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ABSTRACT
Event-series pattern matching is a major component of large-
scale data analytics pipelines enabling a wide range of sys-
tem diagnostics tasks. A precursor to pattern matching is an
expensive “shuffle the world” stage wherein data are ordered
by time and shuffled across the network. Because many ex-
isting systems treat the pattern matching engine as a black
box, they are unable to optimizing the entire data analytics
pipeline, and in particular, this costly shuffle.

This paper demonstrates how to optimize such queries.
We first translate an expressive class of regular-expression
like patterns to relational queries such that they can ben-
efit from decades of progress in relational optimizers, and
then we introduce the technique of abstract pattern match-
ing, a linear time preprocessing step which, adapting ideas
from symbolic execution and abstract interpretation, dis-
cards events from the input guaranteed not to appear in suc-
cessful matches. Abstract pattern matching first computes
a conservative representation of the output-relevant domain
of every transition in a pattern based on the (unary) predi-
cates of that transition. It then further refines these domains
based on the structure of the pattern (i.e., paths through
the pattern) as well as any of the pattern’s join predicates
across transitions. The outcome is an abstract filter that
when applied to the original stream excludes events that are
guaranteed not to participate in a match.

We implemented and applied abstract pattern matching
in COSMOS/Scope to an industrial benchmark where we
obtained up to 3 orders of magnitude reduction in shuffled
data and 1.23x average speedup in total processing time.

1. INTRODUCTION
Event-series pattern matching has become essential to many

data processing tasks as it enables complex behavioral, anomaly,
and causality analyses, in varied domains ranging from net-
work diagnostics and security breach detection, to algorith-
mic trading or click-path optimization. This trend prompted
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the addition of pattern matching constructs to many batch
and stream processing engines such as Esper’s Event Pro-
cessing Language (EPL) [2], Oracle’s MATCH_RECOGNIZE [4]
or TerraData’s nPath operator [1].

These languages let programmers specify patterns as a
series of transitions, wherein a transition is triggered if the
current event satisfies a guard defined in terms of both unary
(selection) predicates as well as join conditions on priorly
matched events. For example, a programmer might mine
influential reviews within the click-stream of an e-commerce
website consisting of events of type “Search”(S), “Read re-
view”(R) and “Purchase”(P) by defining the pattern SR*P
where each transition is joined on a userid (i.e., to make sure
that all events in a match are correlated by the id of the user
that performed them).

Pattern matching is usually only one of many stages in a
data processing pipeline. As most of these stages are defined
using relational queries (for eg., to enrich ingested data), the
presence of pattern matching operators raises considerable
challenges in terms of deriving optimum execution plans.
Pattern matching operators do not enjoy the same wealth of
rewriting rules and optimization opportunities as traditional
relational operators and in addition require that their input
is ordered by time. As a consequence, just sorting the data
often takes a significant amount of processing resources even
if matching the patterns themselves is relatively fast.

Warehoused data is typically processed by a mix of work-
loads which might comprise of both pattern mining and non-
temporal queries (i.e., in which city are located the most ac-
tive visitors of a website). These non-temporal queries have
very different optimum data layout and since they are usu-
ally much more frequent, their optimum data layout ends up
becoming the layout of choice in the data center. Keeping
a second copy of the data sorted on time is wasteful when
dealing with terabytes of data, especially when considering
that many of the recorded events may not even be of in-
terest to the mined pattern. We also note that the input
data is not necessarily ordered by time to begin with, as it
may be collected from a wide array of sources, each with
varying constraints for when the data ingestion should hap-
pen. Finally, we remark that the requirement that the input
be ordered by time is especially taxing when executing on a
map-reduce platform, as the sorting step incurs an expensive
reshuffling of the entire data.

In this work we demonstrate how to optimize a class of
temporal queries on non-sorted data, thus reducing the cost
of ORDER BY time. In particular, this paper introduces ab-
stract pattern matching, a technique that builds cheap and



effective filters that remove a significant amount of data be-
fore sorting the data by time. Furthermore, our filters are
themselves represented in relational algebra so the optimizer
can include them in its optimization of the entire pipeline.

To gain an intuition for our approach, consider the ear-
lier pattern SR*P for mining influential reviews. Abstract
pattern matching first builds three independent sets of user
ids: a set of user ids for users that (S)earched for a product,
a set of user ids for users that (R)ead at least one review,
and a set of user ids for users that (P)urchased the product.
The intersection of these sets is a sound and conservative
over-approximation of the set of users that will ultimately
take part in the final match and thus those user ids not in
this intersection can be filtered from the input (i.e., it is
an over-approximation because it ignores time). This work
formalizes and generalizes this intuition to more complex
patterns that deal with multiple join (theta) predicates.

Abstract pattern matching first associates to every tran-
sition in a pattern a symbolic set capturing the domain of its
join attributes based on those input events that satisfy its
selection predicates. It then refines these symbolic sets by
enforcing the join predicates between different transitions as
well as the structure of the pattern. Finally, it selects from
the input only those events that satisfy the resulting set of
constraints, which we refer to as the abstract filter.

Since the precise representation of the symbolic sets could
in many cases be just as large as the input, we introduce data
and predicate abstractions to compute and query them in a
time and space efficient manner. Depending on the type
of join constraints that we have to propagate for a partic-
ular transition, data abstraction makes use of appropriate
abstract set representations that can conservatively approx-
imate those constraints (for example, for equijoins we make
use of Bloom filters [8], whereas for inequality/band joins
we rely on interval maps, as in Figure 1a). In addition,
predicate abstraction further reduces the overheads of our
approach by dropping in a sound way some of the transitions
specified by the pattern. For example, few users ultimately
purchase a product and so we can soundly over-approximate
the set of users that may take part in an influential review
by only computing that set (i.e., as in Figure 1b).

In concert, data and predicate abstraction allow us to
cope with join predicates that do not have efficient data ab-
stractions, as well as fine-tune our solution such that it only
considers the most selective join predicates and balance the
overhead of building our filters with their selectivity.

Our approach is inspired by the concept of abstract in-
terpretation [16, 18]. In particular, the abstract filter con-
straints are the result of relaxing/coarsening in a conserva-
tive manner of the precise constraints enforced by the pat-
tern regarding which events form successful matches. This
suggests future work can leverage the technique of abstract
interpretation to optimize other user defined aggregates as
well, (i.e. to derive abstract filters meant to remove from the
input those tuples that are guaranteed not to contribute to
an output of interest).

As previously mentioned, constructing and applying the
abstract filter incurs a series of overheads, most notably it re-
quires a second pass over the data. Nonetheless, if the reduc-
tion in data is significant, these additional costs are balanced
out by the dramatic speedup in the sorting/shuffling/pattern
matching phases which results in an overall decrease in both
processing costs and latency. Our experimental evaluation
shows up to 3 orders of magnitude reduction in shuffled data
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(a) Intervals are a compact over-approximation of the timestamps
of searches.
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(b) SR*P will only match those users that search, possibly read
some reviews, and finally, purchase a product. Predicate abstrac-
tion exploits the selectivity of one predicate (most users do not
purchase) to efficiently over-approximate users that match SR*P.

