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Robust Tracking Commitment
Altuğ Bitlislioğlu, Tomasz T. Gorecki, Colin N. Jones

Abstract—Many engineering problems that involve hierarchi-
cal control applications, such as demand side ancillary service
provision to the power grid, can be posed as a robust tracking
commitment problem. In this setting, the lower-level controller
commits a set of possible reference trajectories over a finite hori-
zon to an external entity in exchange for a reward corresponding
to the size of the reference set and the allowed margin of tracking
error. If the commitment is accepted, the lower-level system is
required to track any reference trajectory that can be sampled
from the committed set. This paper presents the framework of
robust tracking commitment and a method to solve the optimal
commitment problem for constrained linear systems subject
to uncertain disturbance and reference signals. The proposed
method allows tractable computations via convex optimization for
conic representable uncertainty sets and lends itself to distributed
solution methods. We demonstrate the proposed method in a
simulation based case study with a commercial building that
offers frequency regulation service to the power grid.

Index Terms—tracking, hierarchical control, distributed con-
trol, robust control, service commitment, ancillary service, de-
mand response

I. INTRODUCTION

R
EGULATION of large and complex systems that include
many agents is usually handled with several control lay-

ers that interact in a hierarchical fashion in order to break down
the complex control task into simpler sub-tasks. Frequency
regulation of the power grid is a good example of such a set-
ting, where an upper level controller, run by the grid operator,
sends reference signals to the lower level subsystems, reserve
providers, which are expected to track the reference within
an acceptable error bound. For the upper level controller, it is
crucial to know the tracking capability of the subsystems. In
the power grid, this information is provided to the grid operator
in terms of a reserve commitment, which represents the set of
robustly trackable power generation/consumption trajectories
by the lower level subsystem for a specific time window [1].
The assessment of the optimal reserve capacity of a large scale
complex subsystem, such as a commercial building, is far from
trivial. The difficulty comes from large dimensional models
that limits available computational methods and the fact that
the controlled system is restrained by its primary objectives
and external disturbances such as weather conditions and
occupancy levels.

In this paper, motivated by the reserve commitment problem
for the power grid, we formulate the robust tracking commit-

ment problem for constrained linear systems. The problem cor-
responds to the assessment of a subsystem’s tracking capability
for a finite horizon and optimal commitment of this capability
to an upper control layer. Of course, the subsystem’s overall
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cost of operation and feasibility have to be taken into account
in this assessment. The tracking capability can be expressed
in terms of a set of possible reference trajectories the system
can track robustly. By robustness, we mean that the subsystem
will not violate internal constraints and always stay close to
the revealed reference trajectory within an allowed error set,
while being subjected to external disturbances.

For a fixed reference set over a finite horizon, considering
that both the reference and disturbance are external uncertainty
sources, the ability of the system to track any reference
from this set can be assessed by means of a standard robust
optimization problem [2], [3], given that the system is linear,
constraint and uncertainty sets are polytopic. The peculiarity
of the commitment problem comes from the freedom in
the choice of uncertainty sets that are admissible for robust
tracking, since it is up to the subsystem to determine the size
of uncertainty set it can handle. In other words, we are faced
with a robust optimization problem, in which the size of the
uncertainty set is also a decision variable.

Finite horizon robust control for linear systems is well es-
tablished in the model predictive control (MPC) literature [4].
However, the related work is mainly concerned with obtaining
a control policy that guarantees robust feasibility and stability
under a given uncertainty set. Available methods mainly rely
on choosing a nominal trajectory and a control policy that
will keep the system around the nominal trajectory under the
effect of the uncertainty [5]–[8]. The use of a closed-loop
control policy reduces the conservatism significantly compared
to open-loop robust policies.

Among many available robust MPC methods, we build on
the affine disturbance feedback method [8] which is a trans-
lation of the work of [9] to the MPC framework. The method
can be directly applied to conic representable uncertainty
sets over the whole prediction horizon, capturing the tempo-
ral correlation of the uncertain signal while eliminating the
need of enumerating extreme trajectories. Affine disturbance
feedback policies are shown to be equivalent to time-varying
state feedback policies [4], [8] and the method allows online
optimization of the policy via convex optimization, rather than
working with an a priori fixed policy. Other tube MPC methods
that can supersede the disturbance feedback approach [6], [7],
rely heavily on the assumption of uncorrelated realization of
the uncertainty at each time step. This assumption restricts the
family of trajectory sets that can be used to characterize the
inherent tracking capability of the system. In our work, we
take into account the temporal correlation of the uncertainty,
especially for the reference signal, and hence consider a
more expressive family of sets for characterizing the inherent
capability of the system. We demonstrate the advantage of this
approach in the simulation study in Section V. Considering
temporal correlation for uncertainty modeling is also found
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out to be beneficial in the context of the multistage economic
dispatch problem [10]. In addition, the machinery of affine, or
equivalently linear, policies for treatment of uncertainty can be
also used to obtain more generic nonlinear policies [11]. The
work of [11] generalizes linear policies by considering lifted
uncertainty sets under a nonlinear operator, a possibility also
shown by [9]. In Section IV-B, we show that this enhancement
of linear policies can be incorporated in the robust tracking
commitment problem in a computationally tractable manner,
whenever the nature of the uncertainty set allows for it.

An illustrative example of robust model predictive control
applied to the operation of the power grid can be found in [12],
where the authors allocate reserves while considering temporal
correlation of the demand-generation forecast and assuming
the forecast error to belong to a polytopic set defined over
a finite prediction horizon. However, the uncertainty set is
fixed prior to allocation, therefore the authors do not address
the problem of assessing disturbance rejection capabilities
of a given reserve fleet. The commitment problem, on the
other hand, requires searching over uncertainty sets that the
system can accommodate rather than guaranteeing robustness
against a fixed uncertainty set. The interest in this problem
has peaked in recent years due to the prospect of demand
response applications [13], where the reference set to be
tracked that represents the reserve capacity of the system is not
given, but should be computed by the service provider. In [3]
the problem is posed in the robust model predictive control
context, and simple up-down flexibility of a single actuator
is optimized. [14] and [15] consider aggregation of several
subsystems to track a reference signal and optimize maximum
up-down limits on the reference, however the robust formu-
lation is again limited either to single dedicated actuators or
predetermined schemes that distribute the required change in
the total power consumption among actuators. [16] considers
reference sets that are norm balls and optimizes over linear
mappings to modify the uncertain reference set utilizing dual
norm formulations. However, in all aforementioned works on
demand response, the authors do not consider the temporal
correlation that will be present in the uncertain reference
signal. This problem is tackled in our previous work [2], where
we consider polytopic uncertainty sets defined over the whole
prediction horizon and formulate a method for modification
of the uncertainty set via linear maps. A similar work is [17],
where the authors propose optimizing over a linear map to
be applied to a polytopic reference set that represents energy
constraints in frequency regulation signals.

Other works have tackled similar problems in more specific
contexts. [18] and [19] propose aggregation methods for char-
acterizing the power consumption flexibility of a collection of
thermostatically controlled loads (TCLs). This can be consid-
ered as a particular case of the commitment problem and can
be addressed with the methodology proposed in this paper, that
can also handle more general systems. Another related work
is [20] where the problem of serving a set of time constrained
load requests (such as electric vehicle charging) is tackled.
Sufficient conditions are given for a supply profile to be able to
serve the loads and a dispatch strategy is proposed. This work
differs from ours by considering a continuous time formulation

and again using the specific structure of the problem to derive
a solution.

A connected problem is the output regulation, which deals
with the capability of the system to track a reference trajectory
that is generated by an external dynamical system [21]. In
the finite horizon framework, the external system serves as
a generator for the reference trajectory set. Most of the
work in output regulation deals with asymptotic tracking
guarantees [21], [22]. Similarly, for systems under additive
disturbance, the authors of [23] show robust convergence to a
neighborhood of a fixed reference that is allowed to change
occasionally. However, within the finite horizon tracking com-
mitment context, it is necessary to guarantee tracking during
the whole commitment period, which includes transients.
Therefore, similar to [24], we consider tracking requirements
during the whole horizon, including the transients, rather
than showing convergence to a neighborhood of a constant
reference. In this direction, the authors of [25] utilize robust
invariant sets to guarantee tracking with specified error bounds
during and after the finite prediction horizon. The guaran-
tees are sought for a given reference generator under the
assumption that there exists a feasible solution to the problem.
However, none of the aforementioned works in guaranteed
tracking or output regulation framework consider the problem
of modulating the reference set while solving the control
problem.

