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Abstract
This thesis studies advanced control techniques for the control of building heating and

cooling systems to provide demand response services to the power network. It is divided in

three parts.

The first one introduces the MATLAB toolbox OpenBuild which aims at facilitating

the design and validation of predictive controllers for building systems. In particular, the

toolbox constructs models of building that are appropriate for use in predictive controllers,

based on standard building description data files. It can also generate input data for these

models that allows to test controllers in a variety of weather and usage scenarios. Finally,

it offers co-simulation capability between MATLAB and EnergyPlus in order to test the

controllers in a trusted simulation environment, making it a useful tool for control engineers

and researchers who want to design and test building controllers in realistic simulation

scenarios.

In the second part, the problem of robust tracking commitment is formulated: it consists

of a multi-stage robust optimization problem for systems subject to uncertainty where the

set where the uncertainty lies is part of the decision variables. This problem formulation is

inspired by the need to characterize how an energy system can modify its electric power

consumption over time in order to procure a service to the power network, for example

Demand Response or Reserve Provision. A method is proposed to solve this problem where

the key idea is to modulate the uncertainty set as the image of a fixed uncertainty set by

a modifier function, which allows to embed the modifier function in the controller and by

doing so convert the problem into a standard robust optimization problem. The applicability

of this framework is demonstrated in simulation on a problem of reserve provision by a

building. We finally detail how to derive infinite horizon guarantees for the robust tracking

commitment problem.

The third part of thesis reports the experimental works that have been conducted on the

Laboratoire d’Automatique Demand Response (LADR) platform, a living lab equipped with

sensors and a controllable heating system. These experiments implement the algorithms

developed in the second part of the thesis to characterize the LADR platform flexibility

and demonstrate the closed-loop control of a building heating system providing secondary

frequency control to the Swiss power network. In the experiments, we highlight the

importance of being able to adjust the power consumption baseline around which the

flexibility is offered in the intraday market and show how flexibility and comfort trade off.
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Résumé
Cette thèse étudie des techniques de commandes avancées pour le contrôle des systèmes

de chauffage et de refroidissement dans les batiments dans le but de fournir des services de

Demande Réponse au réseau électrique. Elle est divisée en trois parties.

La première partie présente la toolbox MATLAB OpenBuild dont l’objectif est de faciliter

le design et la validation de controlleurs prédictifs pour les batiments. En particulier, cette

toolbox construit des modèles des batiments qui sont adaptés à la commande prédictive,

basés sur des fichiers standards de description des données du batiment. Elle génere

également les données d’entrée pour ces modèles pour différentes météo et types d’usage.

Enfin, elle offre la possibilté de co-simuler entre MATLAB et EnergyPlus pour tester les

algorithmes de commandes dans un environnement de simulation de qualité. Cela rend

OpenBuild utile pour les ingénieurs en commande et les chercheurs qui veulent concevoir et

tester des algorithmes de commande dans des conditions réalistes.

Dans la deuxième partie, le problème du ‘robust tracking commitment’ est formulé :

il s’agit d’un problème d’optimization robuste multi-temps pour un système sujet à aléas

oú l’ensemble dans lequel l’aléa réside fait partie des variables de décision. La formulation

de ce problème est inspirée par le besoin de caractériser dans quelle mesure un système

énergétique peut modifier sa consommation énergétique dans le temps pour fournir un

service au réseau électrique, par exemple un service de demande réponse ou de puissance

de réserve. Une méthode est proposée pour résoudre ce problème où l’idée maitresse est

de moduler l’ensemble des aléas comme l’image d’un ensemble fixe par une fonction, ce

qui permet d’inclure cette fonction dans le controlleur et, ce faisant, de transformer le

problème en un problème d’optimisation robuste standard. L’applicabilité de cette approche

est démontrée en simulation sur un exemple de batiment fournissant de la puissance de

réserve au réseau. Enfin, nous montrons comment obtenir des garanties lorsqu’un horizon

infini est considéré dans le problème "robust tracking commitment".

