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Introduction

Setup and concepts

Logistic setting:

- depots, supply points, demand points

- non-stationary stochastic demands over a planning horizon

- distribution or collection context

Decisions:

- visits

- routing

- inventory management

.
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Introduction

Setup and concepts

Undesirable events:

- stock-outs

- overflows

- breakdowns

- route failures

The objective:

- minimize cost

- satisfying all constraints

- avoiding the occurrence of undesirable events

.
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Introduction

Routing

Figure 1: Tour example

depot supply point demand point

trip 1
trip 2 trip 3
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Introduction

Motivation and Contribution

Generality of the approach: VRP, IRP, others

Relies on dynamic probabilistic information to integrate the cost of
undesirable events

Uses recourse actions to recover from undesirable events

Integrates demand forecasting

Modeling framework corroborated by practical application

High quality meta-heuristic solution approach

Intuitive evaluation of various solution aspects by simulation
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Stochastic Information

Forecasting

The demand of point i ∈ P in period t ∈ T decomposes trivially as:

ρit = E (ρit) + εit (1)

Definition 1

The error terms are modeled as εit∼ D($), where D($) may be any
theoretical or empirical distribution.

Definition 2

A forecasting model provides the expected demands E (ρit) for all
i ∈ P, t ∈ T and the error distribution D($).
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Stochastic Information

Demand point states and probabilities

Notation:
- Λi0: inventory after delivery of demand point i in period 0

- ωi : inventory capacity of demand point i

- σit : state of demand point i in period t

- σit = 0: normal

- σit = 1: stock-out

Delivery types:

- regular delivery: performed by a vehicle

- emergency delivery: recourse action performed in a state of stock-out
when no vehicle visits the point

Relevant costs:

- stock-out cost χ: paid in a state of stock-out

- emergency delivery cost ζ: paid in a state of stock-out
when no vehicle visits the point
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Stochastic Information

Figure 2: State probability tree
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Stochastic Information

Order-Up-to (OU) inventory policy

Proposition 1

Under an OU policy in a distribution context, the stock-out probabilities
can be pre-computed for any distribution D($) using simulation.

Proposition 2

The calculation of the overflow probabilities in a collection context is
identical to the calculation of the stock-out probabilities in a
distribution context.

Corollary 1

Under an OU policy in a collection context, the overflow probabilities
can be pre-computed for any distribution D($) using simulation.
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Stochastic Information

Maximum Level (ML) inventory policy

Discretized ML policy:

Figure 3: Level discretization for a demand point

Discrete level 1

Discrete level 2

Discrete level 3

Proposition 3

Under a discretized ML policy, the relevant probabilities can be
pre-computed, and the complexity is linear with the number of
discrete levels.
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Formulation

Objective function

Figure 4: Composition of the objective function

Expected inventory
holding cost

Demand point
visit cost

Routing cost

Workload balancing
Expected stock-out
and emergency
delivery cost

Expected route
failure cost

+ + +

+ +
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Formulation

Objective Function: Stochastic components

Expected Stock-Out and Emergency Delivery Cost (ESOEDC)
component:

ESOEDC =
∑
t∈T +

∑
i∈P

P (σit=1 | Λim)

χ+ ζ − ζ
∑
k∈K

yikt

, (2)

where
- T +: planning horizon plus following day

- P: set of demand points

- K: set of vehicles

- σit = 1: state of stock-out of point i in period t

- Λim: inventory after delivery of point i in period m

- m: period of the previous delivery to point i

- χ: stock-out cost

- ζ: emergency delivery cost

- yikt = 1 if point i is visited by vehicle k in period t, 0 otherwise
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Formulation

Objective Function: Stochastic components

Expected Route Failure Cost (ERFC) component:

ERFC =
∑
k∈K

∑
S∈Sk

NS−1∑
n=1

CS P (nΩk < ΞS 6 (n + 1)Ωk ), (3)

where

- K: set of vehicles

- Sk : set of supply point delimited trips for vehicle k

- NS : number of demand points in trip S

- CS : route failure cost for trip S

- ΞS : volume delivered in trip S

- Ωk : capacity of vehicle k
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Formulation

Objective function: Tractability

Proposition 4

The route failure probabilities cannot be pre-computed.