Figure 1: Examples illustrating the core intuitions underly-
ing data and predicate abstraction.

as well as 1.23x average speedup in total processing time for
2 workloads: i) telemetry analysis over the events produced
by an event-reporting infrastructure, and ii) repository anal-
ysis over the dataset of events published by GitHub. The
reduction in total processing time is especially important in
multi-tenant clusters where clients are billed based on the
amount of computational resources they consume.

The contributions of this paper are:

● We show how a significant class of complex event pat-
terns can be translated to relational queries such that
they can benefit from decades of progress in relational
optimizations.

● We introduce the technique of abstract pattern match-
ing in order to minimize the sorting/shuffling costs
of large scale mining of patterns within map-reduce
frameworks.

● We design data and predicate abstractions that allow
us to trade the precision of our approach (but not its
soundness) for lower overheads.

● We prototype our solution and show on an industrial
benchmark that it delivers significant reductions in the
amount of data sorted/shuffled as well as processing
times.

The rest of the paper is organized as follows: we further
illustrate our approach and detail its design in sections 2
and 4, the related work is discussed in section 3, the choices
we made in implementing our solution are explored in sec-
tion 5, followed by the presentation of the results of our ex-
perimental evaluation in section 6. Finally, section 7 gives
our concluding remarks and comments on future directions.



2. MOTIVATING EXAMPLE
Consider an analytics task that mines influential reviews

within the click-stream of an e-commerce website consisting
of events of type “Search”(S), “Read review”(R) and “Pur-
chase”(P). The mining task is informally described in terms
of the pattern SR*P. In other words, we desire a user intera-
tion where the user searched for an item, read a sequence of
reviews, before deciding to purchase. In particular, we want
the user to perform no other actions between the search and
purchase actions.

The mining task is described in terms of the pattern SR*P,
with each event variable annotated by its own guard:

S ∈ Ev ∶ S.name = “S”

R ∈ Ev ∶ R.name = “R” ∨ (R.name ≠ “R”).(R.user ≠ S.user)
P ∈ Ev ∶ (P.name = “P”).(P.user = S.user).(P.t < S.t + tout),

where we consider as input an Ev(name, t, user) relation
with fields for event name, event timestamp and associated
user id, and we use . as a shorthand for the conjunctive
operator. The pattern is described in terms of both selec-
tion predicates (for identifying the name of the event to be
matched), as well as join predicates that make sure that the
matched events are correlated by the id of the user that per-
formed them and that the “Purchase” event occurs within a
timeout tout from the “Search” event.

The typical execution plan of this task on a map-reduce
framework is to first group all events by user id, then sort
them on time and finally run a pattern matching engine
to detect the desired sequence of events. In this work we
propose to greatly expand the array of possible execution
plans by taking advantage of the fact that a large class of
patterns can be equivalently expressed as SQL queries. By
doing so then one can leverage decades of progress in query
optimization to come up with more efficient query plans than
the one outlined above. For instance, we can express our
example pattern as a SQL query as follows:

SELECT S.*, P.*
FROM Ev S, Ev P
WHERE S.time < P.time
AND S.name == "S"
AND P.name == "P" AND P.time < S.time + t_out
AND P.user == S.user
AND NOT EXISTS (

SELECT * FROM Ev NR
WHERE NR.name != "R"
AND S.time < NR.time AND NR.time < P.time
AND NR.user == S.user );

The first part of the query enforces the fact that a success-
ful match consists of an event S followed within a timeout
tout by an event P from the same user, while the second part
captures the fact that only R events are allowed to take place
in between these two events. The final result of the query
is a set of tuples, one per successful match, consisting of the
initial and final event in the match.

In the following we discuss our approach for performing
this pre-processing step in a time and space efficient manner.

We start by defining for each event variable X of the pat-
tern symbolic sets Xσ, which collect the values of X’s fields
that are joined by the query, based on the input events
matching its selection predicates (for transition R, we get

two such symbolic sets Rσ and R
σ
, as its guard has two

disjoint selection predicates.).

Sσ ∶= {⟨S.t, S.user⟩ ∣ S ∈ Ev ∶ S.name =“S”}
Rσ ∶= {⟨R.t⟩ ∣ R ∈ Ev ∶ R.name =“R”}

R
σ ∶= {⟨NR.t,NR.user⟩ ∣ NR ∈ Ev ∶ NR.name ≠“R”}

Pσ ∶= {⟨P.t, P.user⟩ ∣ P ∈ Ev ∶ P.name =“P”}

We introduce a slicing operator that simplifies our no-
tation. Given a set S of tuples ⟨s1, s2, . . . , sn⟩ and unary
predicates φ1, φ2, . . . , φn, we define the slicing operator:

Sliceφ1,φ2,...,φn(S) = {⟨s1, s2, . . . , sn⟩ ∣
n

⋀
i=1
φi(si)}

We will also represent u=(t) for the unary predicate that
determines if t is equal to u, and (l, u)∈(t) for the unary
predicate that determines if t is in the (open) time interval
(l, u).

Next, we re-write the query, first using comprehension
syntax, and then using the slicing operator:

Q ∶= {⟨s,p⟩ ∣ s ∈ Sσ,p ∈ Pσ ∶
p.t ∈ (s.t ∶ s.t + tout) . (p.user = s.user) .

¬(∃nr ∈ Rσ ∶ nr.t ∈ (s.t ∶ p.t) . (nr.user = s.user)) }
∶= {⟨s,p⟩ ∣ s ∈ Sσ,p ∈ Slice(s.t ∶ s.t+tout)∈,s.user=(P

σ) ∶

Slice(s.t ∶ p.t)∈, s.user=(R
σ) = ∅ }

Each symbolic set, in concert with the slice operator let
us remove events from the input that are guaranteed not to
participate in a successful match. For this example pattern
we get the following filters:

φS(s) ≡ ∃p ∈ Slice(s.t ∶ s.t+tout)∈,s.user=(P
σ) ∶

Slice(s.t ∶ p.t)∈, s.user=(R
σ) = ∅

φR(r) ≡ Slice(−∞ ∶ r.t)∈,true,(r.t ∶∞)∈,true(Q) ≠ ∅
≡ ∃s ∈ Slice(−∞ ∶ r.t)∈,true(S

σ),
∃p ∈ Slice(max(s.t,r.t) ∶ s.t+tout)∈,s.user=(P

σ) ∶

Slice(s.t ∶ p.t)∈, s.user=(R
σ) = ∅

φR(nr) ≡ Slice(−∞ ∶ nr.t)∈,nr.user≠,(nr.t ∶∞)∈,true(Q) ≠ ∅
≡ ∃s ∈ Slice(−∞ ∶ nr.t)∈,nr.user≠(S

σ),
∃p ∈ Slice(max(s.t,nr.t) ∶ s.t+tout)∈,s.user=(P

σ) ∶

Slice(s.t ∶ p.t)∈, s.user=(R
σ) = ∅

φP (p) ≡ ∃s ∈ Slice(p.t−tout ∶ p.t)∈,p.user=(S
σ) ∶

Slice(s.t ∶ p.t)∈, p.user=(R
σ) = ∅,

which when applied to their corresponding symbolic set will
retain only those events that contribute to the output of
Q. We detail the procedure for generating these precise
filters from the relational query expressing the pattern in
section 4.2.

