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Abstract A novel trust region method for solving linearly constrained nonlinear programs is pre-
sented. The proposed technique is amenable to a distributed implementation, as its salient ingre-
dient is an alternating projected gradient sweep in place of the Cauchy point computation. It is
proven that the algorithm yields a sequence that globally converges to a critical point. As a result
of some changes to the standard trust region method, namely a proximal regularisation of the trust
region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small
ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The
proposed method is successfully applied to compute local solutions to alternating current optimal
power flow problems in transmission and distribution networks. Moreover, the new mechanism for
computing a Cauchy point compares favourably against the standard projected search as for its
activity detection properties.
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1 Introduction

Minimising a separable smooth nonconvex function subject to partially separable coupling equality
constraints and separable constraints, appears in many engineering problems such as Distributed
Nonlinear Model Predictive Control (DNMPC) (Necoara, I. and Savorgnan, C. and Tran Dinh,
Q. and Suykens, J. and Diehl, M., 2009), power systems (Kim, B.H. and Baldick, R., 1997) and
wireless networking (Chiang et al, 2007). For such problems involving a large number of agents,
which result in large-scale nonconvex Nonlinear Programs (NLP), it may be desirable to perform
computations in a distributed manner, meaning that all operations are not carried out on one single
node, but on multiple nodes spread over a network and that information is exchanged during the
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optimisation process. Such a strategy may prove useful to reduce the computational burden in the
case of extremely large-scale problems. Moreover, autonomy of the agents may be hampered by a
purely centralised algorithm. Case in points are cooperative tracking using DNMPC (Hours, J.-H.
and Jones, C.N., 2016) or the Optimal Power Flow problem (OPF) over a distribution network
(Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014), into which generating entities may be
plugged or unplugged. Moreover, it has been shown in a number of studies that distributing and
parallelising computations can lead to significant speed-up in solving large-scale NLPs (Zavala,
V.M. and Laird, C.D. and Biegler, L.T., 2008). Splitting operations can be done on distributed
memory parallel environments such as clusters (Zavala, V.M. and Laird, C.D. and Biegler, L.T.,
2008), or on parallel computing architectures such as Graphical Processing Units (GPU) (Fei, Y.
and Guodong, R. and Wang, B. and Wang, W., 2014).

Our objective is to develop nonlinear programming methods in which most of the computations
can be distributed or parallelised. Some of the key features of a distributed optimisation strategy
are the following:

(i) Shared memory. Vectors and matrices involved in the optimisation process are stored on different
nodes. This requirement rules out direct linear algebra methods, which require the assembly of
matrices on a central unit.

(ii) Concurrency. A high level of parallelism is obtained at every iteration.
(iii) Cheap exchange. Global communications of agents with a central node are cheap (scalars). More

costly communications (vectors) remain local between neighbouring agents. In general, the
amount of communication should be kept as low as possible. It is already clear that globalisation
strategies based on line-search do not fit with the distributed framework (Fei, Y. and Guodong,
R. and Wang, B. and Wang, W., 2014), as these entail evaluating a ‘central’ merit function
multiple times per iteration, thus significantly increasing communications.

(iv) Inexactness. Convergence is ‘robust’ to inexact solutions of the subproblems, since it may be
necessary to truncate the number of sub-iterations due to communication costs.

(v) Fast convergence. The sequence of iterates converges at a fast (at least linear) local rate. Slow
convergence generally results in a prohibitively high number of communications.

As we are interested in applications such as DNMPC, which require solving distributed parametric
NLPs with a low latency (Hours, J.-H. and Jones, C.N., 2016), a desirable feature of our algorithm
should also be

(vi) Warm-start and activity detection. The algorithm detects the optimal active-set quickly and
enables warm-starting.

Whereas a fair number of well-established algorithms exist for solving distributed convex NLPs
(Bertsekas, D.P. and Tsitsiklis, J.N., 1997), there is, as yet, no consensus around a set of practical
methods applicable to distributed nonconvex programs. Some work (Zavala, V.M. and Laird, C.D.
and Biegler, L.T., 2008) exists on the parallelisation of linear algebra operations involved in solving
nonconvex NLPs with ipopt (Wächter, A. and Biegler, L.T., 2006), but the approach is limited
to very specific problem structures and the globalisation phase of ipopt (filter line-search) is not
suitable for fully distributed implementations (requirements (iii), (iv) and (vi) are not met). Among
existing strategies capable of addressing a broader class of distributed nonconvex programs, one
can make a clear distinction between Sequential Convex Programming (SCP) approaches and aug-
mented Lagrangian techniques.

An SCP method consists in iteratively solving distributed convex NLPs, which are local ap-
proximations of the original nonconvex NLP. To date, some of the most efficient algorithms for
solving distributed convex NLPs combine dual decomposition with smoothing techniques (Necoara,
I. and Savorgnan, C. and Tran Dinh, Q. and Suykens, J. and Diehl, M., 2009; Tran-Dinh, Q. and
Savorgnan, C. and Diehl, M., 2013). On the contrary, an augmented Lagrangian method aims at de-
composing a nonconvex auxiliary problem inside an augmented Lagrangian loop (Cohen, G., 1980;
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Hamdi, A. and Mishra, S.K., 2011; Hours, J.-H. and Jones, C.N., 2014). While convergence guar-
antees can be derived in both frameworks, computational drawbacks also exist on both sides. For
instance, it is not clear how to preserve the convergence properties of SCP schemes when every sub-
problem is solved to a low level of accuracy. Hence, (iv) is not satisfied immediately. Nevertheless,
for some recent work in this direction, one may refer to (Tran Dinh, Q. and Necoara, I. and Diehl,
M., 2013). The convergence rate of the algorithm analysed in (Tran Dinh, Q. and Necoara, I. and
Diehl, M., 2013) is at best linear, thus not fulfilling (v). On the contrary, the inexactness issue can
be easily handled inside an augmented Lagrangian algorithm, as global and fast local convergence is
guaranteed even though the subproblems are not solved to a high level of accuracy (Fernández, D.
and Solodov, M.V., 2012; Conn, A. and Gould, N.I.M. and Toint, P.L., 1991). However, in practice,
poor initial estimates of the dual variables can drive the iterative process to infeasible points. More-
over, it is still not clear how the primal nonconvex subproblems should be decomposed and solved
efficiently in a distributed context. The quadratic penalty term of an augmented Lagrangian does
not allow for the same level of parallelism as a (convex) dual decomposition. Thus, requirement
(ii) is not completely satisfied. To address this issue, we have recently proposed applying Proximal
Alternating Linearised Minimisations (PALM) (Bolte, J. and Sabach, S. and Teboulle, M., 2014) to
solve the auxiliary augmented Lagrangian subproblems (Hours, J.-H. and Jones, C.N., 2014,6). The
resulting algorithm inherits the slow convergence properties of proximal gradient methods and does
not readily allow one to apply a preconditioner. In this paper, a novel mechanism for handling the
augmented Lagrangian subproblems in a more efficient manner is proposed and analysed. The
central idea is to use alternating gradient projections to compute a Cauchy point in a trust re-
gion Newton method (Conn, A.R. and Gould, N.I.M. and Toint, P.L., 2000).

When looking at practical trust region methods for solving bound-constrained problems (Zavala,
V.M. and Anitescu, M., 2014), one may notice that the safeguarded Conjugate Gradient (sCG)
algorithm is well-suited to distributed implementations, as the main computational tasks are struc-
tured matrix-vector and vector-vector multiplications, which do not require the assembly of a
matrix on a central node. Moreover, the global communications involved in an sCG algorithm are
cheap. Thus, sCG satisfies (i), (ii) and (iii). The implementation of CG on distributed architectures
has been extensively explored (Verschoor, M. and Jalba, A.C., 2012; D’Azevedo, E. and Eijkhout,
V. and Romine, C., 1993; Fei, Y. and Guodong, R. and Wang, B. and Wang, W., 2014). Further-
more, a trust region update requires only one centralized objective evaluation per iteration. From
a computational perspective, it is thus comparable to a dual update, which requires evaluating the
constraints functional and is ubiquitous in distributed optimisation algorithms. However, comput-
ing the Cauchy point in a trust region loop is generally done by means of a projected line-search
(Zavala, V.M. and Anitescu, M., 2014) or sequential search (Conn, A.R. and Gould, N.I.M and
Toint, P.L., 1988). Whereas it is broadly admitted that the Cauchy point computation is cheap, this
operation requires a significant amount of global communications in distributed memory parallel en-
vironments, and is thus hardly amenable to such applications (Fei, Y. and Guodong, R. and Wang,
B. and Wang, W., 2014). This hampers the implementability of trust region methods with good con-
vergence guarantees on distributed computing platforms, whereas many parts of the algorithm are
attractive for such implementations. The aim of this paper is to bridge the gap by proposing a novel
way of computing the Cauchy point that is more tailored to the distributed framework. Coordinate
gradient descent methods such as PALM, are known to be parallelisable for some partial separa-
bility structures (Bertsekas, D.P. and Tsitsiklis, J.N., 1997). Moreover, in practice, the number of
backtracking iterations necessary to select a block step-size, can be easily bounded, making the
approach suitable for ‘Same Instruction Multiple Data’ architectures. Therefore, we propose using
one sweep of block-coordinate gradient descent to compute a Cauchy point. As shown in paragraph
4.2 of Section 4, such a strategy turns out to be efficient at identifying the optimal active-set. It
can then be accelerated by means of an inexact Newton method. As our algorithm differs from the
usual trust region Newton method, we provide a detailed convergence analysis in Section 4. Finally,
one should mention a recent paper (Xue, D. and Sun, W. and Qi, L., 2014), in which a trust region
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method is combined with alternating minimisations, namely the Alternating Directions Method of
Multipliers (ADMM) (Bertsekas, D.P. and Tsitsiklis, J.N., 1997), but in a very different way from
the strategy described next. The contributions of the paper are the following:

– We propose a novel way of computing a Cauchy point in a trust region framework, which is
suitable for distributed implementations.

– We adapt the standard trust region algorithm to the proposed Cauchy point computation. Global
convergence along with an almost Q-superlinear local rate is proven under standard assump-
tions.

