
Coresets for Polytope Distance∗

Bernd Gärtner
Institute of Theoretical Computer Science

ETH Zurich, Switzerland
gaertner@inf.ethz.ch

Martin Jaggi
Institute of Theoretical Computer Science

ETH Zurich, Switzerland
jaggi@inf.ethz.ch

ABSTRACT
Following recent work of Clarkson, we translate the coreset
framework to the problems of finding the point closest to
the origin inside a polytope, finding the shortest distance
between two polytopes, Perceptrons, and soft- as well as
hard-margin Support Vector Machines (SVM). We prove
asymptotically matching upper and lower bounds on the size
of coresets, stating that ε-coresets of size d(1 + o(1))E∗/εe
do always exist as ε → 0, and that this is best possible.
The crucial quantity E∗ is what we call the excentricity of
a polytope, or a pair of polytopes.

Additionally, we prove linear convergence speed of Gilbert’s
algorithm, one of the earliest known approximation algo-
rithms for polytope distance, and generalize both the algo-
rithm and the proof to the two polytope case.

Interestingly, our coreset bounds also imply that we can
for the first time prove matching upper and lower bounds
for the sparsity of Perceptron and SVM solutions.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations, Pattern matching ; I.5.1 [Pattern
Recognition]: Models—Geometric

General Terms
Algorithms, Theory
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1. INTRODUCTION

Coresets.
The concept of coresets has proven to be a very successful

one for approximation algorithms for many discrete geomet-
ric problems. On one hand coreset algorithms are much
faster than exact algorithms, and on the other hand they
simultaneously ensure that the obtained approximate solu-
tions still have very compact (sparse) representations, mak-
ing them very appealing for many practical applications e.g.
in machine learning.

Originally introduced for smallest enclosing ball problem
and clustering by [6], the idea of a coreset is the following:
instead of solving the original problem, one tries to iden-
tify a very small subset (coreset) of the points, such that
the solution just on the coreset is guaranteed to be a good
approximation of the true solution to the original problem.
For the problem of finding the smallest enclosing ball of n
points P ∈ Rd, and ε > 0, an ε-coreset S is a small subset of
the points P such that the smallest enclosing ball of just S,
blown up by a factor of 1+ ε, contains all the original points
P . It was shown that here ε-coresets of size d1/εe do always
exist [4, 5] and that this is best possible [5]. This is very
remarkable because the size of the coreset is independent of
the dimension d of the space, and also independent of the
number of points n, making it very attractive for the use in
large scale problems (high n) and kernel methods (high d).
This nice property is in contrast to many other geometric
problems for which coresets usually have size exponential in
the dimension, e.g. Θ(1/ε(d−1)/2) for the extent problem [1].
For a nice review on existing coreset algorithms we refer to
[2].

Just recently Clarkson [9] significantly widened the class of
problems where the coreset idea can be applied, and showed
that the nice property of constant O(1/ε) sized coresets in-
deed holds for the general problem of minimizing a convex
function over the unit simplex.

Our Contributions and Related Work.
Following [9], we translate the coreset framework to the

polytope distance problem of one polytope (w.r.t. the ori-
gin), distance between two polytopes, and hard- as well as
soft-margin support vector machines, and introduce the ge-
ometric meaning of coresets and strong primal-dual approx-
imation in this context.

We prove a new lower bound of
l
E∗
ε

m
+ 1 for the size of

ε-coresets for polytope distance, where E∗ is what we call
the excentricity of the polytope. Together with the upper
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bound of
l
E∗(1+o(1))

ε

m
as ε → 0, this shows that the size of

obtained ε-coresets is asymptotically best possible. We also
show tight bounds (up to a factor of two) for the distance
problem between two polytopes.

For Gilbert’s algorithm [13], one of the earliest known
approximation algorithms for polytope distance, we give the
first two proofs of convergence speed: First by observing that
is in fact just an instance of the Frank Wolfe approximation
algorithm for quadratic programs [11], which is now often
called sparse greedy approximation, and secondly by giving a
slightly easier geometric interpretation of a recent algebraic
proof of [9]. Also, we generalize Gilbert’s algorithm to the
distance problem between two polytopes, where we are able
to prove the same convergence speed. Furthermore, we can
get rid of the expensive search for a starting point in this
case which in previous approaches needed time quadratic in
the number of points [24, 31].

Applications to Machine Learning.
On the application side, it is our mission to apply concepts

and algorithms from computational geometry to machine
learning. Support Vector Machines (SVM) [8] are among
the most established and successful classification tools in
machine learning, where from the name it is not immedi-
ately clear that the concept refers to nothing else than the
separation of two classes of points by a hyperplane, by the
largest possible margin. From the formulation as a quadratic
program it follows that the problem is equivalent to the poly-
tope distance problem, either for one or for two polytopes,
depending on which SVM variant is considered (See Section
5). The Perceptron [25] refers to the case where we search
for any hyperplane that separates two point classes, not nec-
essarily one of maximum margin. The term kernel methods
summarizes SVMs and Perceptrons where the points are as-
sumed to live in an implicit high-dimensional feature space
where we just know their pairwise scalar-products which is
then called the kernel.

Sparsity of solutions. Our main contribution is to re-
late the coreset concept to sparsity of solutions of kernel
methods: Using our bounds for the size of coresets, we de-
rive a new fundamental property of SVMs and Perceptrons,
giving nearly matching upper and lower bounds on the spar-
sity of their solutions, a parameter which is absolutely cru-
cial for the practical performance of these methods on large
scale problems. More precisely we show that any solution
for a SVM or Perceptron, attaining at least a fraction µ of

the optimal margin, must have at least
l
E∗
1−µ

m
+ 1 many (orl 1

2E
∗

1−µ

m
+ 2 in the two class case) non-zero coefficients in the

worst case, and that a solution with
l
E∗(1+o(1))

1−µ

m
many non-

zero coefficients can always be obtained for all instances. We
are not aware of any existing lower bounds on the sparsity
in the literature.

Training SVM in linear time. For any fixed fraction
0 ≤ µ < 1, we show that Gilbert’s algorithm in time O(n)
finds a solution attaining at least a µ-fraction of the optimal
margin to the SVM and Perceptron (no matter if a kernel
is used or not). This contrasts most of the existing SVM
training algorithms which run in time usually cubic in n,
or then often have no theoretical approximation guarantees
except from converging in a finite number of steps [23], or
have guarantees only on the primal or dual objective value,

but not both. Tsang et al. have already applied the small-
est enclosing ball coreset approach to train SVMs under the
name Core Vector Machine (CVM) [30, 28], for one par-
ticular SVM variant (`2-loss with regularized offset), in the
case that all points have the same norm. In this case the
smallest enclosing ball problem is equivalent to finding the
distance of one polytope from the origin. In another work
[15] directly used coresets to solve the problem of separating
two polytopes by a hyperplane passing through the origin,
but this is again equivalent to a one polytope distance prob-
lem. Both approaches are therefore generalized by [9] and
this work, proving faster algorithm convergence and smaller
coresets. Here we generalize the coreset methods further to
the two polytope case, encompassing all the currently most
used hard- and soft-margin SVM variants with arbitrary ker-
nels, with both `1 and `2-loss, in particular the special case
of the CVM [30, 29, 28] and [15], while obtaining faster
convergence and smaller coresets. Our generalization shows
that all of the mostly used SVM variants can be trained in
time linear in the number of sample points n, i.e. using lin-
early many kernel evaluations, for arbitrary kernels. Up till
now this was only known for the CVM case and for linear
SVMs without using a kernel.

