
Active Learning and Proofreading for
Delineation of Curvilinear Structures

(supplementary material)

1 Fast Reconstruction of Curvilinear Structures

To delineate networks of curvilinear structures, we rely on the algorithm of [3],
which involves solving the following problem:

Min-Weight Tree Containing r (MinTree)

Given: A graph G = (V, E), a root vertex r ∈ V , weights on edges w : E → R.
Weights may be negative.

Find: A tree R ⊆ G containing the vertex r, minimizing the sum of weights
of picked edges

∑
e∈R w(e).

In our approach, MinTree is used when we expect the ground-truth image to
be a tree. If such an assumption is not realistic (loopy networks, such as blood
vessels), then we are instead interested in the following problem MinSubgraph:

Min-Weight Connected Subgraph Containing r (MinSubgraph)

Given: A graph G = (V, E), a root vertex r ∈ V , weights on edges w : E → R.
Weights may be negative.

Find: A connected subgraph R ⊆ G which contains the vertex r (and is
not necessarily a tree), minimizing the sum of weights of picked edges∑

e∈R w(e).

Both problems are significantly harder than the Minimum Spanning Tree
problem, because R does not need to connect the entire graph and also the
weights may be negative. In fact, both problems are NP-complete; we demon-
strate this later in Proposition 2. In both [3] and our approach they are solved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148031519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

using a Mixed Integer Programming (MIP) formulation, which is given as input
to the Gurobi solver.1

However, the previously considered formulation (see the model Arbor-IP in
[3] and also the model M-DG in [1]) has |V ||E| variables and as many constraints.
This makes solving it costly for small graphs and impossible for larger ones. Our
contribution is a new, linear-size MIP model for this problem.

The organization of this section is the following: in Section 1.1 we introduce
our formulation and argue about its correctness, in Section 1.2 we measure the
major running time improvements it brings about, in Section 1.3 we show how
using a MIP formulation (rather than a simple Minimum Spanning Tree based
method) boosts the performance of Active Learning, and finally in Section 1.4
we prove the NP-hardness of the considered problems.

Let us mention in passing that Blum and Calvo [1] also propose a “matheuris-
tic” approach to solving MinTree – although with no optimality guarantees.

1.1 Our Formulation

First, we describe how to obtain a MIP for MinTree. We replace each undirected
edge with two directed edges, so as to work with a directed graph. Our objective
is to find a directed tree whose each edge is directed away from the root r (a
so-called r-arborescence).

We associate a binary variable xuv ∈ {0, 1} with each directed edge (u, v) ∈
E , denoting the presence of the edge in the solution R. The first two linear
constraints to consider are:

– any vertex v has at most one incoming edge (r has none) (see equations
(1–2) below),

– an edge (u, v) can be in the solution only if u has an incoming edge in the
solution (or u = r) (3).

These conditions almost require the solution to be an r-arborescence, but not
quite; namely, there can still appear directed cycles (possibly with some adjoined
trees). One way to deal with this issue is to enforce that every non-isolated vertex
is connected to the root; this can be done using network flows. The constraints in
the previous formulation require that, for every v with an incoming edge, there
should exist a flow {fve }e∈E of value 1 from r to v. However, this leads to a large
program (|V ||E| variables).

Our way around this is to instead require the existence of a single flow {fe}e∈E
from the source vertex r to some set of sinks. The main constraints are that:

– for every vertex v 6= r, if v has an incoming edge (i.e., v is not an isolated
vertex in the solution, but is spanned by R), then the inflow into v is at least
1 more than the outflow (otherwise it is greater or equal to the outflow) (4),

– f is supported only on the support of x (that is, the flow f only uses edges
which are used by the solution R) (5).

1 [3] use quadratic weights, i.e., weights on pairs of adjacent edges, rather than a linear
weight function; this makes the computational burden even heavier.

3

Since x has no edges into the root, neither does f . Thus f is indeed a flow
(within the x-subgraph) from the source r to the sink set being the set of all
active vertices.

We write down our MIP formulation below. We use the following notation:
x(F) =

∑
e∈F x(e) for a subset F ⊆ E , δ+(v) is the set of (directed) edges

outgoing from vertex v, and δ−(v) is the set of (directed) edges incoming into
vertex v. Thus e.g. f(δ+(v)) is the total f -flow outgoing from vertex v.

minimize
∑

(u,v)∈E

w(u, v)xuv

subject to xuv ∈ {0, 1} ∀(u, v) ∈ E
x(δ−(v)) ≤ 1 ∀v ∈ V \ {r} (1)

x(δ−(r)) = 0 (2)

xuv ≤ x(δ−(u)) ∀(u, v) ∈ E , u 6= r (3)

f(δ−(v))− f(δ+(v)) ≥ x(δ−(v)) ∀v ∈ V \ {r} (4)

fuv ≥ 0 ∀(u, v) ∈ E
fuv ≤ (|V | − 1) · xuv ∀(u, v) ∈ E . (5)

The following proposition explains the correctness of our formulation.

