
Locking timestamps versus locking objects

Marcos K. Aguilera
VMware Research

Tudor David∗

IBM Research, Zurich
Rachid Guerraoui

EPFL
Junxiong Wang

EPFL

ABSTRACT

We present multiversion timestamp locking (MVTL), a new genre of

multiversion concurrency control algorithms for serializable trans-

actions. The key idea behind MVTL is simple: lock individual time

points instead of locking objects or versions. After presenting a

generic MVTL algorithm, we demonstrate MVTL’s expressiveness:

we give several simple MVTL algorithms that address limitations

of current multiversion schemes, by committing transactions that

previous schemes would abort, by avoiding the problem of serial

aborts and ghost aborts, and by o�ering a way to prioritize transac-

tions that should not be aborted. We give evidence that, in practice,

MVTL-based algorithms can outperform alternative concurrency

control schemes.

1 INTRODUCTION

Serializable transactions are a powerful paradigm available in many

computing systems, such as transactional memory, database sys-

tems, and key-value storage systems. To ensure serializability, trans-

actions require a scheme for concurrency control to handle any

negative consequences of transaction interleaving.

The literature on concurrency control is rich [5, 30], and a particu-

larly appealing class of algorithms is calledmultiversion concurrency

control [4]. Brie�y, these algorithms keep a history of each object,

containing many versions of the data with associated timestamps.

This history gives the system a choice of which version to use when

an object is accessed. This choice permits more transactions to

execute concurrently without blocking or aborting. For example,

in some multiversion algorithms [5, 8], read-only transactions can

execute without ever blocking or aborting, and update transactions

can concurrently update the same object. Enabling more concur-

rency has become particularly important with the proliferation of

multi-core and large-scale systems. Multiversion algorithms have

wide application: they are used often in database systems both

commercial and academic [10, 22, 30, 31], and more recent work

has applied them to key-value storage systems and transactional

memory (e.g., [11, 17–19, 25, 26]). In this paper, we do not restrict

ourselves to particular applications, but rather study multiversion

algorithms in their broadest scope.

There are three main genres of multiversion algorithms: lock

based, timestamp ordering, and serialization graph based [5]. Lock-

based algorithms (e.g., MV2PL [5]) acquire locks to avoid the ill-

e�ects of concurrency; these algorithms are very simple. Timestamp

ordering algorithms (e.g., MVTO [5]) assign a timestamp to each

transaction, and then serialize transactions by timestamp; these

algorithms permit read-only transactions to execute without ever

aborting. Serialization graph algorithms (e.g., MVSGT [30]) detect

cycles in the serialization graph to prevent a violation of serializ-

ability; these algorithms permit higher levels of concurrency than

the alternatives.

∗Work done while the author was at VMware Research and EPFL.

Despite their many bene�ts, all types of multiversion algorithms

have limitations. Lock-based algorithms signi�cantly restrict the de-

gree of concurrency. Timestamp ordering algorithms are susceptible

to aborts, including serial aborts—aborts in serial executions—and

ghost aborts—aborts caused by a con�ict with a transaction that

already aborted. Serialization graph algorithms are complex and

incur signi�cant computation overheads [2, 18, 23].

In this paper, we introduce a new genre of multiversion algo-

rithms, called multiversion timestamp locking or MVTL. MVTL is

based on a simple idea: use locks as in lock-based algorithms, but

lock individual timestamps of objects, rather than entire objects at

a time. A transaction is allowed to commit if it can �nd at least one

timestamp that it managed to lock across all its objects. Intuitively,

MVTL performs well because it uses locks with �ne granularity: not

only individual objects have separate locks, but individual times-

tamps within objects have their own locks. Locking at �ne granular-

ity increases parallelism and decreases blocking and aborting, as the

system can explore many serialization points for each transaction.

Conceptually, MVTL keeps a lock state for each object and each

timestamp, which amounts to an in�nitely large lock state. How-

ever, in practice we can reduce the lock state signi�cantly using

interval compression, so that each object holds just a few lock

intervals, and this state can be subsequently discarded when the

associated versions are purged.

To precisely de�ne MVTL, we give a generic algorithm (§4) that

has several nondeterministic choices, such as what timestamps each

operation tries to lock, and how locks are acquired (wait or give up

on blocked locks). We prove that these choices do not a�ect safety:

the generic algorithm is correct irrespective of them. However, the

choices are crucial for performance.

We then propose several speci�c algorithms that specialize the

generic MVTL algorithm by �xing these choices to obtain di�erent

bene�ts (§5). These algorithms are simple and address some impor-

tant drawbacks of existing multiversion algorithms, such as serial

aborts, ghost aborts, the lack of a priority scheme for transactions,

and more. We also show that pessimistic and timestamp ordering

algorithms can be seen as special cases of MVTL. Thus, in a precise

sense, MVTL uni�es these algorithms.

Next, we discuss some practical considerations around MVTL,

such as how to compress the lock state (§6). We separate out these

considerations because they are orthogonal to the concepts under-

lying the MVTL algorithm. However, they are important to using

MVTL in practice.

Then, we show how to extend the basic MVTL algorithm to

distributed transactions in a message-passing system (§H). We

believe MVTL is particularly relevant in this setting as it can be

quite communication e�cient.

We implement an MVTL-based algorithm, and compare its be-

havior with multiversion and lock-based alternatives. The results

indicate signi�cant advantages of MVTL in read-write workloads,

and no disadvantages under read-only workloads.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148031476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To summarize, the contributions of this paper are as follows:

• We propose a new genre of multiversion algorithms for transac-

tions, called multiversion timestamp locking (MVTL), which is

based on the idea of locking timestamps.

• We give several MVTL algorithms, which address various limi-

tations of current multiversion algorithms.

• We show that MVTL generalizes both multiversion timestamp

ordering and pessimistic multiversion algorithms.

• We discuss practical considerations for implementing MVTL,

including techniques to compress the lock state.

• We describe a version of MVTL for distributed transactions.

• We implement an MVTL-based algorithm and showcase its ad-

vantages over alternatives.

The main contribution is conceptual in nature: locking individual

timestamps is a new way to approach multiversion algorithms. The

speci�c MVTL algorithms we present are simple and just scratch

the surface; the investigation of additional MVTL algorithms is an

exciting direction for future work. Also interesting is to implement

MVTL in other types of transactional systems, such as software

transactional memory, transactional key-value storage systems,

transaction object systems, and database systems. While the fun-

damental MVTL algorithms we present are system agnostic, the

details of how these algorithms can be best implemented depend

on the system and deserve further study.

For ease of exposition, some details of our contribution are given

in the appendix, including proofs and pseudo-code of some algo-

rithms.

2 MODEL

We consider a standard model for a multi-threaded concurrent sys-

tem [14]. The system has processes that communicate via atomic

shared memory. The system is asynchronous: there are no bounds

on the relative speed of processes. We assume the existence of a

discrete global clock with domain T = {0, 1, . . .}, and processes

may or may not have access to the global clock. More precisely,

processes may have local clocks that match the global clock (“syn-

chronized clocks”) or that are within a known bound ϵ of the global

clock (“ϵ-synchronized clocks”).

We are interested in algorithms that implement a transactional

storage system. Such a system maintains a set of objects and allows

processes to manipulate the objects using transactions. Each object

has a unique key (identi�er) and, by abuse of language, we refer to

the object and its key interchangeably. The system supports four

operations with their usual semantics: begin(tx) starts a transaction

tx, commit(tx) tries to commit tx and returns a success indication,

read(tx,k) reads key k within tx, and write(tx,k,v) writes v to k

within tx. Transactions are dynamic: their read and write operations

can depend on the results of prior operations in the transaction.

Our correctness condition is multiversion view serializability,

a form of serializability well-suited for multiversion algorithms.

Roughly speaking, this condition requires every multiversion sched-

ule of the algorithm to be equivalent to a serial monoversion sched-

ule [5, 30].

Some of our results refer to a workload, which specify the trans-

actional work submitted to the system. More precisely, a workload

is a sequence of operations indexed by the transaction they belong

to, where each operation is read(k), write(k,v), or commit. We use

workloads to study how di�erent protocols react to the same inputs.

3 OVERVIEW

After recalling multiversion concurrency control, we introduce

timestamp locking and explain how it addresses weaknesses of

existing multiversion algorithms.

Multiversion concurrency control and theMVTO+algorithm.

The basic idea of multiversion timestamp ordering is to assign a

timestamp to each transaction and then use the timestamp to deter-

mine (a) what version the transaction reads from, (b) what version

it writes to, and (c) the serialization order of transactions. This idea

can lead to several slightly di�erent algorithms. To focus the discus-

sion, here we present a concrete algorithm denoted MVTO+, which

is identical to the MVTO algorithm in [5] but with an improvement:

it avoids cascading aborts by not reading uncommitted data. For

each object, MVTO+ keeps many versions and a timestamp for each

version. It is useful to think of each object as an evolving timeline

with values. Each transaction tx has a unique timestamp t , which

determines the version of objects that tx reads and writes. Speci�-

cally, when tx reads an object, it obtains the version of the object

with the largest timestamp before t . When tx writes an object, tx

does not immediately produce a new version but instead it stores

the written value in a temporary area for the transaction. Upon

commit, tx takes each written value in this temporary area and

produces a new version with timestamp t .

X

Y

Z

0 1 2 3 4 5 6 7 8 9 10

^

^

^

a

c

d

b

For example, the �gure above depicts three objects X , Y , and

Z . Each object has an initial version denoted ⊥. In addition, X has

two other versions with data a and b and timestamps 2 and 9; Y

has data c with timestamp 4; and Z has data d with timestamp 8.

Suppose a transaction tx is assigned timestamp 6. If tx reads X , it

obtains a—the largest version with a timestamp before 6. Similarly,

if tx reads Y , it obtains c . If tx writes e to Z and commits, then Z

gets a new version with data e and timestamp 6.

Ultimately, transactions are serialized by the order of their times-

tamps. A key implication is that, after tx reads X and obtains a,

another transaction should not produce a version ofX with a times-

tamp between 2 and 6. To prevent this behavior, MVTO+ keeps a

read-timestamp for each version: this is the largest timestamp with

which the version was read by a transaction. In the example, after

tx reads X and obtains a, the read-timestamp of a becomes 6 (if it

was not already larger than 6).

Timestamp locking.We look atMVTO+ slightly di�erently, using

our new notion of timestamp locking. This notion allows us to

generalize MVTO+ into our new MVTL algorithm. Rather than

read-timestamps, we can think that each object has several locks,

one for each timestamp. When tx reads X , rather than updating the

read-timestamp of a to 6, we can think that tx obtains a read-lock

on each timestamp between 3 and 6. When another transaction

2

wishes to write a version with timestamp, say 5, it must obtain

the write-lock on that timestamp. But the read-locks by tx prevent

this from happening, as required by MVTO+. We can now see the

read-timestamp of a as simply a compact representation of the fact

that there are read-locks between 3 and 6.

Thinking about timestamp locks has several advantages over

read-timestamps. First, with read-timestamps, it is not clear what

should happen if tx aborts: should the read-timestamp of a be up-

dated to its previous value? But what is the previous value if several

other transactions read a concurrently? This is a hard question, and

MVTO+ avoids it altogether by taking an unnecessarily conserva-

tive approach: when tx aborts, it leaves the read-timestamp of a at

6. We show that this choice leads to ghost aborts. In contrast, times-

tamp locks provide a better alternative: if tx aborts, its read-locks

are removed but the read-locks of other transactions remain.

Second, with timestamp locks, there is no reason that a trans-

action should be restricted to obtaining write-locks on just one

timestamp, or obtaining read-locks on a range that ends with the

transaction’s timestamp. Permitting more choices allows the system

to avoid serial aborts, as we explain later.

These advantages are captured by our MVTL algorithm, which

we now brie�y summarize. With MVTL, when a transaction wishes

to read an object, it selects a version of the object to read and obtains

read-locks on one or more timestamps adjacent to and immediately

following that version. To write an object, the transaction obtains

write-locks on one or more timestamps anywhere. To commit, the

transaction must �nd a single common timestamp that is read-

locked or write-locked across all objects read or written by the

transaction, respectively. If such a timestamp exists, the transaction

commits; otherwise, it aborts.

