent with an elevated left-over-right func-

tional connectivity ratio in ASD is the report of increased connectivity (Granger causality) 1)

from the left inferior frontal gyrus to the left fusiform area in high-beta and low-gamma fre-

quencies and 2) from the left superior temporal gyrus to the left occipital lobe in the beta and

gamma bands during a picture naming task [120]. Another study showed reduced right hemi-

sphere temporal-central alpha-band coherence in ASD adolescents compared to neurotypical

controls [101].

In an event-related paradigm in which emotional stimuli evoke bilateral activation of the

insula in neurotypical adults [151], a less bilateral pattern (i.e., more lateralized) was found in

ASD with significantly lower connectivity (phase lag index) of the right (but not the left) insula

with areas including the right fusiform, right inferior temporal gyrus, and superior frontal

regions in ASD [133].

Using photic stimulation, a leftward predominance in connectivity increased at stimulated

frequencies has been observed in ASD, with a larger group difference at higher frequencies

[106,107]. Although these studies did not report such asymmetry in their resting-state record-

ings, Coben et al. [96] found an increase in relative theta power but a reduced absolute beta

power over the right hemisphere for the autistic group during resting-state. These authors

argue that such an excess in theta power might be related to abnormal brain functioning in
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ASD, based on similar observations made in children with attention deficit/hyperactivity dis-

order [152], learning disabilities [153], and mental retardation [154]. Leftward asymmetry and

altered EEG power lateralization was also reported [155]. Still in resting-state, Murias et al.

[112] reported theta-band overconnectivity in ASD within left hemisphere frontal and tempo-

ral cortex, whereas Barttfeld et al. [90] observed an increase in delta-band local connectivity in

lateral frontal electrodes, which was particularly salient in left hemisphere.

During the REM phase of sleep, more important increases in coherence were also noted in

the left hemisphere, particularly for the delta band [108]. Kikuchi et al. [127] reported the

more contradictory results with an increased rightward connectivity lateralization in gamma

band in a sample of 3–7 years old infants with ASD, but not on a 5–7 years old sample [128]

during passive video watching. Although they found no between-group differences in laterality

in that latter sample, within the ASD sample, they showed that more rightward laterality in

connectivity was correlated with better performances in reading and in pattern reasoning.

This associate a leftward lateralization with more severe symptoms, as shown in the other stud-

ies, and is consistent with the idea that such spatial skills typically relies more on the right

hemisphere [156].

In sum, a consistent pattern of increased left-over-right EEG and MEG connectivity ratio

has been observed in ASD. This pattern may well reflect specific perceptual characteristics of

this population in which local components are more strongly processed (segregation) relative

to global relationships between components (integration; Gestalt style). This altered processing

style can be hypothesized to be a consequence of the observed drop in long-range connectivity.

A lack of proper long-range connectivity may not provide an adequate substrate for the nor-

mal development of the rightward more global and integrative style of processing. Compensa-

tory development of more leftward local-processing style may, however, still be possible if

shorter-distance connectivity is not as severely affected by the disease. It is also relevant to note

that an enhanced EEG power has been consistently reported in the left hemisphere across all

frequencies (reviewed in [13]) which may be a confounding factors in studies not controlling

for potential impact of an increase in power on the resulting increase in connectivity (e.g., as

can be seen in the case of coherence computed using a common reference [157]).

Topography of connectivity differences in ASD. Cognitive processes that are known to

be atypical in ASD are, to some extent, localized to specific brain regions. Thus, there is an

interest in investigating the topography of connectivity abnormalities to further associate

altered patterns of connectivity with observable phenotypes and symptoms. Among the

reviewed studies, some discussed general topological differences at sensor-level, whereas oth-

ers used more precise analyses of cortical sources to localize abnormalities. For example, in

MEG, a reduced coherence between the frontal eye field (a region involved in voluntary eye

movements) and dorsal anterior cingulate cortex in an ASD population in a saccade/anti-sac-

cade task has been shown [124]. Abnormal underconnectivity of the fusiform face area with

various other structures (left precuneus, right inferior temporal gyrus, and superior frontal

regions) in tasks involving face stimuli has also been reported using cross-frequency coupling

[125] and phase lag index [133].