– The proposed trust region algorithm, entitled trap (Trust Region with Alternating Projec-
tions), is used as a primal solver in an augmented Lagrangian dual loop, resulting in an algo-
rithm that meets requirements (i)-(vi), and is applied to solve OPF programs in a distributed
fashion.

In Section 2, some basic notion in variational analysis is recalled. In Section 3, our trap algorithm
is presented. Its convergence properties are analysed in Section 4. Global convergence to a criti-
cal point is guaranteed, as well as almost Q-superlinear local convergence. Finally, the proposed
algorithm is tested on OPF problems over transmission and distribution networks in Section 5.

2 Background

Given a closed convex set Ω, the projection operator onto Ω is denoted by PΩ and the indicator
function of Ω is defined by

ιΩ (x) =

{

0 , if x ∈ Ω ,

+∞ , if x /∈ Ω .

We define the normal cone to Ω at x ∈ Ω as

NΩ (x) :=
{

v ∈ R
d : ∀y ∈ Ω, 〈v, y − x〉 ≤ 0

}

.

The tangent cone to Ω at x is defined as the closure of feasible directions at x (Rockafellar, R.T.
and Wets, R.J.-B., 2009). Both NΩ (x) and TΩ (x) are closed convex cones. As Ω is convex, for
all x ∈ Ω, NΩ (x) and TΩ (x) are polar to each other (Rockafellar, R.T. and Wets, R.J.-B., 2009).

Theorem 21 (Moreau’s decomposition (Moreau, 1962)). Let K be a closed convex cone in R
d

and K◦ its polar cone. For all x, y, z ∈ R
d, the following two statements are equivalent:

1. z = x+ y with x ∈ K, y ∈ K◦ and 〈x, y〉 = 0.
2. x = PK (z) and y = PK◦ (z).

The box-shaped set
{

x ∈ R
d : ∀i ∈ {1, . . . , d} , li ≤ xi ≤ ui

}

is denoted by B (l, u). For x ∈ R
d

and r > 0, the open ball of radius r centered around x is denoted by B (x, r). Given x ∈ Ω, the set
of active constraints at x is denoted by AΩ (x). Given a set S ⊆ R

d, its relative interior is defined
as the interior of S within its affine hull, and is denoted by ri (S).

A critical point x∗ of the function f + ιΩ with f differentiable, is said to be non-degenerate if

−∇f
(

x∗
)

∈ ri
(

NΩ

(

x∗
))

.

Given a differentiable function f of several variables x1, . . . , xN , its gradient with respect to vari-
able xi is denoted by ∇if . Given a matrix M ∈ R

m×n, its (i, j) element is denoted by Mi,j .
A sequence

{

xl
}

converges to x∗ at a Q-linear rate ̺ ∈ ]0, 1[ if, for l large enough,
∥

∥xl+1 − x∗
∥

∥

2

‖xl − x∗‖2
≤ ̺ .

The convergence rate is said to be Q-superlinear if the above ratio tends to zero as l goes to infinity.
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3 A Trust Region Algorithm with Distributed Activity Detection

3.1 Algorithm Formulation

The problem we consider is that of minimising a partially separable objective function subject to
separable convex constraints.

minimise
w

L (w1, . . . , wN ) (1)

s.t. wi ∈ Wi, ∀i ∈ {1, . . . , N} ,

where w := (w⊤

1 , . . . , w
⊤

N )⊤ ∈ R
n, with n =

∑N
i=1 ni, and W := W1×. . .×WN , where the sets Wi ⊂

R
ni are closed and convex. The following Assumption is standard in distributed computations

(Bertsekas, D.P. and Tsitsiklis, J.N., 1997).

Assumption 31 (Colouring scheme). The sub-variables w1, . . . , wN can be re-ordered and grouped
together in such a way that a Gauss-Seidel minimisation sweep on the function L can be performed in
parallel within K ≪ N groups, which are updated sequentially. In the sequel, the re-ordered variable
is denoted by x = (x⊤

1 , . . . , x
⊤

K)⊤. The set W is transformed accordingly into Ω = Ω1 × . . .×ΩK . It
is worth noting that each set Ωk with k ∈ {1, . . . ,K} can then be decomposed further into sets Wi

with i ∈ {1, . . . , N}.

As a consequence of Assumption 31, NLP (1) is equivalent to

minimise
x

L (x1, . . . , xK)

s.t. xk ∈ Ωk, ∀k ∈ {1, . . . ,K} .

Remark 31. Such a partially separable structure in the objective (Assumption 31) is encountered
very often in practice, for instance when relaxing network coupling constraints via an augmented
Lagrangian penalty. Thus, by relaxing the nonlinear coupling constraint C (w1, . . . , wN ) = 0 and
the local equality constraints gi (wi) = 0 of

minimise
w1,...,wN

N
∑

i=1

fi (wi)

s.t. C (w1, . . . , wN ) = 0

gi (wi) = 0

wi ∈ Wi

i ∈ {1, . . . , N} ,

in a differentiable penalty function, one obtains an NLP of the form (1). In NLPs resulting from
the direct transcription of optimal control problems, the objective is generally separable and the
constraints are stage-wise with a coupling between the variables at a given time instant with the
variables of the next time instant. In this particular case, the number of groups is K = 2. In Section
5, we illustrate this property by means of examples arising from various formulations of the Optimal
Power Flow (OPF) problem. The number of colours K represents the level of parallelism that can
be achieved in a Gauss-Seidel method for solving (1). Thus, in the case of a discretised OCP, an
alternating projected gradient sweep can be applied in two steps during which all updates are parallel.

For the sake of exposition, in order to make the distributed nature of our algorithm appar-
ent, we assume that every sub-variable wi, with i ∈ {1, . . . , N}, is associated with a computing
node. Two nodes are called neighbours if they are coupled in the objective L. Our goal is to find
a first-order critical point of NLP (1) via an iterative procedure for which we are given an initial
feasible point x0 ∈ Ω. The iterative method described next aims at computing every iterate in
a distributed fashion, which requires communications between neighbouring nodes and leads to a
significant level of concurrency.



6 Jean-Hubert Hours and Colin N. Jones

Assumption 32. The objective function L is bounded below on
{

x ∈ Ω : L(x) ≤ L(x0)
}

.

The algorithm formulation can be done for any convex set Ω, but some features are more
suitable for linear inequality constraints.

Assumption 33 (Polyhedral constraints). For all k ∈ {1, . . . ,K}, the set Ωk is a non-empty
polyhedron, such that

Ωk := {x ∈ R
nk : 〈ωk,i, x〉 ≤ hk,i, i ∈ {1, . . . ,mk}} ,

with ωk,i ∈ R
nk , hk,i ∈ R for all i ∈ {1, . . . ,mk} and nk,mk ≥ 1.

Assumption 34. The objective function L is continuously differentiable in an open set contain-
ing Ω. Its gradient ∇L is uniformly continuous.

It is well-known (Conn, A.R. and Gould, N.I.M. and Toint, P.L., 2000) that for problem (1), x∗

being a critical point is equivalent to

PΩ

(

x∗ −∇L
(

x∗
))

= x∗ . (2)

Algorithm 1 below is designed to compute a critical point x∗ of the function L + ιΩ . It is essen-
tially a two-phase approach, in which an active-set is first computed and then, a quadratic model
is minimised approximately on the current active face. Standard two-phase methods compute the
active-set by means of a centralised projected search, updating all variables centrally. More pre-
cisely, a model of the objective is minimised along the projected objective gradient, which yields
the Cauchy point. The model decrease provided by the Cauchy point is then enhanced in a refine-
ment stage. Similarly to a two-phase method, in order to globalise convergence, Algorithm 1 uses

Algorithm 1 Trust Region Algorithm with Alternating Projections (trap)

1: Parameters: Initial trust region radius ∆, update parameters σ1, σ2 and σ3 such that 0 < σ1 < σ2 < 1 < σ3,
test ratios η1 and η2 such that 0 < η1 < η2 < 1, coefficients γ1 ∈ ]0, 1[ and γ2 > 0, termination tolerance ǫ.

2: Input: Initial guess x, projection operators
{

PΩk

}K

k=1
, objective function L, objective gradient ∇L.

3: while ‖PΩ (x−∇L (x))− x‖2 > ǫ do
4: Distributed activity detection (alternating gradient projections):

5: for k = 1 . . . ,K do
6: zk ← PΩk

(

xk − αk∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

))

, ⊲ In parallel in group k
7: where αk is computed according to requirements (5), (6) and (7).
8: end for
9: Distributed refinement (Algorithm 2):

10: Find y ∈ Ω such that
11: m (x)−m (y) ≥ γ1 (m (x)−m (z))
12: ‖y − x‖∞ ≤ γ2∆
13: AΩk

(zk) ⊂ AΩk
(yk) for all k ∈ {1, . . . ,K}.

14: Trust-region update:

15: ρ← L(x)−L(y)/m(x)−m(y)

16: if ρ < η1 then ⊲ Not successful
17: (Do not update x)
18: Take ∆ within [σ1∆,σ2∆]
19: else if ρ ∈ [η1, η2] then ⊲ Successful
20: x← y
21: Take ∆ within [σ1∆,σ3∆]
22: Update objective gradient ∇L (x) and model hessian B (x).
23: else ⊲ Very successful
24: x← y
25: Take ∆ within [∆,σ3∆]
26: Update objective gradient ∇L (x) and model hessian B (x)
27: end if
28: end while
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the standard trust region mechanism. At every iteration, a model m of the objective function L is
constructed around the current iterate x as follows

m
(

x′
)

:= L (x) +
〈

∇L (x) , x′ − x
〉

+
1

2

〈

x′ − x,B (x)
(

x′ − x
)〉

, (3)

where x′ ∈ R
n and B (x) is a symmetric matrix.

Assumption 35 (Uniform bound on model hessian). There exists B̂ > 0 such that

‖B (x)‖2 ≤ B̂ ,

for all x ∈ Ω.

The following Assumption is necessary to ensure distributed computations in Algorithm 1. It is
specific to Algorithm 1 and does not appear in the standard trust region methods (Burke et al, 1990).

Assumption 36 (Structured model hessian). For all x ∈ Ω, for all i, j ∈ {1, . . . , n},

∇2Li,j (x) = 0 ⇔ Bi,j (x) = 0 .