Because evaluating these filters would in many cases be as
expensive as computing the complete result Q, we use them
only as a starting point for deriving a set of abstract filters,
as a “relaxed” version of these precise filters, but that can be
applied with low processing and communication costs. We
do so by employing a series of data and predicate abstractions
that generate conservative versions of the original filters.

We showcase our techniques on the filter corresponding
to the S event variable, which highlights the fact that the
Search events in the output are those that have only Read-
review events by that same user between themselves and the
next Purchase event occurring within a tout window of time.

Data abstraction provides time and space efficient repre-
sentations for symbolic sets Sσ and R

σ
. For example, one



could abstract over time and coarsen timestamps t into time
intervals ⌊t⌉. Then, the time dimension of sets Sσ, R

σ
could

be efficiently encoded and queried as interval maps (i.e., bit
vectors where each bit corresponds to a time interval and
a set bit would denote the fact that an event has occurred
within the corresponding interval). Using this abstraction
the filter becomes:

φ
⌊t⌉
S (s) ≡ ∃p ∈ Slice⌊s.t ∶ s.t+tout⌉,s.user(P

σ) ∶

Slice⌈s.t ∶ p.t⌋, s.user(R
σ) = ∅

where in order to maintain conservativeness (i.e., φS → φ
⌊t⌉
S )

we must over-approximate the s.t ∶ s.t+tout range but under-
approximate the s.t ∶ p.t interval. Thus, in order to be sound
(and, depending on the filter) data abstractions may provide
both over- and under- approximations of the original sets.

There are many different ways to approach data abstrac-
tion. For example, hashing is one approach to abstract over
sets. If we use a compact representation of sets Sσ, R

σ

that stores time information only per user hash bucket as
opposed to individual user ids, then the resulting abstract
filter:

φ#user
S (s) ≡ ∃p ∈ Slice(s.t ∶ s.t+tout),#s.user(P

σ) ∶

Slice(s.t ∶ p.t),#s.user(R
σ) = ∅

does not satisfy our safety requirement (i.e. φS ↛ φ#user
S ).

This happens because hashing can only provide over approx-
imations of sets while, in order to ensure conservativeness,
the abstractions used for this filter need to provide both over
and under approximations. While there are several ways to
address this issue (for an alternative solution see section 4.3),
in the following we show how predicate abstraction can alle-
viate the problem.

Predicate abstraction encompasses a set of re-writings that
relaxes the filter by discarding those constraints that cannot
be safely or efficiently abstracted over. For instance, our
filter could be weakened into:

ψS(s) ≡ Slice(s.t ∶ s.t+tout), s.user(P
σ) ≠ ∅,

which eliminates only those search events that are not fol-
lowed by a purchase event within tout, and was obtained
from the base case of the existential quantifier in φS . Since
this version only requires over-approximation, one can safely
use hashing to abstract over the user id dimension of Pσ, i.e.
ψS → ψ#user

S , where

ψ#user
S (s) ≡ Slice(s.t ∶ s.t+tout),#s.user(P

σ) ≠ ∅.

Moreover, predicate abstraction also reveals the well known
Bloom join algorithm as an instance of our approach, wrt.
the join predicate P.user = S.user from the original query.
This becomes apparent if we ignore time in the filter above:

ψ#user
S (s) ≡ Slice∗,#s.user(Pσ) ≠ ∅,

and we use a Bloom filter to implement Slice∗,#s.user(Pσ).
More importantly, it highlights the fact that one can use
data and predicate abstraction to explore the entire spec-
trum of abstract filters, and make the choice between pre-
cision vs overheads on a case by case basis. We discuss
additional scenarios where predicate abstraction proves ben-
eficial in section 4.4.

3. RELATED WORK

Complex event processing has received extensive interest
in the literature [5, 9–11, 17, 26] and has enjoyed similarly
wide adoption in industry [1–4, 13], with most of the work
focused on online (near-real time) systems designed to de-
liver extremely low response times for mission-critical tasks
(for eg., blocking a credit card upon detecting fraudulent ac-
tivity). However, these systems experience scalability issues
as the volume of data that needs to be processed continues to
grow and considering that the pattern matching logic is typ-
ically implemented in a sequential manner. Moreover, the
optimizations that they deploy focus primarily on computa-
tion reuse and sharing [25], and thus are not appropriate for
addressing the demand for more parallelism.

In dealing with the increase in load, most systems dis-
miss, as early as possible, of all the input events that fail
to satisfy the selection predicates of at least one of the vari-
ables in a given pattern. A more aggressive preprocess-
ing step has been proposed by Cadonna et. al. [12], which
leverages both the structure of the pattern and the guards
of its variables to formulate a set of necessary conditions
for a window of events to contain a complete match. If a
particular window fails to meet those conditions its can be
ignored, thus completely sidestepping the pattern matcher.
While their proposal targets only patterns specified as se-
quenced event sets [11], we support arbitrary automata, and
for a large class we derive both necessary and sufficient (i.e.
precise) conditions for identifying complete matches. More
importantly, we discuss how the precision of these filters can
be traded in favor of low overheads by proposing data and
predicate abstractions, and we showcase their ability to min-
imize data shuffling when performing pattern matching over
a map-reduce framework.

Solutions for distributed/parallel pattern matching
have focused mainly on three directions: a) partitioning the
input, either by time windows [22] or key attributes [19], and
then processing each partition sequentially, b) partitioning
the pattern via query plans [6] that produce the output from
progressively larger sub-patterns and where the intermedi-
ary results are mined on distinct processing nodes, and c)
partitioning the set of partial matches/runs that need to
be explored at any given time [7]. The first approach is
vulnerable to data skew, in case of large time windows or
attribute keys with few distinct values, while the second one
does not support the Kleene star. More importantly, all of
them target only the pattern matching process itself and dis-
regard the communication costs incurred when the analysis
is performed on a map-reduce platform. By contrast, our
technique of abstract pattern matching limits the number of
events that need to be considered by the pattern matching
operator in the first place, and as such can even be used in
conjunction with the proposals described above. Moreover,
in our work we expose the inherent parallelism of patterns
by expressing them in terms of embarrassingly parallel rela-
tional operators.

Symbolic execution [21] has been proposed as a way to
speedup user-defined aggregates [24], and in particular pat-
tern matching routines executing within the reduce stages of
map-reduce workloads. The user defined aggregate is sym-
bolically evaluated on each partition of the input and only
the symbolic summary of the execution is submitted to the
reducer. The reducer can then determine the final result
based on the collected symbolic summaries. This approach
ends up shuffling in many cases significantly less data be-
tween mappers and reducers as the symbolic summaries are



typically much smaller than the original input. However,
as it requires that the data be already ordered by time, it
is not applicable to the common scenario where workload
wide considerations impose a different physical layout for
the input data. Moreover, even if the ordering constraint
on the input holds, this approach can still leverage abstract
pattern matching to address the pathological scenarios when
the symbolic summaries are just as large as the original in-
put, as it would allow it to more accurately prune unfeasible
paths based on a global view of the domain of join attributes.