These results are examples showing that more subtle patterns of connectivity are most cer-

tainly region- and function-dependent. Consistent with the topological hypotheses reviewed

in the introduction, a large number of studies included in S1 and S2 Tables report involvement

of frontal [90,93,108,112,113,121,137,138,141] or occipital regions

[90,96,100,108,112,121,122,138,158], although reports of significant differences in connectivity

can be found between virtually all pairs of brain regions. The variability in experimental para-

digms, analyses, and sample characteristics prevents establishing clearer generalizations of

these findings. It is worth noting though that frontal and occipital regions have the longest
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inter-hemispheric connections, which may account for the prevalence of observed undercon-

nectivity in these regions if long-range connections are preferentially affected by ASD. Also,

studies in infants are under-represented in this literature, which may cause abnormalities

emerging at this age to be under-represented. Further, some regions of the brain may also be

poorly covered by small-grid EEG studies, such as inferior regions of temporal lobes.

Development. Differences in EEG/MEG functional connectivity are emergent rather than

static over development [103,115]. However, a consistent portrait of how these connectivity

differences emerge is yet to be established. Righi et al. [115] reported a decrease of connectivity

(coherence) in the gamma band for HRA infants, a trend that was more pronounced for the

portion of HRA infants which later developed ASD, whereas Orekhova et al. [113] reported

increased alpha-band connectivity (debiased weighted phase lag index) in HRA infants who

later developed ASD. Relying on reported correlation between EEG alpha-band coherence and

structural integrity of white matter [159], these authors relate this alpha-band hyper-connec-

tivity in toddlers with the frequently reported alpha-band hypo-connectivity in adolescence/

adulthood by highlighting the abnormal trajectory of white matter maturation in ASD: early

maturation of white matter tracks in toddlers and young children [1,70,71,74] followed by

slowing of white matter increase in toddlerhood [1] and later childhood [160,161] ending in

predominant hypo-connectivity in adulthood [26]. Thus, patterns of connectivity differences

between ASD and NT participants should not be thought of as being static over time. Although

more corroboration is still needed, it might well be captured by a general early hyper-connec-

tivity followed by a regression toward hypo-connectivity later in development.

Developmental change continues to impact connectivity patterns later in development.

Using resting-state MEG recordings from 6–21 years old individuals, Kitzbichler et al. [130]

found in their NT control group an initially strong beta, theta, and delta-band connectivity

involving frontal regions. This connectivity decreases later with maturation, presumably evolv-

ing toward more specific interconnections. This developmental change was not observed in

ASD participants who initially started with a low frontal connectivity and stayed at this level.

Discussion

Summary of the main observations reported in the reviewed literature

Our systematic review of a large body of evidence suggests that ASD is characterized by a pat-

tern of EEG/MEG functional connectivity that is in general more randomly organized, with

abnormal connectivity often involving frontal or occipital regions–at least in adult samples–

although abnormal connectivity patterns have been reported in almost every region. Abnormal

lateralization of activity in resting-state and in specific tasks seems to be typical, with a very

systematic report of elevated left-over-right EEG and MEG functional connectivity ratio in

ASD. Both abnormal intra- and inter-hemispheric connectivity can be observed with a general

trend toward underconnectivity, but with probable local or condition-specific (task, spectral

band, brain region) overconnectivity. Underconnectivity can most reliably be observed in

lower frequency bands (hypothesized to be preferentially involved in long-range integrative

networks) whereas a stronger tendency for overconnectivity can be observed (see Fig 2) in

high-frequency ranges (hypothesized to be generally associated with more localized processes).

These findings appear to hold despite substantial variability across several methodological

dimensions including recording characteristics and analytic approaches. More investigation

on the relationship between over/underconnectivity and EEG/MEG frequencies is neverthe-

less needed to corroborate these conclusions. This study might further benefit from looking at

potential modulation across regions of high-frequency activity by the phase of slower rhythms

(i.e., between-region phase-amplitude coupling) [162], how these different frequencies relate
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to feed-forward and feed-back processes at play in information integration, and how these dif-

ferent observations may or may not be integrated in a theory-driven accounts, such as the pre-

dictive-coding framework [163–172].

Heterogeneity in ASD

Despite these general patterns related to categorical diagnosis of ASD, several findings high-

light the importance of considering variability in the ASD phenotype related to connectivity.

For example, individuals with an Asperger’s diagnosis can be differentiated from those with

other ASDs relatively accurately (92.3% in [98]) based on their patterns of connectivity.

