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Abstract— In kite power systems, substantial input delay
between the actuator and the tethered kite can severely hinder
the performance of the control algorithm, limiting the capability
of the system to track power-optimal loops. We propose a
method that deals with this impediment by using a data-based
adaptive filter that predicts future states despite variations
in wind conditions, other exogenous disturbances and model
mismatch. Moreover, we exploit the geometry of the path on a
hemisphere to enhance the guidance algorithm for such kites at
a fixed length tether. The objective is to improve the automatic
crosswind operation of an airborne wind energy system. To
test this under realistic conditions, a small-scale prototype
was employed for a series of experiments. The robustness to
disturbances and the performance of the algorithm in path
following was evaluated for a number of different paths.

I. INTRODUCTION

This paper considers the control of power-generating
kites. Harnessing wind power using kites is a radical new
renewable-energy concept that is currently being developed
(for a review of this rapidly expanding field see [1] and [2]).
Kites can access strong and consistent winds at altitudes out
of reach of wind turbines. Moreover, they do not require
a large supporting tower. Kites are essentially flying wings
(attached to the ground by a flexible tether), ranging from
flexible para-glider type designs to rigid composite aircraft
wings.

Most of the AWE prototype systems, and the ones cur-
rently in development, are operating between 50-200 meters
[1], [2]. Future deployment that could reach up to 500-1000
meters would enjoy a wind power density that is up to
four times higher [3]. A kite flying roughly perpendicular
to the wind travels at very high speed and experiences large
aerodynamic forces. This force is transmitted to the ground
via the tether, where it can be used to drive a generator
for electricity production, by slowly unreeling the tether.
In a second phase, the kite is reeled back in (using a
small percentage of the generated electricity) while it is not
flying cross-wind, thus generating very little tether force.
This is known as pumping-cycle operation [4]. Other than
electricity production, kites can be used in various interesting
applications. For example large kites are being used to propel
cargo ships [5].

A number of technical barriers must be crossed in order
to achieve reliable kite power systems. One of the most
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fundamental is automatic control of the kite operation. The
type of kite used for power generation is inherently unstable,
which means that without continuous input steering, it will
crash in seconds. Moreover, a kite can be given different
paths to follow, and it is this path that determines how
much power is produced under specific wind conditions.
The challenge is to design path-following control algorithms
capable not only of keeping the kite flying, but also of
following a specific power-optimal path. The control task
is complicated to a large extent by a number of time delays
affecting the system. If a kite is actuated from the ground, the
elasticity of the long lines introduces a non-negligible delay
between line adjustments on the ground and the resulting
steering deflection experienced by the kite. Even if the kite
has on-board actuators, data-transmission delays, actuator
response times, and filter-induced delay are unavoidably
present. As the kite reaches speeds in excess of 150 km/h,
even time delays of a fraction of a second can seriously
compromise controller performance.

Initial development in the field of kite control focused on
advanced, model-based control, including nonlinear model
predictive control (NMPC) using an economic [6] or tracking
[7], [8] objective, and Lyapunov redesign techniques [9].
However, there is still no reported experimental implemen-
tation of an NMPC controller for kites, probably because of
the inaccuracy of existing kite models, the considerable com-
putational effort and the added complexity of the method.
In contrast, a number of experimentally-validated simple
geometric control algorithms have recently been published.
In particular, [5] devised and extensively tested a bang-
bang controller for achieving figure-of-eights (the path shape
that is commonly used for power production), based on an
ingeniously simple kinetic model. [10] validated a similar
cascade-control strategy on a small-scale prototype, which
alternately directs the kite towards one of two target points,
again producing a figure-of-eight flight path. Both of these
approaches allow the kite’s path to be adjusted to a limited
extent. Both [11] and [4] recently published preliminary
experimental results on the implementation of path-following
controllers. While reasonable path-following performance
was obtained, [11] identified time delay as one of the main
barriers to improving path-following control performance.

This paper presents a path following controller for kites,
specifically designed to cope with significant time delays.
The main novelty is a prediction algorithm that computes
the kite’s future states in order to counteract delay, using an
adaptive turn-rate law. The adaptive turn-rate law is updated
at each sampling period using experimental data, allowing it
to adapt to variations in the wind conditions or the kite’s
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parameters. The Non-Linear Guidance Law (NLGL) [12]
is used to calculate the steering inputs required to follow
the reference path. This guidance law, which was originally
developed for constant-curvature paths, is generalized in
this paper to follow figure-of eight paths. The algorithm
is successfully applied to a small-scale experimental kite
system. The results show that, although path-following is
not perfect, the kite robustly follows arbitrary figure-of-eight
paths, despite relatively long time delays.