2. CONCEPTS AND DEFINITIONS

2.1 Polytope Distance
Let P ⊂ Rd be a finite set of points. We want to com-

pute the shortest distance ρ of any point inside the polytope
conv(P ) to the origin.

For v, x ∈ Rd, Let v|x := 〈v,x〉
||x|| denote the signed length of

the projection of v onto the direction of the vector x.

pi

0
pi|x

x

Definition 1.
For any ε > 0,

i) x ∈ conv(P )
is called an ε-
approximation1to
the optimal poly-
tope distance, iff

||x||−p|x ≤ ε||x|| ∀p ∈ P .

ii) A set of points
S ⊆ P with the
property that the
(optimal) closest point of conv(S) to the origin is an
ε-approximation to the distance of conv(P ) is called
an ε-coreset of P .

Being an ε-approximation can thus be interpreted as the
multiplicative gap between the “primal” distance ||x||, and
the “dual value” minp∈P p|x, being small2. It is important

1Note that this is a multiplicative or relative approxima-
tion measure, where sometimes in the literature also addi-
tive ε-approximations are used. The corresponding coresets
are sometimes called multiplicative ε-coresets to distinguish
them from additive coresets [9].

2For minimizing general convex functions, the corre-
sponding definition is that the gap between the primal and
the dual value is small, which by weak duality also implies
that the primal value is close to the optimum. A simple cal-
culation shows that our geometric definition coincides with
[9] for f(x) := −||Ax||, where A ∈ Rd×n contains all points
of P as columns.



to note that this definition of approximation is stronger than
just requiring the distance x to be close to the optimal value:

Lemma 1. If x is an ε-approximation, then (1− ε)||x|| ≤
ρ ≤ ||x|| .

Proof. RHS: Clear by definition of the distance ρ. LHS:
By definition of an ε-approximation, we have a closed halfs-
pace (normal to x), with distance (1−ε)||x|| from the origin,
which contains conv(P ), which itself contains the optimal
point x∗ with ||x∗|| = ρ.

Definition 2. We define the excentricity of a point set P

as E := D2

ρ2
, where D := maxp,q∈P ||p − q|| is the diameter

of the polytope and ρ is the true polytope distance to the
origin. Also, we define the asymptotic excentricity E∗ :=
R2

ρ2
, where we call R := maxp∈P ||p − c|| the radius of the

polytope (where c is the unique point attaining the minimum
distance to the origin).

It immediately follows that E∗ ≤ E ≤ 4E∗ by triangle in-
equality (R ≤ D ≤ 2R). Also, the quantities E and E∗

do correspond to the “non-linearity” defined by [9]: It holds
that Cf ≤ ρ

2
E and C∗f ≤ ρ

2
E∗(1 + o(1)) for f(x) := −||Ax||.

Definition 3. The sparsity of a convex combinationPn
i=1 αipi ∈ conv(P ),

Pn
i=1 αi = 1, αi ≥ 0 is the number of

αi that are non-zero.

By definition any ε-coreset of size s implies an ε-approximation
of sparsity at most s.

2.2 Distance Between Two Polytopes
It is easy to see that the problem of finding the shortest

distance between two polytopes is equivalent to finding the
shortest vector in a single polytope, their Minkowski differ-
ence:

Definition 4. The Minkowski difference

MD(P1, P2) := {u− v |u ∈ conv(P1), v ∈ conv(P2)}
of two polytopes conv(P1) and conv(P2) is the set (in fact
it is also a polytope [32]) consisting of all difference vectors.

Observe that conv(P1) and conv(P2) are separable by a
hyperplane iff 0 /∈ MD(P1, P2). We call a vector x =
x1 − x2 an ε-approximation for the distance problem be-
tween the two polytopes conv(P1) and conv(P2) iff x is an
ε-approximation for MD(P1, P2). By the sparsity of a con-
vex combination in MD(P1, P2) we always mean the mini-
mum number of non-zero coefficients of a representation as
a difference of two convex combinations in the original poly-
topes. An ε-coreset is a subset P ′1 ∪ P ′2 of the two original
point sets, P ′1 ⊆ P1, P

′
2 ⊆ P2, such that the shortest vec-

tor in the restricted Minkowski difference MD(P ′1, P
′
2) is an

ε-approximation.

Definition 5. We define the excentricity of a pair of two

polytopes as EP1,P2 := (D1+D2)2

ρ2
= (
√
E1 +

√
E2)2 and the

asymptotic excentricity as E∗P1,P2 := (R1+R2)2

ρ2
= (
p
E∗1 +p

E∗2 )2, with Dk, Rk denoting diameter and radius, ρ be-
ing the true distance between the two polytopes. For com-
parison, Ek, E

∗
k are the “individual” excentricities of each

polytope conv(Pk), k = 1, 2.

This compares to the single polytope case as
EP1,P2 ≥ EMD(P1,P2) and E∗P1,P2 ≥ E

∗
MD(P1,P2).

3. LOWER BOUNDS ON THE SPARSITY OF
ε-APPROXIMATIONS AND THE SIZE OF
CORESETS

In this Section we will give two constructions of point
sets, such that no small ε-coresets can possibly exist for the
polytope distance problem. The geometric interpretation of
these constructions is in fact very simple:

3.1 Distance of One Polytope from the Origin

Lemma 2. For any given 0 < ε < 1, and for any d ≥ 2,
there exists a set of d points P ⊂ Rd, such that

i) any ε-coreset of P has size d (i.e. no strict subset can
possibly be an ε-coreset).

ii) any ε-approximation of P has sparsity exactly d.

iii) any vector x ∈ conv(P ), satisfying p|x
ρ
≥ 1−ε ∀p ∈ P ,

has sparsity exactly d.

iv) the excentricity of conv(P ) is E = 2εd and the asymp-
totic excentricity is E∗ = ε(d− 1).

pi

α

α

Rd

c

c′ S′

0

Proof. By definition
we already know that i)
⇐ ii) ⇐ iii), but we will
prove the former state-
ment first:

i) Let λ > 0 be a
real parameter to be fixed
later, and let our points
be pj := λej + (1− λ)c ∈
Rd for j ∈ [d], with the
barycenter c = ( 1

d
, . . . , 1

d
)T being the point closest to the

origin of the standard (d − 1)-simplex in Rd. I.e. we just
scale the unit simplex from its barycenter.

We will now show that for this particular set of points P ,
for some suitable choice of λ, no strict subset can possibly
be an ε-coreset. To do so, let pi be an arbitrary point of
P and denote by c′ the barycenter c′ := 1

d−1

P
j 6=i pj which

is the point closest to the origin of the sub-simplex S′ :=
conv(P \ {pi}).

By definition we have ||c′− c||2 = λ2

d(d−1)
, ||c′−pi||2 = λ2d

d−1

and ||c′||2 = d−1+λ2

d(d−1)
. From planar geometry in the trian-

gle c′, pi and the origin we have that sin(α) :=
||c′||−pi|c′
||c′−pi||

=

||c′−c||
||c′|| , which implies 1− pi|c′||c′|| = ||c′−c||||c′−pi||

||c′||2 =

r
λ2

d(d−1)

r
dλ2
d−1

d−1+λ2
d(d−1)

= dλ2

d−1+λ2 .

Now if we choose our parameter λ :=
√
ε, the above term

on the right hand side is dε
d−1+ε

> ε. In other words we now

have that ||c′|| − pi|c′ > ε||c′||, so we have shown that no
strict subset of the points can possibly be an ε-coreset.

ii) Using the construction above, we have shown that the
barycenter c′ ∈ S′ is not an ε-approximation, because it

results in an insufficient approximation ratio
pi|c′
||c′|| < 1 − ε.