Although the authors did not provide detailed information on how groups compared with

respect to ADOS scores, they used a large sample of ASD children (N = 430), which is likely to

overlap with the Asperger’s sample (N = 26) regarding the severity of the condition. Similarly,

ASD with Fragile X Syndrome or with a de novo chromosomal mutation causing agenesis of

corpus callosum is another example of a subgroup of individuals with ASD that might be

clearly defined from a clinical point of view. These persons reported a normal level of attention

to details, with the preserved ability to appreciate the whole rather than a preoccupation with

patterns or parts [132]. Thus, connectivity features shown to correlate with greater attention to

details in ASD (e.g., eye-open resting-state alpha power and coherence in posterior regions

[110]) are probably under-represented in this subgroup. Thus, it might become increasingly

important to subgroup or control for the different conditions that are grouped under the ASD

umbrella to better understand the impact of this heterogeneity on observed connectivity pat-

terns and, hopefully, to reconcile some contradictions in the literature.

Further, abnormalities in EEG/MEG functional connectivity increase with increasing

symptoms severity in autism. Measures of connectivity abnormalities reported in surveyed

papers has been correlated with the presence of autistic traits in the NT population [89] and

with the severity of autism symptoms in ASD samples: ADOS scores were shown to correlate

with connectivity strength in gamma and beta bands [130], with theta-band coherence in left-

anterior and right-posterior regions [129], with phase-amplitude coupling in the fusiform face

area (for face-processing task) [125], and local functional connectivity based on phase-locking

[126]; SRS scores correlated with regional average complexity and connectivity node strength

[87]; visual reasoning and reading abilities correlated with lateralization of coherence in the

parieto-temporal regions in gamma band; imagination measure on the parent-report adult

AQ correlated with global connectivity in the right superior temporal gyrus [132].

Limitations

The conclusions derived from our systematic review are limited by a few potential methodo-

logical confounders. These are discussed hereafter.

Interpretation of EEG/MEG functional connectivity. The hypothesis underlying every

approach used to measure functional connectivity in EEG/MEG is that the estimated connec-

tivity (i.e., the similarity between two or more time series, computed through correlation,

coherence, or similar measures) is proportional to physiological connectivity between the

brain areas generating these time series. There are nevertheless pitfalls in interpretation of con-

nectivity measures due to our limited understanding of their underlying physiology, e.g., hid-

den sources, differential sensor sensitivity for different kind of synaptic activity, etc.

Statistical power. The low statistical power in the reviewed studies may be misleading.

With a sample size typical of these studies (we take N = 15 per group for this example), the

power of a two-tail two-sample t-test with a significance level at 0.05 is only 0.26 for a size-

effect considered as medium (Cohen’s d at 0.5). That is, three studies out of four will report
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negative results for medium-sized differences in brain connectivity. Controlling for multiple

comparisons further reduces the power of these tests such that only very strong effects may be

reliably detected in most studies. When applied to the Fig 2, this implies that potential

counter-evidence regarding underconnectivity can only be provided by studies reporting over-

connectivity (and vice-versa) for comparable frequency bands, and, importantly, not by stud-

ies reporting inconclusive results.

Publication bias: As mentioned previously, the context of individual studies may impact

on obtained results. When results are grouped, these contexts are partly lost and this can pro-

duce a bias in the overall conclusions. That is, studies looking for specific information (e.g.,

gamma activity over long-distance connections) may report specific findings (e.g., under-con-

nectivity) which would not be the main outcome if they had investigated a broader context

(e.g., connectivity of gamma activity in general). This creates a potential publication bias

where topic of high interest is generally more scrutinized, resulting in the publication of more

positive findings.

Head and brain size. The significant bias in head and brain size between ASD and NT

participants may result in biases impacting the distance between EEG sensors and the proper-

ties of electrical signal propagation from the cortex to the scalp. Differences in brain size (not

head size) may also have some effect on the signal-to-noise ratio in MEG since the cortical

surface is in average closer to the sensors for larger brains. This effect is expected to be more

important in children since brain size differences between ASD and NT are larger at this age.

Entering these factors as co-variates in statistical analyses is advisable to control their impact

on group comparisons of brain connectivity. Although brain size might not be readily accessi-

ble in studies not including MRI scans, standard metrics for the head size are easily measured

(e.g., standard head measuring procedures are defined in any 10/20 EEG electrode placement

manual).