The paper is structured as follows: Section II reviews a
simple dynamic model for kites. Section III presents the con-
troller algorithm, while Section IV presents the experimental
validation. Finally, Section V concludes and discusses future
work.

II. MODEL EQUATIONS

To capture the kite behavior we use a simple three state
model originally proposed by [5]. The equations correspond
to a flexible kite, similar to those used in kite surfing, with
a constant-length tether. In addition to neglecting inertial
effects, the model assumes a constant homogeneous wind
field and a constant lift-to-drag (glide) ratio E for the kite.

The model of the kite is comprised of the following
ordinary differential equations:

θ̇ =
w̄

L

(
cosψ − tan θ

E

)
, (1a)

φ̇ = − w̄

L sin θ
sinψ, (1b)

ψ̇ = w̄gu(t− τ) + φ̇ cos θ, (1c)

where the angles θ and φ determine the position of the kite
using the spherical coordinate system explained in Appendix,
and ψ represents its orientation, which can be represented by
a scalar, given that the yaw axis of the kite always remains
parallel to the kite’s position vector [5]. E is the glide ratio,
L is the line length, and g is the steering coefficient. The
system input, u, which is the steering deflection applied to
the kite, is considered in this work to be subject to a time
delay, τ . The airflow parallel to the kite’s roll axis, w̄, is
given by

w̄ = wE cos θ, (2)

based on the assumption that the wind vector is parallel to
ex (Fig. 16) with magnitude w.

An important variable for the control of the kite, which
has been used for the derivation of geometrical control
algorithms [11], [10], is the kite’s velocity angle, denoted
γ. Given that the kite position lies on a sphere, its velocity
υ is on the plane that is tangent to the sphere at the kite’s
position. Thus, we can decompose υ into its components in
the eφ and eθ directions (see Fig. 16). The angle between
υφ and υ is the velocity angle:

γ = tan−1

(
φ̇ sin θ

θ̇

)
= tan−1

(
sinψ

cosψ − tan θ/E

)
. (3)

III. CONTROLLER

We propose the hierarchical control schema shown in
Fig. 1. The controller objective is to follow the desired
path. We denote as a path c̄d(s̄) : T 7→ S ⊂ R3, a
closed, twice-differentiable curve parametrized by arc-length
s̄ ∈ T = [0, ld], with c̄d(0) = c̄d(ld) with ld denoting the
total length of the curve, and S the surface of a unit sphere.

Practically, we are only interested in paths that can be
tracked by our physical system. According to the model (1a)-
(1c), this implies paths with bounded geodesic curvature
κg(s̄), that is |κg(s̄)| < κmax, where κmax depends on the
maximum allowable steering input.

In order to avoid discontinuity problems introduced by the
start s̄ = 0 and the end s̄ = ld, we define a periodic format of
the desired path cd(s) : R 7→ R3 which essentially extends
the path by repeating it infinitely many times:

cd(s) = c̄d

(
s−

⌊
s

ld

⌋
ld

)
, s ∈ R, (4)

with b·c denoting the floor function.

A. Delay Compensation

A compensation mechanism for the input delay τ is
essential, because of its considerable effect on the stability
and performance of the control algorithm. However, delay
compensation requires a well-calibrated system model. For
this reason, an adaptive turn-rate law, based on measurements
is developed.

1) Adaptive Filter: By reordering Eq. (1c), we derive the
corrected turning rate ¯̇

ψk:

¯̇
ψk := ψ̇k − φ̇k cos θk = w̄kguk−Nd

, (5)

where uk−Nd
is the input Nd := bτ/Tsc sampling periods in

the past. In this section, the subscript will denote the discrete-
time sampling index with sampling period Ts.