La troisième partie de la thèse rapporte les expériences qui ont été conduites sur le

demonstratuer laboratoire d’automatique Demande Reponse (LADR), un laboratoire equipé

de capteurs et d’un système de chauffage controllable. Ces expériences implémentent les

algorithmes présentés dans la deuxième partie de la thèse pour calculer la flexibilité de la

plateforme LADR et démontrent le contrôle en boucle fermée du chauffage d’un batiment

fournissant de la régulation de fréquence secondaire au réseau électrique suisse. Dans les

expériences, nous mettons en évidence l’importance de pouvoir ajuster la consommation

électrique autour de laquelle la flexibilité est calculée sur le marché intra journalier et nous

iii



montrons comment le niveau de flexibilité et de comfort peuvent être fixés simultanément.

Mots clefs : MPC, commande prédictive, optimisation robuste, contrôle des batiments,

services systèmes, demande réponse, régulation de fréquence, flexibilité dans la consomma-

tion électrique, smart grid
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1 Introduction

Massive changes are challenging today’s electricity grid, both in its physical structure and

its operation. Among the most cited factors driving these changes are:

• The deployment of large amounts of renewable energy resources, which causes more

and more energy to be produced and injected into the power grid on distribution

networks instead of the transmission network.

• The electrification of transport which also is expected to intensify the energy con-

sumption on the lower levels of the electricity grid

The power grid is subject to stringent operating constraints, whereby generation and

consumption need to balance at all times. This balancing is a complex task due to the

relative unavailability and high cost of electricity storage resources. As a result, it is required

to maintain part of the generation capacity as ‘reserve’ to act as a control resource to

fill in for production/consumption mismatches at all times. Due to the increasing share

of non-controllable (or less controllable) production units, mostly in the form of wind and

solar power, the idea of using load side resources as reserves has been attracting a growing

attention. Among other resources, buildings have been identified as potential providers of

such services.

Buildings have long been studied for their potential for energy savings. For example, 37

% of the total final energy consumed in the European Union [109]) is consumed in buildings.

As a consequence, buildings naturally represent a target of choice for the implementation of

energy-efficiency measures. This is widely acknowledged and most countries have equipped

themselves with policies that specifically focus on energy consumption in buildings. For

example, in Switzerland, the Swiss Society of Engineers and Architects (SIA1) develops legal

standards, regulations, and guidelines in architecture and construction, including energy-

related aspects. The federal strategy for energy [31] plans for a periodic reinforcement of

the SIA standards regarding energy-efficiency in buildings.

Improving control has been identified as having an important potential for energy

efficiency in buildings. Industry players typically report energy or cost savings of up to 30%

using modern advanced control systems [131].

1http://www.sia.ch/en/the-sia/
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Chapter 1. Introduction

Accordingly, the control community has also explored the field of building control at

large, proposing new advanced methods for ‘traditional’ building control and developing

control methods for new equipment in buildings [99]. It was recognized early that buildings

are good candidates for the deployment of predictive control methods, due to the relatively

slow nature of the processes controlled and a somewhat less critical emphasis on safety,

compared to other industrial applications. Most contributions featuring MPC for building

control have focused on the supervisory control of various types of heating and cooling

systems, as detailed in Chapter 2. Although the literature has repeatedly proven that

implementation of MPC for buildings can be successful and outperform traditional building

control methods, several hurdles remain for a large-scale deployment of MPC controllers in

buildings. It is generally acknowledged that one of the most critical aspects is to obtain

good quality prediction models for the controller. Models should combine good prediction

capabilities and ease-of-use for control and optimization purposes, which typically translate

into structural constraints on the model, such as linearity.

As buildings have been regarded more and more as potential providers of grid services,

research has started to explore the technical and economic potential of buildings for this

type of services. This manuscript follows this direction and attempts to answer the following

questions:

1. How can the deployment of MPC controllers for building control application be

streamlined?

2. How can one characterize the flexibility in power consumption a building or any

electrical system can offer to the grid?

3. How can this flexibility be demonstrated in practice, and is it possible to ‘optimally’

offer flexibility to the power grid?

We report the research conducted over the course of the Ph.D. in three main parts.

Each part tackles one of the questions above. Due to the relative independence of the

parts, we purposefully keep this introductory chapter short, whereas each part provides a

more extensive introduction of each topic.

Part I:The OpenBuild Toolbox
Modeling remains one of the main hurdles to the design of MPC controllers for building

systems. While a number of high performance simulation tools are available, they are

generally not considered fit for controller design, and even less for optimization based control.

