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Ligand packing density on Au NPs. The number of bound ligands on a NP of radius 
 
r
n
 is 

  Ln
≈ L

1
n2/3

 , where   L1
≡ 4π / (κ 2A

L
),   κ ≡ (4π / 3V

M
)1/3 , and   VM

 is the volume per metal atom in 

the NP; i.e.   An
≈ L

n
A

L
≈ 4πr

n

2  is the total NP surface area. The self-assembled monolayers of 

dodecanethiol on Au(111) surfaces have an area per ligand5,7,10,57,61   AL
= 0.214 − 0.216 nm2  

(equivalent to a thiolate packing density of  4.63 nm−2 ), which corresponds to three gold surface 

atoms per thiolate adsorbate. In the case of Au NPs, the number of surface atoms per thiolate is 

lower. Gelbart et al. suggested using the same value of  AL
 for Au(111) and Au NPs, because the 

lower number of surface atoms per thiolate could be explained by curvature effects, e.g. to 2.3 

Au:thiolate for 1.0 nm radius NPs.7 However, experimental results and MD simulations suggest 

a greater packing density on NPs so that the actual ratio of surface atoms to thiolate is ca. 1.6 for 

1.0 nm radius Au NPs. Thus, a range   AL
= 0.15− 0.17 nm2  seems justified for very small 

NPs.46,62–64 A recent study on the effect of the ligand chain length  l  (in nm) on their packing 

density on Au NPs concluded that 
 
L
n  has a linear dependence with  l , 

   1/ A
L
= (6.7453− 0.6997l) nm−2 ;57 that is, slightly higher coverages of Au NPs can be achieved 

using short-chain ligands. This expression predicts   AL
≈ 0.18 nm2

 for   l ≈1.8, the estimated 

chain length in nm of dodecanethiol. In this work, the coefficient   L1  has been obtained by fitting 

the literature data19,35,39,44,63–67 on the number of adsorbed thiolates as a function of the number 

of gold atoms to the expression   Ln
= L

1
n2/3, with the result   L1

= 1.810 ± 0.012  and 

  AL
= 4π / (κ 2L

1
) = 0.1764 ± 0.0012 nm2 . This value of   AL  accurately describes a wide range of 

NP sizes (Figure S1) and is very close to those used in the literature.62–64,68 However, the 
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functional dependence   Ln
= L

1
n2/3 is so simple that experimental data for nanoclusters and very 

small NPs (with less than 100 ligands) show some minor deviations (Figure S1 inset). 

 

Figure S1. Determination of the effective area per ligand   AL
. The solid line is the fit of the 

experimental data on alkanethiolate-Au NPs to   Ln
= L

1
n2/3. 

 

Surface energy and size dependence of the surface tension of Au NPs. The contribution of the 

surface free energy to the chemical potential of the NPs is given by   µn

surf = γ
n
A
n
, which 

simplifies to   µn

surf = γ
∞

4πr
n

2

 in the case of very large NPs. MD simulations data45 can be 

accurately fitted to   µn
surf = γ

n
A
n
= an2/3  with   a = 1.8765±  0.0085 eV  (Figure S2). The parameter 

  a = 4πγ
∞
/κ 2  corresponds to a surface free energy  γ ∞

= 0.980 J/m2 , in agreement with 

experimental observations.45 The expression   γ n
A
n
≈ an2/3

 does not imply that   An
∝ n2/3 and that 

 
γ

n
 is size independent. On the contrary, the MD simulations evidence that 

 
γ

n
 increases with 

decreasing NP size because of the associated increase in the fraction of edge and corner sites.45 
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However, this effect is partly compensated by the fact that 
 
A
n
 has other size-dependent 

contributions in addition to the leading term   ∝ n2/3, and hence   γ n
A
n
≈ an2/3 turns out to be a 

simple yet accurate expression. 