Remark 32. It is worth noting that the partial separability structure of the objective function L
is transferred to the sparsity pattern of its hessian ∇2L, hence, by Assumption 36, to the sparsity
pattern of the model hessian B. Hence, a Gauss-Seidel sweep on the model function m can also be
carried out in K parallel steps.

The main characteristic of trap is the activity detection phase, which differs from the projected
search in standard trust region methods (Burke et al, 1990). At every iteration, trap updates the
current active-set by computing iterates z1, . . . , zK (Lines 4 to 8). This is the main novelty of trap,
compared to existing two-phase techniques, and allows for different step-sizes α1, . . . , αK per block
of variables, which is relevant in a distributed framework, as the current active-set can be split
among nodes and does not need to be computed centrally. In the trust region literature, the point

z :=
(

z⊤

1 , . . . , z
⊤

K

)

⊤

, (4)

is often referred to as the Cauchy point. We keep this terminology in the remainder of the paper. It
is clear from its formulation that trap allows one to compute Cauchy points via independent pro-
jected searches on every node. Once the Cauchy points z1, . . . , zK have been computed, they are
used in the refinement step to compute a new iterate y that satisfies the requirements shown from
Lines 9 to 13. The last step consists in checking if the model decrease m(y)−m(x) is close enough
to the variation in the objective L (Lines 16 to 27). In this case, the iterate is updated and the trust
region radius ∆ increased, otherwise the radius is shrunk and the iterate frozen. This operation
requires a global exchange of information between nodes.

In the remainder, the objective gradient ∇L (x) is denoted by g (x) and the objective hessian
∇2L (x) by H (x). The model function m is an approximation of the objective function L around
the current iterate x. The quality of the approximation is controlled by the trust region, defined as
the box

B (x−∆,x+∆) ,

where ∆ is the trust region radius.

In the rest of the paper, we denote the Cauchy points by zk or zk (αk) without distinction,
where αk are appropriately chosen step-sizes. More precisely, following Section 3 in (Burke et al,
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1990), in trap, the block-coordinate step-sizes αk are chosen so that for all k ∈ {1, . . . ,K},
the Cauchy points zk satisfy











m
(

z[[1,k−1]], zk, x[[k+1,K]]

)

≤ m
(

z[[1,k−1]], xk, x[[k+1,K]]

)

+ ν0
〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk − xk
〉

‖zk − xk‖∞ ≤ ν2∆

, (5)

with ν0 ∈ ]0, 1[ and ν2 > 0, where z[[1,k−1]] stands for
(

z⊤

1 , . . . , z
⊤

k−1

)

⊤

, along with the condition
that there exists positive scalars ν1 < ν2, ν3, ν4 and ν5 for all k ∈ {1, . . . ,K},

αk ∈ [ν4, ν5] or αk ∈ [ν3ᾱk, ν5] (6)

where the step-sizes ᾱk are such that one of the following conditions hold for every k ∈ {1, . . . ,K},

m
(

z[[1,k−1]], zk (ᾱk) , x[[k+1,K]]

)

> m
(

z[[1,k−1]], xk, x[[k+1,K]]

)

(7)

+ ν0
〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk (ᾱk)− xk
〉

,

or

‖zk (ᾱk)− xk‖∞ ≥ ν1∆ , (8)

Conditions (5) ensure that the step-sizes αk are small enough to enforce a sufficient decrease
coordinate-wise, as well as containment within a scaled trust region. Conditions (6), (7) and (8)
guarantee that the step-sizes αk do not become arbitrarily small. All conditions (5), (6) and (7)
can be tested in parallel in each of the K groups of variables. In the next two paragraphs 3.2 and
3.3 of this section, the choice of step-sizes αk ensuring the sufficient decrease is clarified, as well
as the distributed refinement step. In the next Section 4, the convergence properties of trap are
analysed. Numerical examples are presented in Section 5.

3.2 Step-sizes Computation in the Activity Detection Phase

At a given iteration of trap, the step-sizes αk are computed by backtracking to ensure a sufficient
decrease at every block of variables and coordinate-wise containment in a scaled trust region as
formalised by (5). It is worth noting that the coordinate-wise backtracking search can be run in
parallel among the variables of group k, as they are decoupled from each other. As a result, there
is one step-size per sub-variable wi in group k. Yet, for simplicity, we write it as a single step-
size αk. The reasoning of Section 4 can be adapted accordingly. The following Lemma shows that
a coordinate-wise step-size αk can be computed that ensures conditions (5), (6), (7) and (8) on
every block of coordinates k ∈ {1, . . . ,K}.

Lemma 31. Assume that Assumption 35 holds. For all k ∈ {1, . . . ,K}, an iterate zk satisfying
conditions (5), (6), (7) and (8) can be found after a finite number of backtracking iterations.

Proof. Let k ∈ {1, . . . ,K}. We first show that for a sufficiently small αk, conditions (5) are satis-
fied. By definition of the Cauchy point zk,

zk = argmin
z∈Ωk

〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, z − xk
〉

+
1

2αk

‖z − xk‖
2
2 ,

which implies that

〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk − xk
〉

+
1

2αk

‖zk − xk‖
2
2 ≤ 0 ,
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Hence, as ν0 ∈ ]0, 1[, it follows that

〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk − xk
〉

+
1− ν0
2αk

‖zk − xk‖
2
2 ≤

ν0
〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk − xk
〉

.

However, from the descent Lemma, which can be applied since the model gradient is Lipschitz
continuous by Assumption 35,

m
(

z[[1,k−1]], zk, x[[k+1,K]]

)

≤ m
(

z[[1,k−1]], xk, x[[k+1,K]]

)

+
〈

∇km
(

z[[1,k−1]], xk, x[[k+1,K]]

)

, zk − xk
〉

+
B̂

2
‖zk − xk‖

2
2 .

By choosing

αk ≤
1− ν0

B̂
,

condition (5) is satisfied after a finite number of backtracking iterations. Denoting by qk the smallest
integer such that requirement (5) is met, αk can be written

αk = cqk · α(0) ,

where c ∈ ]0, 1[ and α(0) > 0. Then, condition (6) is satisfied with ν4 = α(0) and ν3 = c.

Lemma 31 is very close to Theorem 4.2 in (Moré, J.J., 1988), but the argument regarding the
existence of the step-sizes αk is different.

3.3 Distributed Computations in the Refinement Step

In Algorithm 1, the objective gradient g (x) and model hessian B (x) are updated after every success-
ful iteration. This task requires exchanges of variables between neighbouring nodes, as the objective
is partially separable (Ass. 31). Node i only needs to store the sub-part of the objective function L
that combines its variable wi and the variables associated to its neighbours. However, the refinement
step (line 9 to 13 in Algorithm 1), in which one obtains a fraction of the model decrease yielded by
the Cauchy points z1, . . . , zK , should also be computed in a distributed manner. As detailed next,
this phase consists in solving the Newton problem on the subspace of free variables at the current
iteration, which is defined as the set of free variables at the Cauchy points z1, . . . , zK . In order to
achieve a reasonable level of efficiency in the trust region procedure, this step is generally performed
via the Steihaug-Toint CG, or sCG (Steihaug, T., 1983). The sCG algorithm is a CG procedure that
is cut if a negative curvature direction is encountered or a problem bound is hit in the process. An-
other way of improving on the Cauchy point to obtain fast local convergence is the Dogleg strategy
(Nocedal, J. and Wright, S., 2006). However, this technique requires the model hessian B to be
positive definite (Nocedal, J. and Wright, S., 2006). This condition does not fit well with distributed
computations, as positive definiteness is typically enforced by means of BFGS updates, which are
know for not preserving the sparsity structure of the objective without non-trivial modifications
and assumptions (Yamashita, N., 2008). Compared to direct methods, iterative methods such as
the sCG procedure have clear advantages in a distributed framework, for they do not require assem-
bling the hessian matrix on a central node. Furthermore, their convergence speed can be enhanced
via block-diagonal preconditioning, which is suitable for distributed computations. In the sequel, we
briefly show how a significant level of distributed operations can be obtained in the sCG procedure,
mainly due to the sparsity structure of the model hessian that matches the partial separability
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structure of the objective function. More details on distributed implementations of the CG algo-
rithm can be found in numerous research papers (Verschoor, M. and Jalba, A.C., 2012; D’Azevedo,
E. and Eijkhout, V. and Romine, C., 1993; Fei, Y. and Guodong, R. and Wang, B. and Wang, W.,
2014). The sCG algorithm that is described next is a rearrangement of the standard sCG procedure
following the idea of (D’Azevedo, E. and Eijkhout, V. and Romine, C., 1993). The two separate inner
products that usually appear in the CG are grouped together at the same stage of the Algorithm.

An important feature of the refinement step is the increase of the active set at every itera-
tion. More precisely, in order to ensure finite detection of activity, the set of active constraints at
the points y1, . . . , yK , obtained in the refinement phase, needs to contain the set of active con-
straints at the Cauchy points z1, . . . , zK , as formalised at line 13 of Algorithm 1. This requirement
is very easy to fulfil when Ω is a bound constraint set, as it just requires enforcing the constraint

yk,i = zk,i, i ∈
{

j ∈ {1, . . . , nk} : zk,j = xk,j or x̄k,j
}

for all groups k ∈ {1, . . . ,K} in the trust region problem at the refinement step.
For the convergence analysis that follows in Section 4, the refinement step needs to be modified

compared to existing trust region techniques. Instead of solving the standard refinement problem

minimise
p

〈g (x) , p〉+
1

2
〈p,B (x) p〉

s.t. ‖p‖∞ ≤ γ2∆

x+ p ∈ Ω

AΩ (z) ⊆ AΩ (x+ p) ,

in which the variables corresponding to indices of active constraints at the Cauchy point z are fixed
to zero, we solve a regularised version

minimise
y∈Ω

〈g (x) , y − x〉+
1

2
〈y − x,B (x) (y − x)〉+

σ

2
‖y − z‖22 (9)

s.t. ‖y − x‖∞ ≤ γ2∆

AΩ (z) ⊆ AΩ (y) ,

where σ ∈ ]σ, σ̄[ with σ > 0, and z is the Cauchy point yielded by the procedure described in the
previous paragraph 3.2. The regularisation coefficient σ should not be chosen arbitrarily, as it may
inhibit the fast local convergence properties of the Newton method. This point is made explicit in
paragraph 4.3 of Section 4. The regularised trust region subproblem (9) can be equivalently written

minimise
p

〈gσ (x) , p〉+
1

2
〈p,Bσ (x) p〉 (10)

s.t. x+ p ∈ Ω

‖p‖∞ ≤ γ2∆

AΩ (z) ⊆ AΩ (x+ p) ,

with

gσ (x) := g (x)− σ(z − x), Bσ (x) := B (x) +
σ

2
I . (11)

As in standard trust region methods, we solve the refinement subproblem (10) by means of CG
iterations, which can be distributed as a result of Assumption 36. In order to describe this stage in
Algorithm 2, one needs to assume that Ω is a box constraint set. In the remainder, we denote by
Z the matrix whose columns are an orthonormal basis of the subspace