Volume conduction and assessment of short-range connectivity in EEG/MEG. We

noted that, compared to long-range functional connectivity, studies of local connectivity are

more scarce. This pattern might be related to intrinsic limitations of EEG and MEG recording

modalities for evaluating short-range connectivity, particularly in coherence analyses performed

at sensor level. To record an EEG/MEG potential, a large pool (around 50,000) of synchronously

activated cells with parallel apical dendrites (i.e., pyramidal cells) spanning a cortical patch of

40–200 mm2 is required [173]. This has two implications. First, it means that simple power anal-

ysis could be used to assess local connectivity–with higher EEG/MEG power indicating larger

local connectivity–if between-subject comparisons were not biased by various factors such as the

conductivities of the skull and other tissues that can cause a general offset of power measure-

ments. Although EEG/MEG power studies were out of the scope of the current review, it is rele-

vant to note that a recent review of this literature has shown no consistent pattern of altered

EEG/MEG power in ASD. It suggest that the literature is more supportive of an increased vari-

ability of EEG/MEG responses in ASD [174] (see, however, [175] for a recent study that chal-

lenges this theory).

Second, the localization on the scalp of such cortical sources is intrinsically limited by the

spatial extent of the cell assembly necessary to generate a recordable potential. More impor-

tantly, this theoretical spatial resolution is affected by a smearing of the electrical activity as it

travels from the cortical (or sub-cortical) sources to the sensors. For EEG, potentials are reach-

ing sensors through omnidirectional volume conduction. For that reason, they spread over

larger territories than the initial source area and create severe biases when estimating coher-

ence between close sensors (< 10 cm) [176]. This phenomenon can induce false between-

group differences if autism is correlated with differences in global electromagnetic properties

of the head tissues, such as impedances of the different layer of tissues (scalp, skull, dura mater,
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etc.). Observed differences in extra-axial fluid in infants who develop ASD [177] is one such

factor that may be confounding coherence results. The effect of field spread due to volume

conduction is less severe in MEG, but is still present. At sensor-level, different approaches

(e.g., phase lag index, imaginary part of coherency) have been devised to remove zero-lag

activity between different sensors on account that such an activity can be associated with vol-

ume conduction. Such approaches, however, discard any potential physiological connectivity

with zero-lag that can emerge in systems with feedback-loops such as neural networks [178].

Further, a zero-lag synchronization can be expected in neural oscillators generating large-scale

EEG/MEG oscillations [179]. Such zero-lag functional connectivity can be observed experi-

mentally for example in area 17 of the cat visual cortex where initial zero-lag interhemispheric

synchronization of neuronal activity can be disrupted by sectioning the corpus callosum [180].

Further, the long-standing hypothesis that volume conduction propagates instantaneously for

the frequency range of interest in EEG analysis–an hypothesis depending on the validity of the

quasistatic approximation of the Maxwell equations for volume conduction–is challenged by

recent experimental work showing propagation delays of volume conducted EEG waves [181].

One way to partly mitigate the problem of volume conduction would be to compute con-

nectivity on EEG sources estimated using more accurate electromagnetic model of the propa-

gation of electrical activity. Although the effect of field spread cannot be completely resolved

by the current level of sophistication of source-reconstruction algorithms, such an approach

should definitely be used to supplement sensor-level analyses as it reduces the impact of vol-

ume conduction and helps better link electrical activity with brain regions [182]. Further,

using cortical sources would allow to compute the distance of connections along the cortical

sheet, which would provide a much better estimated of distances for correlational analyses

than the bird fly distance between sensors (i.e., two sensors above two nearby gyri may be

close-by but connections must be significantly longer to follow the cortical sheet forming a sul-

cus between these two gyri).

Discriminant validity. Our review is limited to EEG/MEG functional connectivity in

ASD, but future work should also help clarify cross-cutting issue common to multiple neuro-

developmental conditions. It remains to be established if the pattern of connectivity we

observed in ASD is specific to the condition or alternatively reflects a more general pattern of

changes common to a broad group of neurodevelopmental disorders [183].

Conclusion and future directions

This review illustrates the large heterogeneity of both the methods and the results of studies

investigating brain electrophysiological connectivity in ASD. Some of this variability might be

reduced by further improving the methods adopted (e.g. using source reconstruction, better

controlling for ASD phenotypes).