The exact timestamps that are locked by reads and writes depend

on a locking policy. The algorithm remains correct for any locking

policy, but a poorly chosen policy causes many aborts because

there is no common locked timestamp. We present some simple but

interesting algorithms using various locking policies, each with its

own advantages.

4 GENERIC MVTL ALGORITHM

We now present our generic MVTL algorithm in detail. We start

with some basic concepts (§4.1), explain a simple lock extension we

use (§4.2), and cover the main algorithm (§4.3). We present a central-

ized version of MVTL designed for a single server. We later describe

a distributed version of MVTL intended for distributed transactions.

Some practical considerations for implementing MVTL, including

how locks and data can be compacted, are discussed in §6.

4.1 Preamble

The system keeps many versions of data in an array Values[k, t]

where k is a key and t is a timestamp. To ensure processes pick

distinct timestamps, we add a process id to a timestamp; thus, a

timestamp is a pair (v,p) ordered lexicographically, where v is a

real number. There is a smallest timestamp denoted 0, and a special

value denoted ⊥, such that initially Values[k, 0] = ⊥ for every k .

4.2 Freezable locks

The MVTL algorithm deals with write-once objects—objects initially

set to ⊥ that may change their state at most once. We de�ne a

simple variation of readers-writer locks, which we call freezable

locks, which are appropriate for such objects and we use them in

MVTL. A freezable lock is similar to a readers-writer lock, except

that a lock holder can freeze the lock to indicate that it will never

release it. Freezing is useful because it tells other processes that they

should not wait to acquire the lock; we use this feature in several

specialized MVTL algorithms. If a lock holder does not freeze a

lock, it is expected to release it eventually.

We apply freezable locks to write-once objects as follows. A

process acquires the lock in write mode if it intends to write the

object. The process may ultimately fail to write if the transaction

aborts, in which case it releases the lock; but if the transaction

commits, the process freezes its lock to ensure other processes will

not try to write the object again. Similarly, a process acquires the

lock in read mode to read the object and it freezes the lock in case of

a commit; if the object was not written (its state is ⊥), this prevents

other processes from writing to it, sealing its fate.

4.3 Algorithm

Algorithm 1 The generic MVTL algorithm (part 1/2): main code

1: function begin(tx)

2: tx.readset← ∅; tx.writeset← ∅; tx.committs← ⊥

3: function write(tx, k, v) ⊲ write v to k in transaction tx

4: write-locks(tx, k) ⊲ write lock some subset of timestamps

5: add (k, v) to tx.writeset ⊲ remember key and value we wrote

6: function read(tx, k) ⊲ read k in transaction tx

7: tr← read-locks(tx, k) ⊲ read lock some interval [tr+1, . . .] with

Values[k, tr] , ⊥

8: if tr = ⊥ then return ⊥ ⊲ read failed

9: add (k, tr) to tx.readset ⊲ remember key and version we read

10: return Values[k, tr] ⊲ return committed value

11: function commit(tx) ⊲ try to commit transaction tx

12: commit-locks(tx) ⊲ locks to acquire at commit time

13: T ← {t : ∀k ∈ tx.readset.keys, tx has a lock on (k, t) and

∀k ∈ tx.writeset.keys, tx has a write-lock on (k, t)}

⊲ try to �nd a locked timestamp for tx

14: if T = ∅ then mark tx as aborted

15: else

16: tx.committs← commit-ts(T) ⊲ pick some timestamp in T

17: for (k, v) ∈ tx.writeset do

18: freeze write-lock for tx on (k, tx.committs) ⊲ freeze locks

19: Values[k, tx.committs] ← v ⊲ expose committed value

20: mark tx as committed

21: if commit-gc(tx) then gc(tx) ⊲ invoke gc or not

22: function gc(tx) ⊲ garbage collect locks of tx after it ended

23: if tx committed then

24: for (k, tr) ∈ tx.readset do

25: freeze read-locks for tx on [tr+1, tx.committs]

26: release all unfrozen read- and write-locks for tx

Algorithm 1 shows themain code of the generic MVTL algorithm.

For clarity, we assume that the code in lines 17–19 is executed atom-

ically, but we later remove this assumption (§6). To write a value

3

into key k , a transaction obtains zero or more write-locks on times-

tamps for that key (function write-locks in line 4). Intuitively, a

write-lock on a timestamp t for key k allows the transaction to com-

mit with timestamp t as far as accesses to k are concerned. After

getting the locks, the transaction remembers the key and value;

the write is not visible to other transactions until the transaction

commits.

To read a key, a transaction gets zero or more read-locks on

timestamps for that key (function read-locks in line 7), with the

requirement that these timestamps form a contiguous interval that

starts immediately after the version that the read returns. For in-

stance, if [tr+1, te] denotes the read-locked timestamps, then the

read must return the value committed with timestamp tr. This re-

quirement is necessary for serializability: intuitively, the read locks

permit the transaction to commit with any timestamp t ∈ [tr+1, te]

after having read v , by preventing other transactions from writing

a di�erent value with a timestamp between tr and te. After locking,

the transaction remembers k and tr; knowledge of k is necessary

to commit, and knowledge of both k and tr is needed to garbage

collect the locks of the transaction.

To commit, a transaction gets zero or more additional locks (func-

tion commit-locks in line 12) and tries to �nd a commit timestamp

t that is write-locked for every k in the write-set, and that is read-

or write-locked for every k in the read-set. (A key in the read-set

may be write-locked because the transaction read the key and then

wrote it.) If there are many such timestamps, the transaction picks

one (function commit-ts in line 16). The transaction then freezes

write-locks on that timestamp and records the written values so

that they can be seen by other transactions. As an optional step (as

determined by calling commit-gc in line 21), the transaction may

garbage collect the locks it holds. Doing so freezes the read locks

between the version read and the commit timestamp, and releases

all other locks. If the algorithm skips garbage collection on commit,

garbage collection can be invoked any time later in the background;

this is not shown in the code.

Algorithm 2 The generic MVTL algorithm (part 2/2): policy

1: function write-locks(tx, k)

2: acquire write-locks for tx on (k, T) for some set T

3: function read-locks(tx, k) ⊲ returns a timestamp or ⊥

4: acquire read-locks for tx on (k, T) for some T = [tr+1, . . .] where

Values[k, tr] , ⊥

5: either return tr or return ⊥

6: function commit-locks(tx)

7: acquire read- or write-locks for tx on some keys and timestamps

8: function commit-ts(T) return some t ∈ T

9: function commit-gc(tx) either return true or return false

The algorithm depends on a policy of what locks to acquire, how

to pick one of many possible commit timestamps, and whether to

garbage collect during commit; these choices can depend on the

transaction and other considerations. The choices are determined by

the functions that we mentioned above:write-locks, read-locks,

commit-locks, commit-ts, and commit-gc. The generic MVTL

algorithm uses a generic policy that makes these choices nondeter-

ministically (Algorithm 2). For example, to obtain write locks, the

generic policy nondeterministically picks a set T of timestamps to

lock. To obtain read locks, the policy picks an interval of timestamps

starting immediately after a committed version.

We prove that the generic MVTL algorithm is correct with its

nondeterministic choices (see Appendix A). Naturally, this correct-

ness carries over to any specialization that �xes the nondeterminis-

tic choices. These specializations lead to di�erent algorithms (§5).

Some policies of the generic algorithm may cause deadlocks,

where a process waits forever to acquire a lock. In such cases,

standard techniques for deadlock detection can be used to abort the

required transactions (e.g., cycle detection in the wait-for graph,

timeout, etc). In Appendix A, we show the following:

Theorem 1. The generic MVTL algorithm (Algorithms 1 and 2)

ensures serializability.

5 SIMPLE MVTL ALGORITHMS

We now give several simple algorithms that are special cases of the

generic MVTL algorithm, each with a di�erent bene�t. To specify

these algorithms, we specialize the generic policy of MVTL (Algo-

rithm 2). We provide proofs and pseudo-code substantiating our

claims regarding these applications in the appendices.

5.1 The preferential algorithm

Roughly speaking, the preferential algorithm, denoted MVTL-Pref,

works with multiple timestamps for each transaction, where one

of the timestamps is preferential. The algorithm tries to commit a

transaction using its preferential timestamp, but if doing so would

abort, it tries one of the other timestamps. To ensure viability of the

other timestamps, the algorithm locks them as necessary during

the execution.

More precisely, MVTL-Pref is parameterized by a function A(t)

that takes the transaction’s preferential timestamp and returns a

non-empty set of alternative timestamps di�erent from t . A(t) is a

choice of the user of the algorithm. For example,A(t) = {t−10, t+10}

indicates that t−10 and t+10 are the alternative timestamps for a

transaction with preferential timestamp t . The preferential times-

tamp itself comes from a clock, as in other timestamp-based proto-

cols.

We assume that clock timestamps are unique (e.g., by appending

the process id to each timestamp t) and that A(t) also produces

unique timestamps (e.g., by using the process id in t for each times-

tamp in A(t)).

When executing a read on a key k , the algorithm determines a

version to return based on the preferential timestamp, and then

read-locks contiguous timestamps of k to cover as many alternative

timestamps as possible. When executing a write to key k , the algo-

rithm obtains no locks; rather, locks are acquired at commit time, as

follows. If the algorithm cannot obtain a write-lock for the prefer-

ential timestamp for each written key, it tries one of the alternative

timestamps. If it manages to obtain read- and write-locks for all

read and written objects at one of the timestamps, the transaction

commits; otherwise it aborts.

We can show that if we choose the alternative timestamps A(t)

to be smaller than the preferential timestamps t , then the resulting

MVTL-Pref algorithm aborts strictly fewer workloads compared to

MVTO+. More precisely:

4

Algorithm 3 The MVTL-Pref algorithm

1: function Initialization(tx)

2: tx.PrefTS← clock()

3: tx.PossTS← {tx.PrefTS} ∪ A(tx.PrefTS)

⊲ possible timestamps for tx

4: function write-locks(tx, k) return ⊲ lock write-set only on commit

5: function read-locks(tx, k)

6: repeat

7: tr← max{t : t < tx.PrefTS and Values[k, t] , ⊥}

⊲ candidate value to read

8: tmax← max{t ∈ tx.PossTS :

no timestamps in [tr+1, tmax] are write frozen}

9: for t ← tr+1 to tmax do ⊲ read-lock [tr+1, tx.TS] if possible

10: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

11: if found frozen write-lock then

release read-locks acquired above; break ⊲ exit “for” loop

12: until found no frozen locks in the for loop

13: tx.PossTS← tx.PossTS ∩ [tr, tmax] ⊲ update possible timestamps

14: return tr

15: function commit-locks(tx)

16: for t ∈ tx.PossTS do ⊲ Find a good timestamp. Loop order: �rst

tx.PrefTS then arbitrary for PossTS

17: gotlocks← true

18: for (k, tr) ∈ tx.writeset do

19: try to write-lock for tx on (k, t), without waiting if a

timestamp is read-locked

20: if write-lock not acquired then

21: gotlocks← false ⊲ this timestamp will not work

22: release all write locks for tx

23: break ⊲ exit inner “for” loop

24: if gotlocks then break ⊲ found a timestamp for which we can

get write locks; exit outer “for” loop

25: if gotlocks then tx.TS← t ⊲ found good timestamp

26: else tx.TS← ⊥ ⊲ no good timestamps

27: function commit-ts(T) return tx.TS

28: function commit-gc(tx) return false

Theorem 2. Suppose that ∀t ′ ∈ A(t), t ′ < t . (a) If a workloadW

produces no abort under MVTO+, thenW produces no abort under

MVTL-Pref. (b) There are in�nitely many workloads that produce no

aborts under MVTL-Pref but produce aborts under MVTO+.

The pseudo-code of MVTL-Pref is given in Algorithm 3.

5.2 The prioritizer algorithm

Multiversion timestamp ordering provides no way for critical trans-

actions to be prioritized over normal transactions. We explain how

MVTL can do that, by using a policy that gives more locks to critical

transactions. There are many ways to do that, but the simplest one

is as follows. Normal transactions obtain their locks as in multiver-

sion timestamp ordering using synchronized clocks, while critical

transactions try to acquire all locks as in pessimistic concurrency

control except that critical transactions do not block waiting for any

of its locks. Both types of transactions garbage collect on commit.