Now for every other point x ∈ S′, we can show that the ratio
becomes even worse, if we argue as follows: In the denomi-
nator we know that c′ is the point in S′ of minimum norm,
and in the numerator it holds that pi|c′ ≥ pi|x ∀x ∈ S′.
The last inequality follows from the fact that the distance
of a point x to a linear space is always at most as large



as the distance to a subspace of it — or more formally if

p(x), p(c′) are the two projections of pi onto x and c′ respec-

tively, we get that ||pi−p(x)|| ≥ ||pi−p(c′)|| since x ∈ lin(S′)

and pi|c′ = ||p(c′)|| = pi|lin(S′). But by the Pythagorean
theorem this implies pi|x ≤ pi|c′ . We have shown that no
ε-approximation of sparsity < d can possibly exist for our
given point set.

iii) Let again λ2 := ε, and suppose x ∈ S′ = conv(P \{pi})
for some pi ∈ P is such a convex combination of sparsity

≤ d−1. We use the above result and calculate pi|x
ρ
≤ pi|c′

ρ
=

||c′||(1 − dε
d−1+ε

)
√
d =

q
d−1+ε
d(d−1)

(d−1)(1−ε)
d−1+ε

√
d =

q
d−1
d−1+ε

(1 −
ε) < 1− ε.

iv) It is straightforward to calculate that our point set
has diameter D2 = ||p1 − p2||2 = 2λ2, radius R2 = λ2 d−1

d
,

and true distance ρ2 = ||c||2 = 1
d
, so for the excentricity we

obtain E = 2εd and E∗ = ε(d− 1).

Theorem 3. For any given 0 < ε < 1, for any d ≥ 2,
there exists a set of d points P ⊂ Rd, such that the sparsity
of any ε-approximation, and the size of any ε-coreset of P
is at least ‰ 1

2
E

ε

ı
and

‰
E∗

ε

ı
+ 1

Proof. The point set P from Lemma 2 satisfies
1
2E

ε
= d,

and E∗
ε

= d− 1.

Note that the bound using E is by a factor of 2 better
than if we would just have used the trivial bound E ≤ 4E∗

together with the result for E∗.

3.2 Distance Between Two Polytopes

Observation 1. If we have two point sets, one consist-
ing of just one point and the other consisting of d points,
and we consider the polytope distance problem between the
corresponding two polytopes, the lower bound of Lemma 2
directly applies to the Minkowski difference, resulting in the

lower bounds
l 1

2E

ε

m
+ 1 and

l
E∗
ε

m
+ 2 because we always

need the single point of the second class in any linear com-
bination. In this case the pair excentricities EP1,P2 , E

∗
P1,P2

coincide with the single polytope excentricities E,E∗.

However, we can even generalize the lower bound con-
struction of Lemma 2 to the distance problem between two
polytopes spanned by equally sized point classes:

Lemma 4. For any given 0 < ε < 1, for any d ≥ 2,

there exist two equally sized point sets P1, P2 ⊂ Rd=2d′ , each
consisting of d′ points, such that

i) any ε-coreset of MD(P1, P2) has size d (i.e. no strict
subset can possibly be an ε-coreset).

ii) any ε-approximation of MD(P1, P2) has sparsity ex-
actly d.

iii) any vector x ∈MD(P1, P2) satisfying p|x
ρ
≥ 1−ε ∀p ∈

MD(P1, P2) has sparsity d.

iv) the excentricity of the polytope pair is EP1,P2 = 8εd′

or E∗P1,P2 = 4ε(d′ − 1) respectively.

Rd′

Rd′

c2

c1

c′
1

pi

α

α
c′

S′

Proof. By
definition we
already know
that i) ⇐ ii)
⇐ iii), but we
will prove the
former state-
ment first:

Consider the
two point classes
P1 = {p1 . . . pd′}
and
P2 = {pd′+1 . . . p2d′}
living in Rd, d = 2d′,
with

pi :=

(
λei + (1− λ)c1 for 1 ≤ i ≤ d′

λei + (1− λ)c2 for d′ + 1 ≤ i ≤ d

where c1 :=( 1
d′ ,. . .,

1
d′ , 0,. . ., 0) and c2 :=(0,. . ., 0, 1

d′ ,. . .,
1
d′ ).

I.e. we have two ’copies’ of scaled unit simplices. Obviously
the shortest vector in the Minkowski difference is c1 − c2.

i) Analogously to the single-polytope case of Lemma 2,
we will now show that for suitable λ, no strict subset of
P1 ∪ P2 is an ε-coreset of MD(P1, P2). To do so, let pi
be an arbitrary point of P1 and define c′ := c′1 − c2 where
the barycenter c′1 := 1

d′−1

P
j 6=i pj is the point of the sub-

simplex S′ := conv(P1\{pi}) closest to c2. It is easy to check
that c′ is indeed the new shortest distance after removal of
pi.

By definition we have ||c′1 − c1||2 = λ2

d′(d′−1)
, ||c′1 − pi||2 =

λ2d′
d′−1

and ||c′||2 = 2(d′−1)+λ2

d′(d′−1)
. From planar geometry in the

triangle c′1, pi and c2 we again have that

sin(α) :=
||c′||−(pi−c2)|c′
||c′1−pi||

=
||c′1−c1||
||c′|| , which implies 1− (pi−c2)|c′

||c′||

=
||c′1−c1||||c

′
1−pi||

||c′||2 =

r
λ2

d′(d′−1)

r
d′λ2
d′−1

2(d′−1)+λ2

d′(d′−1)

= d′λ2

2(d′−1)+λ2 .

Now if we choose our parameter λ :=
√

2ε, the above term

on the right hand side is d′2ε
2(d′−1)+2ε

> ε. In other words we

now have that ||c′|| − (pi − c2)|c′ > ε||c′||, so we have shown
that no strict subset of the 2d′ points can possibly be an
ε-coreset.

ii) The argument that the approximation ratio p|x
||x|| is in-

deed best for the distance vector x := c′ — and thus there
really is no ε-approximation of sparsity < d — is the same
as in the proof of Lemma 2, and additionally using that
(pi−y2)|c′ = (pi−c2)|c′ ∀y2 ∈ conv(P2), as c′ is orthogonal
on conv(P2).

iii) Let again λ2 := 2ε, and suppose x ∈ S′ = conv(P1 \
{pi}) for some pi ∈ P1 is such a convex combination of
sparsity ≤ d − 1. We use the above result and calculate
(pi−c2)|x

ρ
≤ (pi−c2)|c′

ρ
= ||c′||(1− d′2ε

2(d′−1)+2ε
)
q

d′
2

=
q

2(d′−1)+2ε
d′(d′−1)

(d′−1)(1−ε)
d′−1+ε

q
d′
2

=
q

d′−1
d′−1+ε

(1− ε) < 1− ε.
iv) Check that each of our two polytopes has diameter

D2 = 2λ2 and radius R2 = λ2 d′−1
d′ . Since the optimal

distance ρ2 = 2
d′ , it follows that the pair excentricity is

EP1,P2 = (
√

2λ+
√

2λ)2

2/d′ = 8λ2

2/d′ = 8εd′ and the asymptotic pair

excentricity is E∗P1,P2 =

 r
d′−1
d′ λ+

r
d′−1
d′ λ

!2

2/d′ =
4 d
′−1
d′ λ2

2/d′ =

4ε(d′ − 1).