On the other hand, the thermodynamics in a building is well understood and can be modeled

relatively simply, starting from the underlying physical phenomena involved. In collaboration

with Faran A. Qureshi, another Ph.D. student at the Laboratoire d’Automatique, we have

developed the toolbox OpenBuild for building thermal model extraction and building control.

OpenBuild works in combination with the popular simulation environment EnergyPlus [25] to

extract building description data and a quantitative description of the external factors driving

the building thermal behaviour including weather, occupancy, and internal gains. Starting
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from standard building description data, OpenBuild constructs entirely automatically a

linear state space model that takes as inputs the energy inputs in each thermal zone of the

building and as outputs the temperature in the buildings; along with the disturbance data

that drives the system. This model is suitable for direct use in MPC and can conveniently

be combined with custom models for the HVAC system or other auxiliary systems attached

to the building (storage, local generation). We analyze the quality of the model obtained

and its performance for control application and present a simple use case to illustrate the

usefulness of the toolbox.

The contribution of the OpenBuild toolbox can be summarized as follows:

• It provides controller ready models of buildings that are particularly suited for predictive

controllers

• It generates input data for those models for a variety of scenarios, allowing extensive

testing of the controllers designed with the toolbox

• It allows cosimulation with EnergyPlus for model validation and controller testing

This part is based on the publication:

Tomasz T. Gorecki, Faran A. Qureshi, and Colin N. Jones. “OpenBuild : An Integrated

Simulation Environment for Building Control”. In: 2015 IEEE Multi-Conference on Systems

and Control (MSC). 2015

Part II: Robust tracking commitment
Our objective is to investigate the provision of reserve services to the grid with loads.

In this chapter, we introduce the robust tracking commitment problem. We establish that

this problem offers a natural framework to quantify the flexibility of a load in terms of

power consumption. We start from a general finite-horizon tracking problem for a system

subject to disturbances and propose a method to solve the problem when the set in which

the disturbance lies is part of the decision variables. The key to solve the problem is to

model the uncertainty set as the image of a base set by a modifier function, which allows to

recast the problem as a robust program and exploit the results of the robust programming

literature. We show how quantifying the flexibility of a load can be cast as a robust tracking

commitment problem and then introduce the concept of the ‘virtual battery’. Finally, a

discussion on infinite-horizon guarantees closes the chapter.

The main novelties introduced in this part are:

• To formalize the reserve provision problem as a robust tracking commitment problem,

a tracking problem where the set of disturbances is part of the decision variables

• To show how to solve the robust tracking commitment problem and present cases

where a tractable reformulation can be obtained

The content of this chapter is mostly taken from:
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Tomasz T. Gorecki, Altuğ Bitlislioğlu, Giorgos Stathopoulos, and Colin N. Jones.

“Guaranteeing input tracking for constrained systems: theory and application to demand

response”. In: the 2015 American Control Conference (ACC). 2015

Altuğ Bitlislioğlu, Tomasz T. Gorecki, and Colin N. Jones. “Robust Tracking Commit-

ment with Application to Demand Response”. In: IEEE Transactions on Automatic Control

(2016)

Part III: Experiments with Laboratoire d’automatique Demand Response (LADR)
In this part, we challenge the practical relevance of the concepts put forward in Part II

in a series of experiments, where we explore the potential of secondary frequency control

provision with buildings. After reporting about recent works that have looked at ancillary

services provision with loads in experimental setups, we specifically look at the provision of

secondary frequency control in the Swiss ancillary services market with a laboratory scale

experimental testbed. The laboratoire d’automatique demand response testbed (LADR)

is first introduced: it consists of a part of our laboratory equipped with sensors and a

controllable electric heating system. We compute the maximum reserve the system is able

to offer using the robust tracking commitment problem framework introduced in Chapter 5

and perform closed loop experiments of the system providing real-time power consumption

tracking according to the regulations of the Swiss market. In addition, we show how comfort

and reserve capacity can be optimally traded-off and emphasize the importance of the lead

time at which the power consumption scheduled needs to be fixed by showing the difference

between scheduling the baseline consumption on the day-ahead market against the intraday

market.