Proposals for coping with out-of-order event series
have primarily focused on buffering mechanisms and effi-
ciently updating the internal structures of the pattern matcher
in response to events arriving late [15, 20, 23]. Since they
operate under the assumption that misplaced events are rel-
atively rare (i.e. the input stream is mostly ordered), use
time thresholds beyond which delayed events are simply ig-
nored, and rely on a complete view of the input, they cannot
mitigate the expensive data shuffling that precedes pattern
matching on map-reduce platforms.

4. DESIGN
Evaluating pattern matching queries in a map-reduce frame-

work usually adds a reduction step in order to sort the input,
which can become the main bottleneck of the workload, both
at the network level (large amounts of shuffled data) and at
the processing level. The standard approach to minimize the
cost of sorting/data shuffling has been to introduce a prepro-
cessing phase which first filters the input based on the selec-
tion predicates, i.e. removes all events that do not satisfy the
guard of at least one event variable while ignoring its join
predicates. This preprocessing phase can significantly reduce
both processing costs and latency since it takes linear time
in the size of the input (as opposed to O(nlogn) for sort-
ing) and is embarrassingly parallel, i.e. scales out with the
number of computing resources available. Moreover, it can
be merged with the previous operator in the data processing
pipeline thus incurring no extra costs for materialization or
data transfer.

In our work we extend the opportunities for query plan op-
timizations across all the stages of the workload, beyond just
pipelining the preprocessing phase of the pattern matcher,
by leveraging the fact that a large class of patterns can
be equivalently expressed as relational queries. Whenever
that is not the case we can soundly narrow the scope (i.e.,
through conservative predicate abstraction) of our optimiza-
tions to the sub-patterns that do. The resulting relational
expressions can then be optimized within the scope of the
entire (predominantly relational) workload based on decades
of progress in relational optimizations.

Even in the scenarios where the relational optimizer de-
cides that using the pattern matcher leads to the most effi-
cient query plan, we can leverage the relational expressions
to generate a precise filter which retains only those input
events that appear within a complete match. It achieves
that by fully exploiting the pattern’s structure along with
its join predicates (i.e., user ids in our motivating example),
as opposed to just the selection predicates (i.e., the unary
transition predicates). Applying the precise filter as part of
the preprocessing step leads to a dramatic improvement in
its reduction ratio. This is unsurprising considering that the
number of events forming complete matches is usually tiny
compared to the input stream’s size.

0 21
S Ev: S.name = “S”

R Ev: (R.user = SE.user → R.name = “R”)

P Ev: (P.name = “P”).(P.user = SE.user).(P.t < SE.t + tout)E Ev: E.name = “E”

Figure 2: Automata for the (S|E)R*P pattern.

However in many cases the precise filter would be too ex-
pensive to build and evaluate as such. Therefore, we coarsen
it to obtain an abstract filter which can be constructed and
queried in a time and space efficient manner. In particular,
we make use of both data and predicate abstraction in order
to generate a filter that, while conservative, closely matches
the precise filter. Thus, in many cases we manage to discard
most of the events that are guaranteed not to take part in a
successful match and significantly reduce the amount of data
fed into the pattern matcher. We explore the trade-offs be-
tween the overheads incurred in building/querying the filter
and its accuracy.

The derivation of abstract filters is not strictly tied to
the ability to generate a semantically equivalent relational
expression for a pattern. By adding a fixpoint construct, we
demonstrate analogous techniques for generating both the
precise and abstract filters.

4.1 From patterns to relational queries
To simplify the presentation we detail our approach on

patterns specified as a finite automata where each transi-
tion is annotated by an event variable and a guard. Turning
regular expressions-like patterns to automata is straightfor-
ward, and in many cases there is a direct mapping between
the pattern’s event variables and the automaton’s transi-
tions. Figure 2 shows the automaton corresponding to the
(S|E)R*P pattern, where S,R, and P, correspond to the same
”Search”, ”Read review” and ”Purchase” events described in
section 2, and E denotes the event of responding to a promo-
tional email. In the guards of the pattern, the SE variable
references either the S or E variable depending on the event
that initiated the current match.

We formally define a finite automaton asA = (S,T, sstart,C),
where S is the set of states, T is the set of transitions, sstart
is the initial state and C is the set of completion (accept-
ing) states. Each transition is defined in terms of the tuple
(X,pX , src, dst) where X is the variable binding the event
currently considered by that transition, pX is the guard (a
propositional formula) deciding whether the transition can
be triggered or not, and src and dst are the transition’s
source and destination states. The atomic formulas of the
guard are either selection predicates, which only reference
the variable associated with the current transition, or join
predicates, which may also reference the variables of preced-
ing transitions. In particular, the guards of start transitions
can only use selection predicates.

The translation to relational expressions are not limited
to acyclic automata, but also to automata with cycles of
fixed length, i.e. each iteration of the cycle has the same
number of transitions. This class of automata is of particular
importance as it covers the vast majority of patterns found
in benchmarks and in industrial workloads.

Notation. We usually denote states by indices i, j, k, and



we abuse notation to refer to transitions using the variable
name they introduce (eg. X,Y,Z). In addition we refer to
states and transitions also as nodes and edges, respectively,
in the corresponding graph of an automaton.

To streamline the presentation we begin by considering
automata with only cycles of length 1 and we distinguish
between cycle transitions and non-cycle transitions.

The translation process produces one relational query Qi
per state i, and the final relational expression of the au-
tomata is obtained by unioning all the queries generated for
the automata’s accepting nodes. Evaluating query Qi over
a set of events computes partial matches, i.e. sequences of
events, corresponding to all the possible paths between the
starting node and node i. Therefore, if i is the starting node
then its query returns an empty sequence while if i is an
accepting node then it returns complete matches found in
the input stream of events. Moreover, the partial (complete)
matches computed by Qi do not include the events matched
against cycle transitions therefore have a bounded length.

The schema of the queries we generate consist of a se-
quence of event variables, one for each non-cycle transition
that may occur along its associated set of paths. If a tran-
sition is triggered within a partial match, then its corre-
sponding variable is initialized by the event that triggered
it, otherwise that variable is assigned null. For our example,
the schema of query Q2 consists of S, E and P , and for each
of its output tuples either S or E is set to null.

State queries Qi are defined as the union of transition
queries QX over all the incoming non-cycle transitions into
state i, where each transition query QX computes partial
matches corresponding to the paths ending with transition
X. In turn, the QX query corresponding to a non-starting,
non-cycle transition is defined as the join between node query
Qk, where k is the source of the transition, and the input
relation of events, where each event considered is bound by
variable X. The condition enforced by QX consists of the
guard pX along with the constraint that the timestamp of
X succeeds the last event in the partial match produced
by Qk. Additionally, a nested query ensures that no other
events exist between the last event matched by Qk and the
event bound by X, except for events matching cycle tran-
sitions starting and ending in k. By contrast, for starting
transitions we only need to apply the transition’s guard pX
over the input relation.

The translation process iterates in topological order over
the nodes of the DAG obtained by ignoring the cycle tran-
sitions of the automaton. At each node i, it first generates
the queries for all its incoming non-cycle transitions QX and
then Qi is defined as their union. The schema of Qi is estab-
lished as the union of the schemas of the incoming transitions
QX .