V (z) := {x ∈ R
n : 〈ωk,i, xk〉 = 0, i ∈ AΩk

(zk) , k ∈ {1, . . . ,K}} .
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Algorithm 2 Distributed Safeguarded Conjugate Gradient (sCG)

1: Input: reduced model hessian B̂σ := Z⊤BσZ, reduced gradient ĝ := Z⊤g, initial guess ẑ := Z⊤z
2: Parameters: stopping tolerance ǫ̂ := ξ ‖ĝ‖2 with ξ ∈ ]0, 1[

3: Initialise x̂, p̂, v̂, r̂, t̂ and ûprev via a standard sCG iteration using z, x, Z, Bσ , B̂σ and ĝ
4: while û > ǫ̂2 and t̂ > 0 do
5: Compute structured matrix-vector product ŝ← B̂σ r̂ ⊲ Local communications
6: for k = 1 . . .K do ⊲ In parallel among K groups
7: Compute 〈r̂k, r̂k〉 and 〈r̂k, ŝk〉
8: end for
9: û←

∑K
i=k 〈r̂k, r̂k〉, δ̂ ←

∑K
k=1 〈r̂k, ŝk〉 ⊲ Global summations

10: Compute step-sizes β̂ ← û/ûprev and t̂← δ̂ − β̂2 t̂
11: for k = 1 . . .K do ⊲ In parallel among K groups
12: Update conjugate direction p̂k ← r̂k + β̂p̂k and v̂k ← ŝk + β̂v̂k
13: Compute smallest step-size ak such that x̂k + akp̂k hits a bound xk, x̄k or the trust region boundary
14: end for
15: if t̂ ≤ 0 then ⊲ Negative curvature check
16: Compute step-size â← min {a1, . . . , aK} to hit boundary of B (x−∆,x+∆) ∩Ω
17: else
18: Compute standard CG step-size â← û/t̂
19: end if
20: for k = 1 . . .K do ⊲ In parallel among K groups
21: Update iterate x̂k ← x̂k + âp̂k and residual r̂k ← r̂k − âv̂k
22: end for
23: ûprev ← û
24: end while
25: Output: y ← z + Z(x̂− ẑ)

Remark 33. It is worth noting that the requirement m(x)−m(y) ≥ γ1 (m(x)−m(z)), with γ1 < 1,
is satisfied after any iteration of Algorithm 2, as the initial guess is the Cauchy point z and the sCG
iterations ensure monotonic decrease of the regularised model (Theorem 2.1 in (Steihaug, T., 1983)).

Remark 34. It is worth noting that the sparsity pattern of the reduced model hessian B̂σ has
the same structure as the sparsity pattern of the model hessian B, as the selection matrix Z has
a block-diagonal structure. Moreover, the partial separability structure of the objective matches the
sparsity patterns of both the hessian and the reduced hessian. For notational convenience, Algorithm
2 is written in terms of variables x1, . . . , xK , but it is effectively implementable in terms of vari-
ables w1, . . . , wN . The inner products (Lines 6 to 8) and updates (Lines 11 to 14, lines 20 to 22)
can be computed in parallel at every node, as well as the structured matrix-vector product (Line 5).

In Algorithm 2, the reduced model hessian B̂ can be evaluated when computing the product
at line 5, which requires local exchanges of vectors between neighbouring nodes, since the sparsity
pattern of B̂ represents the coupling structure in the objective L. From a distributed implementa-
tion perspective, the more costly parts of the refinement procedure 2 are at line 9 and line 16. These
operations consist in summing up the inner products from all nodes and a minimum search over
the step-sizes that ensure constraint satisfaction and containment in the trust region. They need
to be performed on a central node that has access to all data from other nodes, or via a consen-
sus algorithm. Therefore, lines 9 and 16 come with a communication cost, although the amount
of transmitted data is very small (one scalar per node). In the end, one should notice that the
information that is required to be known globally by all nodes {1, . . . , N} is fairly limited at ev-
ery iteration of trap. It only consists of the trust region radius ∆ and the step-sizes â and β̂ in
the refinement step 2. Finally, at every iteration, all nodes need to be informed of the success or
failure of the iteration so as to update or freeze their local variables. This is the result of the trust
region test, which needs to be carried out on a central node. In Figure 1, we give a sketch of the
workflow at a generic node j. One can notice that, in terms of local computations, trap behaves
as a standard two-phase approach on every node.
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β̂

â

zNj , xNj

Nj

r̂Nj

Nj

zj

Nj

Nj

r̂j

zj ← PΩj (xj − αj∇mj (xj))

ŝj ← Ej B̂σE
⊤

[[Nj ]]
r̂Nj

r̂⊤j r̂j r̂⊤j ŝj

p̂j ← r̂j + β̂p̂j

v̂j ← ŝj + β̂v̂j
aj

x̂j ← x̂j + âp̂j

r̂j ← r̂j − âv̂j

Fig. 1: Workflow at node j in terms of local computations, communications with the set of neigh-
bours Nj and a central node. Note that we use the index j for a node, and not k, which corresponds
to a group of nodes, in which computations are performed in parallel. Thus, the nodes in the set
Nj are not in the same group as node j. Thick arrows represent communications involving vectors,
whereas thin arrows stand for communications of scalars. Matrix Ej is defined at Eq. (15).

4 Convergence Analysis

The analysis of trap that follows is along the lines of the convergence proof of trust region methods
in (Burke et al, 1990), where the Cauchy point is computed via a projected search, which involves
a sequence of evaluations of the model function on a central node. However, for trap, the fact that
the Cauchy point is yielded by an distributed projected gradient step on the model function requires
some modifications in the analysis. Namely, the lower bound on the decrease in the model and the
upper bound on criticality at the Cauchy point are expressed in a rather different way. However, the
arguments behind the global convergence proof are essentially the same as in (Burke et al, 1990).

In this section, for theoretical purposes only, another first-order criticality measure different
from (2) is used. We utilise the condition that x∗ ∈ Ω is a first-order critical point if the projected
gradient at x∗ is zero,

∇ΩL
(

x∗
)

= 0 , (12)

where, given x ∈ Ω, the projected gradient is defined as

∇ΩL (x) := PTΩ(x) (−g (x)) .

Discussions on this first-order criticality measure can be found in (Conn, A.R. and Gould, N.I.M.
and Toint, P.L., 2000). It is equivalent to the standard optimality condition

〈

g
(

x∗
)

, x− x∗
〉

≥ 0, for all x ∈ Ω .

It follows from Moreau’s decomposition that a point x∗ satisfying (12) automatically satisfies
(2). Consequently, it is perfectly valid to use (2) for the convergence analysis of trap.
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4.1 Global Convergence to First-order Critical Points

We start with an estimate of the block-coordinate model decrease provided by the Cauchy points zk, k ∈
{1, . . . ,K}, of Algorithm 1. For this purpose, we define for all k ∈ {1, . . . ,K},

mk

(

x′
)

:= m
(

z[[1,k−1]], x
′, x[[k+1,K]]

)

, (13)

where x′ ∈ R
nk . This corresponds to the model function evaluated at x′ with the block-coordinates 1

to k − 1 being fixed to the associated Cauchy points z1, . . . , zk−1 and the block-coordinates k + 1
to K having values xk+1, . . . , xK . Note that by definition of the function mk,

mk (zk) = mk+1 (xk+1) ,

for all k ∈ {1, . . . ,K − 1}.

Lemma 41. There exists a constant χ > 0 such that, for all k ∈ {1, . . . ,K},

mk (xk)−mk (zk) ≥ χ
‖zk − xk‖2

αk

min

{

∆,
1

1 + ‖B(x)‖2

‖zk − xk‖2
αk

}

. (14)

Proof. The proof goes along the same lines as the one of Theorem 4.3 in (Moré, J.J., 1988). Yet,
some arguments differ, due to the alternating projections. We first assume that condition (5) is
satisfied with

αk ≥ ν4 .

Using the basic property of the projection onto a closed convex set, we obtain

mk (xk)−mk (zk) ≥ ν0ν4
‖zk − xk‖

2
2

α2
k

.

We then consider the second case when

αk ≥ ν3ᾱk .

The first possibility is then

mk (zk (ᾱk))−mk (xk) > ν0 〈∇mk (xk) , zk (ᾱk)− xk〉 .

However, by definition of the model function in Eq. (13), the left-hand side term in the above
inequality is equal to

〈gk (x) , z̄k − xk〉+
1

2

〈

z̄k − xk, EkB (x)E⊤

k (z̄k − xk)
〉

+
〈

z̄[[1,k−1]] − x[[1,k−1]], E[[1,k−1]]B (x)E⊤

k (z̄k − xk)
〉

=
1

2

〈

z̄k − xk, EkB (x)E⊤

k (z̄k − xk)
〉

+ 〈∇mk (xk) , z̄k − xk〉 ,

where, given k ∈ {1, . . . ,K}, the matrix Ek ∈ R
nk×n is such that for i ∈ {1, . . . , nk},

Ek(i, n1 + . . .+ nk−1 + i) = 1 , (15)

and all other entries are zero. This yields, by the Cauchy-Schwarz inequality

‖B (x)‖2
2

‖z̄k − xk‖
2
2 > − (1− ν0) 〈∇mk (xk) , z̄k − xk〉

≥
1− ν0
ᾱk

‖z̄k − xk‖
2
2
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Hence,

ᾱk ≥
2 (1− ν0)

1 + ‖B (x)‖2
.