The idea of modulating initial sets for inner approximation
of admissible sets is used in [6]. Namely the authors develop
a method to partially design control policies online, by using
approximations of state and input tubes, which overcomes the
difficulty of designing fixed local controllers in the regular
tube MPC [5]. Even though both the framework and the
methodology are significantly different than our case, we take
a standpoint similar to that of [6], in the sense of applying
modifier functions to fixed shaped simple sets for recovering
inner approximations of more complex sets.

The robust commitment problem can be classified as a
generalized semi-infinite program [26] due to the variability
of the uncertainty set. This kind of problems is in general
more difficult to solve than semi-infinite programs, that is
robust optimization problems with a fixed uncertainty set [27].
The related literature is mostly concerned with generic non-
linear programs and global optimization methods, that can be
computationally demanding [27]–[30]. Within the framework
of linear systems and polytopic state and input constraints,
we reformulate the robust tracking commitment problem such
that it can be approximated by a simpler robust optimization
problem. The novelty of our approach comes from the notion
of modifier functions that are used to modulate uncertainty
sets, which enables reformulation of the commitment problem
into a standard multistage adjustable robust program that can
be solved efficiently [9]. The solution method is based on
linear decision rules [8], [9] together with linear modifier
functions over conic representable sets and can be used for
sizing of reference sets while simultaneously guaranteeing
robust tracking.

The results represented in this paper are extensions of
our previous work [2]. Here, we formulate a general ro-
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bust tracking commitment problem for linear systems that
allows practical computation of optimal reference sets to be
committed for guaranteed tracking. The contributions are the
formulation of the robust tracking commitment framework and
enhancement of similar formulations presented in [2], [16],
[17] in three ways. First we incorporate generic output track-
ing, where the output is a function of both input and the state
of the system, rather than just the input. Second we consider
additional disturbances acting on the system as another source
of uncertainty and allow for inexact tracking with certified
error bounds. Finally, we establish sufficient conditions for
modifier functions and control policies on uncertainty sets,
that ensure causal admissibility for robust tracking according
to the available information on the uncertainty.

The paper is organized as follows. Section II lays out the
problem formulation for constrained tracking under uncer-
tainty and introduces information structures. Section III de-
fines the robust tracking commitment problem, and discusses
sufficient conditions for admissibility of uncertainty sets and
control policies. Section IV presents a method for solving the
problem in a computationally tractable manner with implicit
modulation of uncertainty sets and closes with discussions
of properties of the tractable problem formulation. Finally,
Section V illustrates our results with a demand response
application.

Notation: R
n denotes the Euclidean space of dimension

n, and Z denotes the set of integers. For two integers i ∈ Z

and j ∈ Z such that i < j, let Z[i,j] := {i, i + 1, . . . , j}.
In denotes the identity matrix of dimension n and ⊗ de-
notes the Kronecker product. For a matrix M ∈ R

n×m,
an integer i ∈ Z[1,n] and a set J ⊆ Z[1,m], M(i,J )
indicates the set of components that belong to the ith row
and columns for which the indices belong to J . For a set
Q ⊆ R

n × R
m, the orthogonal projection operator is defined

as Projx(Q) := {x ∈ R
n| ∃y ∈ R

m, (x, y) ∈ Q}. Given two
functions f : Rn → R

m and g : Rm → R
l, f ◦ g : Rn → R

l

denotes the composition of f and g , such that f ◦ g(x) =
f(g(x)).

II. PROBLEM FORMULATION

A. Constrained tracking under uncertainty

Consider the linear uncertain system

xk+1 = Axk +Buk + wk

yk = Cxk +Duk

(1)

with constrained state and inputs (x, u) ∈ X×U ⊂ R
nx×R

nu ,
disturbance w ∈ R

nx and output y ∈ R
ny . The sets X and U

are assumed to be convex, polytopic and compact.
Given that the system is in state x at time 0, the input

sequence u = (u0, . . . , uN−1) is applied, and the disturbance
sequence w = (w0, . . . , wN−1) is observed, the state at time i
is denoted by φi(x,u,w), and the resulting sequence of states
(φ1(x,u,w), . . . , φN (x,u,w)) by φ(x,u,w). Note that φ is
a linear function of its arguments. The output of the system
over the horizon is also a linear function, and is denoted
by y(x,u,w) := (Cx0 + Du0, Cφ1 + Du1, . . . , CφN−1 +
DuN−1), where the arguments have been removed for brevity.

Given a reference signal r ∈ R
ny at time k, the tracking

error is denoted by ek = yk − rk, whereas for a reference se-
quence r := (r0, . . . , rN−1) the corresponding error sequence
over the finite horizon is given by

e := r − y(x,u,w). (2)

In order to qualify tracking, we introduce the tracking error

set E ⊂ R
Nny . The objective of the control action is to

maintain the difference between the output of the system and
the reference signal, that is e, within the set E .

We can now define the set of input, reference and dis-
turbance sequences that satisfy the system and tracking con-
straints over an N−step horizon

Q(x) := {(u, r,w) |φ(x,u,w) ∈ X , u ∈ U , e ∈ E } (3)

where X := XN and U := UN . As seen from the definition,
the feasibility set Q is parameterized by the initial condition
x of the system. In the following, we will drop the argument
of Q for notational simplicity.

Remark 1. The reference is only defined over the finite

horizon and we do not discuss tracking guarantees for the

infinite horizon case. Note that any terminal condition that

would ensure robust invariance under a persistent disturbance

after the finite horizon can easily be added to the set Q(x)
without changing its structure. At this point, we acknowledge

the difficulty of constructing invariant sets for self- correlated

or state dependent uncertainties [31]. Therefore we consider

tracking obligation only over the finite horizon, and advise

using standard robustly invariant sets generated for an un-

correlated disturbance after the finite horizon. The reader is

referred to [32] for computation of positively robust invariant

sets under time invariant disturbance sets, to be used as the

terminal constraint.

Our goal is to determine if, starting from a given initial
state x, an admissible control policy exists such that the
output y of system (1) can robustly track a reference signal
r, that is all system and tracking constraints can be satisfied,
for all possible realizations of the reference sequence r and
disturbance sequence w such that

r ∈ R, w ∈ W (4)

where R ⊂ R
Nny and W ⊂ R

Nnx represent the reference

set and the disturbance set and are assumed to be compact.
If such a control policy exists, then we can conclude that
the system is qualified for robust tracking with respect to
the bounded sets R and W . Note that this definition of the
reference and disturbance sets over entire sequences allows
temporal correlation along the horizon, providing a critical
flexibility that will be exploited in the application studied in
Section V.

Both the reference r and disturbance w are exogenous
uncertain signals for the system. From the point of view
of the controller, the main difference between these two is
the time they are observed by the controller. This causality
condition can be easily incorporated in the control policy to
be applied over the horizon as we will show in the following
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sections. Therefore, we define ξ = (r,w) ∈ R
nξ as the unified

uncertain signal. We further define the general uncertainty set
as

Ξ = R×W .

Let the map πk : RNnξ → R
nu be the control policy to be

used at time step k. The control policy sequence for the finite
horizon can be defined as

π(ξ) = (π0(ξ), . . . , πN−1(ξ)) (5)

We can now define the set of all admissible finite-horizon
control policies mapping from disturbance and reference se-
quences to input sequences

∆(Ξ) := {π : Ξ → U | ∀ξ ∈ Ξ, (π(ξ), ξ) ∈ Q} (6)

Given the feasibility and tracking conditions and the un-
certainty set, a controller using a policy that belongs to the
set ∆(Ξ), starting from the state x, can keep the tracking
error within the set E throughout the finite horizon for any
realization of the disturbance w and the reference r. The
existence of such control policies is not guaranteed: if the
system constraints and the tracking set is too restrictive or
the uncertainty sets are too large, then it may not be possible
for any controller to satisfy system feasibility and tracking
requirements simultaneously.

Let us now characterize the uncertainty sets that allow
existence of admissible control policies for tracking. This
characterization will be instrumental in the following sections,
when we optimize over reference sets that the system can track
robustly.