Theorem 5. For any given 0 < ε < 1, for any d ≥ 2,

there exist two equally sized point sets P1, P2 ⊂ Rd=2d′ ,
each consisting of d′ points, such that the sparsity of any ε-
approximation of MD(P1, P2), and the size of any ε-coreset
is at least ‰ 1

4
EP1,P2

ε

ı
and

‰ 1
2
E∗P1,P2

ε

ı
+ 2 .

Proof. P1 and P2 from Lemma 4 satisfy
1
4EP1,P2

ε
=

2d′ = d, and
1
2E
∗
P1,P2
ε

+ 2 = 2(d′ − 1) + 2 = d.

4. UPPER BOUNDS: ALGORITHMS TO
CONSTRUCT CORESETS

4.1 Gilbert’s Algorithm
The following gradient descent algorithm was introduced

by Frank and Wolfe [11] as an approximation algorithm for
quadratic programs. Since then it has independently been
proposed again several times under different names; for poly-
tope distance it is known as Gilbert’s algorithm [13], where
in the machine learning literature it is sometimes called
sparse greedy approximation. The simplest general version of
the algorithm is well summarized in [9, Algorithm 1.1], and
provides ε-approximations of sparsity O( 1

ε
) for any convex

minimization problem on the standard simplex [9].

Algorithm 1. (Gilbert’s approximation algorithm
for polytope distance [13]). Start with x1 := p0, p0 ∈ P
being the closest point to the origin. In step i, find the point
pi ∈ P with smallest projection pi|xi , and move to xi+1 being
the point on the line segment [xi, pi] which is closest to the
origin. We stop as soon as xi+1 is an ε-approximation.

Note that in order to run the algorithm, we only need to
compute the projections of all points onto a given direction,
and find the point closest to the origin on a line. Both can
easily be achieved by evaluating scalar products, thus the
algorithm works fine for kernel methods. Also, it can directly
run on the Minkowski difference for the two polytope case.

Variants and applications. Gilbert’s geometric algo-
rithm has been applied to SVM training in the case of hard-
margin as well as soft-margin with both `2-loss [16] and `1-
loss [18, 19]. A variant of Gilbert’s algorithm, the GJK
algorithm, is a popular algorithm for collision detection in 3
dimensional space [12]. Another important variant of this,
called the MDM algorithm [20], is in fact equivalent to one
of the most used SVM training algorithms, SMO [23, 17].
For SVM training, [16] obtained good experimental results
with a combination of Gilbert’s and the MDM algorithm.

Convergence speed and running time. All men-
tioned algorithms in the above paragraph have in common
that they converge, were successfully applied in practice, but
no convergence speed or bound on the running time has ever
been proved so far. Here we prove the convergence speed for
Gilbert’s algorithm, on one hand by observing for the first
time that it is nothing else than the Frank-Wolfe algorithm
[11] applied to the standard quadratic programming formu-
lation of polytope distance3, and on the other hand by giving

3The quadratic programming formulation is minx f(x) =
(Ax)2, xi ≥ 0,

P
i xi = 1 when A is the d × n-matrix con-

taining all points as columns. Then the gradient ∇f(x)T =

a new slightly easier geometric variant of recent proofs by [3,
9] on the convergence speed of sparse greedy approximation:

For the following analysis, let fi := ||xi|| be the current
distance, hi := fi−ρ be the primal error, and let gi := fi−ωi
denote the ’primal-dual’ gap of our current estimate, with
ωi := minp∈P p|xi . The key fact enabling linear convergence
is the following bound, originally due to [3]:

ωi

pi

0

xixi+1

α

α

fifi+1

Figure 1: A step of Gilbert’s algorithm.

Lemma 6 (Geometric variant of [9, Theorem 2.1]).
In each step of Gilbert’s algorithm, the improvement in the
primal error hi is at least

hi − hi+1 ≥
1

2Eρ
g2
i

Proof. Suppose xi+1 is perpendicular to the line seg-
ment [xi, pi]: Then we have fi− fi+1 = (1− cosα)fi. Using
the inequality41− cosα ≥ 1

2
sin2 α, we get

(1− cosα)fi ≥
1

2
sin2 αfi =

g2
i

2||pi − xi||2
fi (1)

but now we use the fact that since both xi and pi are inside
conv(P ), ||pi−xi|| is at most D. Now we already have proven
the claim, since by definition fi ≥ ρ:

hi − hi+1 = fi − fi+1 ≥
ρ

2D2
g2
i =

1

2Eρ
g2
i (2)

The case that xi+1 is at the endpoint pi might in fact never
occur: this would contradict the fact that the starting point
for the algorithm was the point of shortest norm (since fi
decreases in each step).

Theorem 7. Gilbert’s algorithm succeeds after at most
2
˚

2E
ε

ˇ
many steps.

Proof. Using Lemma 6, we can now follow along the
same lines as in [9, Theorem 2.3]: If we switch to a re-scaled
version of the error-parameters, h′i := 1

2Eρ
hi, g

′
i := 1

2Eρ
gi,

then the inequality becomes

h′i − h′i+1 ≥ g′i
2 ≥ h′i

2
(3)

(gi ≥ hi does always hold by definition) or equivalently
h′i+1 ≤ h′i(1 − h′i): Plugging in 1 − γ ≤ 1

1+γ
for γ ≥ −1

AT (Ax) consists of the scaled projections of all points onto
the current vector Ax, so the Frank-Wolfe-Algorithms choice
(see [9, Algorithm 1.1]) of the coordinate that minimizes the
gradient is equivalent to moving towards the point with min-
imum projection, as in Gilbert’s Algorithm [13].

4This inequality is equivalent to (1− cosα)2 ≥ 0.



gives h′i+1 ≤
h′i

1+h′i
= 1

1+ 1
h′
i

. Then by induction it is easy to

obtain h′k ≤ 1
k+1

and therefore h′k < ε′ for k ≥ K :=
˚

1
ε′
ˇ
, if

we can just show the induction hypothesis that h′1 ≤ 1
2
.

But this follows since our starting point is the point of
shortest norm, which implies x2 will always see x1 and the
origin in a right angle, therefore ||x1−x2||2 = f2

1 −f2
2 ≤ D2,

which implies f1 − f2 ≤ D2

2ρ
and therefore h′1

2 ≤ g′1
2 ≤

h′1 − h′2 ≤ 1
4

by using (3).
Now we have obtained small h′i, but this does not neces-

sarily imply yet that g′i is also sufficiently small. For this
we continue Gilbert’s algorithm for another K steps, and
suppose that in these subsequent steps, g′ always remains
≥ ε′, then we always have that h′i − h′i+1 ≥ ε′

2
, and so

h′K − h′2K ≥ Kε′
2 ≥ ε′, but this implies that h′2K < 0, a

contradiction. Thus for some K ≤ k ≤ 2K, we must have
that g′k < ε′.

If we choose our ε′ := 1
2E
ε, we know that after at most

2K = 2
˚

2E
ε

ˇ
steps of the algorithm, the obtained primal-

dual error is gk < ερ ≤ εfk, thus xk is an ε-approximation.

0

s

x∗

Observation 2. (Asymptotic
convergence of Gilbert’s
Algorithm). Note that if
we are are already very close
to the true solution x∗, i.e.
assume fi − ρ is small, say
hi = fi − ρ < γ for some
γ > 0, then the inequality
||pi − xi|| ≤ D can be improved as follows: Observe that
xi is inside the optimal halfspace of distance ρ from the ori-
gin (as the entire polytope is), intersected with the ball of
radius ρ+γ around the origin. Let s be the furthest distance
from x∗ of any point in this intersection area. It is easy to
see that s = O(

√
γ) is also small.