There are a number of reasons why Eq. (5) is not ac-
curate enough to be used for delay compensation, which
necessitates the future states to be predicted. Firstly, the
relationship between turning rate ¯̇

ψ and the steering input u is
not exactly linear, as steering occurs due to the complex non-
linear asymmetric deformation of the kite [13]. Secondly,
the correct turning coefficient g is usually not known, as it
varies depending on the exact kite configuration and the wind
speed. Thirdly, the inertia of the kite membrane indicate that
the current turning rate is affected by the actuation signal
over a period of time while Eq. (5) considers only the last
(delayed) input command. In addition, reliable measurements
of the oncoming wind speed experienced by the kite, w̄,
requiring an on-board pitot tube, are often not available.
Neither is there (currently) any good method for estimating
w̄ from the wind speed measured at the ground station, w
[5].

Thus, it was necessary to design a delay-compensation
algorithm that does not rely on the inaccurate turning law,
nor require real-time wind measurements, but can nonethe-
less adapt to changing flight conditions. An adaptive finite
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Fig. 1: Controller schema.

impulse-response filter, which also considers the effect of
past inputs, was found capable of accurately modeling the
kite’s turning behavior:

¯̇
ψk = hTk uk, (6)

where hk ∈ Rl is the vector of the weights, and uk =
[uk−Nd

· · ·uk−Nd−l+1]T is the lifted vector of delayed in-
puts. The filter coefficients are adapted in real-time in an
attempt to minimize the mean square error as a function of
the filter coefficients. In particular, given an estimation ĥk
of the filter coefficients hk, we are trying to minimize the
following metric:

E = E
[
ē2k
]

= E

[(
¯̇
ψk − ĥTk uk

)2]
(7)

where E[·] denotes the mathematical expectation and ēk =
¯̇
ψk − ĥTk uk is the error signal.

For the adaptation of weights, we use the LMS (Least-
Mean-Squares) algorithm. LMS is a stochastic gradient al-
gorithm, which recursively computes the filter coefficients,
based on stochastic-gradient-descent, in order to minimize
E . The update equation of LMS [14] is the following:

ĥk+1 = ĥk + µēkuk, (8)

where µ is the step size.
2) Prediction: Integrating Equations (1a)-(1b) and the

adaptive turning law (6), with the weights obtained from
Eq. (8), we obtain the predictions θ̂k+Nd

, φ̂k+Nd
, γ̂k+Nd

Note that Equations (1a)-(1b) require w̄. A fixed, user-
specified estimate of wind (w) is used to approximate w̄ for
this purpose, according to Eq. (2). This introduces a small,
unavoidable error in the prediction of the kite’s position.
However, this does not appear to be a problem for the
control algorithm, which is mostly sensitive to errors in the
prediction of the kite’s orientation. The kite’s orientation
is predicted very accurately, irrespective of the wind speed,
thanks to the adaptive filter.

B. Guidance Strategy

A simple, commonly employed geometric algorithm was
used for guidance, called the Nonlinear Guidance Law
(NLGL) [12]. [15] provide a detailed definition and compar-
ison with other guidance algorithms, and show that NLGL
performs well compared to similar navigation algorithms.
In short, given the desired path cd, NLGL determines the
desired point (commonly referred to as the Virtual Target
Point, VTP) with the help of an auxiliary circle of radius m
located at the current position, a, of the kite (see Fig. 2). For

Fig. 2: The NLGL algorithm. The kite is depicted with the gray triangle.

simple scenarios (if cd is a circle or a line and a is close
enough to cd) the circle intersects cd at two points q1, q2.
Depending on the desired direction of movement along the
path, we choose the appropriate point from among them.

Since the shape of the desired path is, for this problem,
a figure-of-eight path, the number of intersections between
cd and the auxiliary small circle can be zero, one or greater
than one. Thus, a few generalizations are introduced into the
algorithm. The basic idea underlying them is that the current
VTP should be close to the previous one, thus enforcing
consistency and smoothness of the arc-length parameter
corresponding to VTP.

In order to avoid multiple intersections we only consider
a part of the trajectory. In particular, if sk is the arc-length
parameter of cd(s) that corresponds to the virtual target
point at time k, then in order to calculate sk+1, we will
only consider cd(s), s ∈ [sk, sk + δ], where δ is a design
parameter that depends on the kite’s velocity as well as the
desired path.

We determine sk as follows:
1) For the initial choice s0, we choose the point with the

following arc-length parameter

s0 = arg min
s∈[0,ld)

dg (cd(s),p), (9)

where dg (a,b) denotes the length of the shortest path
between points a, b on the sphere (geodesic distance,
refer to Eq. (21)).