Definition 1. The set Ξ ⊂ R
Nnξ is admissible for tracking by

system (1) in state x if

∆(Ξ) 6= ∅ . (7)

The following lemma provides more insight into the geom-
etry of the admissibility condition:

Lemma 1. The set Ξ ⊂ R
Nnξ is admissible for tracking by

system (1) in state x if and only if:

Ξ ⊆ Projξ(Q) (8)

where Projξ(Q) denotes the projection of the set Q onto the

ξ subspace.

Proof. : The proof directly follows from the definition of the
projection operator and the definition of ∆(Ξ). Suppose that
Ξ ⊆ Projξ(Q), we have that ∀ξ ∈ Ξ, ∃u : (u, ξ) ∈ Q. This
indicates the existence of a function π, which maps every
ξ ∈ Ξ to a feasible u = π(ξ), such that (π(ξ), ξ) ∈ Q, and
hence ∆(Ξ) 6= ∅ . Conversely, suppose that ∆(Ξ) 6= ∅ and
let π ∈ ∆(Ξ). By definition of ∆(Ξ) , ∀ξ ∈ Ξ, ∃u such that
u = π(ξ) and (u, ξ) ∈ Q, and hence Ξ ⊆ Projξ(Q).

Lemma 1 also illuminates a method of testing the admissi-
bility of a given uncertainty set for robust tracking, by means
of verifying set inclusion.

B. Information structure of control policies

The control policy π should account for the fact that
the uncertain exogenous signals are revealed partially to the
controller as time progresses. Generally speaking, any decision
variable uk might depend on a subset of the uncertainty vector
ξ and only on this subset. To make this claim more precise,
the concept of the information structure of a function f is
introduced. The presentation follows concepts from Section
14.2 of [9] but adopts a different formulation.

Definition 2. Let I be a subset of {1, 2, . . . , n}, and

F(I) = {f : Rn → R |xI = x̂I ⇒ f(x) = f(x̂)} (9)

where xI denotes the entries of x defined by the indices of I.

Let I = (Ik)k∈Z[1,m]
be a collection of index subsets and

F(I) = {f : Rn → R
m, fk ∈ F(Ik) ∀k ∈ Z[1,m]} (10)

If f ∈ F(I), then we refer to I as the information structure

of f .

Loosely speaking, F(I) denotes the set of real-valued
functions that depend only on the input indexed in I. For
functions with multiple outputs, the information structure is
defined output-wise. I summarizes the information structure
of the function f : the kth component of f depends only
on inputs indexed in Ik. For example, in the robust multi-
stage control setting considered here, a typical requirement
of the control policy will be causality (also called non-
anticipativity) which states that the current control action can
depend on observations made in the past; in our notation,
this fact translates to: for each stage, every control action
can depend on past measurements, so that πk ∈ F(Ik) with
Ik = {1, . . . , k − 1}. Notice here a small abuse of notation
in the sense that πk is a function with values in R

nu , and by
πk ∈ F(Ik) we mean that every component of πk is in F(Ik).

Definition 3. The set Ξ ⊂ R
Nnξ is causally admissible for

tracking by system (1) in state x with respect to the information

structure I if

F(I) ∩∆(Ξ) 6= ∅ . (11)

In contrast to Definition 1, we now require that the control
policy satisfies a particular information structure. For example,
the reference trajectory to track will usually be known at the
current time step but not the disturbance. It is also possible that
the reference is known either partially or totally in advance. In
Section III, we will see that our examples may display more
complex information structures.

III. ROBUST TRACKING COMMITMENT

Consider the problem of finding a reference set, such that
the combined uncertainty set Ξ = R × W , composed of the
disturbance and reference, is admissible for robust tracking for
system (1). The admissible reference set R is to be committed
to an external agent together with the guarantee of robust
tracking for a finite horizon. We call this problem, a robust

tracking commitment problem, the application of which can be
found in ancillary service provision to the power grid, as we
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According to Lemma 2 we can write an equivalent formu-
lation of the family of admissible sets for a given initial set
Ξ̂

Ω =

{

Ξ ⊂ R
Nnξ

∣

∣

∣

∣

∣

∃ν, π̂ : Ξ = ν(Ξ̂),

π̂ :∈ ∆ν(Ξ̂), π̂ ◦ ν−1 ∈ F(I)

}

(20)

When we look for a causally admissible set that belongs
to Ω, the description (20) allows us to implicitly manipulate
uncertainty sets and control policies simultaneously to ver-
ify admissibility, as will be seen in Section IV. However,
while searching for a modifier function ν, the condition
π̂ ◦ ν−1 ∈ F(I) is difficult to evaluate since it is a condition
on a composite function that involves the inverse of ν−1. In
the following, we will propose a simple sufficient condition
directly on ν, that is easy to evaluate and ensures causal
admissibility of the modified uncertainty set. We start by
splitting the causality conditions of the composite function
π̂ ◦ ν−1.

Lemma 3. Let (Ik)k∈Z[1,m]
be a set of information structures

and f : Rn −→ R. If for all k, f ∈ F(Ik) then f ∈ F(
⋂

k Ik).

The proof of Lemma 3, as well as other technical proofs in
this section are grouped in Appendix B. The results will be
briefly discussed in this section and the reader is referred to
Appendix B for more details. Lemma 3 states an intuitive fact,
that is if the output of a function f depends only on inputs
indexed by I1 and I2, then it actually depends only on inputs
indexed by their intersection. This directly motivates the next
lemma.

Lemma 4. Let g : R
n → R

n, be a bijection. Given an

information structure I , define Î as

Îj =
⋂

{i|j∈Ii}

Ii (21)

The following equivalence holds

∀f ∈ F(I),f ◦ g ∈ F(I) ⇐⇒ g ∈ F(Î) (22)

Equation (21) characterizes a set of functions which do not
change the information structure of f . Loosely speaking, it
states that if f i depends on xj then gj should not depend
on anything that f i does not depend on. Notice that Îj is
always nonempty and in particular it contains j. This reflects
the fact that a "diagonal" mapping (where gj depends only on
j for all j) does not change the information structure of any
function it is composed with (for linear functions it means that
multiplying by a diagonal matrix always preserves the sparsity
pattern).

In Figure 2, the information structure Î for different in-
formation structures I are presented. The kth row of the
matrix represents the indicator vector of Ik. These matrices
can be thought of as sparsity patterns in the case that the
control policies are linear. The first column shows the sparsity
pattern of the control policy π and the second column the
corresponding sparsity-preserving sparsity pattern. In other
words, multiplying the matrix from the first column by the

I Î

Fig. 2: For given information structures, the corresponding
information structure of the uncertainty modifier function

matrix from the second column will result in the same sparsity
pattern. This directly helps us select control policies and
modifier functions such that their composition will still respect
the required information structure. For example, as would
be expected, the first row of Figure 2 tells us that a lower
triangular control policy composed with a lower triangular
modifier will still be lower triangular. However more complex
features in I , such as delays and forecasting, result in non-
trivial sparsity patterns for Î .

B. Sufficient conditions for causal admissibility of modified

uncertainty sets

In view of Lemma 2, simultaneous optimization over π

and ν would be beneficial for searching admissible uncer-
tainty sets. Lemma 4 is instrumental in proving that from
a control policy π̂ defined on Ξ̂ and an invertible mapping
ν, a control policy defined on ν(Ξ̂) which has the desired
information structure can be recovered. Indeed, π̂ ∈ F(I) and
ν−1 ∈ F(Î) ensures that π̂ ◦ ν−1 defined on ν(Ξ̂) belongs
to F(I) according to the lemma.

However, conditions on ν−1 are inconvenient since the aim
is to optimize directly over ν. Sufficient conditions on ν are
sought to replace the condition ν−1 ∈ F(Î). Unfortunately a
certain information structure for ν−1 does not usually result
in a specific information structure for ν. In particular, a sparse
information structure for ν−1 does not generally result in a
sparse information structure for ν. For example, the inverse of
a causal function is not generally causal. The following lemma
gives sufficient conditions on ν.
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Lemma 5. Suppose ν : Rn −→ R
n is a continuous bijection

of R
n and ν ∈ F(Î) as defined by equation (21). Define

G = {f ◦ ν | f ∈ F(I)}. We have

G = F(I)

Under mild assumptions, Lemma 5 states that composing
f ∈ F(I) with ν results in a function with the same
information structure.

Corollary 1. Given an information structure I and Î as

defined in equation (21), if ν is a continuous bijection and

ν ∈ F(Î), then ν−1 ∈ F(Î).

