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ABSTRACT
Datacenter-networking research requires tools to both generate traf-

fic and accuratelymeasure latency and throughput.While hardware-

based tools have long existed commercially, they are primarily used

to validate ASICs and lack flexibility, e.g., to study new protocols.

They are also too expensive for academics. The recent development

of kernel-bypass networking and advanced NIC features such as

hardware timestamping have created new opportunities for accu-

rate latency measurements. This paper compares these two ap-

proaches, and in particular whether commodity servers and NICs,

when properly configured, can measure the latency distributions

as precisely as specialized hardware.

Our work shows that well-designed commodity solutions can

capture subtle differences in the tail latency of stateless UDP traffic.

We use hardware devices as the ground truth, both to measure

latency and to forward traffic. We compare the ground truth with

observations that combine five latency-measuring clients and five

different port forwarding solutions and configurations. State-of-the-

art software such as MoonGen that uses NIC hardware timestamp-

ing provides sufficient visibility into tail latencies to study the effect

of subtle operating system configuration changes. We also observe

that the kernel-bypass-based TRex software, that only relies on the

CPU to timestamp traffic, can also provide solid results when NIC

timestamps are not available for a particular protocol or device.
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1 INTRODUCTION
Network researchers need tools to generate traffic and measure

latency and throughput. The ideal tool would combine low cost,

flexibility, and accuracy: it would be inexpensive to obtain and
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usable with commodity components; enable the generation of ar-

bitrary traffic patterns and the testing of arbitrary protocols; and

provide latency – including tail-latency – measurements at the µs-
scale. An eager client for such a tool today would be the community

researching network function virtualization (NFV), whose goal is

to study the latency and throughput of network functions [12, 15].

The industry has traditionally used hardware-based tools [18, 25],

which provide accuracy, but neither flexibility nor low cost: they

are excellent for validating Application Specific Integrated Circuits

(ASICs) using standardized approaches [5], but they cannot test

arbitrary protocols, and they are too expensive for most researchers.

For the price of a hardware traffic generator that is able to saturate

a link with tens of Gbps, one can buy tens of commodity servers

with multiple NICs.

Researchers, on the other hand, typically use software tools,

which provide low cost and flexibility, but their accuracy is un-

clear, if not downright questionable [4]. We believe we are not

the only ones who have experienced the frustration of using soft-

ware traffic generation and measurement – because that is the only

option – while worrying about noise and repeatability, especially

when the Linux networking stack and socket-based interface are

involved [4]. With datacenter and cloud operators chasing the killer

microsecond [3], researchers increasingly report results in µs-scale
tail latencies [20, 24, 27]; but such results can be trusted only if they

are obtained with a tool that provides accuracy at the same scale.

The emergence of kernel bypass as the means to faster I/O [1, 22]

is creating new opportunities for building better traffic generators

and measurement tools, especially in light of features like hardware

timestamping, now increasingly available in commodity Network

Interface Cards (NICs). For instance, MoonGen – a scriptable, high-

speed packet generator built on top of Intel DPDK (Data Plane

Development Kit) can provide precise latency measurements while

executing user-provided Lua scripts per packet [11]. It relies on

many modern NICs having the hardware-based packet timestamp-

ing tailored to the precise requirements of IEEE 1588 time synchro-

nization. In addition, some NICs such as the Intel 82580 [16] provide

hardware support to timestamp all received packets. Unfortunately,

outgoing packets must still be timestamped in software by the ap-

plication. Recent work shows that precise RTT measurements with

hardware timestamps can be highly beneficial even for datacenter

congestion control [6, 19, 21]. However, the precision of the NIC

hardware timestamps has its limits [11, 19] and, up to our knowl-

edge, has not yet been evaluated against a commercial hardware

appliance.

We ask the following two questions:

(1) How close do state-of-the-art commodity solutions get to bridging
the gap between hardware and software and providing accurate µs-
scale tail latency measurements?
(2) Are the measurements sufficiently accurate to study the latency
distribution of software network functions?
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Tool Characteristics Latency Measurements Measured at
Granularity

Spirent [25] commercial hardware appliance, commonly

used for standardized RFC2544 performance

tests

FPGA-based or proprietary 10ns , 1µs, 5µs

MoonGen [11] Dataplane using DPDK and Lua Determined by the NIC leveraging

IEEE 1588 support (when available)

10ns (hardware),

100ns (software)

TRex [8] DPDK dataplane Determined by the CPU 100ns

netperf [2] socket-based interface Determined by the CPU 100ns

Table 1: Overview of evaluated traffic generators.

We answer the first question based on a simple observation: the

latency of a constant-rate flow going through an ASIC-based switch

is expected to be constant. We first use a proprietary hardware-

based measuring device to confirm that it indeed hardly varies. We

then use this measured latency as the ground truth and determine

up to which percentile different software tools measure it correctly.