The main novelties introduced in this part are:

• To demonstrate the applicability of the robust tracking commitment framework on

an experimental testbed,

• To demonstrate closed-loop control of the heating system of a building providing

secondary frequency control following the rules of the Swiss ancillary services market.

Experiments were successful despite large uncertainties affecting the system, validating

the robustness of the approach proposed,

• To discuss the importance of the intraday market and to show how power consumption

flexibility and comfort trade off.

The content of this chapter is partly taken from:

Tomasz T. Gorecki, Luca Fabietti, Faran A. Qureshi, and Colin N. Jones. “Experimental

Demonstration of Buildings Providing Frequency Regulation Services in the Swiss Market”.

In: Energy and Buildings(accepted) (2017)

Additional publications We provide here a short description of the following manuscripts

that have been published or submitted during the Ph.D. and have not been included in the

dissertation:
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• Faran Ahmed Qureshi, Tomasz T. Gorecki, and Colin N. Jones. “Model Predictive

Control for Market-Based Demand Response Participation”. In: 19th World Congress

of the International Federation of Automatic Control. 2014

In this study, we investigate the maximum possible profit for a commercial office

building participating in New York’s Day-Ahead Demand Response (DADR) program.

We formulate an optimal control problem, assuming perfect knowledge of future

weather, occupancy, and day-ahead electricity price predictions to examine the potential

benefit of participation. Then, a practical control strategy based on the framework of

Model Predictive Control is proposed, which enables a building to participate in the

DADR program. The controller decides once every day, whether or not to participate

in the Demand Response event, and then optimizes its electric consumption to

increase savings. A simulation study is carried out using a building model extracted

from an EnergyPlus model, real measured weather data, and real day-ahead spot

market price data for New York. Savings in the range of 23% to 33% are reported.

• Luca Fabietti, Tomasz T. Gorecki, Faran A. Qureshi, Altuğ Bitlislioğlu, Ioannis

Lymperopoulos, and Colin N. Jones. “Experimental Implementation of Frequency

Regulation Services Using Commercial Buildings”. In: IEEE Transactions on Smart

Grid PP.99 (2016), pp. 1–1. ISSN: 1949-3053. DOI: 10.1109/TSG.2016.2597002

This paper illustrates the potential of commercial buildings to act as frequency

reserves providers through an experimental demonstration conducted in the LADR

testbed. It presents the control methodology and compares two methods to solve

the bidding problem, one based on robust programming and another based on a

stochastic programming approach. It is observed how their level of conservatism

differ, both in simulations and experiments. Experiments were conducted at night,

when disturbances are minimal.

• Xuan Truong Nghiem, Altug Bitlislioğlu Altuğ, Tomasz T. Gorecki, Faran Ahmed

Qureshi, and Colin Jones. “OpenBuildNet Framework for Distributed Co-Simulation

of Smart Energy Systems”. In: Proceedings of the 14th International Conference on

Control, Automation, Robotics and Vision. 2016

This paper introduces the open-source framework OpenBuildNet for distributed co-

simulation of large-scale smart energy systems. Using a loose-coupling approach to

co-simulate parallel processes, it can leverage and seamlessly integrate specialized

simulation and computation tools in a common platform. Users can therefore ben-

efit from the capabilities of state-of-the-art and widely used tools in each domain.

OpenBuildNet is scalable and highly flexible as it uses a decentralized architecture,

message-based communication, and peer-to-peer data exchange between subsystem

nodes. It also provides a set of easy-to-use software tools tailored for researchers

and engineers. This paper presents the architecture and tool suite of OpenBuildNet,

and demonstrates its usefulness in a case study of controlling multiple buildings for

demand response. Our contribution to this work, together with Faran A. Qureshi is
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to give a brief overview of the OpenBuild toolbox, which can be used to generate

models used in OpenBuildNet.