Because the volume to deliver in a given trip is a decision variable and
not known in advance

Assumption 1

Restrict the error terms as εit
iid∼ D($), where D($) may be any

theoretical or empirical distribution.

While we cannot pre-compute the probabilities themselves, we can
derive their ECDFs

The number of ECDFs to derive is bounded by the number of
demand points times the number of periods in the planning horizon
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Formulation

Objective function: Overestimation

The objective function does not fully capture the effect of stock-outs
occurring earlier than expected

Definition 3

A reaction policy defines how the subsequent decisions are changed in
response to an emergency delivery.

Reaction policies can vary from doing nothing to completely
re-optimizing the subsequent decisions

Proposition 5

In the absence of inventory holding costs, the objective function always
overestimates the real cost.
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Formulation

Constraints

Routing aspect:

- multiple depots

- supply point visits

- open tours

- multi-period tours

- periodicities and service frequency

- etc...

Inventory related:

- track inventory

- implement the inventory policy

- forbid stock-outs in the expected sense

Vehicle capacity related

Duration and time window related

Etc...
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Formulation

Applications

Stochastic demand problems:

- vehicle routing problem

- waste collection inventory routing

- supermarket delivery routing

- fuel delivery routing

- home health care routing

- maritime inventory routing

- etc...

Probability-based routing problems:

- facility maintenance

- epidemic prevention

- etc...
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Methodology

Adaptive Large Neighborhood Search (ALNS)

State-of-the-art meta-heuristic framework

Operators compete in modifying the current solution

At each iteration, draw a destroy and a repair operator randomly

The destroy (repair) operator i ∈ O is drawn with probability:

P(i) =
ωi∑
j∈O ωj

(4)

The weights ωi are periodically updated by an adaptive layer that
tracks operator performance

Rich operator pools reflecting the problem structure

Simulated annealing solution guiding principle
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Numerical Experiments

Outline

1 Introduction

2 Stochastic Information

3 Formulation

4 Methodology

5 Numerical Experiments

6 Conclusion

I. Markov TRANSP-OR, EPFL A general framework for routing problems with stochastic demands May 17–19, 2017 24 / 42



Numerical Experiments

Benchmarking: Archetti et al. (2007) Instances

First classical IRP testbed

160 instances in total

5 to 50 customers

3 or 6 periods in the planning horizon

Single vehicle

Low and high inventory holding costs

Optimal solutions (branch-and-cut) by Archetti et al. (2007)
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Numerical Experiments

Benchmarking: Archetti et al. (2007) instances

Table 1: Results on Archetti et al. (2007) Instances

High Inventory Holding Cost Low Inventory Holding Cost

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Worst Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%) Worst Gap(%)

3 5 69.08 0.00 0.00 0.00 85.69 0.00 0.00 0.00
3 10 183.94 0.00 0.00 0.00 156.36 0.00 0.00 0.00
3 15 317.93 0.00 0.00 0.00 274.05 0.00 0.00 0.00
3 20 440.02 0.00 0.00 0.01 444.68 0.00 0.00 0.02
3 25 523.42 0.00 0.08 0.25 501.78 0.01 0.20 0.66
3 30 835.21 0.01 0.15 0.32 649.09 0.00 0.41 0.98
3 35 866.06 0.00 0.15 0.36 731.21 0.00 0.46 1.68
3 40 896.91 0.02 0.18 0.44 976.83 0.16 0.47 0.97
3 45 1124.57 0.05 0.42 0.91 1074.19 0.00 1.05 2.53
3 50 1424.27 0.06 0.35 0.79 1223.56 0.13 1.19 2.15

6 5 105.86 0.00 0.00 0.00 73.28 0.00 0.00 0.00
6 10 184.48 0.00 0.01 0.08 181.93 0.00 0.00 0.00
6 15 333.82 0.01 0.09 0.15 272.03 0.00 0.03 0.16
6 20 394.39 0.00 0.17 0.41 420.28 0.05 0.34 0.82
6 25 636.27 0.12 0.34 0.82 546.85 0.09 0.67 1.60
6 30 725.63 0.10 0.47 0.93 733.12 0.44 1.43 2.63