Theorem 3. In the MVTL-Prio algorithm, transactions labeled

critical are never aborted by transactions labeled normal.

Given that high-priority transactions behave similarly to pes-

simistic concurrency control, they can cause deadlocks. However,

transactions with normal priority behave identically to those in

MVTO+, and thus never cause deadlocks.

5.3 The ϵ-clock algorithm

Multiversion timestamp ordering uses clocks to obtain its times-

tamps, but if clocks are not synchronized or monotonic1, it is sus-

ceptible to serial aborts—aborts that occur in an execution that is

completely serial. This is a concern in modern multicore machines

that do not guarantee that clocks across cores are perfectly syn-

chronized. For example,T2 gets timestamp 2, reads an object X , and

commits. Afterwards, T1 gets a smaller timestamp 1, writes X , and

tries to commit. This will causeT1 to abort since the read-timestamp

of X at version 0 is 2. This is the schedule:

T2 : R(X) C
T1 : W (X) A

Here, time �ows to the right and each line shows the operations

of a transaction. R, W, C, and A indicate a read, write, commit, and

abort; and X is the key. Thus, this schedule has two transactionsT1
and T2, where T2 reads X and commits, and then T1 writes X and

aborts.

The MVTL-ϵ-clock algorithm, which we now introduce, avoids

serial aborts when used with ϵ-synchronized clocks. Brie�y, when

it starts, a transaction reads the clock, obtains a time t , and for each

read and write tries to lock the interval [t−ϵ, t+ϵ]. At the end, it

commits at the smallest common timestamp it locked for every

accessed object. Before completing the commit, the transaction

runs garbage collection. In a sequential execution, it is possible

to show that tx picks a commit timestamp that is at most t , and

thus it releases the lock on higher timestamps. As a result, the next

transaction in the sequence will always have its own real time in

the intersection of locked time points, and therefore does not abort.

Alforithm 4 shows the pseudo-code of MVTL-ϵ-clock.

Theorem 4. The MVTL-ϵ-clock algorithm is not susceptible to

serial aborts when clocks are ϵ-synchronized.

5.4 Existing algorithms as special cases

We now show that MVTL generalizes two popular transactional

algorithms, MVTO+ and pessimistic concurrency control. More pre-

cisely, we give two algorithms MVTL-TO and MVTL-Pessimistic,

which specialize MVTL and behave exactly like MVTO+ and pes-

simistic concurrency control, respectively

InMVTL-TO, each transaction obtains a timestamp t from a clock

when the transaction starts. Writes do not lock anything, reads try

to lock [tr+1, t] (waiting for unfrozen locks) where tr is the largest

timestamp before t for which Values[k, tr] , ⊥, and commits lock t

for each object in the transaction’s write-set. Garbage collection is

not invoked on commit.

Theorem 5. The MVTL-TO algorithm behaves as the MVTO+

algorithm.

1A monotonic clock is one that ensures that it returns a higher timestamp if it is
queried later in time. Monotonic clocks and time-synchronized clocks are equivalent
insofar this discussion is concerned.

5

Algorithm 4 The MVTL-ϵ-clock algorithm

1: function Initialization(tx)

2: now← clock()

3: tx.TS← [now − ϵ, now + ϵ]

4: function write-locks(tx, k)

5: try to write-locks for tx on (k, tx.TS), waiting

if a timestamp is read- or write-locked but not frozen

6: tx.TS← write-locks that tx could acquire

7: function read-locks(tx, k)

8: if tx.TS = ∅ then return ⊥

9: m ← max tx.TS

10: repeat

11: tr← max{t : t < m and Values[k, t] , ⊥}

12: for t = tr+1 tom do ⊲ read-lock interval [tr+1,m] if possible

13: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

14: if found frozen write-lock then

release read-locks acquired above; break ⊲ exit “for” loop

15: until found no frozen locks in the for loop

16: tx.TS← tx.TS ∩ [tr+1,m]

17: return tr

18: function commit-locks(tx) return

19: function commit-ts(T) return minT

20: function commit-gc(tx) return true

Pessimistic concurrency control locks objects before accessing

them, to prevent con�icting operations from executing concurrently.

To emulate pessimistic concurrency control using MVTL, writes

acquire write locks on all timestamps (blocking), while reads ac-

quire read-locks on all timestamps in [tr+1,∞] (blocking). Garbage

collection is invoked on commit.

Theorem 6. The MVTL-Pessimistic algorithm behaves as the pes-

simistic concurrency control algorithm.

5.5 The ghostbuster algorithm

Under multiversion timestamp ordering, a transaction may abort

and later create a con�ict with another transaction, causing it to

abort. For example, suppose that T1 starts with timestamp 1, T2
starts with timestamp 2, and T3 starts with timestamp 3. Then T3
readsX and commits,T2 readsY , writesX , and tries to commit with

its timestamp 2, but T2 aborts because T3 read X with timestamp

3. Next T1 writes Y and tries to commit but aborts due to the read

by T2. This is a ghost abort, because the write of T1 has a con�ict

with a transactionT2 that had aborted before the write ofT1 started.

This is the schedule:2

T3 : R(X) C
T2 : R(Y) W (X) A
T1 : W (Y) A

We de�ne ghost aborts precisely in Appendix G.

While multiversion timestamp ordering has ghost aborts, MVTL-

Ghostbuster can avoid that. MVTL-Ghostbuster is a simple mod-

i�cation to the MVTL-TO algorithm (§5.4): when a transaction

2Here, transactions get a timestamp before their �rst operation, but one can construct
a more complex schedule with the same problem even if transactions get a timestamp
at the �rst operation.

commits, it performs garbage collection. This ensures that transac-

tions that abort do not leave behind locks that cause ghost aborts.

We thus claim the following:

Theorem 7. The MVTL-Ghostbuster algorithm is not susceptible

to ghost aborts.

6 PRACTICAL CONSIDERATIONS

Reducing lock state space.Whenwe presented the genericMVTL

algorithm, we de�ned a lock for each timestamp and object, which

amounts to an in�nite lock state space. We did not include mecha-

nisms to compress this information, because they are orthogonal to

the essence of the algorithm. However, a practical implementation

should compress the lock state space. To do so, we observe that

MVTL algorithms usually acquire and release locks on a small num-

ber of points or contiguous intervals (this is true for all algorithms

we presented).Rather than keeping a lock state for each timestamp,

an implementation can keep a single lock state for an entire interval.

In the algorithms we presented, each object holds at most one lock

interval per committed transaction. We evaluate the amount of lock

state required in §8.4.5. Furthermore, this state can be discarded

when the associated version of the object is purged, as we discuss

next.

Purging versions. By nature, a multiversion algorithm keeps mul-

tiple versions of each object. Doing so is feasible as storage prices

fall. Disk systems such as database systems already usemultiversion

algorithms, but even memory systems are targets now. Neverthe-

less, multiversion algorithms need a way to purge old versions so

that each object holds few versions—possibly just one after write

activity on the object quiesces. We now explain how this can be

done in MVTL. This is easy: at any time, the system can purge

any version older than the latest committed one, without a�ecting

the correctness of the algorithm. Transactions that need purged

versions will abort, so in practice we purge versions older than

a time limit chosen based on the duration of its longest transac-

tions. In some MVTL algorithms, there is a lower bound on the

timestamps that a transaction locks (e.g., ϵ-clock algorithm); we

can purge versions with timestamps below the bound except the

last one before the bound, without causing any side-e�ects. We

evaluate the e�ectiveness and cost of garbage collection in §8.4.5.

Removing the atomic block. Algorithm 1 has an atomic block in

lines 17–19, to avoid partially exposing the writes of a committing

transactionwhenwe assign to the arrayValues[k, t]. We can remove

this atomic block by (1) �rst storing a special value in Values[k, t]

for all timestamps in the for loop, (2) then storing the actual valuev

for all timestamps in the loop, and (3) having other processes wait

if they read Values and see the special value.

7 DISTRIBUTED MVTL ALGORITHM

We now explain how to extend the generic MVTL algorithm of §4 to

distributed transactions. The system consists of a set of clients who

want to execute transactions, and a set of storage servers who keep

the data, where clients and servers are connected by a network.

The data is partitioned across the servers by its key, and clients

6

know how to �nd the server responsible for a key (e.g., by hashing

the key or using a con�guration map).

The basic idea of the distributed algorithm is that servers hold the

state that is shared across clients: locks and data versions. Clients

contact the servers to execute the steps of the algorithm in §4 that

involve this state. More precisely, the server responsible for a key

k keeps all versions and locks for k . A client contacts that server

when it wishes to read k , create a new version for k , or manipulate

k’s lock state (obtain, freeze, or release locks on timestamps).

The system is subject to failures that may disrupt the system. A

failed client may leave write locks in an unfrozen state inde�nitely,

causing other transactions to block forever. A failed server can

similarly cause either inde�nite waiting from clients.

To address these problems, we associate a commitment object

with each transaction. This object solves consensus on the outcome

of a transaction, which can be “abort” or “commit with a timestamp

t”, ensuring that clients and servers all agree on the outcome. The

details of the algorithm are given in the Appendix H.

8 EXPERIMENTAL EVALUATION

We conduct a simple experimental evaluation of MVTL to answer

some questions: Does MVTL enhance transaction concurrency and

avoid aborts compared to alternatives? Does MVTL improve trans-

action throughput? On which workloads? Do the characteristics

of the environment impact our conclusions? Does MVTL incur

signi�cant overheads in terms of state size?

To this end, we implement the distributed MVTL algorithm (§H)

with a variant of the ϵ-clock algorithm (§5.3). In this variant, to

execute a transaction T , a client obtains a timestamp t from its

local clock and associates a timestamp interval I = [t , t +∆] withT ,

where ∆ is a small constant (we pick ∆ = 5ms in the experiments).

When accessing a key k , the client tries to lock the timestamps

in I for key k . If the client cannot lock the entire interval I , but

manages to lock some subinterval, then the client replaces I with

that subinterval to reduce the amount of locking on subsequent

keys. We call this algorithm MVTIL. This is similar to the ϵ-clock

algorithm but we do not assume that clients have synchronized

clocks and we shrink I when clients fail to obtain some locks, as

described above. We consider two variants of MVTIL: (i) MVTIL-

early, which at commit time picks the smallest timestamp in I to

commit, and (ii) MVTIL-late, which picks the largest. We compare

MVTIL to 2PL and MVTO+.

8.1 Implementation details

Keys and values are small strings of 8 characters. Clients are multi-

threaded, each thread running a di�erent transaction. When a client

realizes that an ongoing transaction will abort (because it does not

have a single timestamp locked across all accessed keys), it has the

option of aborting or restarting the transaction, with an interval I

adjusted based on the state it has already seen at the servers. Servers

are multi-threaded, with hundreds of threads, each responsible to

handle a client request. A server stores version and lock state in a

hash table indexed by key; for each key, the hash table stores two

skip lists, one for version state, one for lock state. The version state

is a list of value-timestamp pairs ordered by timestamp. The lock

state is a list of timestamp-timestamp pairs representing a locked

time interval, ordered by the �rst timestamp. To coordinate access

across threads, we use a concurrent hash table (from the Intel TBB

library [16]), with a latch per entry in the hash table. Latches are

held while a thread changes the lock and version lists of a key.

We use Apache Thrift [1] for communication between clients and

servers,

A timestamp service periodically broadcasts a message with

a time T in the past, equal to the service’s current time minus a

constant K (we use K = 15s in the local test bed, and K = 60s in the

cloud test bed – see below). This message has two e�ects. First, it

causes servers to purge old versions of keys, namely versions that

meet two criteria: their timestamp is smaller thanT and they are not

themost recent version of a key. If clients have ongoing transactions

that later try to access a purged version, those transactions are

aborted. However, becauseT is an old timestamp, there will be only

few such transactions, if any. The second e�ect of broadcastingT is

that clients advance their local clocks to T if they are behind—this

ensures that clients with slow clocks do not start new transactions

that need purged versions and subsequently get aborted.