The second possibility is

‖z̄k − xk‖∞ ≥ ν1∆ .

For this case, (Moré, J.J., 1988) provides the lower bound

‖zk − xk‖2 ≥ ν3ν1∆ .

Finally, inequality (14) holds with

χ := ν0 min {ν4, 2 (1− ν0) , ν3ν1} .

From Lemma 41, an estimate of the decrease in the model provided by the Cauchy point z is
derived.

Corollary 41 (Sufficient decrease). The following inequality holds

m (x)−m (z) ≥ χ

K
∑

k=1

‖zk − xk‖2
αk

min

{

∆,
1

1 + ‖B (x)‖2

‖zk − xk‖2
αk

}

. (16)

Proof. This is a direct consequence of Lemma 41 above, as

m (x)−m (z) =
K
∑

k=1

mk (xk)−mk (zk) .

from the definition of mk in Eq. (13).

In a similar manner to (Burke et al, 1990), the level of criticality reached by the Cauchy point z
is measured by the norm of the projected gradient of the objective, which can be upper bounded
by the difference between the current iterate x and the Cauchy point z.

Lemma 42 (Relative error condition). The following inequality holds

‖∇ΩL (z)‖2 ≤ K ‖B (x)‖2 ‖z − x‖2 +
K
∑

k=1

(

‖zk − xk‖2
αk

+ ‖gk (z)− gk (x)‖2

)

. (17)

Proof. From the definition of zk as the projection of

xk − αk∇mk (xk)

onto the closed convex set Ωk, there exists vk ∈ NΩk
(zk) such that

0 = vk +∇mk (xk) +
zk − xk
αk

.

Hence,

‖vk + gk (z)‖2 ≤ ‖gk (z)− gk (x)‖2 + ‖B (x)‖2 ‖z − x‖2 +
‖zk − xk‖2

αk
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However,
∥

∥

∥
PNΩk

(zk) (−gk (z)) + gk (z)
∥

∥

∥

2
≤ ‖vk + gk (z)‖2 ,

and by Moreau’s decomposition theorem,

−gk (z) = PNΩk
(zk) (−gk (z)) + PTΩk

(zk) (−gk (z)) .

Thus,

∥

∥

∥
PTΩk

(zk) (−gk (z))
∥

∥

∥

2
≤ ‖gk (z)− gk (x)‖2 + ‖B (x)‖2 ‖z − x‖2 +

‖zk − xk‖2
αk

.

As the sets {Ωk}
K
k=1 are closed and convex,

TΩ (z) = TΩ1
(z1)× . . .× TΩK

(zK) .

Subsequently,

‖∇ΩL (z)‖2 ≤
K
∑

k=1

∥

∥

∥
PTΩk

(zk) (−gk (z))
∥

∥

∥

2

and inequality (17) follows.

Based on the estimate of the model decrease (16) and the relative error bound (17) at the
Cauchy point z, one can follow the standard proof mechanism of trust region methods quite closely
(Burke et al, 1990). Most of the steps are proven by contradiction, assuming that criticality is not
reached. The nature of the model decrease (16) is well-suited to this type of reasoning. Hence, most
of the ideas of (Burke et al, 1990) can be adapted to our setting.

Lemma 43. If Assumptions 32, 34 and 35 are satisfied, then the sequence of iterates yielded by
Algorithm 1 satisfies that for all k ∈ {1, . . . ,K},

lim inf
‖zk − xk‖2

αk

= 0 , (18)

Proof. For the sake of contradiction, assume that there exists a block index k0 ∈ {1, . . . ,K} and ǫ >
0 such that

∥

∥zlk0
− xlk0

∥

∥

2

αl
k0

≥ ǫ

for all iteration indices l ≥ 1. Using Corollary 41, the standard proof mechanism of trust region
methods (Burke et al, 1990) can be easily adapted to obtain (18).

We are now ready to state the main Theorem of this section. It is claimed that all limit points
of the sequence

{

xl
}

generated by trap are critical points of (1).

Theorem 41 (Limit points are critical points). Assume that Assumptions 32, 34 and 35 hold. If x∗

is a limit point of
{

xl
}

, then there exists a subsequence {li} such that







lim
i→+∞

∥

∥

∥
∇ΩL

(

zli
)
∥

∥

∥

2
= 0

zli → x∗
. (19)

Moreover, ∇ΩL (x∗) = 0, meaning that x∗ is a critical point of L+ ιΩ.
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Proof. Let
{

xli
}

be a subsequence of
{

xl
}

such that xli → x∗. If for all k ∈ {1, . . . ,K}
∥

∥

∥
zlik − xlik

∥

∥

∥

2

αli
k

→ 0 , (20)

then the proof is complete, via Lemma 42 and the fact that the step-sizes αk are upper bounded
by ν5. In order to show (20), given ǫ > 0 one can assume that there exists k0 ∈ {1, . . . ,K} such

that for all i ≥ 1,
∥

∥

∥
z
li

k0
−x

li

k0

∥

∥

∥

2
/αli

k0
≥ ǫ. One can then easily combine the arguments in the proof of

Theorem 5.4 in (Burke et al, 1990) with Corollary 41 and Lemma 42 in order to obtain (19).

Theorem 41 above proves that all limit points of the sequence
{

xl
}

generated by trap are

critical points. It does not actually claim convergence of
{

xl
}

to a single critical point. However,
such a result can be obtained under standard regularity assumptions (Nocedal, J. and Wright, S.,
2006), which ensure that a critical point is an isolated local minimum.

Assumption 41 (Strong second-order optimality condition). The sequence
{

xl
}

yielded by trap

has a non-degenerate limit point x∗ such that for all v ∈ NΩ (x∗)⊥, where

NΩ

(

x∗
)⊥

:=
{

v ∈ R
n : ∀w ∈ NΩ

(

x∗
)

,
〈

w, v 〉= 0} , (21)

one has
〈

v,H
(

x∗
)

v
〉

≥ κ ‖v‖22 , (22)

where κ > 0.

Theorem 42 (Convergence to first-order critical points). If Assumptions 35, 32, 34 and 41 are
fulfilled, then the sequence

{

xl
}

generated by trap converges to a non-degenerate critical point x∗

of L+ ιΩ.

Proof. This is an immediate consequence of Corollary 6.7 in (Burke et al, 1990).

4.2 Active-set Identification

In most of the trust region algorithms for constrained optimisation, the Cauchy point acts as a
predictor of the set of active constraints at a critical point. Therefore, a desirable feature of the
novel Cauchy point computation in trap is finite detection of activity, meaning that the active set
at the limit point is identified after a finite number of iterations. In this paragraph, we show that
trap is equivalent to the standard projected search in terms of identifying the active set at the
critical point x∗ defined in Theorem 42.

Lemma 44. Given a face F of Ω, there exists faces F1, . . . ,FK of Ω1, . . . , ΩK respectively, such
that F = F1 × . . .×FK .

Remark 41. Given a point x ∈ Ω, there exists a face F of Ω such that x ∈ ri (F). The nor-
mal cone to Ω at x is the cone generated by the normal vectors to the active constraints at x. As
the set of active constraints is constant on the relative interior of a face, one can write without
distinction NΩ (x) or N (F).

The following Lemma is similar in nature to Lemma 7.1 in (Burke et al, 1990), yet with an
adaptation in order to account for the novel way of computing the Cauchy point. In particular, it
is only valid for a sufficiently high iteration count, contrary to Lemma 7.1 of (Burke et al, 1990),
which can be written independently of the iteration count. This is essentially due to the fact that
the Cauchy point is computed via an alternating projected search, contrary to (Burke et al, 1990),
where a centralised projected search is performed.
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Lemma 45. Assume that Assumptions 35, 32, 34 and 41 hold. Let x∗ be a non-degenerate critical
point of (1) that belongs to the relative interior of a face F∗ of Ω. Let {F∗

k}
K
k=1 be faces of {Ωk}

K
k=1

such that F∗ = F∗
1 × . . .×F∗

K and thus x∗k ∈ ri (F∗
k ), for all k ∈ {1, . . . ,K}.

Assume that xl → x∗. For l large enough, for all k ∈ {1, . . . ,K} and all αk > 0, there exists ǫk >
0 such that

xlk ∈ B
(

x∗k, ǫk
)

∩ ri
(

F∗
k

)

=⇒ PΩk

(

xlk − tk∇mk

(

xlk

))

∈ ri
(

F∗
k

)

,

for all tk ∈ ]0, αk].

Proof. Similarly to the proof of Lemma 7.1 in (Burke et al, 1990), the idea is to show that there
exists a neighbourhood of x∗k such that if xlk lies in this neighbourhood, then

xlk − αk∇mk

(

xlk

)

∈ ri
(

F∗
k +N

(

F∗
k

))

.

Lemma 45 then follows by using the properties of the projection operator onto a closed convex set
and Theorem 2.3 in (Burke et al, 1990).

For simplicity, we prove the above relation for k = 2. It can be trivially extended to all indices k
in {3, . . . ,K}. Let α2 > 0 and l ≥ 1.

xl2 − α2∇m2

(

xl2

)

= xl2 − α2g2
(

xl
)

− α2E2B
(

xl
)

E⊤

1

(

zl1 − xl1

)

,

where the matrix Ek is defined in (15). As x∗ is non-degenerate,

x∗ − α2g
(

x∗
)

∈ ri
(

F∗)+ ri
(

N
(

F∗)) .

However, as the sets {F∗
k}

K
k=1 are convex, one has (Rockafellar, R.T. and Wets, R.J.-B., 2009)

ri
(

F∗) = ri
(

F∗
1

)

× . . . ri
(

F∗
K

)

and N
(

F∗) = N
(

F∗
1

)

× . . .×N
(

F∗
K

)

.

Hence,

x∗2 − α2g2
(

x∗
)

∈ ri
(

F∗
2

)

+ ri
(

N
(

F∗
2

))

= int
(

F∗
2 +N

(

F∗
2

))

,

by Theorem 2.3 in (Burke et al, 1990). By continuity of the objective gradient g, there exists δ2 > 0
such that

∥

∥

∥
xl − x∗

∥

∥

∥

2
< δ2 =⇒ xl2 − α2g2

(

xl
)

∈ int
(

F∗
2 +N

(

F∗
2

))

.