Proof. We have F(I) = {f | f ∈ F(I)} = {f ◦ ν ◦
ν−1 | f ∈ F(I)} by bijectivity of ν. In turn, F(I) =
{g ◦ ν−1 | g ∈ G} by definition of G. By Lemma 5, using
the assumptions on ν, we have that G = F(I) and therefore
F(I) = {g ◦ ν−1 | g ∈ F(I)}. Hence, for any g ∈ F(I), it
holds that g ◦ ν−1 ∈ F(I). The fact that ν−1 ∈ F(Î) then
follows from Lemma 4.

Theorem 1. Let ν : RNnξ → R
Nnξ , be a continuous bijection

and I an information structure, Î defined by equation (21)
and ∆ν in equation (17). ν(Ξ̂) is causally admissible for

tracking with respect to the information structure I if

F(I) ∩∆ν(Ξ̂) 6= ∅

ν ∈ F(Î)
(23)

Proof. Suppose there exists π̂ ∈ F(I)∩∆ν(Ξ̂). Since ν is a
continuous bijection, ν ∈ F(Î) implies that ν−1 ∈ F(Î) by
Corollary 1. Lemma 4 in turn ensures that π̂ ◦ ν−1 ∈ F(I).
Finally, application of Lemma 2 concludes the proof.

Theorem 1 provides sufficient conditions for causal admis-
sibility of an uncertainty set for tracking. We can define the
family of admissible sets that comply with these sufficient
conditions as

Ω̃(Ξ̂) =











Ξ ⊂ R
Nnξ

∣

∣

∣

∣

∣

∣

∣

∃ν, π̂

Ξ = ν(Ξ̂), ν ∈ F(Î)

π̂ ∈ F(I) ∩∆ν(Ξ̂)











(24)

For the definition of Ω̃ we have replaced the condition
π̂ ◦ ν−1 ∈ F(I) with the sufficient but simpler conditions
π̂ ∈ F(I) and ν ∈ F(Î). Therefore Ω̃ is a restriction of the
original family of admissible sets Ω.

Ω̃(Ξ̂) ⊆ Ω (25)

The restriction will depend on the initial set Ξ̂ and thus
the argument of Ω̃ is added to reflect this fact. However,
this restriction leads to tractable formulations based on the
available robust programming literature, as we will show in
the next section.

Finally, we write the modified robust tracking commitment

problem that is based on sufficient conditions (23) as

find R : R×W ∈ Ω̃(Ξ̂) (26)

IV. TRACTABLE APPROXIMATIONS

The problem formulation (26) allows us to search over
uncertainty sets implicitly by means of modifier functions.
However the problem is still difficult in its general form,
due to the infinite dimension of the search space and the
infinite number of constraints. Therefore we will look for
finite dimensional and tractable approximations of the tracking
commitment problem in order to solve it efficiently.

Using the definitions of Ω̃ and ∆ν , we can rewrite the
modified robust tracking commitment problem as

find π̂,ν

subject to ∀ξ̂ ∈ Ξ̂

(π̂(ξ̂),ν(ξ̂)) ∈ Q

π̂ ∈ F(I)

ν ∈ F(Î) .

(27)

Note that (27) is an adjustable robust optimization (ARO)
problem [9], that allows decisions to be taken after the realiza-
tion of the uncertainty. In our case the uncertainty dependent
decision rule is characterized by the control policy π. In the
standard form of ARO, the uncertainty set is fixed, whereas
the tracking commitment problem requires optimization over
possible uncertainty sets. However, even with the additional
modification of the uncertainty set, the tracking commitment
problem (27) still fits into the standard ARO framework,
because the uncertainty modifier ν can also be treated as a
decision rule. Consequently, we can directly utilize results
from adjustable robust programming [9]. However, tractable
adjustable robust programming methods presented in [9] is
applicable only to robust linear optimization problems. This
means that the constraints of the optimization problem that is
affected by the uncertainty can only be described by linear
inequalities. In order to satisfy this criterion on the problem
structure, we rely on the following assumption.

Assumption 1. The system in consideration is linear and

described by (1). State and inputs of the system are subject to

polytopic constraints. The allowed error set E is polytopic.

Following Assumption 1, we define the polytopic tracking
error set as

E := {e | Ge 6 g}

The feasibility set Q also becomes polytopic and can be
written as

Q = {(u, ξ) | Hu+Qξ 6 q}

For the derivation of Q, H, and q see Appendix A. Note
that q is an affine function of the initial condition x, and g,
which determines the size of the tracking set. This polytopic
description of the feasibility set allows treatment of the modi-
fied robust tracking commitment problem (27) in the uncertain
linear optimization framework.

Until this point, we have not made any strong assumptions
on the families of uncertainty sets, policy and modifier func-
tions. The presented theory in section III applies to generic
functions and sets. Therefore, the sufficient conditions in (24)
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can be used to verify causal admissibility of any uncertainty
set, using generic policies and modifier functions. In the
following we restrict ourselves to sets for which computa-
tionally tractable methods can be derived for verification of
admissibility conditions (24).

Consider the feasibility condition in (27) with polytopic Q.
Ensuring satisfaction of constraints under the worst case real-
ization of the uncertainty leads to a set of inner maximization
problems.

max
ξ̂∈Ξ̂

{

Hπ̂(ξ̂) +Qν(ξ̂)
}

6 q (28)

where the max operator applies row-wise. The authors of [9]
show that if the max problem is a convex conic linear program
(LP), one can replace the maximisation with its dual minimiza-
tion problem. Thereafter, it is not necessary to solve the min

problem, since existence of a feasible dual variable will ensure
that the max in (28) is less than q. Therefore the original semi-
infinite constraint under uncertainty can be transformed into a
finite dimensional constraint on the dual variables. We omit the
details of the method for brevity and focus on the application
of these results in our framework. The reader is referred to [9]
for details and [33] for a tutorial review.

Following the results of [9], in order to be able to obtain
tractable robust counterpart formulations, we introduce the
following assumption.

Assumption 2. The uncertainty sets under consideration are

representable by intersections of convex cones as

Ξ̂ =
{

ξ | Fiξ + fi ∈ Ki, i ∈ Z[1,m]

}

(29)

where the cone Ki is proper.

Note that, the considered class of uncertainty sets is very
extensive, as it allows the description of well known cones
such as the non-negative orthant, the Lorentz cone and the
positive semi-definite cone as well as their intersections and
products.

In the following, we present the tractable approximations
of (27) using linear and nonlinear policy and modifier func-
tions.

A. Linear policy and modifier functions

In this section we build our formulation on the results of [9]
which shows that restricting the search space of policies to
linear (or affine) functions leads to finite dimensional and
tractable formulations of adjustable robust programs, referred
as the affinely adjustable robust counterpart (AARC). For
notational simplicity, we use linear functions, as any affine
term that does not depend on the realization of the uncertainty
can be defined as a separate non-adjustable decision variable
in the optimization problem.

Let us define the linear versions of the control policy and
the uncertainty modifier

πlin(ξ) := Mξ, νlin(ξ) = Lξ (30)

where M ∈ R
Nnu×Nnξ and L ∈ R

Nnξ×Nnξ . We can describe
the causality conditions by constraints on M and L

M(k,Z[1,Nnξ]\Ik) = 0, k ∈ Z[1,N ] ⇔ π ∈ F(I)

L(k,Z[1,Nnξ]\Îk) = 0, k ∈ Z[1,N ] ⇔ ν ∈ F(Î)
(31)

Note that the constraints (31) impose that the elements of M
and L multiplying the elements of the uncertain variable which
are not included in the information structure at step k to be
zero, thus enforcing causality of the linear functions πlin and
νlin.