Average 566.37 0.02 0.15 0.34 521.56 0.05 0.39 0.89
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Numerical Experiments

Waste collection inventory routing problem

63 instances, each covering a week of white glass collections in
Geneva, Switzerland in 2014, 2015, or 2016

Planning horizon of 7 days

Up to 2 heterogeneous vehicles

Up to 53 containers (41 on average)

2 dumps located far apart from each other

Overflow cost: 100 CHF

Simulation of undesirable events on the final solution
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Numerical Experiments

Waste collection IRP: Geography

Figure 5: Geneva service area

I. Markov TRANSP-OR, EPFL A general framework for routing problems with stochastic demands May 17–19, 2017 28 / 42



Numerical Experiments

Waste collection IRP: Policies

Probabilistic objective:

- routing cost

- expected overflow and emergency collection cost

- expected route failure cost

- we vary the emergency collection cost (100 CHF, 50 CHF, 25 CHF)
and the route failure cost multiplier (1.00, 0.50, 0.25, 0.00)

Deterministic objective:

- routing cost only

- reduced container effective capacity

- reduced truck effective capacity

- we vary the container and truck effective capacities
(1.00, 0.90, 0.75, 0.60)
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Numerical Experiments

Waste collection IRP: Routing costs

Figure 6: Comparison of routing costs for probabilistic and deterministic policies
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Numerical Experiments

Waste collection IRP: Overflows and route failures

Figure 7: Comparison of undesirable events at different simulated percentiles
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(a) Overflows
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(b) Route Failures
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Numerical Experiments

Waste collection IRP: Realized costs

Figure 8: Comparison of realized costs at different simulated percentiles
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Numerical Experiments

Waste collection IRP: Simulation and Tractability

Table 2: Impact of ECDFs on computation time

Cost (CHF) Runtime (s.) ECDF calls (millions)

ALNS version Bins ECC RFCM Best Avg Worst Best Avg Worst Best Avg Worst

Original - 100 1 662.65 666.64 672.87 870.65 906.84 936.40 - - -
Original 1000 100 1 662.82 666.97 673.43 1028.87 1096.86 1153.05 84.91 94.93 105.52
Original 100 100 1 662.29 666.61 673.40 912.54 955.96 990.57 84.11 94.54 103.84
Efficient 1000 100 1 662.63 666.74 673.35 909.06 948.77 982.68 52.95 58.90 65.00
Efficient 100 100 1 662.49 666.46 672.73 869.52 903.81 932.79 52.94 58.44 63.90
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Numerical Experiments

Waste collection IRP: Objective Overestimation

Figure 9: Objective function overestimation for two reaction policy extremes

0.000

0.025

0.050

0.075

0.100

75th 90th 95th 99th

Percentiles

P
er

ce
nt

 o
ve

re
st

im
at

io
n

(a) Do−nothing reaction policy

0.0

2.5

5.0

7.5

10.0

75th 90th 95th 99th

Percentiles

(b) Optimal reaction policy upper bound

I. Markov TRANSP-OR, EPFL A general framework for routing problems with stochastic demands May 17–19, 2017 34 / 42



Numerical Experiments

Waste collection IRP: Bounds

Figure 10: Heuristic bounds, single visit, gap = 17%
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Numerical Experiments

Waste collection IRP: Bounds

Figure 11: Heuristic bounds with re-optimization, single visit, gap = 7%
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Numerical Experiments

Facility maintenance

24 instances derived from the waste collection instances

Planning horizon of 7 days

Up to 2 vehicles

Up to 50 containers (41 on average)

Simulation of breakdowns on the final solution
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Numerical Experiments

Facility maintenance: Breakdown probability

Figure 12: Facility cumulative breakdown probability
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Numerical Experiments

Facility maintenance: Routing cost and breakdowns

Figure 13: Verification of modeling approach
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Conclusion

Conclusion

General framework for rich stochastic and probability-based
routing problems

Computationally tractable

Corroborated by practical applications

Much superior to classical deterministic approaches

High quality efficient and stable solution methodology

Next steps:

- further work on the facility maintenance problem

- further stability tests

Future work:

- further work on bounds

- comparison to alternative approaches

- generation of additional sets of realistic instances
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Conclusion

Thank you.

Questions?
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