However, as shown beforehand (Lemma 43),

lim
l→+∞

∥

∥

∥
zl1 − xl1

∥

∥

∥

2
= 0 .

Moreover, E2B
(

xl
)

E⊤

1 is bounded above (Ass. 35), subsequently for l large enough,

xl2 − α2∇m2

(

xl2

)

∈ int
(

F∗
2 +N

(

F∗
2

))

⊆ ri
(

F∗
2 +N

(

F∗
2

))

,

by Theorem 2.3 in (Burke et al, 1990). Then, Lemma 45 follows by properly choosing the radii ǫk

so that
∑K

k=1 ǫ
2
k =

(

min {δk}
K
k=1

)2
.

We have just shown that, for a large enough iteration count l, if the primal iterate xl is suffi-
ciently close to the critical point x∗ and on the same face F∗, then the set of active constraints at
the Cauchy point zl is the same as the set of active constraints at x∗.
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Theorem 43. If Assumptions 35, 32, 34 and 41 are fulfilled, then the following holds

lim
l→+∞

∥

∥

∥
∇ΩL

(

xl
)
∥

∥

∥

2
= 0 .

Moreover, there exists l0 such that for all l ≥ l0,

AΩ

(

xl
)

= AΩ

(

x∗
)

.

Proof. The reasoning of the proof of Theorem 7.2 in (Burke et al, 1990) can be applied using
Lemma 45 and line 13 in Algorithm 1. The first step is to show that the Cauchy point z identifies
the optimal active set after a finite number of iterations. This is guaranteed by Theorem 2.2 in
(Burke et al, 1990), since ∇ΩL

(

zl
)

→ 0 by Theorem 41, and the sequence
{

xl
}

converges to a

non-degenerate critical point by Theorem 42. Lemma 45 is used to show that if xl is close enough
to x∗, then the Cauchy point zl remains in the relative interior of the same face, and thus the
active constraints do not change after some point.

Theorem 43 shows that the optimal active set is identified after a finite number of iterations,
which corresponds to the behaviour of the gradient projection in standard trust region meth-
ods. This fact is crucial for the local convergence analysis of the sequence

{

xl
}

, as fast local
convergence rate cannot be obtained if the dynamics of the active constraints does not settle down.

4.3 Local Convergence Rate

In this paragraph, we show that the local convergence rate of the sequence
{

xl
}

generated by trap

is almost Q-superlinear, in the case where a Newton model is approximately minimised at every
trust region iteration, that is

B = ∇2L ,

in model (3). Similarly to (11), one can define

Hσ := H +
σ

2
I . (23)

To establish fast local convergence, a key step is to prove that the trust region radius is ultimately
bounded away from zero. It turns out that the regularisation of the trust region problem (9) plays
an important role in this proof. As shown in the next Lemma 46, after a large enough number of
iterations, the trust region radius does not interfere with the iterates and an inexact Newton step is
always taken at the refinement stage (Line 9 to 13), implying fast local convergence depending on
the level of accuracy in the computation of the Newton direction. However, Theorem 7.4 in (Burke
et al, 1990) cannot be applied here, since due to the alternating gradient projections, the model
decrease at the Cauchy point cannot be expressed in terms of the projected gradient on the active
face at the critical point.

Lemma 46. If Assumptions 35, 32, 34 and 41 are fulfilled, then there exists an index l1 ≥ 1
and ∆∗ > 0 such that for all l ≥ l1, ∆

l ≥ ∆∗.

Proof. The idea is to show that the ratio ρ converges to one, which implies that all iterations are
ultimately successful, and subsequently, by the mechanism of Algorithm 1, the trust region radius
is bounded away from zero asymptotically. For all l ≥ 1,

∣

∣

∣
ρl − 1

∣

∣

∣
=

∣

∣

∣

∣

L
(

yl
)

− L
(

xl
)

−
〈

g
(

xl
)

, yl − xl
〉

−
1

2

〈

yl − xl, H
(

xl
)(

yl − xl
)〉

∣

∣

∣

∣

m (xl)−m (yl)
. (24)
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However,

ml
(

xl
)

−ml
(

yl
)

= ml
(

xl
)

−ml
(

zl
)

+ml
(

zl
)

−ml
(

yl
)

≥
η

2

∥

∥

∥
zl − xl

∥

∥

∥

2

2
+
σ

2

∥

∥

∥
yl − zl

∥

∥

∥

2

2

≥
min

{

η, σ
}

2

(

∥

∥

∥
zl − xl

∥

∥

∥

2

2
+
∥

∥

∥
yl − zl

∥

∥

∥

2

2

)

≥
min

{

η, σ
}

2
max

{

∥

∥

∥
zl − xl

∥

∥

∥

2

2
,
∥

∥

∥
yl − zl

∥

∥

∥

2

2

}

,

and
∥

∥

∥
pl
∥

∥

∥

2
≤
∥

∥

∥
yl − zl

∥

∥

∥

2
+
∥

∥

∥
zl − xl

∥

∥

∥

2

≤ 2max
{∥

∥

∥
yl − zl

∥

∥

∥

2
,
∥

∥

∥
zl − xl

∥

∥

∥

2

}

.

Hence,

ml
(

xl
)

−ml
(

yl
)

≥
min

{

η, σ
}

8

∥

∥

∥
pl
∥

∥

∥

2

2
.

Moreover, using the mean-value theorem, one obtains that the numerator in (24) is smaller than

1

2
ψl
∥

∥

∥
pl
∥

∥

∥

2

2
,

where

ψl := sup
τ∈[0,1]

∥

∥

∥
H
(

xl + τpl
)

−H
(

xl
)∥

∥

∥

2
. (25)

Subsequently, we have
∣

∣

∣
ρl − 1

∣

∣

∣
≤

4

min
{

η, σ
}ψl ,

and the result follows by showing that pl converges to zero. Take l ≥ l0, where l0 is as in Theorem
43. Thus, pl ∈ N (F∗)⊥. However, from the model decrease, one obtains

1

2

〈

pl, H
(

xl
)

pl
〉

≤
〈

−g
(

xl
)

, pl
〉

.

From Theorem 42, the sequence
{

xl
}

converges to x∗, which satisfies the strong second-order

optimality condition 41. Hence, by continuity of the hessian ∇2L and the fact that AΩ

(

xl
)

=

AΩ (x∗), one can claim that there exists l1 ≥ l0 such that for all l ≥ l1, for all v ∈ NΩ

(

xl
)⊥

=

N (F∗)⊥,
〈

v,H
(

xl
)

v
〉

≥ κ ‖v‖22 .

Thus, by Moreau’s decomposition, it follows that

κ

2

∥

∥

∥
pl
∥

∥

∥

2

2
≤
〈

PTΩ(xl)

(

−g
(

xl
))

+ PNΩ(xl)

(

−g
(

xl
))

, pl
〉

≤
∥

∥

∥
PTΩ(xl)

(

−g
(

xl
))∥

∥

∥

2

∥

∥

∥
pl
∥

∥

∥

2
,

since pl ∈ N (F∗)⊥. Finally, pl converges to zero, as a consequence of Lemma 42 and the fact
that

∥

∥zl − xl
∥

∥

2
converges to 0, by Lemma 42 and the fact that the step-sizes αk are upper bounded

for k ∈ {1, . . . ,K}.
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The refinement step in trap actually consists of a truncated Newton method, in which the New-
ton direction is generated by an iterative procedure, namely the distributed sCG described in Algo-
rithm 2. The Newton iterations terminate when the residual ŝ is below a tolerance that depends on
the norm of the projected gradient at the current iteration. In Algorithm 2, the stopping condition
is set so that at every iteration l ≥ 1, there exists ξl ∈ ]0, 1[ satisfying

∥

∥

∥
Zl
(

Zl
)

⊤
(

gσl

(

xl
)

+Hσl

(

xl
)

pl
)
∥

∥

∥

2
≤ ξl

∥

∥

∥
Zl
(

Zl
)

⊤

g
(

xl
)
∥

∥

∥

2
. (26)

The local convergence rate of the sequence
{

xl
}

generated by trap is controlled by the se-

quences
{

ξl
}

and
{

σl
}

, as shown in the following Theorem.

Theorem 44 (Local linear convergence). Assume that the direction p yielded by Algorithm 2
satisfies (26) if ‖p‖∞ ≤ γ∗∆ and AΩ (x) = AΩ (x+ p), given γ∗ ∈ ]0, γ2[. Under Assumptions 35,

32, 34 and 41, for a small enough σ̄, the sequence
{

xl
}

generated by trap converges Q-linearly to
x∗ if ξ∗ < 1 is small enough, where

ξ∗ := lim sup
l→+∞

ξl .

If ξ∗ = 0, the Q-linear convergence ratio can be made arbitrarily small by properly choosing σ̄,
resulting in almost Q-superlinear convergence.

Proof. Throughout the proof, we assume that l is large enough so that the active-set is AΩ (x∗)
and that pl satisfies condition (26). This is ensured by Lemma 46 and Theorem 43, as the sequence
{

pl
}

converges to zero. Thus, we can write Zl = Z∗. The orthogonal projection onto the subspace

N (F∗)⊥ is represented by the matrix Z∗ (Z∗)⊤. A first-order development yields a positive sequence
{

δl
}

converging to zero such that

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl+1
)
∥

∥

∥

2
≤
∥

∥

∥
Z∗ (Z∗)⊤

(

g
(

xl
)

+H
(

xl
)

pl
)
∥

∥

∥

2
+ δl

∥

∥

∥
pl
∥

∥

∥

2

≤
2δl

κ

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl
)
∥

∥

∥

2
+
∥

∥

∥
Z∗ (Z∗)⊤

(

gσl

(

xl
)

+Hσl

(

xl
)

pl
)
∥

∥

∥

2

+ σ̄

∥

∥

∥

∥

Z∗ (Z∗)⊤
(

pl

2
+ zl − xl

)∥

∥

∥

∥

2

≤

(

2δl

κ
+ ξl

)

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl
)
∥

∥

∥

2

+ σ̄

(

1

κ
+

∥

∥Z∗ (Z∗)⊤
(

zl − xl
)
∥

∥

2
∥

∥Z∗ (Z∗)⊤ g (xl)
∥

∥

2

)

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl
)
∥

∥

∥

2
.

where the second inequality follows from the last inequality in Lemma 46, and the definition of gσ
in Eq. (11) and Hσ in Eq. (23). However, from the computation of the Cauchy point described in
paragraph 3.2 and Assumption 35, the term

∥

∥Z∗ (Z∗)⊤
(

zl − xl
)
∥

∥

2
∥

∥Z∗ (Z∗)⊤ g (xl)
∥

∥

2

is bounded by a constant C > 0. Hence,

∥

∥Z∗ (Z∗)⊤ g
(

xl+1
)
∥

∥

2
∥

∥Z∗ (Z∗)⊤ g (xl)
∥

∥

2

≤
2δl

κ
+ ξl + σ̄

(

1

κ
+ C

)

.
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Moreover, a first-order development provides us with a constant Υ > 0 such that

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl
)
∥

∥

∥

2
≤
(

B̂ + Υ
)
∥

∥

∥
xl − x∗

∥

∥

∥

2
.