Let us now formulate the robust tracking commitment
problem (27) with linear policies given in (30) and conic
uncertainty sets described by (29)

find M̂,L

subject to ∀ξ̂ : Fiξ̂ + fi ∈ Ki, i ∈ Z[1,m]

HM̂ξ̂ +QLξ̂ 6 q

(M̂,L) satisfies (31)

(32)

Once the problem is solved, a feasible solution M̂
∗ and L

∗

can be used to construct the uncertainty set that is causally
admissible for tracking and the corresponding control policy

Ξ = L
∗Ξ̂, π(ξ) = Mξ, M = M̂

∗
L
∗−1 (33)

To recover a tractable formulation of (32), the worst case
realizations of the uncertainty can be considered by enforcing
the constraint; max

ξ̂∈Ξ̂

{

HMξ̂ +QLξ̂
}

6 q. Applying conic

duality thereafter and stacking dual variables in matrix Z, the
robust counterpart can be formulated as

find Z, M̂,L

subject to Z
T
i ∈ K

∗
i , i ∈ Z[1,m]

m
∑

i=1

Zifi 6 q

m
∑

i=1

ZiFi = −
(

HM̂+QL

)

(M̂,L) satisfies (31)

(34)

The reader is referred to [9] for the derivation. The robust
counterpart for the tracking commitment problem (32) is con-
vex in linear control policies parameterized by M̂ and linear
uncertainty modifiers parameterized by L. Therefore, when
sets Ki are polyhedral, second order or semi-definite cones,
the problem formulation (34) allows tractable computations of
feasible reference sets admissible for tracking with respect to
the information structure I and the tracking error set E , by
system (1). Table I gives a summary of problem complexity
in case of most common uncertainty sets for the reference and
disturbance.

Remark 4. Any additional decision variable that is inde-

pendent of the uncertainty, ū, as well as non zero nominal
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values for the disturbance and reference, ξ̄, can be easily

incorporated in the above formulation as

Hū+Qξ̄ +

m
∑

i=1

Zifi 6 q

R W Robust Counterpart
Frr 6 fr Fww 6 fw LP

Frr + fr : ‖r‖
2
6 1 Fww 6 fw SOCP

Frr 6 fr Fww + fw : ‖w‖
2
6 1 SOCP

Frr + fr : ‖r‖
2
6 1 Fww + fw : ‖w‖

2
6 1 SOCP

TABLE I: Optimization type for the robust counterpart formu-
lation (34) of the tracking commitment problem, considering
combinations of polytopes and ellipsoids as uncertainty sets.
Note that the polytopic representation also covers 1 and ∞
norm balls. LP stands for linear program and SOCP stands
for second-order cone program.

B. Nonlinear policy and uncertainty modifiers

The formulation (34) is restricted to linear functions, but in
certain cases it is possible to deal with nonlinear policies (or
modifier functions) in a computationally tractable manner. The
key principle, introduced in [9] and studied in greater detail
in [11] is to consider a modified uncertainty set which is the
image of the original uncertainty under a nonlinear lifting. If
the lifted uncertainty set or its convex hull can be represented
in the conic form of (29), the machinery of linear policies
and modifier functions can be applied. The combination of
the nonlinear lifting and linear policy and modifiers results in
nonlinear policy and modifiers.

Consider again the constraints:

Hπ(ξ) +Qν(ξ) 6 q, ∀ξ ∈ Ξ (35)

We define the lifted uncertainty variable, and the corre-
sponding uncertainty set as

Z := {ζ = Λ(ξ), | ξ ∈ Ξ} (36)

with Λ : Rk −→ R
k′

a nonlinear lifting operator. Following
assumptions of [11], we may assume that there exists a
retraction operator ρ such that ρ◦Λ = Ik, the identity operator.
This implies that k′ ≥ k and Λ is injective. We can now choose
the policy and modifier functions under the form:

π(ξ) = M̃ζ = M̃Λ(ξ) and ν(ξ) = L̃ζ = L̃Λ(ξ) (37)

and the objective is then to find M̃ and L̃ such that:

HM̃ζ +QL̃ζ 6 q, ∀ζ ∈ conv(Z) (38)

If the new extended uncertainty set Z or its convex hull
conv(Z), can be represented in conic form (29), then the
tractable formulation (34) can be used to solve this problem.
As a result, a feasible solution M̃

∗ and L̃
∗ can be used to

construct the uncertainty set that is causally admissible for
tracking and the corresponding control policy:

Ξ = L̃
∗Z, π(ξ) = Mξ, M = M̃

∗(L̃∗Λ)−1 (39)

To ensure that (L̃∗Λ) is invertible, a simple solution is for
example to take L̃ under the form L̃ = L◦ρ with L invertible.

The causality of the resulting policies can be ensured by
considering the information structure for the lifted uncertainty
ζ and applying requirement (31).

A list of tractable cases has been identified in the robust pro-
gramming literature including quadratic policies for ellipsoidal
uncertainty sets, piecewise linear continuous policies with
box uncertainty sets, polynomial policies with box uncertainty
sets. The reader is referred to [9] and [11] for more details.
Note that other works such as [34] propose mixed-integer
reformulations for other types of lifting operators. As an
example, we briefly summarize results from [9] showing that
quadratic control policies can be handled with ellipsoidal
uncertainty sets. Consider the ellipsoidal uncertainty set:

Ξ = {ξ | ‖T ξ‖2 6 1} (40)

with invertible T . The lifted uncertainty is:

ζ = (1, ξ, {ξiξj , ∀i, j}) (41)

Or using a matrix notation:

ζ =

[

1 ξT

ξ ξξT

]

(42)

As shown in [9], the convex hull of the lifted uncertainty
set Z is given by

conv(Z) =

{

ζ =

[

1 ξT

ξ W

] ∣

∣

∣

∣

ζ � 0, tr(T WT T ) 6 1

}

(43)
where ζ � 0 means that ζ is a symmetric positive semi-
definite matrix. This representation can be put in the standard
conic form of (29), and therefore allows a tractable robust
counterpart formulation like (34). Notice that a linear policy
in ζ is equivalent to a quadratic policy in the ξ of the form:

πi(ξ) := ξTYiξ + vTi ξ + ui (44)

As an application example, in [35], the authors use quadratic
liftings to find the largest volume inner approximations of
polytope projections. For our purposes, evaluation of nonlinear
policies for robust tracking commitment is subject to ongoing
research.

C. Modulating the tracking error set

In Sections IV-A and IV-B, we have formulated a tractable
version of the robust tracking commitment problem (13) which
seeks a causally admissible reference set with respect to a
fixed tracking error set E . However for some applications,
it might be preferable to modulate the reference set together
with the associated tracking error set, since the relative sizes
of the two sets will indicate the tracking performance. For
example, for frequency regulation service to the power grid
in Switzerland, the service providers are allowed to deviate
from the reference up to a certain percentage of the total
service capacity committed, therefore a service provider who
is committing a larger reference set is allowed to have a larger
error set [36].

Notice that the problem (34) is convex in q which parame-
terizes the polytopic feasibility set Q. Therefore one can freely
optimize over modifications of the feasibility set. For clarity
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let us write the system feasibility and tracking constraints
separately as

Q =

{

(u, r,w)

∣

∣

∣

∣

∣

Tu+ Vw 6 h

G(r − (Pu+ Sw + ȳ)) 6 g

}

(45)

where ȳ is the nominal output of the system without control
action and the derivation of matrices T , V , P , S can be found
in Appendix A.

From (45), we can immediately observe that the prob-
lem (34) is also convex in g which parameterizes the tracking
error set E , therefore allows modulation in a tractable manner.
The sizes of the tracking error set and the reference set can
be related by enforcing a joint constraint on the uncertainty
modifier function parameter L and the error set parameter g.

D. Optimal tracking commitment

As mentioned earlier, the robust tracking commitment (13)
is a feasibility problem. On the other hand, the optimal robust
tracking commitment problem is finding the control policy,
reference and tracking error sets, that minimize a cost function.

minimize
π∈F(I)∩∆(R×W)

J(π,R, E) (46)

Relying on the tractable formulation with linear control
policies and uncertainty modifiers (32), we can solve the
tractable version of the optimal robust tracking commitment.

minimize J(u,Lr, g)

subject to ∀r̂ : Frr̂ + fr ∈ Kr,

∀w : Frw + fw ∈ Kw,

Tu+ Vw 6 h

G(Lrr̂ − (Pu+ Sw + ȳ)) 6 g

u = M̂rr̂ +Mww + ū

(M̂,L) satisfies (31)

(47)

where M̂ and L are defined as

M̂ =

[

M̂r

Mw

]

, L =

[

Lr

INnx

]

(48)

For notational simplicity, the reference and disturbance sets are
represented as single conic sets, but they can also be defined
as intersection of several conic sets as in (29).

With a suitable cost function, the optimal commitment
problem (47) can be solved as explained in section IV. The
cost function usually depends on the uncertain realization
of the reference and disturbance. However this dependence
can be qualified out by either considering the worst-case or
expectation of the possible cost realizations [37]. Furthermore,
as long as J is bilinear in the uncertain variables and decision
variables, the tractable robust formulation for the minimization
of an upper bound, that constitutes an equivalent problem with
certain cost function, can be obtained [9].