By triangle inequality we have ||pi − xi|| ≤ ||pi − x∗||+ s,
so we get the stronger inequality ||pi − xi||2 ≤ R2 + O(

√
γ)

in the proof of Lemma 6. Therefore Gilbert’s algorithm

always succeeds in at most 2
l

2Eρ
γ

m
+ 2

l
2(E∗+O(

√
γ))

ε

m
=

2
l

2E∗(1+o(1))
ε

m
many steps, as ε→ 0.

Note that the above analysis also proves the existence of

ε-coresets of size 2
˚

2E
ε

ˇ
(and of size 2

l
2E∗(1+o(1))

ε

m
in the

asymptotic notation), because the same improvement bound
applies to the “exact” combinatorial algorithm [9, Algorithm
4.1] that, when adding a new point to the set, computes the
exact polytope distance of the new set.

4.2 An Improved Version of Gilbert’s Algo-
rithm for Two Polytopes

Coresets for the distance between two polytopes.
All coreset methods for the single polytope case can directly
be applied to the distance problem between two polytopes
conv(P (1)) and conv(P (1)) by just running on the Minkowski
difference MD(P1, P2). This already makes the coreset ap-
proach available for all machine learning methods corre-
sponding to a two polytope problem (as for example the
standard SVM), see Section 5.

However, using the Minkowski difference has two major
disadvantages: On one hand every vertex of MD(P1, P2)
always corresponds to two original vertices, one from each

point class. Apart from potentially doubling the coreset
size, this is a very unfortunate restriction if the shapes of
the two point classes are very unbalanced, as e.g. in the
one-against-all approach for multi-class classification, as it
will create unnecessarily many non-zero coefficients in the
smaller class. On the other hand, to run Gilbert’s algo-
rithm (or also the abstract version [9, Algorithm 1.1] or the
reduced hull variant [18]) on MD(P1, P2), we have to de-
termine the starting point of shortest norm and therefore
have to consider all pairs of original points. Although this
starting configuration was used in practice (see e.g. the Di-
rectSVM [24] and SimpleSVM [31] implementations), this
should definitely be avoided for large sets of points. We
overcome both difficulties as follows:

An Improved Algorithm for Two Polytopes. The
following modified algorithm maintains a difference vector

x
(1)
i −x

(2)
i between the two polytopes, with x

(1)
i ∈ conv(P (1))

and x
(2)
i ∈ conv(P (2)). We again fix some notation first: Let

fi := ||x(1)
i − x

(2)
i || be the current distance, hi := fi − ρ

be the primal error, and let ωi := minp∈P (1),q∈P (2)(p −
q)|

(x
(1)
i −x

(2)
i )

be the ’dual’ value. Then we can interpret

g
(1)
i := maxp∈P (1)(p−x(1)

i )|
(x

(2)
i −x

(1)
i )

and g
(2)
i := maxp∈P (2)(p−

x
(2)
i )|

(x
(1)
i −x

(2)
i )

as being the two contributions to the ’primal-

dual’-gap, so that gi := fi − ωi = g
(1)
i + g

(2)
i , see Figure 2.

x
(1)
i

x
(2)
i

g
(2)
i

g
(1)
i

p
(1)
i

p
(2)
i

fi

α(1)

α(2)

ωi

Figure 2: A step of Algorithm 2.

Algorithm 2. (Improved Gilbert’s algorithm for
distance between two polytopes). Start with an arbi-

trary point pair (x
(1)
1 ∈ P (1), x

(2)
1 ∈ P (2) ).

In step i, i ≥ 1, find the points p
(1)
i ∈ P (1) and p

(2)
i ∈

P (2) with smallest projection (p
(1)
i −p

(2)
i )|

(x
(1)
i −x

(2)
i )

, and now

decide in which of the two polytopes to do a Gilbert step:
Choose the polytope k ∈ {1, 2} for which the ratio

g
(k)
i

max


||x(k)
i −p

(k)
i ||,

q
g
(k)
i fi

ff is maximal, and move to x
(k)
i+1 being

the point on the line segment [x
(k)
i , p

(k)
i ] which is closest to

the “opposite” point x
(k̄)
i+1 := x

(k̄)
i , which we keep unchanged.

We stop as soon as x
(1)
i − x

(2)
i is an ε-approximation.



Geometrically, the choice of k in the algorithm intuitively
corresponds to choosing the polytope for which the angle
α(k) is largest (see Figure 2), and in the following we will
show how this is beneficial for the improvement in each step.

Rectangular steps and hit steps. If the new point

x
(k)
i+1 lies in the interior of the line segment [x

(k)
i , p

(k)
i ], we say

that this step is a rectangular step, as indicated e.g. in the
upper polytope in Figure 2. However if the new point ends

up at the endpoint p
(k)
i of the line segment, then we say that

this is a hit step in polytope k, as e.g. in the lower polytope
in Figure 2. It is not hard to see that a hit step in polytope k

occurs if and only if ||x(k)
i − p

(k)
i || ≤

q
g

(k)
i fi, and otherwise

the step is rectangular. Note that in the single polytope
case as in Lemma 6, hit steps are impossible by choice of the
starting point, but here in the two polytope case this might
indeed happen. From a computational perspective, hit steps
are advantageous, as in each such step the number of points
involved to describe the current approximation point inside
one of the polytopes (called the number of support vectors
in the SVM setting) decreases from a possibly large number
down to one. However in the analysis of the algorithm, these
hit steps pose some technical difficulties:

Lemma 8. The improvement in the primal error hi in
each step of Algorithm 2 is either

hi − hi+1 ≥
1

2ρEP1,P2

g2
i (4)

or
hi − hi+1 ≥ CP1,P2 gi (5)

for CP1,P2 := ρ

4(ρ+D(1)+D(2))

“
min D(1)

D(2) ,
D(2)

D(1)

”2

otherwise.

Proof. Case R : In the case that the steps in both poly-
topes are rectangular we can follow the proof of Lemma 6:
Assuming that the polytope chosen by the algorithm is k,
we can follow (1) and (2) to get

hi − hi+1 ≥ ρ
2

„
g
(k)
i

||x(k)
i −p

(k)
i ||

«2

≥ ρ
2

„
max
m=1,2

g
(m)
i

D(m)

«2

≥ ρ
2

„
g
(1)
i +g

(2)
i

D(1)+D(2)

«2

= 1
2ρEP1,P2

g2
i , (6)

where we used max
`
a
c
, b
d

´
≥ a+b

c+d
∀a, b, c, d ≥ 0, Definition

5 of the Excentricity, and that gi = g
(1)
i + g

(2)
i .