2) In the case of no intersections, we choose the point
with the following arc-length parameter:

sk+1 = arg min
s∈[sk,sk+δ]

dg (cd(s),p). (10)

3) If a set Z = {s′1, . . . , s′N} of parameters, that cor-
respond to different intersections, are found, then the
closest one to sk is returned:

sk+1 = min
s′∈Z
|sk − s′|. (11)



Fig. 3: Definition of γdes via the geodesic from the current position of the
kite a to the VTP q. The point O denotes the center of the sphere upon
which the motion of the kite is constrained.

Finally, in order to further avoid inconsistencies due to
measurement noise, a saturation in the evolution of the VTP
is introduced:

sk+1 ∈ [sk + υminTs, sk + υmaxTs], (12)

where υmin, υmax are design parameters that represent the
minimum and maximum velocity of the VTP.

We define the desired velocity angle γdes as the velocity
angle that the kite would have if it was moving on the
shortest route towards the VTP. As depicted on Fig. 3, the
shortest route g (geodesic) from the kite position to VTP
belongs to a plane Q which is perpendicular to the sphere’s
tangent plane P at the kite position a [16]. Therefore the
projection of curve g to P is a straight line. As a result, the
desired velocity angle γdes can be calculated by the vector
from a to the projection qpr of q to P .

Thus, according to Eq. (3), we calculate the desired
velocity angle γdes as:

γdes = atan ((qpr − a) · eφ, (qpr − a) · eθ) . (13)

C. Steering Controller

A proportional controller tries to force the kite’s velocity
angle to match the reference value provided by the Guidance
Strategy. The controller acts on the error:

ek = γdes − γ̂k+Nd
, (14)

applying the following input to the system:

uk =
1

Lg
KPek. (15)

The choice of the proportional controller is justified by the
first-order (approximate) relationship between the input and
the kite’s turning rate (see Eq. (5)). In particular, it is shown
in Appendix that the following equation relates the geodesic
curvature κg and the input:

κg = Lgu = KPek (16)

Thus, under the effect of the controller, the kite turns
proportionally to the error ek. The scaling fraction 1

Lg in
Eq. (15) is introduced to cancel the dependence of κg on L
and g.

Fig. 4: Experimental Setup.

IV. EXPERIMENTAL APPLICATION

A. Physical System

The autonomous operation of flexible kites was tested on
the small scale prototype system of EPFL, which is depicted
in figure 4. The prototype is designed for crosswind flight
with constant tether length. It can be broken into two parts:
the base station and the kite. Three lines are used to connect
the kite with the base station. The highly-tensioned front
line transmits the aerodynamic force acting on the kite to
the ground station, while the left and right lines are used to
steer the kite. The input u is a difference in length between
the right and left line, whose relative lengths are adjusted by
a motor. The only measurements are the angles of the front
line, from which the position of the kite, (θ, φ), is inferred.
The kite’s orientation ψ and its derivative ψ̇ are calculated via
a smooth first order and second order derivation respectively.
A similar experimental platform with feedback estimation of
parameters can be found in [17].

The system is small scale, in the sense that the kite is
smaller and the lines are shorter than those used in current
large-scale systems. According to Eq. (1a)-(1c), the rate at
which the system’s states evolve is inversely proportional
to the line length. This makes delay a significant factor
for the performance of the controller, as our experimental
system’s dynamics are essentially much faster than those of
a large-scale system. Fortunately, the elasticity of the lines,
which is the main cause of delay for large scale systems,
becomes negligible for a small-scale system. However, due
to the rapidity of the small-scale system, communication
delay, actuator delay and delay induced by filters, contribute
significantly to the overall delay. Overall, counteracting the
approximately 200 ms of delay experienced by the small-
scale experimental system with 25 m lines is equivalent, from
a control point of view, to counteracting 2 s of delay for a
system with 250 m lines.

B. System and controller parameters

Table I presents the parameters of the experimental sys-
tem, while Table II presents the various parameters of the
controller. A 2.5m2 Flysurfer Viron was used during the
experiments presented here.