After solving (47), the optimal control policy, reference and
tracking error sets can be obtained as

R∗ = {r = L
∗
r r̂ | Frr̂ + fr ∈ Kr}

π∗(r,w) = M̂
∗
rL

∗−1
r r +M

∗
ww + ū∗

E∗ = {e | Ge 6 g∗}

(49)

where ∗ indicates that the variable is an optimizer of (47).

E. Collective tracking

In this section, we will consider the collective tracking
commitment problem, where the reference signal is to be
tracked by the summation (or average) of the outputs of several
subsystems that are not coupled via constraints or dynamics.
In this case, the aggregate tracking error can be written as

e = r −
n
∑

j=1

yj (50)

where superscript j indicates that the associated variable
belongs to subsystem j.

In order to compute a causally admissible reference set
for the collection of subsystems, it is necessary to compute
the aggregated tracking capability simultaneously. An obvious
option is to treat the collective system as a single system with
block diagonal system matrices, and solve the problem (32)
centrally. However this requires collecting the knowledge of
detailed subsystem models by an aggregator and will possibly
result in a very large number of decision variables. Therefore
it is desirable to distribute the problem, such that it can be
solved without central knowledge of the models and using
limited communication between the agents.

Let us briefly show that the problem (32) in fact easily
lends itself to distributed solution methods. The subsystems
are supposed to track a single reference by collective action.
This is equivalent to saying that the subsystems are tracking
separate reference signals, which sum up to the central ref-
erence. Using a common nominal reference set and a linear
uncertainty modifier function for each subsystem, the reference
can be split as

rj = L
j r̂,

n
∑

j=1

L
j = L (51)

where L parameterizes the global linear modifier function.
Therefore the aggregate reference set can be described as

R =

n
∑

j=1

L
jR̂ (52)

Many distribution schemes are possible, given the cost-
reward framework of the collective tracking task. As an
example, we consider the case where the error set is fixed, the
reward is split between agents according to their contributions
to tracking characterized by parameter Lj and the objective is
to minimize the total cost

n
∑

j=1

Jj(πj ,Lj) (53)

Subsystem feasibility constraints T juj + V jwj 6 hj and
causality conditions on the local control policies can be treated
separately by each subsystem. However (51) and the collec-
tive tracking constraint (50) introduces a constraint coupling
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among all subsystems. The collective tracking constraint can
be written as

∀r̂ : Frr̂ + fr ∈ Kr, ∀wj : F j
ww

j + f j
w ∈ K

j
w

n
∑

j=1

(

G
(

L
j r̂ − (P juj + Sjwj + ȳj)

))

6 g

uj = M̂
j
rr̂ +M

j
ww

j + ūj

(54)

Utilizing linear control policies uj = M̂
j
rr̂ + M

j
ww

j + ūj

and formulating the dual of the robust counterpart as in (34),
we obtain a tractable formulation for the collective tracking
constraint

Z
T
r ∈ K

∗
r , Z

j
w

T
∈ K

j∗

w , ∀j ∈ Z[1,n] (55a)

Zrfr +

n
∑

j=1

(

Z
j
wf

j
w − P jūj − ȳj

)

6 g (55b)

ZrFr =

n
∑

j=1

G(P j
M̂

j
r − L

j) , (55c)

Z
j
wF

j
w = G(P j

M
j
w + Sj) , ∀j ∈ Z[1,n] (55d)

We observe that the coupling constraints are (55b) and
(55c). The partial Lagrangian with the coupling constraints
can be written as

n
∑

j=1

Jj(πj ,Lj) + λT vec(ZrFr −
n
∑

j=1

G(P j
M̂

j
r − L

j))

+ µT (Zrfr +

n
∑

j=1

(

Z
j
wf

j
w − P jūj − ȳj

)

− g) (56)

which is separable given the variables λ, µ and Zr. Therefore
the collective tracking commitment problem can be solved in
a distributed manner with global updates of these variables
or enforcing consensus on their local copies [38]. Note that,
after the commitment of the aggregate reference set, it is
not necessary to further communicate for guaranteed tracking
if all subsystems have access to the aggregate reference r,
since collective tracking is robustly guaranteed by indepen-
dent local control policies. However, the performance can be
improved by repetitively solving the problem (55) online for
redistributing the tracking task among subsystems according
to the available information on the disturbance and reference
as time progresses. Adjusting the error set parameter g is also
possible with a suitable constraint on the aggregate modifier L
and g. In case of dynamic couplings, inter-system constraints
or common disturbances that couples the state and inputs of
several subsystems, the same methodology can be applied
to derive the tractable robust counterpart formulation and
distribute the computation.

V. APPLICATIONS

In this section, we will illustrate most of the theoretical
concepts put forward in this article on a realistic example of
a building providing ancillary services to the power grid. This
application requires a simple characterization of the tracking
capabilities of a building, such that the power system operator

can coordinate many service providers. The same methodology
can be applied to similar multi-agent frameworks such as
coordination of drones [39], considering feasible trajectories
that each drone can follow. Characterization of workspaces
of machine tools and feasible torque references of engines in
hybrid cars can be listed as other possible applications [25].

A. Power tracking with a building

The problem of interest here is the commitment of sec-
ondary frequency control provision. Secondary frequency con-
trol providers in the Swiss electricity market offer regulation
power with a weekly bid. To do so, they first have to schedule
their baseline power consumption ahead of time over the
contract period by purchasing energy on day ahead or intraday
markets. Secondly, they have to evaluate how much deviation
around this baseline they can accommodate. For that they
have to provide one number λ called the capacity bid that
represents the maximum positive or negative power consump-
tion deviation they are willing to support over the period
of the contract. For example, if λ = 10kW, it means they
theoretically could be required to increase (or decrease) their
power consumption by 10 kW for the period of commitment.
In practice they receive a signal from the grid operator, called
Area Control Signal (ACS), within the bounds specified by
the bids. At the time they receive this signal, the building
controller needs to make sure its power consumption is the
sum of the baseline consumption purchased and the ACS.
Deviations in the power consumption tracking are allowed
within an error margin proportional to the bid. For details on
frequency control, the reader is referred to [40].

Notice that the robust tracking method proposed in this
paper is particularly suited for this application. Indeed, all
possible values of the ACS can be represented by a reference
set R, that the building operator can modify (essentially in
this case, scale up or down depending on the value of λ). An
optimal set size can be computed provided that an appropriate
cost function is chosen as will be demonstrated next. By
choosing y defined in equation (1) to be the total power
consumption of the building and X and U to represent the
operating constraints of the building, we can see that the
methodology proposed in this paper directly allows to address
this problem.

We consider an office building with three controlled zones
served by individual air handling units that we assume can
control the heat fluxes to the zones. A linear state-space
model of the building was extracted and validated against
EnergyPlus simulation data using the toolbox OpenBuild [41].
The toolbox builds a thermal model of the building based
on first principle modeling and collects realistic data for
occupancy and equipment schedules, as well as weather. One
week of typical summer weather for the city of Chicago is
used in this study. The model of the building is a model of the
form (1) with state dimension nx = 10 and input dimension
nu = 3. The disturbance captures the effect of internal gains,
solar radiations and outdoor temperature, and the input vector
represents the thermal power input power to the zones (which
is negative since it is cooling season). In this study, y is a
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scalar that represents the total electricity consumption so that
yk = α

∑nu

i=1 |ui| with α the electric to thermal conversion
factor. For simplicity, a linear relationship is assumed here
but a more detailed model could be used depending on the
heating system, provided it is linearized. The peak thermal
cooling load of the building is 45kW for the summer period.
The input constraint set U specifies maximum and minimum
cooling levels in the rooms so that ui,min ≤ ui ≤ ui,max = 0 for
each thermal zone input, reflecting the sizing of the equipment.
The state constraints X specifies temperature zones in the
constraints so that the temperature is maintained between 20◦C
and 25◦C.