Case M : In the “mixed” case that the step in one polytope
(r) is rectangular, but in the other polytope (h) is a hit step

(due to ||x(h)
i − p

(h)
i ||

2 ≤ g(h)
i fi), we can argue as follows:

Case M(r) : If the algorithm chooses polytope (r), we

can proceed analogously to (6) to obtain

hi − hi+1 ≥ ρ
2

g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
= ρ

2
max


g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
,
g
(h)
i

2

g
(h)
i fi

ff
,

(7)

but now there are two cases: If g
(h)
i fi ≤ D(h)2

, then we use
the same arithmetic trick as in (6),

hi − hi+1 ≥ ρ
2

„
max
m=1,2

g
(m)
i

D(m)

«2

≥ 1
2ρEP1,P2

g2
i . (8)

However if g
(h)
i fi ≥ D(h)2

, we have to argue differently:

By the choice of the algorithm we know that g
(r)
i ≥ g

(h)
i

because
g
(r)
i
fi

=
g
(r)
i

2

g
(r)
i fi

≥ g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
≥ g

(h)
i
fi

. As in (7),

the improvement in the step can then be bounded by hi −

hi+1 ≥ ρ
2

g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
≥ ρ

2

g
(r)
i

2

D(r)2 ≥
ρ
2

g
(h)
i g

(r)
i

D(r)2 which by our

assumption is ≥ ρ
2
D(h)2

D(r)2fi
g

(r)
i ≥ ρ

2
D(h)2

D(r)2fi

1
2

“
g

(r)
i + g

(h)
i

”
≥

CP1,P2gi . The last inequality follows because fi is always
smaller than D(1) +D(2) + ρ by triangle inequality.

Case M(h) : If the choice criterium is
g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
≤

g
(h)
i

2

g
(h)
i fi

, then algorithm will choose the polytope (h) where a

hit step will occur. The improvement in a hit step is worst

if x
(h)
i+1 ends up exactly at distance

q
fig

(h)
i from x

(h)
i — i.e.

on the Thales ball over fi — therefore f2
i − f2

i+1 ≥ fig
(h)
i

⇒ hi − hi+1 = fi − fi+1 ≥ 1
2
g

(h)
i ≥ ρ

2

g
(h)
i
fi

. Now if we again

assume that g
(h)
i fi ≤ D(h)2

, then analogously to (7), (8)

we have hi − hi+1 ≥ ρ
2

g
(h)
i
fi

= ρ
2
max


g
(r)
i

2

||x(r)
i −p

(r)
i ||

2
,
g
(h)
i

2

g
(h)
i fi

ff
≥

1
2ρEP1,P2

g2
i . On the other hand if g

(h)
i fi ≥ D(h)2

, we dis-

tinguish two cases: First if g
(h)
i ≥ g

(r)
i , then directly hi −

hi+1 ≥ 1
2
g

(h)
i ≥ 1

4
(g

(h)
i + g

(r)
i ) = 1

4
gi ≥ CP1,P2gi. Sec-

ondly if g
(r)
i ≥ g

(h)
i , we use that by the choice of the algo-

rithm
g
(h)
i
fi
≥ g

(r)
i

2

||x(r)
i −p

(r)
i ||

2
≥ g

(r)
i

2

D(r)2 , so we have hi − hi+1 ≥

ρ
2

g
(r)
i

2

D(r)2 ≥ CP1,P2gi analogous to the last part of the previous

case M(r).

Case H : If there is a hit step in both polytopes, then we use
that the algorithm has chosen the one with the larger value

of g
(k)
i , therefore again by the “angle constraint” reasoning

that for hit steps f2
i − f2

i+1 ≥ fig
(k)
i we obtain fi − fi+1 ≥

fi
2fi
g

(k)
i = 1

2
g

(k)
i ≥ 1

4
gi ≥ CP1,P2gi.

Theorem 9. Algorithm 2 succeeds after at most

2
l

2EP1,P2
ε

m
+3+ 1

CP1,P2
log D(1)+D(2)

ρCP1,P2 ε
= O(1/ε) many steps.

Proof. We count the steps of quadratic improvement (4)
and those of linear improvement (5) separately, using that
each kind of step results in strict improvement in the primal
error hi:

i) For quadratic improvement (4) we follow exactly along
the proof of Theorem 7, for EP1,P2 being the pair excen-
tricity: If we rescale by h′i := 1

2EP1,P2ρ
hi, (4) gives 1

h′i+1
≥

1 + 1
h′i

. Now we just use that initially h′1 is finite, therefore
1
h′1
≥ 0 and by induction we get 1

h′
k
≥ k − 1 for all k ≥ 2.

It follows that h′k ≤ ε′ for k ≥ K :=
˚

1
ε′
ˇ

+ 1. By the same
argument as in the proof of Theorem 7, we have that af-

ter at most 2K = 2
l

2EP1,P2
ε

m
+ 2 many rectangular steps,

gk < ερ ≤ εfk, thus x
(1)
k − x

(2)
k is an ε-approximation.

ii) On the other hand we can bound the number of steps
of linear improvement (5) by an easier argument: Let C :=
CP1,P2 . Now hi − hi+1 ≥ Cgi ≥ Chi is equivalent to
hi+1 ≤ (1 − C)hi (recall that 0 < C < 1). Using that

initially h1 ≤ D(1) + D(2), we get hk ≤ (1 − C)k−1h1 ≤
(1−C)k−1(D(1) +D(2)) for all k ≥ 2, which is ≤ ε′ as soon

as k− 1 ≥ log D
(1)+D(2)

ε′
− log(1−C)

, which in particular holds if k− 1 ≥
1
C

log D(1)+D(2)

ε′ by using the inequality λ < − log(1 − λ)



for 0 < λ < 1. For ε′ := ρC ε, this is enough because
ε′ ≥ hk ≥ hk − hk+1 ≥ Cgk implies gk ≤ ερ ≤ εfk, or in
other words the algorithm obtains an ε-approximation after

at most 1
C

log D(1)+D(2)

ρC ε
+ 1 many steps of linear improve-

ment.

Generalization of our algorithm for convex opti-
mization over products of simplices. We can also gen-
eralize our above new variant of sparse greedy approximation
in terms of the general framework by Clarkson [9], when we
extend it to solving any concave maximization problem over
a product of finitely many simplices or convex hulls. To do
so, we can prove the same step improvement (4) also for the
case of convex functions defined on any product of simplices.
We are currently investigating the details in this setting.

4.3 Smaller Coresets by “Away” Steps
Gilbert’s algorithm and also its “exact” variant, due to

their greedy nature, are not optimal in the size of the core-
sets they deliver. However, Clarkson showed that a modified
procedure [9, Algorithm 5.1] based on an idea by [27], called
the away steps algorithm, obtains smaller coresets. The fol-
lowing Theorem, together with our lower bounds from Sec-
tion 3.1, will settle the question on the size of coresets for
the distance problem of one polytope to the origin, because
the size of the coreset obtained by the algorithm matches
our lower bound, and therefore is best possible:

Theorem 10. For any ε > 0, the away steps algorithm
[9, Algorithm 5.1] returns an ε-coreset of size at most

˚
E
ε

ˇ
,

and at most
l
E∗(1+o(1))

ε

m
as ε→ 0.

Proof. This follows directly from [9, Theorem 5.1], for
f(x) := −||Ax||, when using the re-scaled ε′ := ρε

2Cf
, and

applying Cf ≤ ρ
2
E and C∗f ≤ ρ

2
E∗(1 + o(1)).

Away steps in the case of two polytopes. We can
adjust [9, Algorithm 5.1] for two polytopes as follows: Start

with the closest point pair (x
(1)
1 ∈ P (1), x

(2)
1 ∈ P (2) ), and

proceed as in [9, Algorithm 5.1]. In each step choose the
polytope according to the choice criterium of our Algorithm
2, but with the modification that whenever a hit step is
possible one either side, we choose to do this hit step.

Theorem 11. For any ε > 0, the modified away steps
algorithm on two polytopes returns an ε-coreset of size at

most
l
EP1,P2

ε

m
, and at most

l
E∗P1,P2

(1+o(1))

ε

m
as ε→ 0.