Our implementations of MVTO+ and 2PL use the same frame-

work, but run a di�erent client protocol and keep a di�erent server

state: 2PL stores a single reader-writer lock per key, while MVTO+

stores a single skip list per key containing versions and associ-

ated locks. The implementations of all schemes are available at

https://github.com/LPD-EPFL/MVTIL.

8.2 Test beds

We use two test beds for the experiments: a local test bed with

dedicated servers and a public cloud test bed with virtual machine

instances. The local test bed represents an enterprise setting with

higher-performancemachines and network, while the cloud test bed

represents a low-cost shared environment with a less predictable

network.

On the local testbed, we use three machines: (a) a server with

four 2.7 GHz Intel Xeon 12-core E7-4830v3 processors and 512 GB

of RAM; (b) a server with two 2.8 GHz Intel Xeon 10-core E5-2680

v2 processors and 256 GB of RAM; and (c) a server with four 2.1

GHz AMD Opteron 6172 12-core Processors and 128 GB of RAM.

Machines are connected by a 1 Gbps network.

The public cloud test bed consists of several hundred Amazon

EC2 t2.micro instances with 1 vCPU each.

8.3 General framework

In an experiment, clients submit transactions repeatedly in a closed-

loop. We measure the aggregate throughput of committed trans-

actions and the commit rate, which is the fraction of transactions

that commit. Before measuring, we run a warm-up stage of 40s to

ensure all clients have started; we then measure the system for 20s.

We repeat each experiment �ve times and report the average.

In each experiment, we �x the following parameters:

• The algorithm (MVTIL, MVTO+, 2PL);

• The number of clients, which determine the level of concurrency;

• The size of transactions in number of operations;

• The fraction of write operations in a transaction;

• The size of the key space; and

• The number of storage servers.

7

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 150 300 450 600

(a)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

clients

Throughput

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 150 300 450 600

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 150 300 450 600

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

MVTO+ 2PL MVTIL-early MVTIL-late

Figure 1: E�ect of concurrency level on performance, local

test bed.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 100 200 300 400

(a)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

clients

Throughput

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

MVTO+ 2PL MVTIL-early MVTIL-late

Figure 2: E�ect of concurrency level on performance, cloud

test bed.

On the local test bed, which has three machines, we always run

three servers on all machines, and we run clients threads on a subset

of the cores in those machines. For the cloud test bed, we run eight

servers unless otherwise indicated, and we run each client on its

own VM instance.

8.4 Results

We now present results regarding concurrency, fraction of write

operations, transaction size, number of servers, and state size.

8.4.1 Level of concurrency. We study the e�ect of the level of

concurrency on performance, under a workload where a majority

of operations are reads—a common situation in practice. We vary

the number of clients, while keeping the other parameters constant.

We use transactions with 20 operations, 25% of which are writes.

For the local test bed, we use 10K keys. For the larger cloud test

bed, we use 50K keys.

Figures 1 and 2 show throughput and commit rates for the local

and cloud test beds, respectively. We see that MVTIL outperforms

MVTO+ and 2PL in both test beds. Moreover, when concurrency

increases, the commit rate of MVTO+ drops due to con�icts, but

this does not happen for MVTIL because it can commit at many

serialization points. The ine�ciency—due to aborts in MVTO+ and

waiting for locks in 2PL—is the reason for the di�erence in through-

out. This is more pronounced in the cloud test bed, where resources

are scarce: there, MVTIL has roughly 2x better throughput than

the alternatives. The di�erence is smaller on the local test bed.

The commit rate for 2PL is not optimal because we use timeouts:

if a transaction makes no progress after a given time, we abort

it. This prevents both deadlocks, and starving transactions from

limiting throughput. In our experiments, we set the timeout such

as to maximize total throughput.

 0

 500

 1000

 1500

 2000

 2500

 0 25 50 75 100

(a)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

Percentages of write operations

Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100

(b)

C
o

m
m

it
 r

a
te

Percentages of write operations

Commit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100

(b)

C
o

m
m

it
 r

a
te

Percentages of write operations

Commit rate

MVTO+ 2PL MVTIL-early

Figure 3: E�ect of fraction of writes on performance.

 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 150 300 450 600

(a)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

clients

Throughput

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 150 300 450 600

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 150 300 450 600

(b)

C
o

m
m

it
 r

a
te

clients

Commit rate

MVTO+ 2PL MVTIL-early MVTIL-late

Figure 4: E�ect of small transaction size on performance.

8.4.2 Write percentage. We next consider how the fraction of

writes a�ect performance. We thus vary the fraction of writes and

keep other parameters constant. We use the local test bed with 90

clients; transactions have 20 operations and 10K keys.

Figure 3 shows the result. For read-only transactions, the choice

of protocol has little impact. Additionally, for write fractions close

to 1, the workload consists mostly of blind writes, which allows

multiversion protocols to commit nearly all transactions, as writes

in such protocols do not con�ict with each other. With a more

balanced write fraction, MVTIL outperformsMVTO+ and 2PL.With

2PL, the more writes, the more time transactions wait for locks.

MVTO+ has a high abort rate when the percentages of reads and

writes are similar; this is where the chance of con�icts is highest

in multiversion protocols. The issue impacts MVTIL less due to its

ability to explore many serialization points to commit.

8.4.3 Transaction size. In previous experiments, we use trans-

actions with 20 operations; we now consider smaller transactions

with 8 operations. We vary the number of clients (level of concur-

rency) and observe the performance. We use the local test bed with

a 50% fraction of writes and 10K keys.

Figure 4 shows the results. For a low concurrency, MVTIL be-

haves similar to MVTO+ and 2PL, but 2PL is ≈5% faster. This setting

with little concurrency, short transactions, and a local test bed with

lots of resources is the only setting where MVTIL is worse than

an alternative. However, as we increase concurrency, MVTIL again

outperforms the others. This advantage is larger in the cloud test

bed (not shown).

8.4.4 Number of servers. We now consider how the number of

servers a�ect performance. Using the cloud test bed, we keep the

number of clients constant to 400 and vary the number of server

instances from 1 to 20. We use transactions with 20 operations with

25% or 50% writes, and 100K keys.

Figure 5 shows the result. The throughput of all protocols in-

creases with the number of servers, but the scalability is better for

8

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 20

(a)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

Number of servers

75% reads

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

(b)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)
Number of servers

50% reads

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

(b)

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)
Number of servers

50% reads

MVTO+ 2PL MVTIL-early MVTIL-late

Figure 5: E�ect of number of servers on performance.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 50 100 150

(a)

N
o

.
o

f
lo

c
k
s
 (

th
o

u
s
a

n
d

s
)

Time (seconds)

Number of locks

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 50 100 150

(b)

N
o

.
o

f
v
e

rs
io

n
s
 (

th
o

u
s
a

n
d

s
)

Time (seconds)

Number of versions

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 50 100 150

(b)

N
o

.
o

f
v
e

rs
io

n
s
 (

th
o

u
s
a

n
d

s
)

Time (seconds)

Number of versions

MVTO+ MVTIL-early MVTIL-GC

Figure 6: Number of locks and versions as time passes with

garbage collection on and o�.

MVTIL. MVTIL has a higher commit rate compared to MVTO+,

and waits less for locks compared to 2PL; this is particularly visible

with 50% writes.

8.4.5 State size. We now examine the size of the state kept

by each algorithm, and the e�ectiveness of the garbage collection

mechanisms. Most of the state of a multiversion protocol is the

data versions and associated locks. We measure how the number

of versions and locks evolve with time for MVTIL and MVTO+

without garbage collection, as well as MVTIL with garbage collec-

tion (MVTIL-GC) that activates every 15s to purge versions and

locks. We use 50 clients running transactions with 20 operations, a

fraction of 50% writes, and 8K keys, running on the local test bed.

Figure 6 shows the results. Without metadata purging, the state

increases linearly with time. However, with garbage collection, the

state size remains bounded in both the number of versions and locks

(on average, ≈4 versions and ≈20 locks per key). Figure 7 shows

how performance varies as time passes. Without garbage collection,

throughput decreases after ≈5 minutes for MVTIL and MVTO+,

because a larger state makes it slower to search for and access ver-

sions. Garbage collection removes this performance degradation.

Moreover, comparing the performance with and without garbage

collection at the beginning of the experiment, we see that the over-

head of garbage collection is small.

8.5 Summary

We see that (i) with moderate contention, MVTIL outperforms al-

ternatives, (ii) with no contention, MVTIL is at least as good as

alternatives, and (iii) MVTIL’s advantages are bigger in the cloud

test bed that has limited processing power and unpredictable net-

work latencies. MVTIL nevertheless represents just one of many

MVTL-based algorithms. We believe that other MVTL algorithms

will shine on other workloads and environments.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(t

x
s
/s

)

Time (s)

Throughput

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
o

m
m

it
 r

a
te

Time (s)

Commit rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
o

m
m

it
 r

a
te

Time (s)

Commit rate

MVTO+ 2PL MVTIL-early MVTIL-GC

Figure 7: Performance as timepasseswith garbage collection

on and o�.

9 RELATED WORK

The main novelty of this work is the idea of locking individual

timestamps, leading to a genre of multiversion algorithms called

MVTL. No other work proposes this idea, but because MVTL is

a broad class, several existing algorithms become special cases of

MVTL, leading to similarities in mechanism.

Multiversion concurrency control is an old idea [5] that has seen

a resurgence in software transactional memory (STM) systems, sev-

eral of which provide serializability [2, 7, 11, 17, 18, 23, 25–27]. Prior

work in this space falls into three categories: (1) multiversion for

read-only transactions, (2) con�ict graph schemes, and (3) multiver-

sion timestamp ordering algorithms. The �rst category [11, 25–27]

are systems that use multiversion to bene�t solely read-only trans-

actions; update transactions rely on optimistic methods that, upon

commit, validate the read-set and abort if any object has changed.

While read-only transactions are important, these methods abort

under simple concurrent update schedules, such as the following

(where full multiversion schemes do not abort):

T1 : R(X) W (Y)
T2 : W (X)

The second category (e.g., [2, 18, 23]) are multiversion systems

that ensure serializability by detecting cycles in the con�ict graph—

a data structure that represents the con�icts across transactions—

similarly to the MVSGT algorithm [30]. These algorithms have two

drawbacks: they are complex and they incur signi�cant computa-

tion overhead, as reported in some of these papers.

The third category [19] are systems that extend multiversion

timestamp ordering. Speci�cally, Kumar et al. [19] explain how to

provide opacity, which is stronger than serializability. However,

the algorithm su�ers from the same drawbacks of multiversion

timestamp ordering that we address in §5. It should be possible

to extend MVTL to provide opacity using the ideas of Kumar et

al. [19], but this is future work.

Lomet et al. [22] introduce the multiversion timestamp range

algorithm (MVTR). With MVTR, each transaction is assigned a

range of timestamps, and this range shrinks as the transaction exe-

cutes; at the end, MVTR commits if the range is non-empty. MVTR

di�ers from MVTL because MVTR locks entire objects instead of

timestamps. As a result, MVTR does not enjoy the full bene�ts of

multiversion concurrency control, such as allowing two concurrent

transactions to write the same object. Also, with MVTR one trans-

action manipulates the inner state of another transaction (e.g., by

changing the range that another transaction uses), which requires

careful synchronization of transactions using a scheduler or locks.

9

Elastic transactions [12], aimed at search data structures, use times-

tamp ranges to determine if a transaction can commit based on its

start time and when the accessed objects were written.

Snapshot isolation [3] is both an isolation property and a proto-

col. The protocol uses multiversioning and timestamps, similarly

to multiversion timestamp ordering, but it does not provide serial-

izability. Other protocols that use multiversioning and timestamps

provide even weaker notions than snapshot isolation [28].

Optimistic concurrency control (OCC) [20] is another technique

that can use multiversioning. With OCC, a transaction does not

acquire locks when executing; to commit, the system checks that

the versions that the transaction read are the latest. TicToc [32]

optimizes OCC to serialize transactions based on the data they

access. TicToc computes potential serialization points before the

validation and commit phases. Thus, a transaction for which the

read and write sets have been inspected might later abort. In con-

trast, MVTL ensures that once a serialization point has been found,

the transaction commits. Bohm [10] is a multiversion protocol that

pre-orders transactions before execution; in that sense, Bohm is

more pessimistic than MVTL, which determines transaction order-

ing dynamically during execution. In addition, Bohm requires that

the transaction be known ahead of time, and that its write-set be

static.