There also exists a positive sequence
{

ǫl
}

converging to zero such that

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl+1
)
∥

∥

∥

2
≥
∥

∥

∥
Z∗ (Z∗)⊤H

(

x∗
)

(

xl+1 − x∗
)
∥

∥

∥

2
− ǫl

∥

∥

∥
xl+1 − x∗

∥

∥

∥

2
.

However, since xl+1 − x∗ lies in N (x∗)⊥, Z∗ (Z∗)⊤
(

xl+1 − xl
)

= xl+1 − xl. Thus, by Assumption
(22),

∥

∥

∥
Z∗ (Z∗)⊤ ∇L

(

xl+1
)∥

∥

∥

2
≥ (κ− ǫl)

∥

∥

∥
xl+1 − x∗

∥

∥

∥

2
,

which implies that, for l large enough, there exists ǭ ∈ ]0, κ[ such that

∥

∥

∥
Z∗ (Z∗)⊤ g

(

xl+1
)∥

∥

∥

2
≥ (κ− ǭ)

∥

∥

∥
xl+1 − x∗

∥

∥

∥

2
.

Finally,

∥

∥xl+1 − x∗
∥

∥

2

‖xl − x∗‖2
≤
B̂ + Υ

κ− ǭ

(

2δl

κ
+ ξl + σ̄

(

1

κ
+ C

))

,

which yields the result.

5 Numerical Examples

The optimal AC power flow constitutes a challenging class of nonconvex problems for benchmark-
ing optimisation algorithms and software. It has been used very recently in the testing of a novel
adaptive augmented Lagrangian technique (Curtis, F.E. and Gould, N.I.M. and Jiang, H. and
Robinson, D.P., 2014. To appear in Optimization Methods and Software). The power flow equa-
tions form a set of nonlinear coupling constraints over a network. Some distributed optimisation
strategies have already been explored for computing OPF solutions, either based on convex relax-
ations (Lam, A.Y.S. and Zhang, B. and Tse, D.N., 2012) or nonconvex heuristics (Kim, B.H. and
Baldick, R., 1997). As the convex relaxation may fail in a significant number of cases (Bukhsh,
W.A. and Grothey, A. and McKinnon, K.I.M. and Trodden, P.A., 2013), it is also relevant to ex-
plore distributed strategies for solving the OPF in its general nonconvex formulation. Naturally,
all that we can hope for with this approach is a local minimum of the OPF problem. Algorithm 1
is tested on the augmented Lagrangian subproblems obtained via a polar coordinates formulation
of the OPF equations, as well as rectangular coordinates formulations. Our trap algorithm is run
as an inner solver inside a standard augmented Lagrangian loop (Bertsekas, D.P., 1982) and in the
more sophisticated lancelot dual loop (Conn, A. and Gould, N.I.M. and Toint, P.L., 1991). More
precisely, if the OPF problem is written in the following form

minimise
x

f (x) (27)

s.t. g (x) = 0

x ∈ X ,

where X is a bound constraint set, an augmented Lagrangian loop consists in computing an ap-
proximate critical point of the auxiliary program
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minimise
x∈X

L̺(x, µ) := f(x) +
(

µ+
̺

2
g(x)

)

⊤

g(x) (28)

with µ a dual variable associated to the power flow constraints and ̺ > 0 a penalty parameter,
which are both updated after a finite sequence of primal iterations in (28). Using the standard first-
order dual update formula, only local convergence of the dual sequence can be proven (Bertsekas,
D.P., 1982). On the contrary, in the lancelot outer loop, the dual variable µ and the penalty pa-
rameter ̺ are updated according to the level of satisfaction of the power flow (equality) constraints,
resulting in global convergence of the dual sequence (Conn, A. and Gould, N.I.M. and Toint, P.L.,
1991). In order to test trap, we use it to compute approximate critical points of the subproblems
(27), which are of the form (1). The rationale behind choosing lancelot instead of a standard
augmented Lagrangian method as the outer loop is that lancelot interrupts the inner iterations at
an early stage, based on a KKT tolerance that is updated at every dual iteration. Hence, it does not
allow one to really measure the absolute performance of trap, although it is likely more efficient
than a standard augmented Lagrangian for computing a solution of the OPF program. Thus, for
all cases presented next, we provide the results of the combination of trap with a basic augmented
Lagrangian and lancelot. The augmented Lagrangian loop is utilised to show the performance of
trap as a bound-constrained solver, whereas lancelot is expected to provide better overall perfor-
mance. All results are compared to the solution yielded by the nonlinear interior-point solver ipopt

(Wächter, A. and Biegler, L.T., 2006) with the sparse linear solver ma27. Finally, it is important to
stress that the results presented in this Section are obtained from a preliminary matlab implemen-
tation, which is designed to handle small-scale problems. The design of a fully distributed software
would involve substantial development and testing, and is thus beyond the scope of this paper.

5.1 AC Optimal Power Flow in Polar Coordinates

We consider the AC-OPF problem in polar coordinates

minimise
∑

g∈G

cg0 + cg1p
G
g + c2

(

pGg

)2
(29)

s.t.
∑

g∈Gb

pGg =
∑

d∈Db

PD
d +

∑

b′∈Bb

pLbb′ +GB
b v

2
b

∑

g∈Gb

qGg =
∑

d∈Db

QD
d +

∑

b′∈Bb

qLbb′ −BB
b v

2
b

pLbb′ = Gbbv
2
b + (Gbb′ cos (θb − θb′) +Bbb′ sin (θb − θb′)) vbvb′

qLbb′ = −Bbbv
2
b + (Gbb′ sin (θb − θb′)−Bbb′ cos (θb − θb′)) vbvb′

(

pLbb′
)2

+ (qbb′)
2 + sbb′ =

(

SM
bb′

)2

vLb ≤ vb ≤ vUb

pL ≤ pGg ≤ pU

qL ≤ qGg ≤ qU

sbb′ ≥ 0 ,

which corresponds to the minimisation of the overall generation cost, subject to power balance con-
straints at every bus b and power flow constraints on every line bb′ of the network, where G denotes
the set of generators and Gb is the set of generating units connected to bus b. The variables pGg
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and qGg are the active and reactive power output at generator g. The set of loads connected to bus b

is denoted by Db. The parameters PD
d and QD

d are the demand active and reactive power at load
unit d. The letter Bb represents the set of buses connected to bus b. Variables pLbb′ and qLbb′ are the
active and reactive power flow through line bb′. Variables vb and θb denote the voltage magnitude
and voltage angle at bus b. Constants vLb , vUb are lower and upper bounds on the voltage magni-
tude at bus b. Constants pL, pU , qL and qU are lower and upper bounds on the active and reactive
power generation. It is worth noting that a slack variable sbb′ has been added at every line bb′ in
order to turn the usual inequality constraint on the power flow through line bb′ into an equality
constraint. The derivation of the optimal power flow problem in polar form can be found in (Zhu,
J., 2009).

As a simple numerical test example for trap, we consider a particular instance of NLP (29) on
the 9-bus transmission network shown in Fig. 2. As in (28), the augmented Lagrangian subproblem
is obtained by relaxing the equality constraints associated with buses and lines in (29). The bound
constraints, which can be easily dealt with via projection, remain unchanged. One should notice
that NLP (29) has partially separable constraints and objective, so that lancelot could efficiently
deal with it, yet in a purely centralised manner. In some sense, running trap in a lancelot

outer loop can be seen as a first step towards a distributed implementation of lancelot for solv-
ing the AC-OPF. It is worth noting that the dual updates only require exchange of information
between neighbouring nodes and lines. However, each lancelot dual update requires a central
communication, as the norm of the power flow constraints need to be compared with a running
tolerance (Conn, A. and Gould, N.I.M. and Toint, P.L., 1991). For the 9-bus example in Fig. 2,

1

4

9

5

6

3

7

8

2

Fig. 2: The 9-bus transmission network from http://www.maths.ed.ac.uk/optenergy/LocalOpt/.

the Cauchy search of trap on the augmented Lagrangian subproblem (28) can be carried out in
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five parallel steps. This can be observed by introducing local variables for every bus b ∈ {1, . . . , 9},

xb := (vb, θb)
⊤ ,

and for every line

bb′ ∈
{

{1, 4} , {4, 5} , {4, 9} , {8, 9} , {2, 8} , {7, 8} , {6, 7} , {3, 6} , {5, 6}
}

,

with the line variable ybb′ being defined as

ybb′ := (pbb′ , qbb′ , sbb′)
⊤ .

The line variables ybb′ can be first updated in three parallel steps, which corresponds to
{

y{2,8}, y{6,7}, y{4,9}
}

,
{

y{7,8}, y{3,6}, y{4,5}
}

,
{

y{8,9}, y{5,6}, y{1,4}
}

.

Then, the subset

{x1, x2, x3, x5, x7, x9}

can be updated, followed by the subset

{x4, x6, x8} .