We answer the second question by sending constant-rate flows

through a software network function that simply forward pack-

ets. We use different hardware and software tools to observe the

impact of operating system (OS) configurations on the network

function’s tail latency up to the 99.9999th percentile. We quantify

the mismatch between the hardware ground truth and other tools.

We also contribute the following results:

• The use of NIC-based hardware timestamps on commod-

ity platforms provides accurate readings up to the 99.99th

percentile, but not beyond.

• A tuned DPDK solution such as TRex introduces 5µs to 10µs
overhead in readings, yet does allow to study the impact

of operating-system configuration changes in network for-

warding devices.

• POSIX-based solutions that rely on blocking I/O introduce

almost 20µs overhead at 50
th

percentile and have a 50µs
long tail, hence should be avoided when measuring µs-scale
latencies.

• Our study suggests that bidirectional hardware support is

highly beneficial to accurately measure µs-scale latencies.

2 TOOL OVERVIEW
Table 1 lists the traffic generation and measurement tools that we

consider in this paper. Our goal is not a comparison of all the avail-

able tools – we consider only a subset that we deemed sufficient for

understanding where kernel bypass lands between traditional hard-

ware and software tools when it comes to latency measurements.

Spirent [25] represents state-of-the-art hardware-based tools.

It was designed to accurately measure ns-scale latency, but it is

customized for a fixed set of pre-defined, standardized tests such

as the ones specified in RFC 2544 [5]. It is possible to configure

traffic generation to some extent, through GUI or scripts written in

high-level languages, some of which require an extra license that

bears a substantial cost.

MoonGen [11] represents state-of-the-art software tools that

leverage kernel bypass and hardware timestamping at the NIC.

It is built on top of DPDK and LuaJIT, and it is fully scriptable.

Its best reported performance result is 178.5 Mpps with 64-byte

packets running on twelve CPU cores at 2 GHz while executing

user-provided Lua scripts per packet.

TRex [8] is a software tool that leverages kernel bypass as well,

but it relies on software timestamps. We use the stateless version,

whose best reported performance result is that it can generate 10-20

Mpps with 64-byte packets while running on one core.

Finally, netperf [2] represents traditional software tools that

use blocking POSIX API and conventional network drivers. Even

though it was designed to measure performance and not as a full-

fledged traffic generator, netperf can generate constant-rate UDP

traffic of configurable message size, burst size, and inter-message

time. This flexibility is good enough for assessing the benefit of

kernel bypass over traditional I/O for latency measurements.

A few notable tools that we do not consider: Pktgen [26] is

another software tool built on top of DPDK, hence also leveraging

kernel bypass; Caliper [13] and OFLOPS [23] are built on top of the

NetFPGA platform [14] that we do not have access to.

3 EXPERIMENTAL SETUP
We now describe our experimental setup, including the configura-

tion of any hardware and software tools.

3.1 Hardware setup
We use four devices: a Cisco SG500X-48 switch [7] (“HW switch”),

an FPGA-based Spirent SPT-3U chassis [25] (“Spirent”), and two

x86 machines, one acting as a software traffic generator and mea-

surement node (“SW generator”), the other as a network function

(“NF”). The x86 machines are dual socket Intel Xeon CPU E5-2699

v4 @ 2.20GHz with hyperthreading disabled, each with two Intel

x710 10GBE NICs [17].

We experiment with the four configurations depicted in Figure 1

and enumerated accordingly:

(1) Spirent + HW switch: to measure the true latency of the

Cisco switch.

(2) SW generator + HW switch: to measure the accuracy of

latency measurements achievable with software tools.

(3) Spirent + NF: to measure the true latency of our network

function.

(4) SW generator + NF: to determine whether software tools

can accurately measure the latency of our network function.
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Figure 1: Experimental setup.

In all experiments, we use two distinct physical ports from each

device, and each port is both sending and receiving traffic (so, we

have two independent end-to-end flows). In the case of the x86

machines, the two ports are located in different NICs, but attached

to the same CPU socket’s PCIe root complex.

3.2 Software setup
The “NF” machine implements port forwarding. The OS is Fedora

Linux 23 with kernel version 4.4.9. The forwarding software uses

DPDK version 17.02 and consists of two forwarding streams in

opposite directions, running on two cores that each have a ded-

icated RX and TX queue. Unless otherwise stated, we configure

the machine to minimize jitter: we disable all the power-saving

options such C-states and P-states, NUMA balancing, transparent

huge pages, kernel audit, and interrupt moderation, and we run all

the cores at the nominal frequency (but not TurboBoost).