Applying the procedure outlined above to our example
produces the following queries:

QS ={S ∣ S ∈ Ev ∶ pS} QE = {E ∣ E ∈ Ev ∶ pE} Q1= QS ∪QE
QP ={⟨SE,P ⟩ ∣ SE ∈ Q1, P ∈ Ev ∶ pP . (SE.t < P.t).

{R ∣ R ∈ Ev ∶ R.t ∈ (SE.t, P.t) . !pR} = ∅}
Q2=QP

Translating multi-transition cycles of fixed length
(≥ 1) to relational queries requires that we first normalize
them such that each cycle has a single starting node and a
single ending node, and that the two coincide. A starting
node for a cycle is defined as the destination of one of its

incoming edges, while an ending node is the source of one
of its outgoing edges. Cycles of fixed length cannot have
transversal edges (paths), i.e. edges (paths) that connect
non-adjacent nodes in the cycle, as this would violate the
restriction that each of the cycle’s iterations has the same
length.

Given an automaton with a cycle that has multiple start-
ing and ending nodes we first duplicate the cycle for each
additional starting node. Then, for the resulting cycles we
duplicate the path between their starting node and their
last ending node (i.e. the furthest from the starting node).
Finally, we change the source of each outgoing edge to the
corresponding node in the newly created path, resulting in
a cycle whose incoming and outgoing edges have the same
node as destination and source, respectively. By applying
this procedure to every cycle with multiple starting and end-
ing nodes we obtain a normalized automaton. While the
resulting automaton may have multiple cycles starting and
ending with the same node, all of those must also have the
same length.

The only part of the translation process that changes when
generalizing from automata with single edge cycles to nor-
malized automata is the specification of non-cycle transi-
tion queries QX , and in particular, the specification of its
nested query should the source state k of X be the start-
ing/ending point of a cycle. We recall that in the case of
cycles with a single transition Y the nested query enforces
that all events occurring in the interval between the last
event in the partial match computed by Qk and the times-
tamp of event variable X satisfy guard pY . By contrast,
in the case of multi-transition fixed length cycles, for each
event in the same interval we establish its position (based
on the count of events with smaller timestamps) and we ask
that it satisfies the guard of the transition corresponding to
that position in the cycle modulo the length of the cycle. If
multiple cycles initiate and conclude at the same node, we
alternatively have to enforce that all events in an iteration
satisfy the corresponding transition guards of a particular
cycle.

4.2 Precise filter generation
After translating patterns into relational queries a host

of relational optimizations become applicable, from column
pruning and partial aggregation to the selection of specific
join algorithms. In the following we detail our proposal for
speeding up pattern matching in a distributed environment
based on its representation in the relational world as a se-
ries of unions and joins. The first step in this process is
to derive a precise filter which retains from the input rela-
tion only those events guaranteed to appear in a successful
match. While it is understood that constructing and apply-
ing such filters may prove too expensive to evaluate directly,
we discuss them nonetheless as they are essential in guiding
the design of the abstract filter, its time and space efficient
variant.

The precise filter of an automaton A consists of multiple
components, one for each of its transitions, and an input
event is rejected if it does not satisfy any of these com-
ponents. In current work we derive precise filters only for
non-cycle transitions and single-edge cycles, since the fil-
ters for transitions in multi-edge cycles are impractical to
build/apply and abstract over, as they require the position
of the considered event within a particular time interval.

The precise filter φX corresponding to a non-cycle tran-



sition X of automaton A is extensionally defined in terms
of the events from the input that bind the event variable X
in the output of its semantically equivalent relational query
QA. Therefore φX can be obtained from the definition of
QA by projecting away (i.e. existentially quantifying) all the
other event variables in its output besides X. In our running
example the precise filter derived for transition P is:

φP (P ) ≡ ∃SE ∈ Q1 ∶ pP . (SE.t < P.t) .
{R ∣ R ∈ Ev ∶ R.t ∈ (SE.t, P.t) . !pR} = ∅

The precise filter φY of a cycle transition Y , with node
k as source and destination, selects from the input those
events that occur within interval (tZ , tW ), where tZ , tW , are
the timestamps of a pair of event variables Z,W , from the
output of QA such that Z,W are associated to non-cycle
transitions entering and respectively exiting k. φY does not
need to enforce the guard pY as it is guaranteed that all
events between tZ and tW satisfy pY based on the nested
query generated as part of the definition of QW (and which
was found to hold during the evaluation of QA). For the
cycle transition R in our example we generate the following
filter:

φR(R) ≡ ∃⟨SE,P ⟩ ∈ QA ∶ R.t ∈ (SE.t, P.t)

We take a bottom-up approach to building the filters as
it allows us to outline an evaluation strategy that operates
over sets and which uses set operations like union, intersec-
tion, set membership or emptiness testing. Adopting such
a set-centric evaluation strategy is advantageous in a dis-
tributed environment due to the embarrassingly parallel na-
ture of many set operators, but more importantly it gives
us a powerful knob in terms of the set representations that
we use, making it possible to trade off precision in favor of
performance. This strategy is what ultimately guides the
design of abstract filters (discussed in sections 4.3 and 4.4),
which make our solution practical.

As a first step we build a symbolic set Xσ for every transi-
tion variable X of an automaton A, which collects the values
of X’s fields joined throughout all the transition guards ofA,
as X is bound to the input events that satisfy pX ’s selection
predicates. We then re-write the precise filters by replacing
each event variable and selection predicate associated to a
transition with its corresponding symbolic set. Finally, the
join predicates get re-written in terms of slicing, intersection
and emptiness testing over these sets.

The process is showcased in section 2 where we derive
symbolic sets Sσ,Rσ and Pσ, which we then use in the def-
inition of precise filters φS , φR and φP along with slicing
operators that express the join predicates of the pattern.
We omit the minute technical details of turning transition
guards into expressions over symbolic sets as they are not
particularly challenging. It involves turning the guards into
disjunctive normal form, and replacing in each conjunct the
transition variables and their selection predicates with the
corresponding symbolic set, and finally using slicing to en-
code their join predicates.

4.3 Data abstraction
Precise filters provide a template for designing sound and

conservative set abstractions. Such abstractions should never
eliminate events that could contribute to a successful match.

The sets we abstract over contain tuples as opposed to sin-
gle values, where each tuple field holds the values relevant
to a particular join predicate. Similarly, the abstractions

we chose need to be multidimensional in the sense that they
must allow the testing of the domain of values corresponding
to a specific join predicate, independent of the others. Sec-
ond, we note that besides supporting set intersection and set
union, the choice for a particular set abstraction is deeply
influenced by the particular kind of predicates said abstrac-
tions needs to support. For example, in the case of equality
joins an appropriate data abstraction would be to use Bloom
filters as they provide a low cost solution for testing whether
o value belongs to a set, with the guarantee of no false neg-
atives. For enforcing inequality joins on the other hand, an
interval map, i.e. a bit vector where each bit stands for a
particular interval in the domain, provides a similarly low
cost abstraction.