Details of the bidding are as follows: at time t0 = 0, the
building starts in initial condition x0. The tracking period starts
at time t1 and ends at time t2, therefore leaving a "preparation"
period for the building controller. The capacity bid consists of
the commitment of a baseline consumption during the tracking
period unom and up-down regulation limits around that baseline
for power tracking. Up-down regulation bids result in a "box"
uncertainty set. We therefore fix the basic uncertainty shape
as the unit box

R̂box = {r | ‖r‖∞ ≤ 1} (57)

For the external disturbance from weather and internal
gains, the disturbance set is defined as follows

W = {wnom+wstoch |w
T
stoch,iQiwstoch,i ≤ 1, i = 1, 2, 3} (58)

As such, W is the direct product of three "uncorrelated"
ellipsoidal uncertainty sets so that W = Wsun×Wgains×Wtemp.
wnom is the nominal prediction of the uncertainty over the
prediction horizon and wstoch is the stochastic part of the
uncertainty around the prediction. The three ellipsoids rep-
resent confidence sets that should cover a reasonable part
of the possible outcomes for the disturbance. The choice of
Qi determines the size of the set W and should be done
so that W contains the actual weather forecast with a high
confidence (see , e.g. [42]). Generally speaking, the selection
of good uncertainty sets in classical robust optimization are a
subject of active research [43] and fall outside the scope of the
present work, but notice that rather than fixing the uncertainty
W , the method proposed in this work could also be used to
optimize for W as well and by doing so, evaluate how much
prediction error in the weather and the internal gains can be
accommodated.
Finally we have Ξ̂ = R̂ ×W .

We consider here an affine controller and modifier function
as in (30). Following the rules of the Swiss ancillary market,
the bid is a fixed up/down capacity over the tracking period.
This means the allowable modifier function is a uniform
scaling of the uncertainty set (that is, time-varying capacity
is not allowed). For clarity we keep the description of the
uncertainty split between the reference to track and the ex-
ternal disturbance, so that: ξ = (r,w) and ν = (νR,νW).
We assume the weather uncertainty is unknown at the time
of the decision whereas the reference is revealed as it needs
to be tracked: this results in an information structure that is
depicted in Figure 3. We see that the modifier function could
theoretically modify the uncertainty set so as to "mix" the

(a) I

(b) Î

Fig. 3: Information structure for the example. (a) shows that
decisions at time step t can depend on the reference up to
time t and disturbance up to time t − 1. (b) is the resulting
information structure for the modifier function.

external disturbance and the reference. In this application, it
would not have physical sense so it is preferable to keep
a block diagonal structure for the modifier’s information
structure. The disturbance uncertainty set is fixed a priori while
the reference set can be modified. Furthermore, in the case that
the reference set is a fixed up/down box along the horizon then
the reference tracking set can only be scaled uniformly so that
the modifier function will reduce to the simpler form:

L =

(

λIN 0N,Nnu

0Nnw,N INnw

)

(59)

To maximize the up/down capacity bid, it suffices to maxi-
mize the scaling factor λ. Notice that enforcing (59) implicitly
enforces the requirement that ν ∈ Î . The description of the
uncertainty set Ξ̂ = R̂ ×W can easily be put under the form
of equation (29) since it is the direct product of a polyhedron
with three ellipsoids.

The aim of the building operator is to maximize the finan-
cial reward gained from participating in the reserve market.
In accordance with the swiss market regulation, a payment
proportional to the bid is made to the reserve provider, while
the energy is bought at the day-ahead price, yielding the cost
function J = ce

T
ū− ccommλ where ce is the vector of time-

varying prices of electricity, ū is the baseline consumption and
ccomm is the unit reward price of the power tracking commit-
ment (hence promising to track ±1kW for the commitment
period is rewarded at the price ccomm). Notice that according
to the Swiss market rule, the deviation in power consumption
resulting from the tracking still needs to be paid for, therefore
adding a stochastic component to the cost. It has however
been shown in [44] that this part is minor and can therefore
be neglected.
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Fig. 4: Trajectories for different weather and reference sce-
narios in the optimized reference set. Shaded region is the
tracking commitment period. Black lines show the ’nominal’
scenario where the reference is zero and the weather takes its
predicted value. From top to bottom: temperature in zones,
total power consumption, ACS, tracking error, and weather
scenarios.

The tracking error is sized proportionally to the tracking
requirement so that tracking errors amounting up to 10% of
the maximum tracking requirement are allowed. This yields:

E := {e | ‖e‖∞ 6 0.1λ}

which results in a tractable reformulation as suggested in
section IV-C.

A horizon of one day with a time step of one hour is
considered. For the sake of illustration, we take cte << ccomm

in order to favor participation in the tracking commitment. The
problem solved is a second-order cone problem with 200,000
non-zero variables and 900 second-order cone constraints.
Solving time on a 2.7GHz i-Core 7 platform was 7 seconds.
The optimal value of λ is 5.4, meaning that the building can
offer a 5.4kW up/down power tracking capacity for a period

of 10 hours. This represents 8% of the peak cooling power
and 36% of the average power consumption for that day.

Figure 4 shows the trajectories generated in response to
randomly generated weather and reference signals inside the
reference sets. In each of the plots, the shaded band shows the
reference tracking times. The different plots shows the average
temperature in the building as well as in individual zones, the
total power consumption in the building, the requested power
consumption to be tracked on top of the nominal consumption,
and the tracking error. It can be observed that in the nominal
case, the power consumption increase during the day to com-
pensate for higher solar radiation and outside temperature as
shown in the bottom plot. Therefore, the baseline consumption
varies during the day to maintain temperature at the nominal
value of 23 oC. In addition, it is seen how the temperature and
power consumption changes in response to varying tracking
requests (depicted in the middle plot). As a result of the
requested increase or decrease of the power consumption, the
temperature respectively drops or rises in the rooms, within the
prescribed comfort constraints. Notice that outside the tracking
period the building is only subject to uncertainty in the weather
and internal gains, while during the tracking period, it has
to modify its power consumption in response to the tracking
signal. That causes a larger variability of the inputs and outputs
during that period.

B. Influence of the integral constraint in the reference set

Frequency control bids theoretically impose the providers
to be able to offer up or down regulation for long periods
of time, which can be limiting for loads. In this section, we
propose a way of mitigating this issue by using time-correlated
(meaning the constraint describing the set couple different time
stages) reference sets with integral constraints that capture
more accurately the capabilities of the load. Let us consider
an uncertainty set of the form

R̂batt =



















r

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 = s̄0

0 ≤ st ≤ smax, ∀t ∈ Z[1,n]

st+1 = st + rt ∀t ∈ Z[1,n]

− 1 ≤ rt ≤ 1 ∀t ∈ Z[1,n]



















(60)

This set is analogous to the feasible set of a simplified
battery model where st represents the state of charge of that
battery. Therefore, we will refer to this uncertainty set as
the "battery" reference set. Notice that contrary to the box
reference set, the battery reference set is time-correlated, and
our approach directly allows to account for that.

We respectively consider a box reference set (57) and a
battery reference set (60) and compute the maximum bid that
can be offered. Notice that the design of battery reference set
requires the choice of a value for the integral constraint limit
smax. this value was chosen as the worst case value of the
integral of actual realization of the ACS over the year 2013.
Therefore, for both reference sets, the system would at least be
robust to any occurrence of the ACS that happened in 2013.
The value computed is given by smax = 5.6. This suggests
that the tracking signal is relatively well-behaved in the sense
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Fig. 5: Tracking capacity bid versus duration of participation
for box and battery reference sets.

that it does not typically ask for maximum positive or negative
power tracking for long periods of time.

To study the influence of the integral limit in the reference
set, the tracking bid is evaluated as a function of the duration
of the tracking commitment. the preparation time is kept at 8
hours. The weather is considered known perfectly in advance
in this case to rule out other factors of uncertainty in the com-
putation. Beyond 66 hours, the computational burden becomes
prohibitive. The maximum bids for the battery and the box
uncertainty sets are reported on Figure 5. We can observe
that, beyond 12h of consecutive participation, introducing an
integral limit for the tracking commitment allows to increase
the tracking bid, and more so as the duration of participation
time increases. Thanks to the integral constraints, situations
of long lasting positive or negative tracking requests are ruled
out, thus relieving the tracking requirements on the building,
and leading to less conservative solutions.

VI. CONCLUSION

In this paper, we have formulated the problem of optimal
robust tracking commitment and proposed a computationally
tractable solution method. By implicit modification of uncer-
tainty sets, the set of possible reference trajectories that can
be tracked under additive disturbance with a guaranteed error
bound can be efficiently computed over a finite prediction
horizon. The presented tracking commitment framework is
representative of many practical problems encountered in
the hierarchical control of complex systems, that requires
communication of tracking capability of subsystems to an
upper level control layer. We have illustrated the description
capability of the framework and the solution method with a
practical example that investigates ancillary service provision
to the power grid by a commercial building.