Proposition 1. For any R ⊆ E, the corresponding vector x ∈ {0, 1}E is feasible
for the MIP formulation2 iff R is a tree containing the root r.

Proof. (=⇒) By (1), edges (u, v) with xuv = 1 form a (directed) subgraph where
every vertex has indegree at most 1. It is not hard to see that each connected
component of such a graph is either a tree or a cycle (possibly with adjoined
trees); the cycle case is impossible if the component contains r (by (2)). We
show that actually there is no connected component except the one containing
r. Towards a contradiction suppose that S ⊆ V \ {r} is such a component; we
will show that the flow conservation constraints (4) must be violated. Denote
by δ+(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S} the outgoing edges of S, and by
δ−(S) the incoming edges. We have x(δ+(S)) = x(δ−(S)) = 0 and thus, by (5),
f(δ+(S)) = f(δ−(S)) = 0. However, by summing up (4) over v ∈ S we get
f(δ−(S)) − f(δ+(S)) ≥

∑
v∈S x(δ−(v)); the left side is 0 but the right side is

positive, a contradiction.3

2 More precisely, there exists f ∈ RE
+ such that (x, f) is feasible for the MIP formu-

lation, where x is obtained from R by directing all edges to point away from r.
3 The observant reader will notice that the constraint (3) is redundant. However, we

keep it for clarity of exposition and because it makes solving the program faster in
practice.

4

(⇐=) It is easy to see that constraints (1–3) are satisfied by x. To obtain the
flow, we begin with f = 0. Then, for each vertex v with x(δ−(v)) = 1, we route
1 unit of flow from r to v inside R (that is, we only use edges e with xe = 1)
and add that flow to f . (This is possible since R is connected.) This way we will
satisfy (4). Since the number of such vertices is at most |V | − 1, any edge will
hold at most |V | − 1 units of flow, thus satisfying (5).

So far we have discussed MinTree. To get a formulation for MinSubgraph,
one only needs to omit the constraint (1) and adjust the constraint (5) to become
fuv ≤ |E| · xuv. Then x is obtained from R by choosing any spanning tree of R
and orienting tree edges to point away from r and non-tree edges arbitrarily. In
the proof of Proposition 1 we route x(δ−(v)) ≥ 1 units of flow (rather than 1
unit) for each v (now any edge holds at most |E| units of flow). These are the
only changes.

1.2 Running Time Improvements

The runtimes of our formulation compared to the one presented in [3] are shown
in Table 1. The optimization was executed on a 2x Intel E5-2680 v2 system (20
cores).

Axons1 Axons2 Axons3 Axons4 Axons5 Axons6

edges 164 223 224 265 932 2638

MIP [3] 0.91 1.04 1.19 1.45 78.3 393.7

MIP ours 0.03 0.10 0.04 0.23 0.10 5.23

speedup 26.1x 10.1x 27.3x 6.3x 743.5 75.2x

BFNeuron1 BFNeuron2 OPF1 OPF2 BFNeuron3 BFNeuron4

edges 120 338 363 380 645 2826

MIP [3] 0.48 2.25 1.53 1.65 2.13 308.23

MIP ours 0.02 0.12 0.05 0.08 0.26 2.30

speedup 18.2x 17.7x 29.4x 19.9x 8.1x 134.0x

Table 1: Per-reconstruction runtimes (in seconds) of the MIP formulation of [3]
and ours for the proofreading task.

Our formulation can be solved under 6 seconds for all real-world graph ex-
amples we have tried; the maximum for the formulation of [3] is over 6 minutes.

We also compared the runtimes on randomly generated graphs of various
sizes – see Table 2. The speed-ups remain similar. In Table 3 we collect runtimes
of our method on larger randomly generated graphs. If we assumed (more or less
arbitrarily) 2 seconds to be the threshold of what is practical in an interactive
setting (given that this optimization needs to be run multiple times), then we
can see that the method of [3] can deal with graphs of size at most 300, whereas
our method copes with graphs having around 2000 edges.

5

edges 99 132 220 330 440 660 924 1320 1540

MIP [3] 0.16 0.30 1.13 3.39 8.35 29.35 73.16 112.59 149.01

MIP ours 0.03 0.04 0.06 0.12 0.15 0.29 0.36 0.67 0.42

speedup 6.1x 7.5x 17.9x 29.4x 53.9x 102.8x 201.8x 167.8x 348.1x

Table 2: Per-reconstruction runtimes (in seconds) of the MIP formulation of [3]
and ours on random graphs.

edges 1760 2420 3520 4400 5720 9900

MIP ours 1.60 2.71 6.59 9.57 15.52 81.55

Table 3: Per-reconstruction runtimes (in seconds) of our MIP formulation on
random graphs.

One further practical method for speeding up the solver is to initialize it with
a nonzero feasible solution. In cases where we needed to explore a large number
of reconstructions resulting from altering just one weight at a time (which was
the setting of our paper), we initialized the new solution to the current optimal
solution. Note that this scenario makes performance considerations especially
relevant, as |E| reconstructions need to be made; even though they can be run in
parallel, a high running time of a single MIP solution would make the approach
impractical.