Finally, depending on whether the symbolic sets are tested
for non-emptiness or emptiness, their abstraction has to pro-
vide either an over- or an under-approximation of the origi-
nal contents. For instance, when abstracting over the precise
filter φS from the example in section 2, we have to use over-
approximating set abstractions for Sσ, while the opposite is
true for R

σ
. While this is of no concern for set abstractions,

like interval maps, which support both, it does pose a chal-
lenge to abstractions based on hashing, like Bloom filters,
which can only provide over-approximations.

One way to address the issue raised by hash-based data
abstraction wrt. sets that require under-approximation is to
replace them with the coarsest under-approximation possi-
ble, i.e. the empty set ∅ (as showcased in section 2). Alter-
natively, one can re-write the precise filter using min aggre-
gates:

ωS(s) ≡ min{p.t ∣ p ∈ Slice(s.t ∶ s.t+tout), s.user(P
σ)}

< min{r.t ∣ r ∈ Slice(s.t ∶ s.t+tout), s.user(R
σ)},

which captures the fact that a Search event is part of a
complete match if the next Purchase event precedes the next
event different from Read-review. Now, we can safely use
hashing to abstract over user ids as follows:

ω#user
S (s) ≡

min
u∈#s.user

min{p.t ∣ p ∈ Slice(s.t ∶ s.t+tout), u(P
σ)}

< max
u∈#s.user

min{r.t ∣ r ∈ Slice(s.t ∶ s.t+tout), u(R
σ)}.

While for this example it was possible to come up with an
alternative formulation of the precise filter, this may not al-
ways be the case. And even if it is possible, the alternatives
may be too expensive to materialize and query (for eg. evalu-

ating ω#user
S can easily be more costly than φ

⌊t⌉
S ). Therefore,

in the next section we discuss how predicate abstraction can
mitigate these kinds of issues.

4.4 Predicate abstraction
We propose predicate abstraction, ie. the technique of weak-

ening the precise filters by discarding some of their predi-
cates, as a way of overcoming the challenges that can arise
when turning them into abstract filters. For example, it may
happen that for some predicate types (for eg. x.Contains(y),
where x, y are strings) we simply cannot provide any data
abstraction, and even for those that we can, materializing
and querying those data abstractions might prove too ex-
pensive.

Predicate abstraction is an essential component of our ap-
proach allowing us to strike the right balance between the
data reduction that the abstract filters provide on one hand,



and the overheads introduced by their data abstractions on
the other. For instance, we may choose to discard predicates
that have very low selectivity, i.e. the reduction in input data
that they provide does not justify the cost of enforcing them.
Similarly, one may turn to predicate abstraction when deal-
ing with patterns with a large number of join predicates
or transitions, in order to mitigate the increased overheads
incurred by their data abstractions.

Given a join predicate θ(X.f, Y.f), the definition of pre-
cise filter φX(x) is bound to contain a corresponding slicing
of Y ’s symbolic set as Slice...,f(Y σ). Just like in the case
of data abstraction, depending on whether predicate θ ap-
pears in a negated sub-clause or not, its abstraction needs to
be under or over approximating, in order to remain sound.
More precisely, we enforce the over-approximation of θ by
assuming that the f dimension of Y σ is invariably the en-
tire domain of f . Analogously, the under-approximation of
θ leads to the assumption that the f dimension of Y σ is in-
variably void, which by consequence reduces the entire Y σ to
the empty set. In section 2, it was the under-approximating
abstraction of predicate S.user = R.user that produced the
relaxed filter ψS , by turning R

σ
in φS to the empty set.

Finally, predicate abstraction need not be applied sym-
metrically, i.e. given join predicate θ(X.f, Y.f) one could
choose to abstract over Xσ’s f dimension but not over the
f dimension of Y σ, or vice-versa. This can prove useful if
one of the symbolic sets is known to be a subset of the other,
thus one would need to build an abstract filter only for the
smaller one. Moreover, considering that initial or final tran-
sitions typically have the fewest number of matching events,
one might choose to only collect and abstract over the sym-
bolic sets of those transitions. Due to their low cardinality
these sets are likely to have very high filtering power and the
data abstractions used to enforce them can achieve higher
precision for the same operating costs (considering the small
number of values to store and query). Applying this heuris-
tic to our example from section 2 wrt. to the final transition
P (as we expect to have relatively few purchasing events)
produces the following relaxed filters:

γS(s) ≡ Slice(s.t ∶ s.t+tout),s.user(P
σ) ≠ ∅

γR(r) ≡ Slice(r.t ∶∞),r.user(P
σ) ≠ ∅

γP (p) ≡ true,

as obtained from the definitions of φS , φR and φP by replac-

ing Sσ with the full domain of time/user ids and R
σ

with
the empty set. By further applying data abstraction to these
filters, we end up with a relatively cheap way to dispose of a
large number of the input events, irrelevant to our pattern.

4.5 Building filters through fixpoint
Abstract filters are not strictly tied to the expressibility

of automata as relational queries, but that they can also be
computed for an arbitrary automaton by using a fixpoint
operator that keeps track of provenance information. The
fixpoint operator we consider assigns to the starting node the
empty sequence and then iteratively builds for every node
of the automaton its corresponding set of (partial) matches,
until no more new matches are found. In every iteration, for
each node i and each of its outgoing transitions X, the par-
tial matches added by the previous round to i get extended
if matching events are found within the symbolic set of X.
The newly found matches then get added to the collection
of matches corresponding to X’s destination, and the pro-
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Figure 3: Map-Reduce execution plans for pattern mining
using: (i) the Baseline approach or (ii) Abstract Pattern
Matching.

cess starts over. Since we never remove partial matches we
are guaranteed to reach a fixpoint. Based on the complete
matches collected by the accepting nodes, we also update the
abstract filter’s components corresponding to the transitions
along their path.

In designing the fixpoint operator we similarly make ex-
tensive use of sets and set operators. In particular, the (par-
tial) matches we compute for each node i of the automaton
are represented as a sequence of sets, one for each transition
that may occur on a path from the start node to i. Then
the abstract filter for a specific transition can be obtained
by unioning its corresponding set across all the accepting
nodes. When deciding whether a partial match can be ex-
tended by triggering transition X, we simply intersect the
symbolic set Xσ with the projection from the partial match
of the corresponding join fields, i.e. those fields of previously
occurring transitions that are joined against X. If the re-
sult is empty then the extension is not possible, otherwise a
new partial match gets created whose corresponding set for
transition X is the result of the intersection.

5. IMPLEMENTATION
In the following we detail how we implemented our solu-

tion for speeding up large scale event series pattern match-
ing on top of the Cosmos/Scope [14] map-reduce framework.
We recall that the standard way of performing event-series
pattern matching in such frameworks is to first remove all
the events that do not match any of the selection predicates
specified by the pattern, and then to sort on time/reshuffle
the remaining events and finally process them using a pat-
tern matching engine (see figure 3(i)).