APPENDIX A
POLYTOPIC DESCRIPTION OF THE FEASIBILITY SET Q

The dense form of the system equations (1), which describes
the evolution of the system for N steps, is given by

x = Ax0 +Bu+Eω

y = Cx+Du

The matrices A ∈ R
(N+1)nx×nx , B ∈ R

(N+1)nx×Nnu , E ∈
R

(N+1)nx×Nnx , C ∈ R
Nny×(N+1)nx and D ∈ R

Nny×Nnuare
defined as

A :=















Inx

A
A2

...
AN















,E :=



















0 · · · · · · 0

Inx
0 · · ·

...

A Inx
· · ·

...
...

...
. . .

...
AN−1 AN−2 · · · Inx



















B := E(IN ⊗B), C := [IN ⊗ C 0], D := IN ⊗D

The polytopic state, input constraints and the disturbance
set can be described as

X := {φ ∈ R
Nnx : Fxφ 6 fx}

U := {u ∈ R
Nnu : Fuu 6 fu}

W := {w ∈ R
Nnx : Fww 6 fw}

The matrices used in the descriptions (3) and (45) of the
feasibility set Q are given by

T =

[

[0 Fx]B
Fu

]

, V =

[

[0 Fx]E
0

]

, h =

[

fx

fu

]

−

[

[0 Fx]A
0

]

x0

P := CB+D, S = CE, ȳ = CAx0

H :=

[

T
−P

]

, Q =

[

0 V
−S G

]

, q =

[

h
g + ȳ

]

where 0’s are matrices of zeros with proper dimensions.

APPENDIX B
PROOFS FOR THEOREMS OF SECTION II-B

Notations: Given a set of indices J , let J̄ be the com-
plementary of J in Z[1,n]. Denote m the cardinality of J .
As xJ denotes the entries of x indexed by J , νJ denotes
the function from R

n into R
m formed by the outputs of ν

indexed by J . Given J , we also overload notations and denote
ν(xJ , xJ̄ ) to make explicit the respective dependency of ν

on xJ and xJ̄ . Accordingly, denote ν(xJ , .) the restriction
of ν to {xJ } × R

n−m.

Proof of Lemma 3. Consider two information structures I1
and I2. Suppose f ∈ F(I1),F(I2). Let x, x′ be such that
xI1∩I2

= x′
I1∩I2

. Choose y such that yI1
= xI1

and
yI2

= x′
I2

(this is possible because xI1∩I2
= x′

I1∩I2
).

Since f ∈ F(I1), we have that f(x) = f(y). Similarly,
f ∈ F(I2) implies that f(x′) = f(y). Together this gives
f(x) = f(y) = f(x′) for all x, x′ such that xI1∩I2 = x′

I1∩I2

i.e. f ∈ F(I1 ∩ I2). Noticing that
⋂

k Ik = I1 ∩ (
⋂

k 6=1 Ik),
it is straightforward to extend the argument above to the
intersection of finitely many information structures.

Proof of Lemma 4. By convention, Îk = Z[1,n] if {i|k ∈ Ii}
is empty.
Direction ⇐= : Assume g ∈ F(Î). Consider (x, x̂) such that
xIj

= x′
Ij

and f ∈ F(I) . Let us prove that f ◦ g(x) =
f ◦ g(x′). Let us denote y = g(x) and y′ = g(x′). Let us
consider any k ∈ Ij . Then according to equation (21), we have
Îk ⊆ Ij and hence xÎk

= x′
Îk

. In turn this implies yk = y′k by

definition of F(Î). Since this holds for all k ∈ Ij , it holds that
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yIj
= y′Ij

and therefore f ◦g(x) = f(y) = f(y′) = f ◦g(x′)
since f ∈ F(I).
Direction =⇒ : Assume g /∈ F(Î). There exists an index j
such that gj /∈ F(Îj). Since Îj =

⋂

{i|j∈Ii}
Ii we can use

Lemma 3 to conclude that there exists i such that gj /∈ F(Ii)
and j ∈ Ii. (The intersection is non-empty since if it was then
Îj = Z[1,n], which contradicts the possibility that gj(x) 6=
gj(x

′)). Then there exist x and x′ such that xIi
= x′

Ii
and

gj(x) 6= gj(x
′). Consider the function f defined as follows:

∀k 6= i, fk is identically 0. This trivially implies fk ∈ F(Ik)
no matter what I is. Define fi as:

{

fi(y) = 1 if yj = gj(x
′)

fi(y) = 0 otherwise

Consider y, y′ such that yIi
= y′Ii

. Since j ∈ Ii, we have
yj = y′j and hence fi(y) = fi(y

′). Therefore fi ∈ F(Ii) and
f ∈ F(I). However, fi ◦ g(x) = 0 and fi ◦ g(x′) = 1 by
definition of fi. Putting everything together, we can conclude
that xIi

= x′
Ii

and f ◦ g(x) 6= f ◦ g(x′), therefore f ◦ g /∈
F(I).

Proof of Lemma 5. G ⊆ F(I): It directly follows from
Lemma 4.
F(I) ⊆ G: Consider g ∈ F(I). Showing that there exists

f ∈ F(I) such that g = f ◦ ν is equivalent to showing
that f = g ◦ ν−1 ∈ F(I) (ν is a bijection). It is done by
contradiction. Suppose f /∈ F(I). This means that for some
k, fk /∈ F(Ik). To lighten notation, let Ik = J . There exist
y, y′ such that yJ = y′J and fk(y) 6= fk(y

′). By definition of
Î , νJ cannot depend on elements of J̄ , i.e. xJ = x′

J =⇒
νJ (x) = νJ (x′). Fix x ∈ R

n. We divide the remainder of
the proof in intermediate steps for clarity.

Bijectivity of νJ (., xJ̄ ) : Notice that νJ̄ (xJ , .) is in-
jective in R

n−m since ν is injective. Denoting V (xJ ) =
νJ̄ (xJ ,Rn−m), by continuity of ν, V (xJ ) is an open set. By
injectivity of ν, if νJ (x) = νJ (x′) with xJ 6= x′

J , then V (x)
and V (x′) are disjoint. By surjectivity of ν, it also holds that
∪{x′

J
|νJ (xJ ,xJ̄ )=νJ (x′

J
,xJ̄ )}V (x′

J ) = R
n−m. Since R

n−m

is connected, it cannot be covered by a non-trivial union of
disjoint open sets, which implies that {x′

J |νJ (xJ , xJ̄ ) =
νJ (x′

J , xJ̄ )} is reduced to {xJ }, which in other words means
injectivity of νJ (., xJ̄ ).
Surjectivity of νJ (., xJ̄ ) directly follows from the surjectivity
of ν. Indeed, ∀y ∈ R

m there exist x′ such that νJ (x′) = y.
Then νJ (x′

J , xJ̄ ) = y. Together, this proves the bijectivity
of νJ (., xJ̄ ) for all xJ̄ .

Bijectivity of νJ̄ (xJ , .) : Injectivity directly follows
from the injectivity of ν. For xJ fixed, by injectivity of
νJ (., xJ̄ ) there does not exist any other x′

J such that
νJ (xJ , xJ̄ ) = νJ (x′

J , xJ̄ ). Therefore, surjectivity of ν

implies that νJ̄ (xJ ,Rn−m) = R
n−m, i.e. surjectivity of

νJ̄ (xJ , .).
Contradiction : Consider xJ such that νJ (xJ , xJ̄ ) = yJ .

Bijectivity of νJ (., , xJ̄ ) ensures its existence. In turn, bijec-
tivity of νJ̄ (xJ , .) ensures that there exists xJ̄ , x′

J̄
such that

νJ̄ (xJ , xJ̄ ) = yJ̄ and νJ̄ (xJ , x′
J̄
) = y′

J̄
. Combining the

results above gives ν(xJ , xJ̄ ) = y and ν(xJ , x′
J̄
) = y′.

Then, gk(x) = fk ◦ ν(x) = fk(y) and similarly gk(x
′) =

fk ◦ ν(x′) = fk(y
′). Finally, this shows that gk(x) 6= gk(x

′)
which implies gk /∈ F(Ik). this contradicts the assumption
that g ∈ F(I). Finally, this confirms that f ∈ F(I).
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