Proof. Sketch: We can follow the proof of [9, Theorem
5.1] using our Lemma 8, and observe that a hit step never
increases the coreset size. The key point is that for any step
that increases the coreset size, the improvement bound (4)
always holds. The induction hypothesis h′1 := 1

2EP1,P2ρ
h1 ≤

1
2

follows if we start at the closest pair. A more detailed
proof will be made available in the full paper.

5. APPLICATIONS TO
MACHINE LEARNING

The advantage of the coreset approach is that both the
running time of the algorithms and the sparsity of the ob-
tained solutions is independent of the dimension d of the
space and independent of the number of points n. This

makes it very attractive for kernel methods, where the points
are implicitly assumed to live in a (possibly very high dimen-
sional) feature space.

Table 5 briefly recapitulates the fact that nearly all well
known SVM variants are equivalent to a polytope distance
problem between either one or two polytopes, showing that
all these variants do fit into our framework of coresets. In the
table, xi ∈ Rd, 1 ≤ i ≤ n denote the original points, φ(xi)
are their implicit images in the feature space defined by the
kernel, and in the two class cases the labels of the points
are given by yi = ±1. ω and b are the normal and offset of
the maximum margin hyperplane that we are searching for,
and the ξi represent slack variables for the case of possible
(punished) outliers.

5.1 Sparsity of SVM and Perceptron Solutions
The sparsity of kernel SVM and Perceptron solutions is

the crucial ingredient for the performance of these meth-
ods on large scale problems: If we have an approximate
solution ω, then still for every evaluation of the classifier
(this means we are given a new “unseen” point and have to
answer on which side of the hyperplane it lies), the scalar
products to all points which appear with non-zero coeffi-
cient in ω (those are called the support vectors) have to be
evaluated. The performance in practical use is therefore di-
rectly proportional to the sparsity of ω. Interestingly not
much is known in the literature on this question, in partic-
ular no lower bounds are known to our knowledge. Using
the above equivalences, we are now for the first time able to
prove asymptotically matching upper and lower bounds for
the sparsity of approximate SVM and Perceptron solutions:

Theorem 12. (Characterization of the Sparsity of
Perceptron and SVM solutions using the Excentric-
ity). For any fraction 0 ≤ µ < 1, the sparsity of an approx-
imate solution attaining at least a µ-fraction of the optimal

margin5, is bounded from above by
l

E
1−µ

m
and

l
E∗(1+o(1))

1−µ

m
as µ→ 1 for the single polytope variants 1a),1b),1c) and byl
EP1,P2

1−µ

m
and

l
E∗P1,P2

(1+o(1))

1−µ

m
as µ→ 1 for the two polytope

variants 2a),2b) and 2c),2d)6.

The sparsity is bounded from below by
l 1

2E

1−µ

m
and

l
E∗
1−µ

m
+

1 for SVM variant 1a), and by

‰
1
4EP1,P2

1−µ

ı
and

‰
1
2E
∗
P1,P2

1−µ

ı
+2

for the standard SVM or Perceptron 2a).

Proof. Upper bound: This is a direct consequence of
Theorem 10 in the single polytope case, and Theorem 11
in the two polytope case, showing that the away steps algo-
rithm returns an (1 − µ)-coreset of the desired size, whose
corresponding (1−µ)-approximation proves our upper bound.

5In the single polytope case this means there is a sepa-
rating hyperplane of distance µρ from the origin, whereas in
the two polytope case it refers to a separating hyperplane
such that all points have distance at least µ ρ

2
from the plane.

6For the `1-loss SVM variants 2c),2d), our stated upper
bound holds for the number of reduced hulls vertices [7, 10,
18] that are needed to represent a solution, however each
vertex of a reduced hull corresponds to a fixed larger sub-
set of non-zero coefficients when expressed in the original
points. Thus the sparsity upper bound when expressed in
the original points has to be multiplied by this factor, which
for the ν-SVM variant 2d) is

˚
νn
2

ˇ
[10].



SVM Variant Primal Problem Equivalent Polytope
Distance Formulation

1a one-class SVM min
w,ρ

1
2
||w||2 − ρ one polytope

(hard-margin) wTφ(xi) ≥ ρ ∀i
1b one-class `2-SVM min

w,ρ,ξ

1
2
||w||2 − ρ+ C

2

P
i ξ

2
i one polytope

(soft-margin) wTφ(xi) ≥ ρ− ξi ∀i [30, Equation (8)]

1c two-class `2-SVM (with min
w,b,ρ,ξ

1
2
(||w||2 + b2)− ρ+ C

2

P
i ξ

2
i one polytope

regularized or no offset) yi(w
Tφ(xi)− b) ≥ ρ− ξi ∀i [30, Equation (13)], [15]

2a two-class SVM, Perceptron min
w,b

1
2
||w||2 two polytopes

(hard-margin) yi(w
Tφ(xi)− b) ≥ 1 ∀i

2b two-class `2-SVM min
w,b,ξ

1
2
||w||2 + C

2

P
i ξ

2
i two polytopes

(standard version) yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i [16, Section II]

2c two-class `1-SVM min
w,b,ξ

1
2
||w||2 + C

P
i ξi two (reduced) polytopes

(C-SVM) yi(w
Tφ(xi)− b) ≥ 1− ξi, ξi≥0 ∀i [7]

2d two-class `1-SVM min
w,b,ρ,ξ

1
2
||w||2 − ρ+ ν

2

P
i ξi two (reduced) polytopes

(ν-SVM) yi(w
Tφ(xi)− b) ≥ ρ− ξi, ξi≥0 ∀i [10]

Table 1: SVM variants and their equivalent polytope distance formulations.

Lower bound: Any approximate solution that attains at
least a µ-fraction of the optimal margin, is represented by a
convex combination x ∈ conv(P ) (or x ∈MD(P1, P2) in the
two polytope case) such that p|x ≥ µρ ∀p ∈ P , or in other

words p|x
ρ
≥ 1 − ε if we set ε := 1 − µ. By iii) of Lemma 2

(or Lemma 4 respectively), we have constructed a point set
such that the sparsity of any such x has to be at least the
claimed lower bound.

Corollary 13. The sparsity of any separating solution
to a standard hard-margin two-class SVM or Perceptron is at
least d 1

2
E∗P1,P2e+2, and at least d 1

4
EP1,P2e for some training

point sets, whereas solutions of sparsity dEP1,P2e do always
exist for all instances.

Interpretation of the excentricity in the SVM and
Perceptron case. For the Perceptron, [14] have proven a
similar upper bound on the sparsity of separating solutions,
and found it remarkable that it depends on the margin be-
tween the two classes. Our lower bound now confirms that
this indeed has to be the case. For SVM, already [8, Section
7.5] conjectured, on the basis of empirical results, that it
might be good to choose the free kernel parameters so that
the quantity E is minimized. By our derived bounds we
can now confirm that this choice is indeed good in the sense
that it result in the best possible sparsity of the solutions. [8,
Theorem 6] also showed that E gives an upper bound for the
VC dimension of gap tolerant classifiers, a concept closely
related to the complexity of the classification problem.

5.2 Linear Time Training of SVMs
and Perceptrons

The following is a direct consequence of the analysis of
Gilbert’s Algorithm and our geometric interpretation of ap-
proximation in the one and two polytope setting:

Theorem 14. For all SVM and Perceptron variants 1a)
up to 2b), for arbitrary kernels, and for any fixed fraction
0 ≤ µ < 1, we can find a solution attaining at least a µ-
fraction of the optimal margin in time linear in the number
of training points n, using Gilbert’s Algorithm 1 or Algo-
rithm 2 respectively.