We estimate the delay τ = Nd · Ts, and proportionality
constant ḡ = w̄g from a dataset according to the following



equation:

(ḡ, Nd) = arg min
g′,N ′

d

(
N∑
k=0

∣∣∣ ¯̇ψk − g′uk−N ′
d

∣∣∣) (17)

The reader might guess that, based on Eq. (17), the first Nd

weights of the LMS filter should be zero. However, this is
not necessarily the case. With the SkySails model (Eq. (1a)-
(1c)), we have an approximate, but mathematically precise,
explanation for the effect of the input via Eq. (16), and
thus it is useful for controller design. Nd is an estimate of
the delay, obtained subject to the assumptions governing the
Skysails model. In reality, the delay-like behavior is caused
by dynamics (either the line’s or the kite’s). As a result,
the turning law from the SkySails model is not sufficiently
accurate for the prediction step necessary to compensate
delay. That is why the prediction uses the adaptive filter as a
turn-rate model, which, by taking real-time data into account,
can better model the kite’s current dynamic behavior. Hence
the first Nd values of the LMS filter will not necessarily be
zero.

The glide ratio, E, is chosen based on the specification
of the kite that is used. A user specified approximation of
the wind magnitude w and orientation ξ are provided by the
operator.

The gain KP determines the aggressiveness of the con-
troller. Larger values result in closer following, up to a point
where overshoots start to occur. Although the controller was
designed to be independent of g and L, larger L values
lead to a slower system, thus better performance is achieved,
and more aggressive gains can be used. Similarly, according
to Eq. (16), the resulting trajectory is independent of the
wind magnitude, but an increase in wind speed results in a
faster system. The auxiliary circle radius m determines how
aggressive the choice of the VTP is. Choosing m = 0 will
result in the algorithm steering the kite perpendicularly to
the desired path, which will unavoidably result in overshoot.
On the other hand, large values will result in poor tracking,
multiple intersections, and even unstable behavior. Finally,
since both m and KP determine the aggressiveness of the
algorithm, these two parameters are coupled.

Parameters δ, υmax and υmin depend on the desired path,
and they are tuned in order to solve the problems explained
in subsection III-B. The input is saturated at the value umax,
to avoid large inputs that could cause the kite to stall in light
winds.

Finally, the input u is filtered with a 1st order Butterworth
filter, with cutoff frequency fc, to provide a smooth setpoint
for the steering motor.

C. Evaluation of the prediction

In order to evaluate the prediction we will present the
results of two different adaptive scenarios while the kite per-
forms challenging maneuvers instructed by an operator (non-
autonomous operation). We compare the results obtained
with a simple proportional relationship (lLMS = 1), and with
lLMS = 20, which translates to 20·Ts = 0.6s look-back time.

Parameter Explanation Value Units

L Tether length 25 m
Ts Sampling period 30 ms
τ Identified delay 180 ms
E Glide ratio Kite specific -
w Wind magnitude Variable m/s
ξ Wind angle Variable rad

TABLE I: System Parameters

Parameter Explanation Value Units

KP Proportional gain Variable -

m Auxiliary circle radius Variable m

fc Cut off frequency 3 Hz

δ
Trajectory percentage taken
into account in the calculation
of VTP

1
7
ld -

υmax Max velocity of VTP 1
35
ld m/s

υmin Min velocity of VTP 0 m/s

umax Max allowable input 0.3 m

µ LMS learning rate 0.05 -

lLMS LMS length 20 -

TABLE II: Controller Parameters
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Fig. 5: Error of the LMS filtering for different lookback time, as compared
to the actual turning rate ¯̇

ψ. Results with no lookback time are shown with
gray line, while results for lLMS = 20 are shown with black line. The
results, after settling (iteration > 100), with lookback time are considerably
better with mean(|error|) = 0.77, max |error| = 3.51, as compared to
without lookback mean(|error|) = 1.01, max |error| = 4.17.

The adaptation algorithm for both filters was LMS, with step
size µ = 0.2. The filters are initialized with zero weights at
iteration k = 0. As we can observe from figure 5, the filter
with lLMS = 20 performs considerably better than the simple
proportional filter with lLMS = 1, while at the same time its
output converges faster to the desired ¯̇

ψ.
Despite these promising results, one should be aware of

the limitations of the LMS prediction. The weights of the
filter do not reach an equilibrium but change over time,
which means that one might need to be conservative with
the step size. Moreover, in order to handle more noisy
environments than the one presented here, some adaptations
can be introduced, such as Block LMS [14], which, however,
might make the convergence slower.