Many practical systems with distributed transactions provide

only snapshot isolation [9, 24] and abort on concurrent writes to the

same object. Spanner [8] provides strict serializability using two-

phase locking for read-write transactions, which limits parallelism.

10 CONCLUSION

This paper introduced a new genre of multiversion concurrency

control algorithms called multiversion timestamp locking (MVTL).

MVTL o�ers a new way to look at multiversion algorithms, based

on locking individual time points. With this perspective, we can

�nd simple algorithms that improve the state of the art in various

ways: by committing successfully more workloads than existing

multiversion protocols, by avoiding the problems of serial aborts

and ghost aborts, and by o�ering prioritized transactions. We can

also view existing algorithms, such as MVTO and pessimistic con-

currency control, as special cases of MVTL. Moreover, we showed

how to realize MVTL in both centralized and distributed systems.

Finally, we show experimental evidence of the bene�ts of MVTL in

practice.

We believe that the algorithms proposed here are only a starting

point for other possibilities opened up by MVTL. The design of

other MVTL algorithms is a promising direction for future research.

Acknowledgements. We thank Dahlia Malkhi for valuable input

early in the project. This work was supported in part by a VMware

Fellowship.

REFERENCES
[1] Apache Thrift [n. d.]. https://thrift.apache.org
[2] Utku Aydonat and Tarek S. Abdelrahman. 2008. Serializability of transactions

in software transactional memory. In ACM SIGPLAN Workshop on Transactional
Computing.

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL Isolation Levels. In International Conference
on Management of Data.

[4] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. Comput. Surveys 13, 2 (June 1981), 185–221.

[5] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems.

[6] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer.

[7] João Cachopo and António Rito-Silva. 2006. Versioned Boxes As the Basis for
Memory Transactions. Science of Computer Programming 63, 2 (2006), 172–185.

[8] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, JJ Furman, S. Ghemawat, A.
Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A.
Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. 2012. Spanner: Google’s
Globally-Distributed Database. In Symposium on Operating Systems Design and
Implementation.

[9] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot
isolation for partitioned data stores using loosely synchronized clocks. In IEEE
Symposium on Reliable Distributed Systems.

[10] Jose M Faleiro and Daniel J Abadi. 2015. Rethinking serializable multiversion
concurrency control. Proceedings of the VLDB Endowment 8, 11 (July 2015),
1190–1201.

[11] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. 2010. Time-
based software transactional memory. IEEE Transactions on Parallel and Dis-
tributed Systems 21, 12 (2010), 1793–1807.

[12] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. 2009. Elastic transactions.
In International Symposium on Distributed Computing.

[13] Vassos Hadzilacos and Sam Toueg. 1994. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR 94-1425. Cornell University,
Dept. of Computer Science, Cornell University, Ithaca, NY 14853.

[14] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming,
Revised First Edition.

[15] Damien Imbs and Michel Raynal. 2012. Virtual world consistency: A condition for
STM systems (with a versatile protocol with invisible read operations). Theoretical
Computer Science 444 (2012), 113–127.

[16] Intel TBB [n. d.]. https://www.threadingbuildingblocks.org
[17] Idit Keidar and Dmitri Perelman. 2015. Multi-versioning in transactional memory.

In Transactional Memory. Foundations, Algorithms, Tools, and Applications.
[18] Idit Keidar and Dmitri Perelman. 2015. On avoiding spare aborts in transactional

memory. ACM Transactions on Computer Systems 57, 1 (July 2015), 261–285.
[19] Priyanka Kumar, Sathya Peri, and K. Vidyasankar. 2014. A timestamp based multi-

version STM algorithm. In International Conference on Distributed Computing and
Networking.

[20] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[21] Petr Kuznetsov and Sathya Peri. 2017. Non-interference and local correctness in
transactional memory. Theoretical Computer Science 688 (2017), 103–116.

[22] David Lomet, Alan Fekete, Rui Wang, and Peter Ward. 2012. Multi-version con-
currency via timestamp range con�ict management. In International Conference
on Data Engineering.

[23] Je� Napper and Lorenzo Alvisi. 2005. Lock-free Serializable Transactions. Techni-
cal Report. University of Texas at Austin.

[24] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using
Distributed Transactions and Noti�cations. In Symposium on Operating Systems
Design and Implementation.

[25] Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. 2011.
SMV: Selective Multi-Versioning STM. In International Symposium on Distributed
Computing.

[26] Dmitri Perelman, Rui Fan, and Idit Keidar. 2010. Onmaintaining multiple versions
in STM. In ACM Symposium on Principles of Distributed Computing.

[27] Torvald Riegel, Pascal Felber, and Christof Fetzer. 2006. A Lazy Snapshot Algo-
rithm with Eager Validation. In International Symposium on Distributed Comput-
ing.

[28] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Trans-
actional storage for geo-replicated systems. In ACM Symposium on Operating
Systems Principles.

[29] K Vidyasankar. 1987. Generalized theory of serializability. Acta Informatica 24, 1
(1987), 105–119.

[30] Gerhard Weikum and Gottfried Vossen. 2001. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[31] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An Empir-
ical Evaluation of In-Memory Multi-Version Concurrency Control. Proceedings
of the VLDB Endowment 10, 7 (March 2017), 781–792.

[32] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In International Conference on
Management of Data.

10

A CORRECTNESS OF GENERIC MVTL

ALGORITHM

Theorem 1. The generic MVTL algorithm (Algorithms 1 and 2)

ensures serializability.

Proof. We denote byT .committs the timestamp at which trans-

actionT is serialized and commits (aborted transactions do not have

a serialization timestamp). Each transaction has a unique serializa-

tion timestamp, as explained in §4.1. If a transaction T commits at

a timestamp T .committs , then it holds write locks at T .committs

for all the data in its write set, and read locks from the largest

timestamp smaller than T .committs containing a committed value

to T .committs for all the data in its read set (Algorithm 1, line 13).

We denote by ri [x j] the fact that transaction Ti has read a version

of object x written by transaction Tj (i.e., the read operation has

returnedValues[x ,Tj .committs]). In addition, we denote bywk [xk]

the fact that transaction Tk has written a new version of object x

(i.e., it has written a value to Values[x ,Tk .committs]).

We assume the serialization order is given by the commit times-

tamp of the transaction. That is, if transaction T1 creates version

v1 of object o, and transaction T2 creates version v2 of object o, we

say v1 ≪ v2 i� T1.committs < T2.committs .

LetH be amultiversion history over a set of transactions {T0, . . . ,Tn },

and C(H) the committed projection of this history. The commit-

ted projection of an operation history retains only the operations

that belong to committed transactions. A multiversion serialization

graph (MVSG) has the transactions {T0, . . . ,Tn } ∈ C(H) as vertices

and edges (1) from Ti to Tj if Tj reads from Ti , and (2) for rk [x j]

andwi [xi] ∈ C(H), if xi ≪ x j , then the graph has an edge from Ti
to Tj , otherwise it has an edge from Tk to Ti .

It has been shown [5] that if the multiversion serialization graph

is acyclic, then a multiversion history is one copy serializable, that

is, equivalent to a serial one version history.

Similarly to the proof of the original multiversion timestamp or-

der algorithm, we show the MVSG resulting from MVTL is acyclic

by showing that if an edge between Ti and Tj exists in the graph,

Ti .committs < Tj .committs . We consider the types of edges that

can appear in a multiversion serialization graph. The �rst type

of edges are reads-from edges. In this case, transaction Tj reads a

version written by transaction Ti . Function read-locks acquires

locks for timestamps starting immediately after the timestamp

containing the version whose value is returned (and, since it read-

locks an interval of timestamps, does not lock timestamps equal or

larger to later versions). Hence, the read can only be serialized at a

timestamp higher than that at which the read version was created.

Thus,Ti .committs ≤ Tj .committs . The second type of edge appears

if rk [x j] and wi [xi] are in H and xi ≪ x j . In this case, an edge

from Ti to Tj exists in the graph. By de�nition of ≪, xi ≪ x j i�

Ti .committs < Tj .committs . Finally, the third type of edge appears

if rk [x j] andwi [xi] are inH and x j ≪ xi . In this case, an edge from

Tk toTi is created (this assumes k , i). Since x j ≪ xi , we know that

Tj .committs < Ti .committs . Given that Tk has performed a read

of version x j , Tk has necessarily applied read locks for each times-

tamp fromTj .committs + 1 toTk .committs . A read lock can only be

acquired if no write lock from another transaction is present. Simi-

larly, a write lock on a timestamp cannot be acquired if a read lock

from another transaction is present. Thus, wi [xi] could not have

occurred in the interval [Tj .committs + 1,Tk .committs]. And since

we know Tj .committs < Ti .committs , wi [xi] must have necessar-

ily occurred after the interval. Thus, Tk .committs < Ti .committs .

Given that all the edges in the graph are from transactions with

lower serialization timestamps to transactions with higher seri-

alization timestamps, a cycle cannot exist. Thus, H is one-copy

serializable. �

B DETAILS OF THE PREFERENTIAL

ALGORITHM

The MVTL-Pref algorithm is recalled in Algorithm 5. Each transac-

tion is assigned a preferential timestamp and one or more alternative

timestamps. The system tries to commit the transaction using �rst

the preferential timestamp, but if that would abort the transaction,

it tries the alternative timestamps. Transactions are serialized in

the order of their commit timestamps.

More precisely, the algorithm is parameterized by a function

A(t) that takes the transaction’s preferential timestamp and returns

a non-empty set of alternative timestamps di�erent from t . For

example, A(t) = {t−10, t+10} indicates that t−10 and t+10 are the

alternative timestamps for a transaction with preferential times-

tamp t . The preferential timestamp itself comes from a clock, as in

other timestamp-based protocols. Similarly, we assume that pro-

cesses obtain unique timestamps (e.g., by appending the process id

to each timestamp t) and thatA(t) also produces unique timestamps

(e.g., by using the process id in t in each timestamp in A(t)).

When reading, the system acquires read-locks for a set that

includes the preferential timestamp and as many other timestamps

as possible. When committing, the system tries to write-lock on all

objects in the write set and the preferential timestamp; if that is

not possible, it tries each of the alternative timestamps.

We provide a more precise de�nition of the concept of a work-

load:

Definition 1. A workload is a set of n transaction inputs, where

each transaction input is a �nite sequence of operation-timestamp

pairs with increasing timestamps and an operation is either read(k),

write(k,v) or tryCommit.

We now show that under certain conditions on A(t), MVTL-Pref

is strictly better than MVTO+, in the sense that (a) if MVTO+ does

not abort under a workload, then MVTL-Pref does not abort either,

and (b) there are in�nitely many workloads where MVTO+ aborts

but MVTL does not. These results hold assuming that A(t) contain

only timestamps smaller than t , that is, the alternative timestamps

are smaller than the preferential one.

Theorem 2. Suppose that ∀t ′ ∈ A(t), t ′ < t . (a) If a workloadW

produces no abort under MVTO+, thenW produces no abort under

MVTL-Pref. (b) There are in�nitely many workloads that produce no

aborts under MVTL-Pref but produce aborts under MVTO+.