Proof. Theorem 7 and Theorem 9 show that the number
of Gilbert steps needed is a constant independent of n and
the dimension d. By keeping the lengths of all projections

onto the previous estimate in memory, one can in each step
update the all projections by just calculating n scalar prod-
ucts (of the new point pi to all points in P ) [16], therefore the
number of kernel evaluations (scalar product computations)
is n in each Gilbert step, and O(n) in total.

The above theorem also holds the reduced hull SVM vari-
ants 2c),2d), but there the number of kernel evaluations has
to be multiplied with the previously mentioned factor6.

Comparison to Existing SVM Training Algorithms.
Our above result means that we removed the need for the
detour of reducing SVM to a smallest enclosing ball problem,
which was a theoretically and experimentally very success-
ful method suggested by Tsang under the name Core Vector
Machine (CVM) [30, 28], for the SVM variants 1b),1c), in
the case that all points have the same norm. This is because
in that special case the single polytope distance problem is
equivalent to a smallest enclosing ball problem. The im-
proved version of the CVM [28] uses Panigrahy’s algorithm
[22] to obtain a coreset of size O(1/ε2) in the same number of
steps. In another work [15] also proved the existence of core-
sets of size O(1/ε2) for the problem of separating two poly-
topes by a hyperplane that goes through the origin, which
is a special case of SVM variant 1c) and also equivalent to
a single polytope distance problem.

Our contributions can be summarized as follows:

• By generalizing the coreset approach to the two poly-
tope case, we encompass all the currently most used
hard- and soft-margin SVM variants with arbitrary
kernels, with both `1 and `2-loss.

• Our obtained coreset sizes — as well as the algorithm
running times — are one order of magnitude smaller
in terms of ε, and also have a smaller constant than
most existing methods such as [30, 29, 28], [15].

• Our method works for arbitrary kernels, and is eas-
ier to apply in practice because we do not require the
exact solution of small sub-problems, overcoming two
disadvantages of [30, 29] and also [15].

Perceptrons. In the special case µ := 0, our above The-
orem gives a bound similar to the well known result that the
traditional Perceptron algorithm [25] achieves perfect sepa-

ration after M2

ρ2
many steps, where M := maxp∈P ||p|| is the



largest norm of a sample point [21]. For cases of large mar-

gin, our bound of 2d2Ee steps is faster than the M2

ρ2
many

steps guaranteed by the currently known bounds for (ker-
nel) Perceptron algorithms [21, 26]. Another advantage of
our result is that we can not only guarantee separation but
simultaneously large margin.
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APPENDIX
A. RELATION OF OUR GEOMETRIC CON-

CEPTS TO THE DEFINITIONS OF CLARK-
SON

Geometric v.s. algebraic primal-dual approxima-
tion. Here we show that our geometric definitions of ε-
approximations and coresets do indeed fit to the general al-
gebraic framework defined by [9]. To do so, we consider
barycentric coordinates, and let A be the d× n-matrix con-
taining all n points of P as columns. Then the primal opti-
mization problem of finding the point inside conv(P ) closest
to the origin is

min f(x) := ||Ax|| =
√
xTATAx, s.t.

nX
i=1

xi = 1, x ≥ 0,

and its Lagrange dual is

max
α∈R,βi≥0

min
x

L(x, α, β) := f(x)−α

 
nX
i=1

xi − 1

!
−

nX
i=1

βixi.

Now since f is convex and differentiable (assume 0 /∈ conv(P )),
this can equivalently be written as

max
α∈R,βi≥0

f(x)− (α1T + (β1, . . . , βn))x+ α

s.t. ∇xL(x, α, β) = 0

Computing the gradient∇xL(x, α, β) = 1
||Ax||x

TATA−α1T−
(β1, . . . , βn) = 0 (observe that∇xf(x) = xTATA

||Ax|| ), we obtain

the equivalent formulation

max
x,α∈R

f(x)− (Ax)T

||Ax|| Ax+ α = f(x)− f(x) + α = α

s.t.
(Ax)T

||Ax|| A− α1
T ≥ 0

or equivalently

maxx ω(x)

with ω(x) := mini∈[n]
(Ax)T

||Ax|| Ai ,

but this, as ω(x) is indeed the shortest projection of any
point onto the current direction Ax, exactly matches our
geometric definition of the dual, and our definition of ε-
approximation is therefore equivalent to the multiplicative
gap between primal and dual value being small. This shows
that our geometric interpretation is indeed equivalent to
Clarkson’s algebraic approach, for this choice of f (up to
swapping the sign of the objective function, as we do convex
minimization, where the definitions of [9] are for concave
maximization). Note that also for general convex optimiza-
tion problems, weak duality shows that our approximation
notion of “gap between primal and dual value being small”
is stronger than just being close to the primal optimum.

The algebraic equivalent of the excentricity. Also,
we can prove the immediate connection between our excen-
tricity of a polyope to the non-linearity Cf as defined in [9,
Section 2.2]. For f(x) := ||Ax||, Cf will in fact directly cor-
respond to 1

2
Eρ, the excentricity of the polytope conv(P )

scaled by the true distance ρ, as shown by the following
Lemma:

Lemma 15. For f(x) := ||Ax||, and D,R denoting diam-
eter and radius of the polytope conv(P ), we have that

Cf ≤
D2

2ρ
=
Eρ

2
and C∗f ≤

R2(1 + o(1))

2ρ
=
E∗ρ (1 + o(1))

2

where o(1) in the second inequality refers to ε→ 0.

Proof. Let S :=
˘
x ∈ Rn

˛̨ Pn
i=1 xi = 1, xi ≥ 0

¯
be the

“unit simplex” spanned by the unit vectors in Rn, so that
we can write conv(P ) = AS. Using the definition of Cf
together with the Taylor expansion of f (see also [9, Section

2.2] in the journal version), and observing ∇2
xf(x) = ATA

||Ax|| −
ATAxxTATA
||Ax||2 , we can bound

Cf ≤ sup
x,z,x̃∈S

1

2
(z − x)T∇2

xf(x̃)(z − x)

= sup
a,b,b̃∈AS

1

2

„
||a− b||2

||b̃||
− ||b̃

T (a− b)||2

||b̃||2

«
≤ diam(AS)2

2ρ

where in the last inequality we just omitted the righthand
side term as it is always non-negative, and used the definition
of the shortest distance ρ. The bound for C∗f follows anal-
ogously, when restricting the supremum to the case where
b = Ax is already close to the optimum point (compare to
Observation 2).

Proof of Theorem 10 for the away step algorithm.

Theorem 16. For any ε > 0, the away steps algorithm
[9, Algorithm 5.1], when we run for a rescaled ε′ := ρε

2Cf
,

returns an ε-coreset of size
˚
E
ε

ˇ
, which is

l
E∗(1+o(1))

ε

m
as

ε→ 0.

Proof. Using the above algebraic description of the poly-
tope distance problem by f(x) = ||Ax||, [9, Theorem 5.1]
shows that the away steps algorithm delivers a subset of co-
ordinate indices N of size

˚
1
ε′
ˇ

such that f(xN )− ω(xN ) ≤
2Cf ε

′, where xN is the true optimal solution of the problem
restricted to the coordinates in N . By the scaling ε′ := ρε

2Cf
,

this means that in our setting, the away steps algorithm re-

turns an ε-coreset of size
l

2Cf
ρε

m
≤
˚
E
ε

ˇ
, and

l
2C∗f (1+o(1)

ρε

m
≤l

E∗(1+o(1)
ε

m
in the asymptotic case; the last two inequalities

holding by Lemma 15.
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