D. Effects of the prediction

In order to illustrate the importance of the delay com-
pensation, we present some crucial simulation results. We
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Fig. 6: Simulation result depicting the tracking of the desired velocity angle γref (black line) by the resulting velocity angle γ (gray line). A delay of
τ = 180ms = 6Ts exists with line length L = 25m. Controller with delay compensation (left) and without delay compensation (right).
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Fig. 7: Experiment: KP = 2, m = 0.2, mean velocity = 16.34, kite: HQ
Access 3.5m2. The black line depicts the desired path cd, while the gray
line depicts the trajectory of the kite, with the circle representing its initial
position.

emulate the model inaccuracies of a soft kite, measurement
noise and wind turbulence with a realistic simulator (this is
a scaled-down version of the simulator presented in [18]).

Figure 6 (left) presents the tracking of γref when the delay
compensation module is active. The algorithm manages to
track closely and repeatedly the desired path. The time lag
between γ and γref is consistent with the phase shift in the
theoretical delay-free closed loop system pertaining to the
velocity angle alone. In contrast, in figure 6 (right), where
no prediction is performed, tracking is poor and plagued
with overshoots. This happens for two reasons: Firstly, the
proportional controller has a delayed setpoint γdes, resulting
in poor performance. Secondly, the input is delayed, resulting
in the overshoot typical of a delayed system governed by
a proportional controller. On top of that, given that the
algorithm is not able to closely follow the desired path, the
choice of the VTP is also altered, resulting in a more erratic
γref signal.

E. Experimental Results

For the experimental results in this section, we manually
executed the launching and landing maneuvers. The focus
is on autonomous path-following performance in crosswind
conditions.

Figures 7, 8 and 9 depict trajectories generated with the
algorithm for three different desired paths. The wind speed
during the experiments was approximately 6-8 m/s. We
observe that the algorithm achieves repeatable results that
are close to the desired path. Moreover, the algorithm is able
to perform well under different wind speeds, with different
kites, without being overly sensitive to the parameters. A
video of the experiments can be found online [19].

In order to better understand the results of the algorithm,
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Fig. 8: Experiment: KP = 3, m = 0.15, mean velocity = 11.28, kite:
Flysurfer Viron 2.5m2.

−200
20−20 −10 0 10 20

5

10

15

x (m)y (m)

z
(m

)

Fig. 9: Experiment: KP = 3, m = 0.2, mean velocity = 20.38, kite: HQ
Access 3.5m2.

a more detailed analysis on a part of the experiment shown
in Figure 8 is presented. Figure 10 presents the part under
analysis, along with markers that are used to correlate it with
the next figures. The average velocity of the kite for the
particular experiment was 18.1 m/s.

Figure 11 depicts the relationship between ¯̇
ψ (lowpass

filtered) and ḡuk−Nd
, which is reasonably accurate. Although

for the prediction of ψ, the adaptive filter from subsection III-
A is used, the relationship between the ḡu(k−Nd) and ¯̇

ψ is
still important, as it is used by Equation (16) in the Guidance
Strategy.
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Fig. 10: Experiment: Part of Fig. 8. The black line depicts the desired
path cd, while the gray thin line depicts the trajectory of the kite. Markers
are used to correlate with figures 11-15. Thick gray line parts depict the
evolution of the trajectory shortly after each marker.
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Fig. 11: Comparison between the (filtered) corrected rate of change of the
orientation ¯̇

ψ (black line) and the delayed scaled input ḡuk−Nd
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Fig. 12: Prediction of θ (gray) versus (filtered) future values (black).

In figures 12, 13 and 14, we can observe the future
(lowpass filtered) values, as well as predictions for θ, φ and
γ respectively, which are quite accurate.

Finally, figure 15 presents the arc-length parameter of the
VTP. Discontinuities occur when a loop is being completed
(the length of the desired path is ld ≈ 2.18). The evolution
of the VTP is smooth, while there exist points where the
VTP remains constant. This happens during the turns of the
trajectory and stems from the constraint that the arc-length
parameter of the VTP is an increasing function of time.