Our solution significantly extends the amount of data that
gets filtered out during the preprocessing stage by construct-
ing an abstract filter which also enforces the join predicates
occurring in a pattern (as opposed to just the selection pred-
icates). The execution plan that we propose introduces 3
intermediary steps as is outlined in figure 3(ii). The first
one collects in a parallel fashion a symbolic set for each
event variable of the pattern (step 2a), followed by the union
of these sets across all partitions of the input, and the re-



sults are then used to build the abstract filter by enforc-
ing the join predicates between event variables (step 2b).
We then broadcast the abstract filter back to the prepro-
cessing nodes and have them apply it over the output of
the initial selection-predicate based filter (step 2c). Finally,
the remaining events are sorted/reshuffled, just like in the
standard approach and processed by the pattern matching
engine.

In implementing the execution plan in figure 3(ii), we
make use as much as possible of the relational constructs and
annotations provided by the Scope query language in order
to maximize the potential for optimizations at the level of
the entire data processing pipeline (for eg., we use native
Scope to extract the event fields used in constructing the
symbolic sets as well as to apply the filters that we build).
For operating with the set abstractions themselves we use
the rich extensibility features of Scope, all the while provid-
ing hints to its query optimizer.

Even though the abstract filters have the potential to dra-
matically reduce the amount of data that gets sorted/reshuffled
/pattern matched, constructing them introduces overheads
both in terms of processing costs and latency. In terms of
processing costs we note that, while the construction of the
symbolic sets can be done in the same pass as the selection-
predicate based filtering, for applying the abstract filters we
need a second pass over the data. Nonetheless, since apply-
ing a filter is linear in the size of the input, this extra pass
ends up being much cheaper than sorting on time the same
input, and if the reduction ratio of the filter is considerable
then applying it results in a net win.

In terms of latency, our approach also introduces an extra
reduction phase as required for aggregating the symbolic sets
computed on each partition to a particular node where we
can propagate the constraints specified by join predicates in
order to obtain the abstract filters. This is also followed by a
broadcast phase that delivers the abstract filters back to the
nodes processing the input stream. In order to minimize the
penalty in latency incurred by these two steps we limit the
size of the abstract filters to the order of megabytes and we
exploit the algebraic properties of the operators of the set
abstractions that we use in order to optimize the aggregation
(i.e. we make use of a recursive user defined aggregates).

6. EVALUATION
We tested our approach on 2 workloads: i) an internal Mi-

crosoft production system, consisting of 15 patterns (A1-15)
matched over telemetry events collected within a 2 hour in-
terval, and ii) GitHub, performing repository analytics (pat-
terns G1-3) over the GitHub dataset consisting of events col-
lected over a 5 years period. All transitions in a pattern have
a main key constraint, i.e. all events in a match should be-
long to the same join condition for the Microsoft workload,
or the same repository for the GitHub patterns, and a time
constraint, i.e. all events considered should occur within a
timeout from the initial event in the match. In addition, 9
patterns also have a secondary key constraint between some
of their transitions. The characteristics of our workload are
summarized in figure 4. The queries that we experiment
with have up to 25 transitions and make use of both union
and Kleene star. In particular, queries A10 and A15 apply
the Kleene star over a sub-pattern as opposed to a single
query variable.

We experimented on a virtual cluster consisting of 85

nodes as part of the Cosmos [14] infrastructure. We as-
sess the benefits provided by our approach in terms of the
ratio of input events vs selected events, the total execution
time across the processing nodes of the cluster, and the time
it takes to complete the query (latency). In measuring the
data reduction provided by our abstract filters for a spe-
cific query we use as baseline only the events from the input
stream that satisfy the selection predicates of some transi-
tion in the query. This way we can evaluate our approach in
isolation from the standard technique of pushing selection
predicates into the scan operator of a query. The resulting
amount of data to be processed by each query is detailed in
figure 4. Finally, we use query A5 to highlight the individ-
ual filtering potential of different join predicates, as well as
their sensitivity wrt. the amount of state dedicated to their
abstract representation.

Note that we also do not measure the cost to run the pat-
tern matching engine and so our overall system processing
time and latency numbers are conservative estimates of a
production installation of our system.

6.1 Processed data reduction
In order to establish the raw potential of our approach we

look at the amount of data that is discarded by the abstract
filters that we build. The baseline consists only of events
whose type matches the event type of a transition in the
query.

Figure 5a shows on a logarithmic scale the ratio between
the data processed by the baseline approach and the data
processed by our solution when considering different join
predicates for building the abstract filters. In particular,
we look at three types of join predicates: those referencing
the main join key of the query (MainKey), those imposing
constraints on the timestamp of matching events (Time),
and those referencing a secondary join key (SecondaryKey).
We report the results provided by the MainKey filter as well
as its combination with the Time and SecondaryKey filter
(for queries with joins on a secondary key).

For 12 out of the 18 queries in our workload we obtain at
least a 10x reduction in the amount of data that has to be
considered by the pattern matcher, with 3 of them ending
up processing 5 orders of magnitude less data. The other 6
queries exhibit modest or no data reduction. This is mainly
due to the precision lost by our abstract filters, as well as
the fact that not all join predicates from a query can be
efficiently abstracted over.

While incorporating extra join predicates in the abstract
filters leads to further savings, it is dependent on the query
and the stream of events which additional join predicate
would provide the most benefits. In our workload we observe
that adding the Time filter for queries A5 and A8 provides
the biggest improvement while for queries A2-4, A10, A14
and G1 the SecondaryKey filter is more advantageous. Due
to this variability one has to decide on a query by query
basis which join predicates to use and how much state to
allocate for them within the abstract filter. For our work-
load we assign to the MainKey, Time and SecondaryKey
filters between 16KB and 4MB, 8B and 180B, and 2B and
8B, respectively. This allocation has been chosen under the
constraint of a total size for the abstract filter in the or-
der of megabytes and while considering the particularities
of queries, for example, we take into account the fact that a
query with a large timeout window would not benefit from
a finegrained Time filter.



Query A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 G1 G2 G3
No. of Transitions 2 3 3 2 3 2 3 5 6 25 4 5 3 13 18 3 4 2
Has Union ✓ ✓ ✓ ✓ ✓ ✓

Has Kleene Star ✓
✓

(group)
✓ ✓ ✓ ✓

✓

(group)
✓

Has SecondaryKey ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Input Size(GB) 216 321 477 264 1361 180 148 158 1167 587 234 1167 286 366 141 593 593 85

Figure 4: Workload characteristics
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Figure 5: Reduction ratios of processed data and processing
speedups when using abstract filters wrt. the corresponding
baseline measures.

6.2 Abstract filter size vs reduction ratio
We vary the size of the abstract filter that we build as well

as its configuration in order to asses the impact on the re-
duction ratio it provides. In particular, we experimented for
query A5 with filters of sizes between 1024 to 8192KB and
with a granularity for the MainKey filter between 65K to 2M

distinct values. For each abstract filter size and MainKey
granularity we devote the rest of available space to either the
Time or the SecondaryKey filter. Since the filters we build
are multiplicative in their composition, the granularity af-
forded to the Time and SecondaryKey filters varies between
4 and 1024 distinct values depending on the granularity of
the MainKey filter as well as the total size of the abstract
filter. In addition we record for reference the reduction in
data achieved just by the MainKey filter for its different
configurations.