The “SW generator” machine has similar configuration, but runs

one of the following programs:

MoonGen with hardware timestamping: We use the latest

version from GitHub [10]. Hardware timestamping was designed

for IEEE 1588 [9] time synchronization, and it can only timestamp

one outstanding single packet at a time due to resynchronization

requirements, therefore can do only sampling of the latency distri-

bution. It uses a separate hardware queue for the non-timestamped

traffic.

MoonGenwith software timestamping: MoonGen alsoworks

with software timestamps. In this case, there is no sampling lim-

itation – the latency of all packets can be captured. We keep a

100ns-granularity histogram.

Netperf: We use the standard netperf tool, but replaced its

histogram implementation with our own, more fine-grained one

(100ns).We used UDP request-response benchmarkwith histograms

and inter packet time control enabled.

TRex: We use the latest stateless version. We created a con-

trol plane experiment to fit our benchmark requirements. As with

netperf, we replaced its original coarse-grain histogram implemen-

tation (10µs granularity) with our own (100ns granularity).
We further isolate the CPUs on which we run the traffic gener-

ators, and pin the forwarding tasks to these CPUs. We also make

sure the cores, ports, and allocated memory are on the same socket.

In all experiments, the (hardware or software) traffic generator

produces two independent UDP flows of 64-byte packets, each one

at a rate 1Gbps. We calibrate all the tools to the same line rate using

Spirent as a sink. We report the data from 5 independent runs of

each experiment. Each run executes the benchmark for 120 seconds

after a warm-up of 30 seconds.

Measurement granularity depends on the tool. The Spirent chas-

sis has 16 adjustable-size histogram buckets, which we set after cal-

ibration to 10ns in §4.1 and between 1µs and 5µs in §4.2. Hardware

timestamps in MoonGen have the precision of 10ns . The software
solutions (MoonGen-SW, TRex, netperf) keep a 100ns-granularity
histogram of latencies as measured using the processor’s cycle

counter.

4 RESULTS
We now answer our two basic questions: when measuring µs-scale
latency, how far are state-of-the-art software tools from traditional

hardware-based tools (§4.1)? and are software tools accurate enough

for measuring the latency of software network functions (§4.2)?

4.1 Closing the HW/SW gap
To answer the first question, we use configurations (1) and (2)

to measure the latency of the HW switch. The idea is that any

modern ASIC-based switch is expected to offer per-packet latency

of a couple µs with insignificant jitter; we use configuration (1) to

confirm this, and configuration (2) to test whether the software

tools can measure µs-scale latencies.
Figure 2 shows the switch’s latency distribution as reported by

the different tools. The same data is presented in two different ways,

akin to [20]: Figure 2(a) shows the cumulative distribution function

(CDF) of the latency, while Figure 2(b) shows the complementary

cumulative distribution function (CCDF), which provides a more

explicit view of tail latency (shows which fraction of measurements

exceed a given latency value). The CCDF is presented on a log scale

to highlight the effects of tail latency. In case the figure is viewed in

black and white, the labels are ordered by ascending accuracy, i.e.,

the top-most label (netperf) corresponds to the right-most (least

accurate) latency distribution. We report data up to the 99.9999th

percentile (1 − 10−6).

First, we confirm that the HW switch provides stable, if not

exceptionally low, latency, as expected from an ASIC-only data-

path: Spirent reports minimum, mean, and maximum latency of

2.24µs, 2.26µs, and 2.52µs, respectively. The spread across more

than 400 million measurements is, therefore, less than 300ns . The
reported CCDF (left-most one in Figure 2(b)) is near vertical up to

the 99.9999th percentile.

Second, we see that the combination of kernel bypass and hard-

ware timestmaps comes very close to the ground truth provided

by Spirent: MoonGen-HW reports minimum, median, and 99.99th

percentile latency of 2.466 µs, 2.524 µs, and 2.723 µs, respectively.
The reported CCDF (second from the left in Figure 2(b)) is less than

a µs away from the ground truth up to the 99.99th percentile. Be-

yond that, however, the error increases. For instance, the 99.999th

percentile (1 − 10−5) latency is 4.379 µs, a noticeable increase, most

likely due to the imperfect synchronization between the two dif-

ferent NICs of the SW generator (the one where each measured

packet departs and the one where it arrives) [11].
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Figure 2: Latency measurements of a hardware switch using different tools.

Third, we see that kernel-bypass alone is not enough, hardware

timestamps are necessary to get this close to the ground truth:

MoonGen-SW reports latency between 5.225 µs and 7.1 µs for 60%
of the measurements, but significantly higher for the rest. TRex

does better, overlapping with MoonGen-SW for 60% of the mea-

surements, including the median of 6.5 µs, but reporting stable

latency up to the 99th percentile of 7.3 µs, only a 28% increase

from the minimum value. We attribute the discrepancy between

the two tools to MoonGen’s use of Lua JIT within the datapath:

unless hardware timestamps are available, having your software

generator JIT-compiled comes at a high price.