V. CONCLUSION

As it can be observed from the experimental results of the
previous section, the proposed algorithm robustly follows a
desired path in realistic wind conditions, with different kites.
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Fig. 13: Prediction of φ (gray) versus (filtered) future values (black).
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Fig. 14: Prediction of γ (gray) versus (filtered) future values (black).
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Fig. 15: Arch length parameter of the VTP.

The algorithm was able to run in different environmental
conditions, without being overly sensitive to the chosen
control parameters.

Moreover, the characteristics of the desired path can be
used to reduce the tuning of the parameters. Given the
linear dependence of κg on u (Eq. (16)), a space varying
gain KP(t) can be introduced, which will impose more
aggressive behavior in the turns, and more moderate behavior
in the straight parts, thus avoiding overshoots and improving
performance. The maximum desired κg can be used to
determine m and δ. Finally, statistical characteristics of the
measurements can be used to determine υmax, υmin. These
ideas are under development and the preliminary results are
promising.

For a full pumping cycle AWE system, a variable tether
length L should be considered [20]. Although most of the
controller remains unaffected, the dynamics used in the
prediction should be adapted accordingly.

Finally, building on a robust and repeatable control al-
gorithm, a higher level optimization layer can be used to
determine the optimal desired path in real time. Research is
ongoing in this direction [21].
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APPENDIX

We define the inertial right handed coordinate system I ,
consisting of the basis vectors ex, ey, ez. Vector ez points
upwards with respect to gravity (azimuth orientation), while
the position p of a particle is defined by the spherical
coordinates φ and θ. Angle θ is defined as the signed angle
between ex and p, while φ is defined as the signed angle
between ez and the projection ppr of p to the yz plane.

Using the compact notation sθ := sin θ, cθ := cos θ the
position p of a particle in space can be defined as:

Ip = r

 cθ
sθsφ
sθcφ

 (18)

The local orthogonal unit vectors er eθ, eφ of I , in the
directions of increasing −r, θ, φ, define the local coordinate



Fig. 16: Coordinate systems I and M .

system M and are defined as:

Ier =

 −cθ−sθsφ
−sθcφ

 , Ieθ =

−sθcθsφ
cθsθ

 , Ieφ =

 0
−sθcφ
−sθsφ

 (19)

For curves lying on a unit sphere the following relationship
holds between curvature κ and geodesic curvature κg [16]:

κ2 = 1 + κ2g (20)

The geodesic curvature represents how much a curve deviates
from a geodesic. A geodesic is a generalization of a straight
line to a surface. In a sphere, geodesics are circles with the
biggest possible radius. The geodesic distance dg between
two points x1,x2 on a sphere of radius L can be calculated
as:

dg(x1,x2) = L arccos
(x1

L
· x2

L

)
. (21)

Calculating κ for curves produced by the dynamics (1a)-
(1c) with θ ∈ (0, π/4), E � tan θ gives:

κ =
|Mṗ× Mp̈|
|Mṗ|3

=

∣∣∣∣∣∣
 θ̇

φ̇sθ
0

×
 θ̈ − φ̇2sθcθφ̈sθ + 2θ̇φ̇cθ
θ̇2 + φ̇2sθ2

∣∣∣∣∣∣ /
∣∣∣∣∣∣
 θ̇

φ̇sθ
0

∣∣∣∣∣∣
3

=

√
1 + (Lgu)

2

(22)

Comparing Eq. (20) and (22) gives |κg| = |Lgu|. The
signed equation can be obtained if we calculate directly κg
[16], which requires significantly more calculations.

In reality E ∈ (3, 6). For a finite glide ratio κg depends
on u, θ, ψ, L, g. Unfortunately, the equations become rather
complex when we take into account the term tan θ/E in the
calculation of the geodesic curvature. Instead, we chose to
calculate numerically the accuracy of equation (16). As we
can observe from equation (23), equation (16) is sufficiently
accurate both for small and large inputs:

max
u,θ,ψ

∣∣∣∣κg − LguLgumax

∣∣∣∣ < 4.5%, u ∈ [0, umax]

max
u,θ,ψ

∣∣∣∣κg − LguLg umax

10

∣∣∣∣ < 15%, u ∈
[
0,
umax

10

]
for θ ∈

(
0,
π

4

]
, ψ ∈ [−π, π) , E = 4, g = 0.5, umax = 0.4.

(23)
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