Research on electrophysiological functional connectivity in autism has been pioneered by

EEG coherence analyses performed on small sensor grids, which provided crude connectivity

assessment between very large brain regions (e.g., lobes). Currently, high-density grids are

available in EEG and are included by default in every MEG system. Furthermore, algorithms

for the estimation of cortical (and even sub-cortical [184]) sources from recorded activity have

been developed and are now routinely used in a large body of studies presenting both time-

and spatially-resolved brain activations and connectivity. Only one EEG study has benefited

from this potential, whereas half of MEG studies did. Results from this latter subset of

researches are generally more convincing, not only because source reconstruction helps in

mitigating confounders such as volume conduction [182], but also because they associate

observed activity with specific brain structures. Because they are non-invasive, cheap, and can
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be made widely available for clinical applications, small-grid sensor-level analyses have some

potential for the development of biomarkers for diagnostic purposes and potentially to close a

biofeedback loop in experimental therapeutic approaches. However, high-density grids com-

bined with sensor-level and source-level analyses provide a much more fertile ground for

building and testing hypotheses and theories on functional connectivity in autism.

Studies examining individual variability within ASD and across neurodevelopmental con-

ditions remain very sparse and future studies need to pay more attention to mapping connec-

tivity onto phenotypic differences. The use of functional connectivity features for diagnostic

application is also relevant since high accuracy (85–95%) has been reported by many indepen-

dent research teams [88,97,102,125,126,135]. However, how such biomarkers would perform

in infants for an early diagnosis is still an open question and fraught with several pragmatic

and ethical complications [185].

A clearer theoretical foundation is necessary to efficiently establishes the role of connectiv-

ity length with respect to over/under-connectivity using EEG/MEG functional connectivity.

Strong theoretical grounding can help address outstanding questions in Table 1.

Further work is also needed to better understand the complex interactions between fre-

quency bands, brain regions, physiology of EEG/MEG oscillators (e.g., roles of specific cell

types, neurotransmitters, ion channels; see [186]), and how they relate to different cognitive

processes. Specific task-/event-related protocol will need to be devised to disentangle these dif-

ferent dimensions in a principled way. This knowledge is instrumental in designing future

studies that could link together ASD symptoms, brain processes, and connectivity

abnormalities.

Finally, given the nonlinear evolution of brain properties (e.g., size, white matter integrity,

connectivity, etc.), the developmental evolution of these properties strikes us as a very impor-

tant area of investigation since these changes are generating confusion in interpretation of the

current literature. Aside from helping to reconcile apparent contradictions in the literature, a

better understanding of how developmental factors induce ASD-related brain changes early in

development would provide invaluable insights on the pathogenesis of ASD. Performing such

analyses in a multi-modal framework may also further our understanding of the dynamics of

ASD-related abnormalities in brain connectivity and help resolve some of the apparent contra-

dictions arising when comparing results across modalities.

Table 1. Research questions needing clear answers to provide a solid foundation for linking connec-

tion length versus EEG/MEG functional connectivity in autism.

1. How could short and long-range connectivity be clearly defined based on unambiguous biological

substrates, e.g., using anatomical concepts which can be directly measured/imaged such as cortical

columns, gyri, cerebral lobes, etc.?

2. Are short and long-range connectivity distinct concepts (i.e., physiologically different) or is connectivity

better captured as a dimension? Accordingly, should long versus short-range connectivity be assessed as a

categorical problem (e.g., using ANOVA) or as a continuous one (e.g., using correlational analysis)?

3. What are the most appropriate methods to measure short and long-range connections in EEG/MEG?

What confounds need to be more systematically controlled for (e.g., head circumference, brain volume)?

4. Should EEG/MEG power (a point measurement) or a connectivity metric (i.e., a two-point measurement)

be used for the assessment of local activity?

5. Considering that volume conduction might have a non-zero-lag component and genuine connectivity is

likely to have a zero-lag component, how should volume conduction be controlled for when measuring local

connectivity?

6. How are frequency bands associated with EEG/MEG functional connection length and over/under-

connectivity in autism given the current knowledge about the role of these different frequency bands in top-

down/bottom-up integration/segregation and given the pathophysiology models accounting for autism

symptomatology?

https://doi.org/10.1371/journal.pone.0175870.t001
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