Proof sketch. (a) Consider a workloadW that does not abort under

MVTO+. We prove that, for each transaction T inW , the execution

ofT underMVTO+ andMVTL-Pref will read- andwrite-lock exactly

the same timestamps. The intuition here is that MVTL-Pref will

choose the same timestamps asMVTO+ under workloadW , because

11

Algorithm 5 The MVTL-Pref algorithm

1: function Initialization(tx)

2: tx.PrefTS← clock()

3: tx.PossTS← {tx.PrefTS} ∪ A(tx.PrefTS)

⊲ possible timestamps for tx

4: function write-locks(tx, k) return ⊲ lock write-set only on commit

5: function read-locks(tx, k)

6: repeat

7: tr← max{t : t < tx.PrefTS and Values[k, t] , ⊥}

⊲ candidate value to read

8: tmax← max{t ∈ tx.PossTS :

no timestamps in [tr+1, tmax] are write frozen}

9: for t ← tr+1 to tmax do ⊲ read-lock [tr+1, tx.TS] if possible

10: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

11: if found frozen write-lock then

release read-locks acquired above; break ⊲ exit “for” loop

12: until found no frozen locks in the for loop

13: tx.PossTS← tx.PossTS ∩ [tr, tmax] ⊲ update possible timestamps

14: return tr

15: function commit-locks(tx)

16: for t ∈ tx.PossTS do ⊲ Find a good timestamp. Loop order: �rst

tx.PrefTS then arbitrary for PossTS

17: gotlocks← true

18: for (k, tr) ∈ tx.writeset do

19: try to write-lock for tx on (k, t), without waiting if a

timestamp is read-locked

20: if write-lock not acquired then

21: gotlocks← false ⊲ this timestamp will not work

22: release all write locks for tx

23: break ⊲ exit inner “for” loop

24: if gotlocks then break ⊲ found a timestamp for which we can

get write locks; exit outer “for” loop

25: if gotlocks then tx.TS← t ⊲ found good timestamp

26: else tx.TS← ⊥ ⊲ no good timestamps

27: function commit-ts(T) return tx.TS

28: function commit-gc(tx) return false

W does not cause any aborts. More precisely, we can show that (i)

whenever a read occurs, bothMVTO+ andMVTL-Pref pick the same

value to return for the read (the �rst non-⊥ value with a timestamp

smaller than the preferential timestamp); because the preferential

timestamp is higher than any of the timestamps in A(t), the MVTL-

Pref picks the preferential timestamp as tmax and therefore locks

the same range as MVTO+. Moreover (ii), whenever a commit

occurs, both MVTO+ and MVTL-Pref pick the same timestamp to

lock. This is because MVTL-Pref picks the preferential timestamp,

given that MVTO+ does not abort. From (i) and (ii), it is possible to

show that MVTL-Pref executes in exactly the same way as MVTO+

underW . Therefore, MVTL-Pref does not abort any transactions

underW .

(b) Pick three timestamps t1 < t2 < t3 such that maxA(t2) < t1.

These will be the timestamps for transactions T1,T2,T3. Consider

the following workload:W1(Y)C1 R2(X)R3(Y)C3W2(Y)C2. Under

MVTO+, this workload aborts T2 since the timestamp at which T2
wants to write Y is between t1 and t3. However, under MVTL-Pref,

T2 commits because MVTL-Pref can pick the alternative timestamp

maxA(t2) with which to commit T2. It is easy to generalize this

example to several transactions, and thus obtain in�nitely many

workloads where MVTO+ causes an abort but MVTL-Pref does

not. �

C DETAILS OF THE PRIORITIZER

ALGORITHM

The MVTL-Prio algorithm is given in Algorithm 6. Operations from

transactions with priority try to lock timestamps up to +∞: writes

attempt to lock all timestamps, while reads lock from the latest

observed write onwards; the transaction commits at the lowest

timestamp that was locked for all its data items. In contrast, trans-

actions with no priority behave identical to the MVTO+ algorithm:

they read the clock at the beginning and try to serialize all opera-

tions at that point (thus only acquiring locks for timestamps lower

than or equal to the clock value at the beginning of the transaction).

Theorem 3. In the MVTL-Prio algorithm, transactions labeled

critical are never aborted by transactions labeled normal.

Proof sketch. Assumemaxts is the maximum serialization times-

tamp of all completed or executing transactions with no priority.

For any objects, transactions without priority will not prevent a

transaction with priority from locking the interval [maxts,+∞],

and thus committing at a timestamp at mostmaxts . Thus, transac-

tions without priority cannot cause a transaction with priority to

abort. �

D DETAILS OF THE ϵ-CLOCK ALGORITHM

The MVTL-ϵ-clock algorithm is recalled in Algorithm 7. It assumes

that clocks are ϵ-synchronized and ensures that transactions never

abort in serial executions.

Upon start, a transaction tx reads the clock, obtains a time t , and

sets a local variable tx.TS to the interval [t−ϵ, t+ϵ]. This set has the

timestamps that tx tries to lock as it executes. To write k , tx obtains

a write-lock on as many timestamps in tx.TS as possible, waiting if

any of the timestamps is read- or write-locked (but not frozen) by

another transaction; if tx already holds a read-lock on a timestamp,

it waits until it can upgrade it to a write-lock. Next, if Tw denotes

the locks that tx actually manages to acquire, tx sets tx.TS to Tw.

To read k , tx selects the largest timestampm in tx.TS, �nds the

largest timestamp tr < m under which k has been written, and

then tries to acquire a read-lock on [tr+1,m] (if tx already has a

write-lock then it does not need to acquire a read-lock), waiting if a

timestamp is write-locked (but not frozen) by another transaction.

tx may �nd a frozen write-lock if some other transaction commits

after tx picked tr; In that case, tx picks tr again and retries. Then tx

updates tx.TS to contain the locked timestamps.

To commit, tx picks the smallest locked timestamp and runs

garbage collection before completing the commit.

Note that initially tx.TS contains the correct real-time trealwhen

tx started. In a sequential execution, we show that tx picks a commit

timestamp that is at most treal, and thus it releases the lock on

higher timestamps. As a result, the next transaction in the sequence

will always have its own real time in its tx.TS, so that does not

abort.

12

Algorithm 6 The MVTL-Prio algorithm

1: function Initialization(tx)

2: if tx.pr ior ity = f alse then tx.TS← clock()

3: function write-locks(tx, k)

4: if tx.pr ior ity = true then

5: for t = +∞ downto 0 do ⊲ write-lock all the possible

timestamps

6: try to acquire write-lock for tx on (k, t), waiting

if a timestamp is read- or write-locked but not frozen

7: function read-locks(tx, k)

8: if tx.pr ior ity = true then

9: repeat

10: tr← max{t : t < tx.TS and Values[k, t] , ⊥}

11: for t = +∞ downto tr+1 do ⊲ read-lock interval

[tr+1, +∞] if possible

12: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

13: if found frozen write-lock then release read-locks ac-

quired above; break ⊲ exit the “for”

loop

14: until found no frozen locks in the for loop

15: else

16: repeat

17: tr← max{t : t < tx.TS and Values[k, t] , ⊥}

18: for t = tr+1 to tx.TS do ⊲ read-lock interval [tr+1, tx.TS]

if possible

19: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

20: if found frozen write-lock then release read-locks ac-

quired above; break ⊲ exit the “for”

loop

21: until found no frozen locks in the for loop

22: return tr

23: function commit-locks(tx)

24: if tx.pr ior ity = f alse then

25: for (k, tr) ∈ tx.writeset do

26: try to write-lock for tx on (k, tx.TS), without waiting if a

timestamp is read-locked

27: if write-lock not acquired then

28: tx.TS = ∅ and release all write locks for tx ;

29: return ;

30: function commit-ts(T)

31: if tx.pr ior ity = true then

32: return minT

33: else

34: return tx.TS

35: function commit-gc(tx)

36: if tx.pr ior ity = true then

37: return true

38: else

39: return false

Algorithm 7 The MVTL-ϵ-clock algorithm

1: function Initialization(tx)

2: now← clock()

3: tx.TS← [now − ϵ, now + ϵ]

4: function write-locks(tx, k)

5: try to write-locks for tx on (k, tx.TS), waiting

if a timestamp is read- or write-locked but not frozen

6: tx.TS← write-locks that tx could acquire

7: function read-locks(tx, k)

8: if tx.TS = ∅ then return ⊥

9: m ← max tx.TS

10: repeat

11: tr← max{t : t < m and Values[k, t] , ⊥}

12: for t = tr+1 tom do ⊲ read-lock interval [tr+1,m] if possible

13: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

14: if found frozen write-lock then

release read-locks acquired above; break ⊲ exit “for” loop

15: until found no frozen locks in the for loop

16: tx.TS← tx.TS ∩ [tr+1,m]

17: return tr

18: function commit-locks(tx) return

19: function commit-ts(T) return minT

20: function commit-gc(tx) return true

We now show that MVTL-ϵ-clock is not susceptible to serial

aborts, which we de�ne precisely as follows:

• (Serial abort) An algorithm is susceptible to serial aborts if it has

a serial schedule that aborts some transaction.

Theorem 4. The MVTL-ϵ-clock algorithm is not susceptible to serial

aborts when clocks are ϵ-synchronized.

Proof sketch. According to the ϵ-clock assumption, the local clock

the transaction sees can diverge from the real time by at most ϵ . The

�rst step a transaction takes when it starts is to read its local clock t .

Assume tr eal_star t is the real time when local clock value t is read.

Given thatT starts with the interval [t−ϵ, t+ϵ], it is guaranteed that

tr eal_star t ∈ [t −ϵ, t +ϵ]. At commit time, according to the ϵ-clock

algorithm, a transaction commits with the smallest timestamp in

its interval it was able to lock for all data items.

We show that if all transactions execute serially, each transaction

will be able to commit, and that its commit point will not be larger

than the real time at the beginning of the transaction. We prove

this by induction:

Base case. Assume T1 is the �rst transaction that executes serially

in the system. The �rst point in its assigned interval (t − ϵ) will be

at most equal to the real time at the start of the transaction. Given

that no con�icting data exists in the system, this �rst transaction

will be able to commit at this smallest timestamp in the interval.

Inductive step. Assume n − 1 transactions have executed serially,

and have each committed at a timestamp that was at most equal

to the real time at the respective start of the transaction. We now

show the n-th serial transaction will also commit with a timestamp

at most equal to the real time at which it started.

13

Given that transactions execute serially, we know that the n-

th transaction begins only after the previous one has completed.

According to the algorithm, a transaction completes only after it

performs garbage collection. Therefore, assuming the transactions

committed with timestamps at most equal to the real time when

they started, after the �rst n − 1 transactions commit, no lock is

held for timestamps higher than the real time the n − 1-th trans-

action started. As the transactions execute serially, the real time

the n-th transaction starts is larger than the real time any of the

previous transactions started, and thus higher than any lock held in

the system (therefore, no con�ict can arise for a serial transaction

that tries to commit at this timestamp). As the interval assigned to

transaction n is guaranteed to contain the real time at the trans-

action’s start, the n-th transaction will be able to commit with a

timestamp at most equal to the real time when it started.

�

If concurrent transactions start less than 2 ∗ ϵ time apart in real

time, since operations always wait if timestamps are locked but

not frozen, they may have to wait for each other’s operations to

complete. Therefore our algorithm intuitively behaves similarly to

pessimistic concurrency control for these transactions. Thus, the

trade-o� with this algorithm is that deadlocks are possible, and the

system requires a deadlock detection mechanism.

E DETAILS OF THE MVTL-TO ALGORITHM

The MVTL-TO algorithm is given in Algorithm 8. Each transaction

chooses a serialization timestamp at the beginning, and attempts to

serialize every operation at this timestamp. For reads, it �nds the

largest timestamp with a committed value smaller than its chosen

serialization timestamp, applies read locks to every timestamp be-

tween these two, and returns the version’s value. This is equivalent

to reading the version with the largest timestamp smaller than the

transaction timestamp and setting its read-timestamp in MVTO+. If

a read encounters a timestamp that is write-locked, but not frozen,

it waits. This wait is short: it stops when write locks that are not

frozen are �nally frozen.

For writes, the algorithm simply retains the values it wishes to

write in its write set, without acquiring any locks. Only at commit

time does the protocol try to lock the write set at the chosen se-

rialization timestamp. If any read lock is encountered (frozen or

not), the write lock is unsuccessful (since no garbage collection

is performed). When a transaction fails to acquire a write lock, it

releases all previously acquired write locks, and aborts. In case all

the write locks are successfully acquired, they are then frozen and

values are associated with the transaction’s timestamp.

Theorem 5. The MVTL-TO algorithm behaves as the MVTO+

algorithm.