From the results presented in figure 6 we conclude that
for query A5, MainKey+Time is the most effective config-
uration as it provides the most reduction in the number of
input events irrespective of the other parameters of the ab-
stract filter. As expected, the bigger the size of the abstract
filter the larger is the reduction rate achieved. We also note
that the distribution of state amongst the components of the
abstract filter is also important, as refining the granularity
of only one of its components while keeping the total size
of the filter fixed can experience a sweetspot beyond which
the reduction rate is negatively impacted. This is reflected
in our results for the MainKey+Time configuration where
the 512K granularity setting for the MainKey component
outperforms the 2M setting across all filter sizes. The drop
in the reduction rate is a consequence of the fact that the
MainKey filter reaches a plateau, beyond which increasing
its granularity no longer increases the reduction rate, while
decreasing the granularity of the Time filter is bound to de-
crease its filtering power.

There is also a knock-on effect between the different com-
ponents of the abstract filter, as a poor choice for the granu-
larity of one component can inhibit the filtering potential of
the other components as well. For example, in query A5 a
too small granularity for the MainKey filter (65K setting in
figure 6) results in poor performance for the SecondaryKey
component as well, as it cannot cope with the large num-
ber of events and their associated secondary keys it needs to
discriminate between. Notably, the Time component is less
susceptible to this issue.

6.3 Total processing time speedup
In the following we look at the total processing cost across

all nodes in the cluster. This is a particularly relevant metric
for cluster setups that allow workload consolidation or data
centers that charge users based on total number of “process-
ing hours” consumed. Figure 5b shows speedups of 1.25x
to 2.14x for 11 out of the 18 queries, while 5 patterns ex-
perience slowdowns of at most 0.62x. The slowdowns are a
consequence of performing an additional pass over the input
in order to build the abstract filters, with little or no benefit
in terms of discarded events.

In order to highlight the tradeoffs of our approach we
break down the baseline execution of a query into the time
it takes to i) read and sort the data, and ii) perform the re-
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duction step. On the other hand for our technique we look
at the time it takes to i) read the data, ii) build the symbolic
state associated with each transition, iii) reduce the symbolic
state associated to each transition down to an abstract filter
for the entire query and broadcast it back to every mapper,
iv) filter the input events based on the abstract filter, and v)
perform the reduction step over the remaining events. For
both the baseline and our approach, the final reduction step
just collects the events from the mappers, but does not per-
form the pattern matching. We made this choice in order to
asses our solution independent from a particular implemen-
tation of the pattern matching operator and to underscore
the fact that any of the existing complex event processing
systems could benefit from our approach. Moreover, as the
cost of pattern matching is typically proportional to the size
of the input, taking it into consideration would more nega-
tively impact the baseline approach than ours.

By discarding some of the input events our solution cuts
the cost of the sorting and reduction phases when compared
to the baseline approach, while adding the overhead of build-
ing and applying the abstract filters. When the number of
events removed is significant this leads to an overall lower
processing time as can be seen in figure 7. Since every join
predicate included in the abstract filter incurs additional
costs when building and applying the filter, to maximize
performance one should consider only the smallest/cheapest
set of predicates able to filter the input down to the order
of gigabytes/tens of gigabytes.

In particular the additional reduction in data provided by
the Time filter for query A5 does not translate in lower pro-
cessing time (see figure 7a). This happens because the de-
fault MainKey filter already drastically reduces the amount
of data that needs to be processed by the pattern matcher.
Therefore the performance gain from further reduction is
easily canceled by the cost of building the additional filter.

0:00 6:00 12:00 18:00 24:00

           MainKey+SecondaryKey

MainKey+     Time

MainKey
Baseline

Time(hours)

Read Collect Constraints Build/Broadcast Filter Apply Filter Reduce

(a) A5

0:00 1:12 2:24 3:36 4:48 6:00

           MainKey+SecondaryKey

MainKey+     Time

MainKey
Baseline

Time(hours)

(b) A3

Figure 7: Breakdown of the total processing time for queries
A5 and A3.

A similar situation occurs in query A3 where the sweet-spot
is provided by the combination of MainKey and Time pred-
icates, even though the combination of Main and Secondary
Key filters manages to discard the largest number of events
(figure 7b).

6.4 Latency speedup
In terms of end-to-end running times we record speedups

between 1.08x and 1.78x for 8 out of the 18 queries in our
workload, while for 4 of them our approach performs within
5% of the baseline (see Figure 5c). Just like in the case
of processing times, the slowdowns in latency mainly corre-
spond to queries for whom the abstract filters do not signif-
icantly reduce the amount of data processed by the pattern
matcher (below 5x).

We examine the performance of queries A12 and A13 as it
highlights another important factor in the latency speedup
achieved by our approach. While for both queries the ab-
stract filters discard a significant number of the input events
and as such have smaller total processing times than the
baseline, only for A12 this translates in smaller end-to-end
running times. This happens due to the difference in the
initial size of the input, 1.2TB for A12 vs 307GB for A13,
which when processed on a 85 nodes cluster results in aver-
age running times of the reduction phase of 3.8 minutes for
A12 vs 46 seconds for A13. Even though in our approach the
reduction phase for A13 takes only 5.6 seconds on average
due to the smaller number of events being processed, that is
not enough to compensate for the additional latency intro-
duced by the phases that build and broadcast the abstract
filters. While the latency of these phases can be minimized
by decentralizing the process of building the abstract filters,
developing and deploying such techniques falls outside the
scope of our current work.

7. CONCLUSIONS AND FUTURE WORK
Complex event processing and pattern matching is be-

coming commonplace in many analytics workloads over in-
creasingly larger datasets. Consequently, it has to be able



to cope with a growing number of constraints wrt. to the
physical layout of the data as well as enable optimization
opportunities at the level of the entire processing pipeline.
In our work, we translate a large class of commonly occur-
ring patterns to relational queries in order to take advan-
tage of decades of progress in relational optimizations. This
is of particular importance, considering that most stages of
data analytics workloads are also relational. In addition, we
propose the technique of abstract pattern matching which
leverages the relational representation of patterns to derive
an abstract filter which discards those events guaranteed not
to participate in a complete match and we explore the trade-
off between the accuracy vs the operating cost of the filter by
designing set abstractions that efficiently represent the do-
main of the join attributes in the pattern. Finally, we show
that abstract pattern matching is effective in dramatically
reducing the amount of data that needs to be shuffled over
the network and processed by the pattern matching operator
(from terabytes to gigabytes), and thus provide significant
speedups to the pattern mining task.

While we can currently translate to relational queries the
vast majority of complex event patterns encountered in the
literature and in an industrial benchmark, we would also
like to formally define the largest class of patterns for which
such a translation is possible.

The approach we took in designing abstract pattern match-
ing can be extended to optimize a large class of user-defined
aggregates (UDA) that face challenges wrt. to the physical
layout of their input data similar to those of pattern match-
ing operators. To do so, one has to first collect symbolic sets
for the variables binding input tuples, and then refine them
by propagating constraints while interpreting the UDA on
top of them. The symbolic sets that result from following
paths that lead to successful outputs can then be used to
discard irrelevant tuples from the input. Abstraction, both
in terms of UDA’s interpretation as well as the representa-
tion of sets, is bound to play a key role, just like it did in
our refinement from precise to abstract filters.
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