 

Figure S2. Surface contribution (from MD simulations45) to the chemical potential of NPs 

estimated as the difference between the potential energy of an icosahedral NP and that of a bulk 

system containing the same number n of atoms.  

 

A large number of theoretical and experimental studies have established that the interfacial free 

energy 
 
γ

n
 of nanocrystals is size dependent. Although the Tolman equation 

  γ n
= γ

∞
/ (1+ 2δ / r

n
)  is often cited,40 its validity has been questioned for very small NPs.69,70 

Moreover, in addition to the seminal contributions by Tolman, Guggenheim, and Kirkwood and 

Buff that predict a positive Tolman length δ , another rigorous derivation71 predicts negative δ . 

With special focus on nanocrystals, studies concluding both the decrease72 and the increase45 of 

interfacial free energy with decreasing size can be found. To the best of our understanding, these 

apparently contradictory results simply reflect two different conventions. When the surface 
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atoms are compared to those in the NP core, a decrease in the NP size reduces their energy 

difference,70 and hence  δ > 0 . However, when the surface atoms are compared to those in bulk 

metal, a decrease in NP size increases their energy difference45 and hence  δ < 0 . In our 

theoretical model the bulk metal has been chosen as the standard state of the metal atoms. 

Consistently, we have evaluated   µn

surf = γ
n
A
n  from surface free energy calculated with respect to 

the bulk metal (Figure S2).  

Finally, it is reasonable to neglect the facet effects because the values reported for the interfacial 

free energy of Au NPs may differ by up to several  J/m
2,73 while the difference between γ

∞  for 

bulk Au(111) and bulk Au(100) is only about  0.1− 0.3 J/m2 .45  

 

Alkanethiol binding energy on Au NPs. The sulfur head of alkanethiols strongly binds to Au 

substrates and forms a metal thiolate. Although the monolayers of alkanethiols on both Au NPs 

and Au(111) substrates have been intensively studied, both in experiments and computations, 

there remain many uncertainties in the binding energies.74 The theory of ligand-stabilized metal 

NPs developed by Gelbart, Heath and coworkers estimated this chemisorption binding energy as 

1.0 eV.7 Lavrick et al. estimated the chemisorption enthalpy of alkanethiols on Au(111) as 

126 kJ/mol (equivalent to 1.31 eV per sulphur head) independently of the alkyl chain length.75 

However, other experimental results on planar substrates have lead to estimate the alkanethiol-

gold binding energy as64,76 1.91 eV or within the range 1.7 – 2.1 eV.44 Moreover, while sulphur 

sits on three gold atoms when chemisorbed on planar Au(111), it sits on a lower number of gold 

atoms on NPs (ca. 1.6 for 2.0 nm diameter63) and it must definitively affect the binding energy. 

Thus, using atomistic MD with a force field optimized from DFT calculations, Heath and 
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coworkers estimated the binding energy of ethanethiol on a Au32 nanocluster as 1.06 eV.74 The 

value 1.6 eV for the binding energy of thiolate on Au NPs that we have used seems quite 

reasonable for the range of NP sizes observed after the DR process because it is intermediate 

between the experimental estimates of 1.31 eV and 1.91 eV. 

The binding energies of different capping ligands have been estimated from DFT calculations.56 

Thus, accepting the value63,76 184.1 kJ/mol (1.91 eV) as an upper estimate for the binding 

energy of butanethiol on planar substrates, the binding energies of trimethylphosphine, 

butylamine, and buthyl thiocyanate can be estimated as 81.7 kJ/mol (0.85 eV), 58.8 kJ/mol 

(0.61 eV), and 28.8 kJ/mol (0.30 eV), respectively. When used to estimate ligand binding to NPs, 

these energies should be reduced by a factor of ca. 0.8 to take into account that the bonds are 

weaker when the head interacts with a lower number of metal atoms due to the NP curvature. In 

any case, these values reflect that the covalent bond in gold-thiolate is more stable than dative 

bond in gold-phosphine and amine.77  
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