As a result, backtracking iterations can be run in parallel at the nodes associated with each line
and bus. If a standard trust region Newton method would be applied, the projected search would
have to be computed on the same central node without a bound on the number iterations. Thus,
the activity detection phase of trap allows one to reduce the number of global communications
involved in the whole procedure. The results obtained via a basic augmented Lagrangian loop and
a lancelot outer loop are presented in Tables 1 and 2 below. The data is taken from the archive
http://www.maths.ed.ac.uk/optenergy/LocalOpt/. In all Tables of this Section, the first column
corresponds to the index of the dual iteration, the second column to the number of iterations in the
main loop of trap at the current outer step, the third column to the total number of sCG iterations
at the current outer step, the fourth column to the level of KKT satisfaction obtained at each outer
iteration, and the fifth column is the two-norm of the power flow equality constraints at a given
dual iteration. To obtain the results presented in Tables 1 and 2, the regularisation parameter σ

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 79 388 2.01 · 10−7 0.530
2 2 40 2.71 · 10−10 0.530
3 300 2215 2.39 · 10−2 0.292
4 101 2190 6.50 · 10−4 6.56 · 10−3

5 123 2873 2.10 · 10−3 5.02 · 10−6

6 56 1194 4.14 · 10−2 1.11 · 10−10

Table 1: Results for the 9-bus AC-OPF (Fig. 2) using a standard augmented Lagrangian outer loop
and trap as primal solver. Note that the cumulative number of CG iterations is relatively high,
since the refinement stage was not preconditioned.

in the refinement stage 2 is set to 1 · 10−10. For Table 1, the maximum number of iterations in the
inner loop (trap) is fixed to 300 and the stopping tolerance on the level of satisfaction of the KKT
conditions to 1 · 10−5. For Table 2 (lancelot), the maximum number of inner iterations is set
to 100 for the same stopping tolerance on the KKT conditions. In Algorithm 2, a block-diagonal
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 37 257 7.29 · 10−2 0.530
2 5 25 1.01 · 10−2 0.530
3 6 71 3.23 · 10−5 0.530
4 100 1330 8.30 · 10−3 4.33 · 10−2

5 100 1239 1.80 · 10−3 2.53 · 10−3

6 100 2269 4.33 · 10−2 2.69 · 10−5

7 64 1541 3.2 · 10−3 1.64 · 10−8

Table 2: Results for the 9-bus AC-OPF (Fig. 2) using a lancelot outer loop and trap as primal
solver. Note that the cumulative number of CG iterations is relatively high, since no preconditioner
was applied in the refinement step.

preconditioner is applied. It is worth noting that the distributed implementation of Algorithm 2 is
not affected by such a change. To obtain the results of Table 1, the initial penalty parameter ̺ is set
to 10 and is multiplied by 30 at each outer iteration. In the lancelot loop, it is multiplied by 100. In
the end, an objective value of 2733.55 up to feasibility 1.64 · 10−8 of the power flow constraints is
obtained, whereas the interior-point solver ipopt, provided with the same primal-dual initial guess,
yields an objective value of 2733.5 up to feasibility 2.23 ·10−11. From Table 1, one can observe that
a very tight KKT satisfaction can be obtained with trap. From the figures of Tables 1 and 2, one
can extrapolate that lancelot would perform better in terms of computational time (6732 sCG
iterations in total) than a basic augmented Lagrangian outer loop (8900 sCG iterations in total),
yet with a worse satisfaction of the power flow constraints (1.64 ·10−8 against 1.11 ·10−10). Finally,
one should mention that over a set of hundred random initial guesses, trap was able to find a
solution satisfying the power flow constraints up to 1 · 10−7 in all cases, whereas ipopt failed in
approximately half of the test cases, yielding a point of local infeasibility.

5.2 AC Optimal Power Flow on Distribution Networks

Algorithm 1 is then applied to solve two AC-OPF problems in rectangular coordinates on distribu-
tion networks. Both 47-bus and 56-bus networks are taken from (Gan, L. and Li, N. and Topcu, U.
and Low, S.H., 2014). Our results are compared against the nonlinear interior-point solver ipopt

(Wächter, A. and Biegler, L.T., 2006), which is not amenable to a fully distributed implementation,
and the SOCP relaxation proposed by (Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014),
which may be distributed (as convex) but fails in some cases, as shown next. It is worth noting
that any distribution network is a tree, so a minimum colouring scheme consists of two colours,
resulting in 4 parallel steps for the activity detection in trap.

5.2.1 On the 56-bus AC-OPF

On the 56-bus AC-OPF, an objective value of 233.9 is obtained with feasibility 8.00 ·10−7, whereas
the nonlinear solver ipopt yields an objective value of 233.9 with feasibility 5.19 ·10−7 for the same
initial primal-dual guess.

In order to increase the efficiency of trap, following a standard recipe, we build a block-diagonal
preconditioner from the hessian of the augmented Lagrangian by extracting block-diagonal elements
corresponding to buses and lines. Thus, constructing and using the preconditioner can be done in
parallel and does not affect the distributed nature of trap. In Fig. 3, the satisfaction of the KKT
conditions for the bound constrained problem (28) is plotted for a preconditioned refinement phase
and non-preconditioned one. One can conclude from Fig. 3 that preconditioning the refinement
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Fig. 3: KKT satisfaction vs iteration count in the fourth lancelot subproblem formed on the AC-
OPF with 56 buses. When using a centralised projected search as activity detector (dotted grey)
and trap (full black). Curves obtained with a preconditioned sCG are highlighted with triangle
markers.

phase does not only affect the number of iterations of the sCG Algorithm 2 (Fig. 6), but also the
performance of the main loop of trap. From a distributed perspective, it is very appealing, for it
leads to a strong decrease in the overall number of global communications. Finally, from Fig. 3, it
appears that trap and a centralised trust region method (with centralised projected search) are
equivalent in terms of convergence speed. From Fig. 4, trap proves very efficient at identifying
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Fig. 4: Active-set history in the first lancelot iteration for the 56-bus AC-OPF. Activity detection
in trap: trap (full black), centralised projected search (dashed grey with triangles).

the optimal active set in a few iterations (more than 10 constraints enter the active-set in the first
four iterations and about 20 constraints are dropped in the following two iterations), which is a
proof of concept for the analysis of Section 4. Alternating gradient projections appear to be as
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efficient as a projected search for identifying an optimal active-set, although the iterates travel on
different faces, as shown in Fig. 4. In Fig. 5, the power flow constraints are evaluated after a run
of trap on program (28). The dual variables and penalty coefficient are updated at each outer
iteration. Overall, the coupling of trap with the augmented Lagrangian appears to be successful
and provides similar performance to the coupling with a centralised trust region algorithm.
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Fig. 5: Norm of power flow constraints on the 56-bus network against dual iterations of a lancelot

outer loop with trap as primal solver. Inner solver: trap (full black), centralised trust region
method (dashed grey with cross markers).
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Fig. 6: Cumulative sCG iterations vs iteration count in the first lancelot subproblem formed
on the AC-OPF with 56 buses. Results obtained with trap as inner solver (full black), with a
centralised trust region method (dashed grey). Results obtained with a preconditioned refinement
stage are highlighted with cross markers.
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 122 1382 8.45 · 10−9 6.68
2 189 4486 6.71 · 10−9 1.49 · 10−1

3 139 11865 9.87 · 10−8 8.79 · 10−4

4 49 3958 6.75 · 10−6 7.92 · 10−6

5 9 936 5.45 · 10−7 4.58 · 10−9

Table 3: Results for the 56-bus AC-OPF of (Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014)
using a (local) augmented Lagrangian outer loop with trap as primal solver.

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 100 924 9.74 · 10−2 6.42
2 133 3587 2.40 · 10−3 3.60 · 10−1

3 54 4531 1.03 · 10−4 4.00 · 10−3

4 10 858 4.20 · 10−6 1.02 · 10−3

5 42 3288 4.37 · 10−6 2.32 · 10−4

6 13 916 1.82 · 10−5 4.35 · 10−5

7 40 6878 3.70 · 10−7 8.16 · 10−6

8 6 420 4.64 · 10−6 4.97 · 10−7

Table 4: Results for the 56-bus AC-OPF of (Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014)
using a lancelot outer loop with trap as primal solver.

Tables 3 and 4 are obtained with an initial penalty coefficient ρ = 10 and a multiplicative
coefficient of 20.

5.2.2 On the 47-bus AC-OPF

On the 47-bus AC-OPF, a generating unit was plugged at node 12 (bottom of the tree) and the load
at the substation was decreased to 3 pu. On this modified problem, the SOCP relaxation provides
a solution, which does not satisfy the nonlinear equality constraints. An objective value of 502.3 is
obtained with feasibility 2.57 ·10−7 for both the AL loop (Tab. 5) and the lancelot loop (Tab. 6).
The SOCP relaxation returns an objective value of 265.75, but physically impossible, as the power

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 275 3267 1.33 · 10−7 5.80
2 300 7901 1.39 · 10−1 1.12 · 10−1

3 180 18725 2.13 · 10−6 9.47 · 10−5

4 26 3765 5.55 · 10−8 6.63 · 10−9

Table 5: Results for the 47-bus AC-OPF of (Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014)
using an augmented Lagrangian outer loop with trap as primal solver.

flow constraints are not satisfied. The nonlinear solver ipopt yields an objective value of 502.3 with
feasibility 5.4 · 10−8.
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.
count

1 180 1147 8.64 · 10−2 5.35
2 300 7128 2.23 3.12 · 10−1

3 215 11304 4.65 · 10−5 2.97 · 10−3

4 9 423 6.05 · 10−5 3.28 · 10−5

5 8 503 1.11 · 10−8 7.90 · 10−7

6 2 177 4.64 · 10−6 4.03 · 10−8

Table 6: Results for the 47-bus AC-OPF of (Gan, L. and Li, N. and Topcu, U. and Low, S.H., 2014)
using a lancelot outer loop with trap as primal solver.

6 Conclusions

A novel trust region Newton method, entitled trap, which is based on distributed activity de-
tection, has been described and analysed. In particular, as a result of a proximal regularisation
of the trust region problem with respect to the Cauchy point yielded by an alternating projected
gradient sweep, global and fast local convergence to first-order critical points has been proven
under standard regularity assumptions. It has been argued further how the approach can be im-
plemented in distributed platforms. The proposed strategy has been successfully applied to solve
various nonconvex OPF problems, for which distributed algorithms are currently raising inter-
est. The performance of the novel activity detection mechanism compares favourably against the
standard projected search.
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