1.3 Active Learning Accuracy

In Fig. 1 we can see that using MIP formulations indeed helps improve the AL
results, compared to a more basic method Minimum Spanning Tree with Prun-
ing [2] (MSTP), as it produces more accurate reconstructions and thus we can
more reliably detect mistakes. This is visible especially in case of Blood Vessels,
which in reality can form loops. Those can be reconstructed using MinSubgraph
MIP, but not with MSTP.

1.4 Hardness

In this section we argue that our problems are extremely unlikely to be solvable
in polynomial time. This makes solving MIP formulations using state-of-the-art
solvers one of the most natural and efficient methods available.

Proposition 2. The problems MinTree and MinSubgraph are NP-complete.

Proof. Clearly both are in NP. We will show an NP-hardness reduction from the
Steiner tree problem in graphs (STP), which is a well-known NP-hard problem.
An instance of STP consists of a graph G = (V,E) with weights on edges w :
E → R+ and a set of terminal vertices T ⊆ V . The objective is to find a

6

10 20 30 40 50 60 70 80 90 100

Number of queries

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

A
cc

ur
ac

y

MSTP
MIP

(a)

10 20 30 40 50 60 70 80 90 100

Number of queries
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Ac
cu

ra
cy

MSTP
MIP

(b)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.81

0.82

0.83

0.84

0.85

0.86

0.87

A
cc

ur
ac

y

MSTP
MIP

(c)

10 20 30 40 50 60 70 80 90 100

Number of queries

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Ja
cc

ar
d

in
de

x

MSTP
MIP

(d)

Fig. 1: Comparison of our AL strategy when using MSTP and MIP. (a) Blood
Vessels. (b) Axons. (c) Brightfield Neurons. (d) Olfactory Projection Fibers. In
all cases using MIP facilitates Active Learning compared to MSTP, with the
exception of the right-hand side of (d): it is a comparatively easy case and the
MIP delineation stops changing faster than the MSTP reconstruction, after
which point error-based queries are no longer informative.

7

minimum-weight tree in G which connects the set T . To obtain an instance of
MinTree (or MinSubgraph) from STP, we do the following for each t ∈ T : adjoin
a new vertex t′ to t using a new edge (t, t′) of weight −M , where M is a very
large weight (say M = 1 +

∑
e∈E |w(e)|). Then set the root r to be any of these

new vertices.
To see that an optimal solution of the MinTree instance corresponds to an

optimal solution of the STP instance, note that the former must necessarily
contain all the new edges (as we set their weight to be so low that it makes sense
to take them even if it requires us to also take many positive-weight edges).
Since the MinTree solution must be connected, it will therefore connect all the
terminal vertices; removing the new edges from the MinTree solution gives an
optimal STP solution. (The same reduction also works for MinSubgraph, since
the weights of all original edges are positive and thus the optimal solution for
MinSubgraph is the same as the optimal solution for MinTree.)

2 Changing Weights

(a) (b)

Fig. 2: (a) Two Gaussian distributions corresponding to positive (green) and neg-
ative (red) classes of edges. (b) The effect of weight transformation; the original
distributions are drawn with solid lines, while the corresponding distributions
after the transformation are drawn with dashed lines. The described transfor-
mation causes the ”swapping” of distributions corresponding to the two classes.

As described in Section 2.2, we alter the weight of each edge to measure
its influence on the delineation and to detect possible mistakes. In practice,
the weights of positive-class edges tend to follow a Gaussian distribution with
a negative mean and variance such that few of them have positive values, as
shown in Fig. 2(a). Similarly, negative edges follow a Gaussian distribution with
positive mean and few of them being negative. As a result, weights of most of
the mistaken edges have small absolute values.

8

In order for our delineation-change metric of Section 2.2 to be informative, we
must ensure that attention-worthy edges (probable mistakes) have high values of
∆ci. One possible transformation would be to simply flip the sign of the weight
(implying assigning it to the opposite class). However, many of the mistakes
with |wi| ≈ 0 could be omitted due to smaller values of ∆ci compared to edges
with weights of higher absolute value, which are much less likely to be mistakes.
Consequently, we also have to increase the absolute value of most likely mistakes.
The above requirements can be satisfied with the following transformation:

w′i =

{
A+ wi if wi > 0,

B + wi if wi < 0.
(6)

This transformation is equivalent to swapping the distributions corresponding
to positive and negative edges, as shown in Fig 2(b).

References

1. Blum, C., Calvo, B.: A matheuristic for the minimum weight rooted arborescence
problem. Journal of Heuristics 21(4), 479–499 (2015)

2. Gonzalez, G., Fleuret, F., Fua, P.: Automated Delineation of Dendritic Networks in
Noisy Image Stacks. In: ECCV. pp. 214–227 (October 2008)

3. Turetken, E., Benmansour, F., Andres, B., Glowacki, P., Pfister, H., Fua, P.: Re-
constructing Curvilinear Networks Using Path Classifiers and Integer Programming.
PAMI (2016)

	Active Learning and Proofreading for Delineation of Curvilinear Structures (supplementary material)