Proof sketch. Like MVTO+, MVTL-TO processes transactions such

that they appear to execute in the order of their timestamp. The

protocol provides all the properties of MVTO+, such as reads never

aborting and only having read-write con�icts (given each process

can choose unique timestamps, writes never con�ict with other

writes). �

Algorithm 8 The MVTL-TO algorithm

1: function Initialization(tx)

2: tx.TS← clock()

3: function write-locks(tx, k) return

4: function read-locks(tx, k)

5: repeat

6: tr← max{t : t < tx.TS and Values[k, t] , ⊥}

7: for t ← tr+1 to tx.TS do ⊲ read-lock interval [tr+1, tx.TS] if

possible

8: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

9: if found frozen write-lock then release read-locks acquired

above; break ⊲ exit the “for” loop

10: until found no frozen locks in the for loop

11: return tr

12: function commit-locks(tx)

13: for (k, tr) ∈ tx.writeset do

14: try to write-lock for tx on (k, tx.TS), without waiting if a times-

tamp is read-locked

15: if write-lock not acquired then

16: tx.TS = ∅ and release all write locks for tx

17: return ;

18: function commit-ts(T) return tx.TS

19: function commit-gc(tx) return false

F DETAILS OF THE MVTL-PESSIMISTIC

ALGORITHM

Brie�y, the pessimistic concurrency control algorithm works as

follows: as reads and writes are executed, they apply locks on the

objects they access. At most one write can access any object at

a point in time. If an object is locked for a write, no reads from

other transactions can proceed concurrently. If a transaction cannot

acquire a lock for an object, it waits until the lock is released. When

all the locks are successfully acquired, the transaction performs its

updates to the objects, and then unlocks.

This algorithm can be seen as a special case of MVTL with a

speci�c policy, as shown in Algorithm 9. Basically, writes try to

lock all possible timestamps, starting from +∞ downwards, while

reads also start from +∞, and apply read locks to all timestamps

down to the �rst timestamp where a write committed (whose value

is also returned). If a transaction has successfully acquired locks

for all its data, it will commit at the minimum timestamp that is

locked for every data item (since such a timestamp always exists,

the transaction will not abort—aborts can only potentially occur

in case of deadlock). This timestamp will be equal to one greater

than the largest timestamp of any read data, and is guaranteed to

be less than +∞. At the end of the transaction, the unneeded locks

are released (including, in particular +∞) and the next transaction

can acquire locks for the concerned data items.

Proof sketch. Since both reads and writes �rst try to lock +∞, it is

guaranteed that at most one writer or multiple readers can have

access to an object. Moreover, a transaction that has completed will

never prevent other transactions from accessing any data object.

�

14

Algorithm 9 The MVTL-Pessimistic algorithm

1: function write-locks(tx, k)

2: for t = +∞ downto 0 do ⊲ write-lock all the possible timestamps

3: try to acquire write-lock for tx on (k, t), waiting

if a timestamp is read- or write-locked but not frozen

4: function read-locks(tx, k)

5: repeat

6: tr← max{t : t < m and Values[k, t] , ⊥}

7: for t = +∞ downto tr+1 do ⊲ read-lock interval [tr+1, +∞] if

possible

8: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

9: if found frozen write-lock then release read-locks acquired

above; break ⊲ exit the “for” loop

10: until found no frozen locks in the for loop

11: return tr

12: function commit-locks(tx) return

13: function commit-ts(T) return minT

14: function commit-gc(tx) return true

Theorem 6. The MVTL-Pessimistic algorithm behaves as the pes-

simistic concurrency control algorithm.

G DETAILS OF THE GHOSTBUSTER

ALGORITHM

We now give the MVTL-Ghostbuster algorithm, which avoids ghost

aborts. We start with a precise de�nition of ghost aborts. To do so,

we �rst de�ne the notion of an active con�ict, which intuitively

means a con�ict with a transaction that is concurrently running.

More precisely, given an execution of algorithm:

• (Active con�ict) A transaction Ti has an active con�ict if it has

an operation oi that con�icts with some operation oj of another

transaction Tj , where oi is concurrent with Tj .

• (Ghost abort) An algorithm is susceptible to ghost aborts if it

has a schedule where a transaction aborts but it has no active

con�icts.3

The notion of ghost aborts is related to concepts discussed in

previous work [15, 21, 29]. In particular, in the context of STMs,

Kuznetsov and Peri [21] refer to a similar concept as transaction

interference.

To avoid ghost aborts, an algorithm must ensure that each trans-

action that aborts has at least one operation with an active con�ict.

The MVTL-Ghostbuster algorithm is shown in Algorithm 10.

This algorithm is similar to MVTL-TO, which emulates MVTO, with

the addition of garbage collection before a transaction commits or

aborts.

Theorem 7. The MVTL-Ghostbuster algorithm is not susceptible

to ghost aborts.

Proof sketch. MVTL-Ghostbuster chooses a timestamp at the be-

ginning of the transaction, and it serializes transactions according

3Ghost aborts are di�erent from cascading aborts [30], which occur when a transaction
reads uncommitted data.

Algorithm 10 The MVTL-Ghostbuster algorithm

1: function Initialization(tx)

2: tx.TS← clock()

3: function write-locks(tx, k) return

4: function read-locks(tx, k)

5: repeat

6: tr← max{t : t < tx.TS and Values[k, t] , ⊥}

7: for t = tr+1 to tx.TS do ⊲ read-lock interval [tr+1, tx.TS] if

possible

8: try to acquire read-lock for tx on (k, t), waiting

if timestamp is write-locked but not frozen

9: if found frozen write-lock then release read-locks acquired

above; break ⊲ exit the “for” loop

10: until found no frozen locks in the for loop

11: return tr

12: function commit-locks(tx)

13: if tx.TS = ∅ then return

14: for (k, tr) ∈ tx.writeset do

15: try to write-lock for tx on (k, tx.TS), waiting

if a timestamp is read- or write-locked but not frozen

16: if write-lock not acquired then tx.TS = ∅ and release all write

locks for tx;

17: function commit-ts(T) return tx.TS

18: function commit-gc(tx) return true

to this timestamp. As in the MVTO algorithm, the only con�icts

triggering aborts are read-write con�icts. If a transaction Ti aborts,

it must have been because a write lock could not be acquired. This

can only happen because a read lock already exists for Ti .TS at

the time of the write. If this is a ghost con�ict, the lock must have

been held by a transaction Tj that has �nished its execution and

aborted at the time of the con�ict. But in real time, a transaction’s

commit method only �nishes (with either an abort or commit result)

after the GC function is called (in which function, if the transac-

tion aborts, all its locks are removed). It is worth noting that in

this algorithm, garbage collection is always performed. Hence, a

transaction that aborts only holds any locks while it is executing

(i.e., while it is an active transaction). Therefore, a write cannot

encounter a con�ict due to a transaction that already aborted, and

thus no ghost con�icts can appear using this algorithm. �

H EXTENDING MVTL TO DISTRIBUTED

SYSTEMS

For the distributed version of MVTL, we consider a standard dis-

tributed system model [6], with processes that communicate via

message passing. The system is asynchronous: there are no bounds

on the relative speed of processes or on communication. Processes

have local clocks, with domain T = {0, 1, . . .}, which need not be

synchronized. Unless explicitly stated otherwise, processes may ex-

hibit crash-failures: they may stop executing unexpectedly. Where

appropriate, we discuss other failure models as well. We assume the

data is partitioned among multiple servers, and may or may not be

replicated (we discuss both cases). Transactions are coordinated by

the processes that want to execute them; we refer to such processes

as clients or coordinators.

15

Algorithms 11 and 13 show the basic algorithm for the client and

server respectively, while Algorithm 12 shows a generic policy. The

policy is speci�ed by the transaction coordinator, and it is applied

by the server.

This generic algorithm leads to speci�c algorithms with high

communication e�ciency: only one round-trip to each object in

the read set and two round-trips to each object in the write set.

This e�ciency is possible when the policy does not require garbage

collection and its fault tolerancemechanism does not sendmessages

when the coordinator is unsuspected (we discuss when this is viable

in §H.1).

Algorithm 11 The generic distributed MVTL algorithm

1: function begin(tx)

2: tx.readset← ∅; tx.writeset← ∅; tx.committs← ⊥

3: function write(tx, k, v) ⊲ write v to k in transaction tx

4: status ← write-locks(tx, k, v) ⊲ write lock some subset of

timestamps

5: if status = abor t then

6: decision ← tx.commitment .tryAbor t (); ⊲ decision must

be abort in this case

7: mark tx as aborted

8: return

9: add (k, v) to tx.writeset ⊲ remember key and value we wrote

10: function read(tx, k) ⊲ read k in transaction tx

11: (tr, V) ← read-locks(tx, k) ⊲ read lock some interval [tr+1, . . .]

with Values[k, tr] , ⊥

12: if tr = ⊥ then return ⊥ ⊲ read failed

13: add (k, tr) to tx.readset ⊲ remember key and version we read

14: return V ⊲ return committed value

15: function commit(tx) ⊲ try to commit transaction tx

16: commit-locks(tx) ⊲ locks to acquire at commit time

17: T ← {t : ∀k ∈ tx.readset.keys, tx has a lock on (k, t) and ⊲ try to

�nd a locked timestamp for tx

∀k ∈ tx.writeset.keys, tx has a write-lock on (k, t)}

18: if T = ∅ then

19: decision ← tx.commitment .tryAbor t (); ⊲ decision must

be abort in this case

20: mark tx as aborted

21: else

22: tx.committs← commit-ts(T) ⊲ pick some timestamp in T

23: decision ← tx.commitment .tryCommit (tx.committs);

24: if decision = abor t then

25: mark tx as aborted

26: else

27: for (k, v) ∈ tx.writeset do

28: send(server (k), freeze-write-lock, k , tx.committs) ⊲

freeze locks

29: if commit-gc(tx) then gc(tx) ⊲ invoke gc or not

30: function gc(tx) ⊲ garbage collect locks of tx after it ended

31: if tx committed then

32: for (k, tr) ∈ tx.readset do

33: send(server (k), freeze-read-locks, k , [tr+1, tx.committs])

34: send messages to release all unfrozen read- and write-locks for tx

Relative to the centralized MVTL algorithm, the main technical

challenge addressed by the distributed MVTL algorithm is handling

failures. A transaction coordinator failure may leave write locks in

an unfrozen state inde�nitely, causing other transactions to block

Algorithm 12 Client policy for the generic distributed MVTL al-

gorithm

1: function write-locks(tx, k, v)

2: send(server (k), (tx , write-locks, k , v , T)), for some set T

3: wait_message(server (k), status, T ′) ⊲ T ′ subset of T for which

write locks acquired

4: return status

5: function read-locks(tx, k) ⊲ returns a timestamp or ⊥

6: send(server (k), (tx , read-lock, k , T , criteria)), for some set T

7: wait_message(server (k), tr , te , V) ⊲ [tr + 1, te] read locked if

tr , ⊥, V read value

8: either return (tr,V) or return (⊥, bot)

9: function commit-locks(tx)

10: acquire read- or write-locks for tx on some keys and timestamps as

above

11: function commit-ts(T) return some t ∈ T

12: function commit-gc(tx) either return true or return false

Algorithm 13 The server

1: function receive-write-lock-message(tx, k, v, T)

2: acquire write-locks for tx on (k, T ′) for T ′ ∈ T in which acquiring

locks is possible

3: tx.pendinд_value(k) ← v ; ⊲ remember v as new value

4: send(client (tx), write-locks-acquired, T ′)

5: function receive-read-lock-message(tx, k, T , cr iter ia)

6: acquire read-locks for tx on (k, I) for I = [tr+1, te] where te ∈ T

chosen according to cr iter ia and Values[k, tr] , ⊥

7: send(client (tx), read-locks-acquired, tr, te or ⊥, Values[k, tr]

or ⊥)

8: function receive-freeze-write-lock-message(tx, k, t)

9: decision ← tx.commitment .tryCommit (t)

10: if decision = abort then

11: release tx′s write locks

12: return

13: freeze write-lock for tx on (k, t) ⊲ freeze locks

14: Values[k, t] ← tx.pendinд_value(k) ⊲ expose committed value

15: send(client (tx), write-locks-frozen, k)

16: function receive-freeze-read-lock-

message(tx, k, [star t, commit])

17: freeze read-locks for tx on k for [start, commit]

18: send(client (tx), read-locks-frozen, k)

19: function write-lock-timeout(tx)

20: decision ← tx.commitment .tryAbor t ()

21: if decision = “commit @ t ” then

22: freeze write-lock for tx on (k, t) ⊲ freeze locks

23: Values[k, t] ← tx.pendinд_value(k) ⊲ expose committed

value

24: send(client (tx), write-locks-frozen, k)

25: else ⊲ decision = abort

26: release tx′s write locks

16

forever. A server failure similarly causes either inde�nite waiting

from transaction coordinators or failure of all transactions accessing

the failed server.