Finally, we see the limits of using the standard POSIX API and

conventional network drivers for latency measurements: Netperf

(the right-most curve in both graphs) is at least 17µs off the ground

truth. We attribute the gap to highly variable latency of interrupt

dispatching and thread wakeups on multicore machines.

4.2 Measuring network functions
To answer the second question, we build on the insights of §4.1 to

measure the latency distribution of our network function (DPDK

port forwarding). We want to experiment with scenarios that in-

troduce non-trivial latency and jitter, but are also realistic and

interesting to the networking community. So, instead of introduc-

ing artificial latency and jitter ourselves, we consider four OS-level

configurations that have latency implications:

(1) local: a baseline “out-of-the-box” OS configuration, where
the network function (CPU and memory) runs on the same

NUMA socket that has the PCIe root complex of the NIC.

The NIC/memory interactions are therefore all local to the

same socket.

(2) remote: also a baseline OS configuration, but the network

function runs on the remote NUMA node relative to the PCIe

root complex of the NIC. All NIC/memory interactions must

therefore go through the QPI interface between sockets.

(3) local+isolset: we augment “local” to further use the isolcpu
and taskset features of the Linux scheduler to explicitly

isolate the network function and ensure that no other appli-

cation is ever scheduled on the same core.

(4) local+isolset+power: we further disable power-saving op-

tions including P-states (and TurboBoost), C-states and PCIe

Active State Power Management.

(5) Cisco SG500X-48: as a reference, we again show the hard-

ware switch that forwards the same traffic between two

physical ports.

Figure 3 shows the latency distribution of the network function,

for each of the four OS configurations, as reported by different tools.

Each subfigure shows the latency CCDF of the network function for

the four OS configurations, as well as the latency CCDF of the HW

switch, which is used as a reference. Each subfigure reports data

captured by a different tool; we omit netperf from this evaluation

due to its limitations shown in Figure 2. The labels are ordered by

ascending accuracy, i.e., the top-most label (remote) corresponds to

the right-most (least accurate) distribution.

First, we establish the ground truth: Figure 3a shows the NF’s

latency CCDF as reported by Spirent (testbed configuration (3) in

Figure 1), which is themost precise of the considered tools (Figure 2).

We see that, while the NF is clearly slower than the HW switch,

they can both deliver relatively low jitter. We also clearly see the

impact of OS configuration on latency: when considering minimum,

or even median latency, it is necessary and sufficient to ensure

that the local socket is consistently used; when considering tail

latency, however, it is essential to further control power settings. For

instance, at the 99.99th percentile, the appropriate power settings

reduce tail latency by a factor of 2.6, which is consistent with prior
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(b) client: MoonGen-HW
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Figure 3: Effect of different OS and application configurations of the software port-forwarding application, as measured by
different client tools. The hardware switch is added for comparison.

observations [20]. The “local+isolset+power” configuration has the

lowest latency and jitter, with a minimum latency of 3.73 µs and
a maximum latency of 10.72 µs, and a smooth CCDF near-vertical

line between the two.

Next, we assess how well the software tools can measure the

same NF latency: Figures 3b-3c-3d (testbed configuration (4) in

Figure 1) show how MoonGen-HW, TRex, and MoonGen-SW, re-

spectively, report gradually noisier latency distributions. Still, both

MoonGen-HW and TRex are accurate enough to capture the impact

of OS configuration on NF tail latency; TRex may be off by several

µs in absolute terms, but it does captures correctly the relative over-

head introduced by each OS configuration. MoonGen-SW (as well

as netperf, not shown), on the other hand, does not.

5 CONCLUSION
We evaluate different software- and hardware-based latency mea-

suring tools. While dedicated hardware devices provide the most

precision, NIC-based timestamping developed for IEEE 1588 can

also provide precise measurements and are much more easily inte-

grated into flexible packet generators such as MoonGen.
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We then study the impact of operating system settings on a sim-

ple DPDK-based port forwarder. One can observe the impact of

these configuration on tail latencies using either dedicated hard-

ware, NIC-based timestamps, or kernel-bypass based software with

CPU timestamps.

Our results clearly show the benefit of measuring latency of

packet requests and responses, and more generally of remote pro-

cedure calls, within the NIC as opposed to CPU.

While many modern NICs support hardware-based timestamp-

ing, the implementation is narrowly tailored to the precise require-

ments of IEEE 1588 time synchronization. A more flexible imple-

mentation, integrating bidirectional timestamping into arbitrary

protocols and packet formats, would be highly beneficial.
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