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PURPOSE 
dMRI Axon Diameter Distribution (ADD) mapping was first introduced by Assaf1 through the use of non-linear optimization and a 
parametric model that imposed ADDs to follow a gamma distribution. Non-parametric ADD mapping was then shown to be feasible 
by solving a discrete linear problem of the form Ax=y, where A is a linear operator or dictionary, x are the ADD coefficients and y is 
the dMRI signal.2 When using PGSE acquisitions, A is very badly conditioned, due to the similarity between signals of axons with 
different diameters. Benjamini et al. propose to use Double Diffusion Encoding (DDE) to reduce the condition number of A, and to 
solve the linear problem using standard Tikhonov regularization.2 However, in order to acquire the signal in a reasonable time, both 
DDE and AxCaliber need dMRI signals sampled perpendicularly to the fibers, which limits the method to regions with single and 
known orientation. We aim at testing the feasibility of ADD mapping from standard rotation-invariant PGSE sequences using discrete 
linear problem formulation, as part of the Accelerated Microstructure Imaging with Convex-Optimization (AMICO) framework.3 

METHODS 
To test the feasibility of ADD mapping using PGSE, we focused on a simple study, which considers only the intra-axonal 
compartment, and tested the influence of different regularization methods on the estimated ADD. We first illustrate the ill-conditioned 
nature of the problem (PGSE protocol with uniform samples on 3 shells4: G=[300,220,300]mT/m, Δ=[12,20,17]ms, δ=[6,7,10]ms). 
We generated the intra-axonal signal of 90’000 cylinders with gamma-distributed radii and created a dictionary of 20 atoms 
corresponding to cylinders with r in [0.5, 7.0] um. Solving the problem using non-negative least-squares (NNLS) recovers coefficients 
close to the ground-truth ADD in the noiseless case (Figure (a)). We then contaminated the signal with 100 Gaussian noise 
realizations corresponding to an SNR=30, and repeated the NNLS fitting. The PGSE protocol is such that A has very high condition 
number (a small variation in the measured signal leads to very different ADD coefficients, as shown in Figure (b)). Tikhonov 
regularization can be used to stabilize the ADD by minimizing the following problem instead: min!!! 𝐴𝑥 −𝑦 !

! + 𝜆 Γ𝑥 !
!, where Γ 

is a linear operator and λ ponderates the regularization. Standard Tikhonov uses Γ=I, as in1 and shown in Figure (c). Other operators, 
like the discrete difference operator D, or the Laplacian L, impose continuity or smoothness respectively. We tested the performance 
of solving min!!! 𝐴𝑥 −𝑦 !

! + 𝜆( 0.5 ∙ D𝑥 !
! + 0.25 ∙ L𝑥 !

!), which promotes continuous and smooth ADD, as shown in Figure (d). 
The regularization weight was tuned to minimize the ADD reconstruction error. Experiments were replicated for Gaussian distributed 
cylinders (Figure (e)) to test if similar results could be obtained from an independent set of signals generated from another 
distribution. 

RESULTS 
Results are summarized in the following 
figures. The ground-truth ADD is plotted in 
red and recovered coefficients in blue. (a) 
shows the recovered ADD for NNLS fitting 
on the noiseless signal. Figures (b) to (d) 
show the mean and standard deviation for 
the ADD coefficients recovered over 100 
signals with SNR=30. Finally, Figure (e) 
shows the performance of our method on 
the signal generated from another 
distribution. 

DISCUSSION/CONCLUSION 
Adding continuity and smoothness 
constrains on the ADD coefficients improve 
the recovered distribution. Our method, as 
opposed to DDE or AxCaliber, doesn’t 
require the acquisition to be perpendicular to the axons and is suited for rotation invariant protocols. How the presence of extra-axonal 
and isotropic signal contributions affect the fitting when promoting continuity and sparcity still needs to be evaluated. Furthermore, 
the protocol we used was optimized for mean diameter mapping.4 Optimizing the protocol parameters for distribution mapping might 
improve our results. Finally, this regularization is easily implementable in the AMICO3 framework to be used by other researchers if 
it appears to be of interest for the microstructure imaging community. 
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