The solution to both types of failure is simple: we associate a

commitment object with each transaction, to ensure that everyone

agrees on whether the transaction committed or aborted. Techni-

cally, the commitment object solves consensus: it ensures that (1)

no two processes obtain di�erent decisions, (2) the only possible

decisions are abort or commit(t) where t is a timestamp, (3) if the

decision is d , some participant proposed d , (4) each correct process

eventually decides, and decides only once.

After a coordinator has acquired all the necessary locks and has

found a commit timestamp, it proposes the commit outcome with

the associated timestamp to the commitment object of the trans-

action. If the decision is to commit, the coordinator then proceeds

to inform the servers in the write set of the commit timestamp,

without waiting for replies, allowing them to freeze the write locks

associated with this transaction (we note that the protocol would

be correct even without this step; we include it for performance).

When the servers receive a request to freeze the locks of a transac-

tion, they also propose commit with the received timestamp from

the coordinator. This is because from the point of view of a server,

when it has received the serialization timestamp of a transaction,

the transaction is committed. However, if a server has held unfrozen

write locks for a certain amount of time without receiving the freeze

message from the coordinator, it will assume the coordinator has

failed and it will propose an abort outcome to the commitment ob-

ject. If the decision is to commit, the server will receive a timestamp

along with the decision and will be able to simply freeze its write

locks at that timestamp and consider the transaction committed.

The server can make this assumption because a commit decision is

only possible if someone proposed commit, and a commit proposal

only happens after the coordinator has performed all its updates

and has found a commit timestamp, or after the coordinator has

already informed a server of the commit timestamp. In both these

instances the transaction can be committed. In the eventuality of

an abort decision from the commitment object, a server releases

all the write locks associated with that transaction and considers it

aborted.

H.1 Commitment object implementations

This general mechanism used in our protocol allows various com-

mitment object implementations, depending on the failure model

we assume. If the coordinator or any minority of servers may fail,

a Paxos-like consensus protocol could be used, with all the servers

in the system as participants. This is because no server knows the

write set of transactions, which can change dynamically with the

execution.

However, in practice, storage servers are often replicated and

their failures are masked, to provide both availability and durability

of data. In this case, we can consider the storage server as a logical

entity that does not fail, and consider only failures of the coordi-

nator. By doing so, we can obtain an e�cient implementation of

commitment, one that requires little communication in the com-

mon failure-free case. We do so by implementing the commitment

object using Terminating Reliable Broadcast (TRB) [13], as we now

explain.

Essentially, the coordinator designates a single server per trans-

action as the decision point. This server can be, for example, the �rst

server accessed by a write operation. Consensus on the outcome

of the reliable broadcast (i.e., whether the source has delivered or

has crashed) is achieved on this decision server. Servers accessed

on subsequent writes will then be informed of the decision point

of the transaction. When the coordinator proposes a value to the

commitment object, it needs to inform the decision point of this

proposal and wait for its decision. When proposing a commit, the

message can also act as a freeze-write-locks message to the deci-

sion server, which is only applied if the decision is to commit. If

the coordinator has proposed abort, no other outcome is possible

(since without receiving a commit message from the coordinator,

servers themselves can only propose abort). However, in case of a

commit proposal, the outcome may be that of abort: when write

locks have been acquired for a certain amount of time, but have not

been frozen, the servers suspect the coordinator of having failed,

and thus propose abort. The abort proposal from a server is similar

to that of the coordinator: the decision point is contacted, and its

decision is followed. If the coordinator’s commit proposal has been

executed at the decision point earlier than any abort proposal, the

decision will be to commit, and the decision server sends the com-

mit timestamp along with the decision. A server proposes commit

only once it has received the freeze-write-locks message. But this

message is only sent by the coordinator if the decision has been

to commit. Hence, the commit proposal that a server does when

freezing write locks can be executed entirely locally. If the server

has not been informed of a transaction abort, it simply stores the

commit decision locally. Thus, in the common, failure-free case, the

coordinator does not need to exchange extra messages to be able

to ensure fault tolerance.

H.2 Correctness

We start by proving the following lemma concerning the outcome

of a transaction:

Lemma 1. In Algorithms 11 and 13, with the generic policy in

Algorithm 12, if a participant considers a transaction as committed,

no other participant considers it as aborted.

Proof. The commit object associated with each transaction pro-

vides the standard properties of uniform consensus:

• (Termination.) Every correct process eventually decides some

value.

• (Validity.) If a process decides v , then v was proposed by some

process (and, as previously mentioned, v can only be abort or

commit).

• (Integrity.) No process decides twice.

• (Agreement.) No two processes decide di�erently.

Each process, be it the coordinator or a server, uses the commit

object in order to obtain the decision as to whether the transaction

should be committed or aborted. Before this, it makes no assump-

tions about the state of a transaction. At commit time, the coordina-

tor proposes abort if no serialization point was found, and commit

otherwise. A server that times out proposes abort, and a server that

17

receives a freeze write lock message (essentially a commit message)

proposes commit. By the agreement property, all the processes in-

volved with a particular transaction obtain the same outcome of

the transaction.

�

Using Lemma 1, we now prove the following theorem:

Theorem 8. Algorithms 11 and 13 with the generic policy in Al-

gorithm 12 ensures serializability.

The proof is largely similar to the centralized version, but we

recall it here for completeness.

Proof. We denote byT .committs the timestamp at which trans-

actionT is serialized and commits (aborted transactions do not have

a serialization timestamp). Each transaction has a unique serializa-

tion timestamp, as explained in §4.1. If a transaction T commits at

a timestamp T .committs , then it holds write locks at T .committs

for all the data in its write set, and read locks from the largest

timestamp smaller than T .committs containing a committed value

to T .committs for all the data in its read set (Algorithm 11, line 17).

By Lemma 1, if the coordinator considers a transaction to be com-

mitted, no server can consider it to be aborted, and thus the locks of

the transaction must still be held. We denote by ri [x j] the fact that

transaction Ti has read a version of object x written by transaction

Tj (i.e., the read operation has returned Values[x ,Tj .committs]).

In addition, we denote bywk [xk] the fact that transaction Tk has

written a new version of object x (i.e., it has written a value to

Values[x ,Tk .committs]).

We assume the serialization order is given by the commit times-

tamp of the transaction. That is, if transaction T1 creates version

v1 of object o, and transaction T2 creates version v2 of object o, we

say v1 ≪ v2 i� T1.committs < T2.committs .

LetH be amultiversion history over a set of transactions {T0, . . . ,Tn },

and C(H) the committed projection of this history. The commit-

ted projection of an operation history retains only the operations

that belong to committed transactions. A multiversion serialization

graph (MVSG) has the transactions {T0, . . . ,Tn } ∈ C(H) as vertices

and edges (1) from Ti to Tj if Tj reads from Ti , and (2) for rk [x j]

andwi [xi] ∈ C(H), if xi ≪ x j , then the graph has an edge from Ti
to Tj , otherwise it has an edge from Tk to Ti .

It has been shown [5] that if the multiversion serialization graph

is acyclic, then a multiversion history is one copy serializable, that

is, equivalent to a serial one version history.

Similarly to the proof of the original multiversion timestamp or-

der Algorithm, we show the MVSG resulting from MVTL is acyclic

by showing that if an edge between Ti and Tj exists in the graph,

Ti .committs < Tj .committs . We consider the types of edges that

can appear in a multiversion serialization graph. The �rst type

of edges are reads-from edges. In this case, transaction Tj reads a

version written by transaction Ti . Function read-locks acquires

locks for timestamps starting immediately after the timestamp

containing the version whose value is returned (and, since it read-

locks an interval of timestamps, does not lock timestamps equal or

larger to later versions). Hence, the read can only be serialized at a

timestamp higher than that at which the read version was created.

Thus,Ti .committs ≤ Tj .committs . The second type of edge appears

if rk [x j] and wi [xi] are in H and xi ≪ x j . In this case, an edge

from Ti to Tj exists in the graph. By de�nition of ≪, xi ≪ x j i�

Ti .committs < Tj .committs . Finally, the third type of edge appears

if rk [x j] andwi [xi] are inH and x j ≪ xi . In this case, an edge from

Tk toTi is created (this assumes k , i). Since x j ≪ xi , we know that

Tj .committs < Ti .committs . Given that Tk has performed a read

of version x j , Tk has necessarily applied read locks for each times-

tamp fromTj .committs + 1 toTk .committs . A read lock can only be

acquired if no write lock from another transaction is present. Simi-

larly, a write lock on a timestamp cannot be acquired if a read lock

from another transaction is present. Thus, wi [xi] could not have

occurred in the interval [Tj .committs + 1,Tk .committs]. And since

we know Tj .committs < Ti .committs , wi [xi] must have necessar-

ily occurred after the interval. Thus, Tk .committs < Ti .committs .

Given that all the edges in the graph are from transactions with

lower serialization timestamps to transactions with higher seri-

alization timestamps, a cycle cannot exist. Thus, H is one-copy

serializable. �

We now focus on the liveness guarantees of the protocol.

Lemma 2. If the coordinator does not propose commit for a trans-

action, no server does either.

Proof sketch. Servers only propose commit when receiving a freeze

write locks request from the coordinator. However, the coordinator

only sends these messages once it has proposed to commit the

transaction and has received a positive decision. Hence, the servers

cannot propose a commit before the coordinator does.

�

Lemma 3. If a coordinator that has obtained write locks but has not

committed fails, it is eventually suspected by every correct server that

holds unfrozen write locks for the coordinator’s ongoing transaction.

Proof sketch. The proof is straight-forward, as every server holding

unfrozen write locks suspects the coordinator after a certain (�nite)

amount of time has passed since the locks were acquired (and the

Write-Lock-Timeout function is called).

�

Lemma 4. If a coordinator fails before committing a transaction,

its write locks are eventually released and the transaction aborted on

the correct servers.

Proof sketch. A transaction is e�ectively committed when the coor-

dinator proposes commit to the commitment object corresponding

to the transaction, and obtains the same decision. If a coordina-

tor fails before proposing commit, according to Lemma 2, no-one

proposes commit for its transaction. Therefore, a commit decision

cannot be reached (according to the Validity property of the commit-

ment object). According to Lemma 3, every server currently holding

unfrozen write locks for the coordinator’s ongoing transaction at

the time of failure suspects it to have failed. In Algorithm 13, when

a server suspects a coordinator (when a time-out for the unfrozen

write-locks occurs), it proposes abort. Thus, since commit cannot

be proposed, and every server holding write locks must propose

abort, the only decision that can be reached is to abort.

�

We now prove the following theorem:

18

Theorem 9. No transaction initiated by a correct coordinator is

inde�nitely delayed by a failed coordinator.

Proof sketch. Inde�nite delays can happen in one scenario: when

unfrozen write locks are held for an object. A read at a higher times-

tamp (no matter how high) whose result would depend on whether

or not a new version of the object is created at the timestamps that

are currently write-locked but not frozen has no choice but to wait.

Other operations may be a�ected by the ongoing transaction of a

failed coordinator, but this does not result in waiting, but rather

in aborting, and potentially retrying at a higher timestamp, where

the two transactions would not interfere. According to Lemma 4,

either a coordinator is correct, and thus eventually commits or

aborts its transaction, or its write locks are eventually released.

Therefore, it cannot be the case that a transaction initiated by a

correct coordinator is delayed inde�nitely by a failed coordinator.

�

Theorem 10. Unless at least one server suspects the coordinator to

have failed, a transaction that has chosen a serialization timestamp

eventually commits.

Proof sketch. Servers only propose abort when suspecting the

coordinator to have failed (i.e., unfrozen write locks have been

held for too long). Thus, if the coordinator is not suspected, no

server proposes abort. Thus, the only proposal servers can make

in this scenario is to commit. Additionally, if the coordinator has

found a serialization timestamp for the transaction, then it must

propose commit. Thus, since no-one in the system proposes abort,

and the coordinator must propose commit, the �nal decision of the

commitment object must be to commit.

�

19