• Tomasz T. Gorecki and Colin N. Jones. “Constrained bundle methods with inexact

minimization applied to the energy regulation provision”. In: IFAC World Congress

(accepted). Toulouse, France, July 2017

This paper presents initial results in the implementation of a constrained bundle method

for solving large scale robust optimization problems. In this work, an alternative method

is proposed to solve large scale robust optimization problems. It combines ideas from

the bundle method literature for constrained nonsmooth optimization. Instead of

assuming exact solutions to the minimization subproblems within the bundle method

iterations, we propose to use an approximate solution to the minimization step and in

particular to use the alternating direction method of multipliers (ADMM) to perform

this step efficiently. Beside taking advantage of the celebrated robustness properties

of ADMM, we observe that obtaining low accuracy solutions to the minimization

quickly allows to solve larger problems faster.
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This part of the thesis focuses on the development of the toolbox OpenBuild for modeling

of buildings for control applications. We start by introducing the problem of building control

in the Chapter 2 and we examine the shortcomings of the current practice of optimal control

of buildings. In Chapter 3, we introduce the OpenBuild toolbox and demonstrate how it

helps alleviating some of these shortcomings and give examples of its use. Finally, we review

where the OpenBuild toolbox was used in Chapter 4 before providing a detailed description

of the modeling procedure in Appendix.

The OpenBuild toolbox has been developed as a joint work between Tomasz Gorecki

and Faran Qureshi, within the Green Energy Management of Structure (GEMS) project.

As a consequence, this part of the thesis is co-authored and will appear for the most part

identically in both theses.
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2 Literature review

2.1 Building Control

2.1.1 The main objectives of building control

The objectives of building control and the most important aspects of room automation

are discussed here. Building control aims to fulfill the following objectives, by order of

importance:

• Maintain occupants’ comfort in the building, for example keeping the temperature in

occupied spaces at an appropriate level.

• Maintain the equipment in a safe operating mode, for example avoiding excessive

cycling of compressors in heat pumps.

• Optimize the cost of operation of the building, for example by minimizing the energy

consumption, using storage systems efficiently, and operating the equipment at its

optimal coefficient of performance.

For the temperature management of the building, regulation and stability are not the

primary control issues. The main issue is rather related to the economically efficient use of

the heating, cooling, air-conditioning and ventilation system (HVAC) in order to maintain

optimal comfort conditions.

Comfort in buildings Americans spend 87% of their time indoors [68], and since comfort

conditions directly influence the productivity and well-being of building occupants [72],

comfort is a crucial objective in the design and operation of building spaces and equipment.

Comfort in indoor spaces depends on multiple factors, including temperature, humidity, air

quality and lighting. It is important to note that comfort depends both on the design of the

indoor space, for example the materials used for construction and on the proper operation

and active control of the HVAC system and other elements such as blinds. Thermal

comfort has been studied extensively and multiple models have been devised to measure it

quantitatively, such as the predicted mean vote (PMV) and the predicted percentage of
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Chapter 2. Literature review

Figure 2.1 – Prototypical cooling system. From [2]

dissatisfied (PPD) [35], [103], relating temperature, humidity but also season to comfort.

Some of these are discussed in more detail in Appendix B.

Energy cost Buildings are responsible for 37% of the total energy consumed in the

European Union [109], one third of which concerns commercial buildings and the rest

residential buildings. It is estimated that about 50% of the energy in buildings is consumed

by the HVAC system. That represents a very large share of the total energy consumed

worldwide and a great target for potential savings [154]. Policies have recently focused on

setting new standards for building energy efficiency, such as the recent European Energy

Performance of Buildings Directive [32], reflecting a global concern for improving energy

efficiency of buildings. Accordingly, academic research has also focused more and more on

energy efficiency of buildings, including the control sytems of buildings [74], [129].

2.1.2 A traditional HVAC system and its control

There exists a very large range of HVAC systems, but structural similarities exist, in particular

in their overall organization. Large HVAC systems include a supply loop and a distribution

loop. The heat or cold is generated in the supply loop in a boiler/chiller/heat pump. It

is then transported to heating/cooling coils through a fluid loop (generally water). The

heating/cooling coils transfer the heat/cold to the fluid (air or water) circulating in the

distribution loop. The fluid of the distribution loop is in turn circulated to the zones and the

heat/cold is delivered to the room through air exchangers or a radiant system. Figures 2.1

and 2.2 illustrate standard heating and cooling system architectures.
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Figure 2.2 – Prototypical heating system. From [2]

The control systems also have typical configurations as reported in [2]:

HVAC systems are typically controlled using a two-level control structure. Lower-level

local-loop control of a single set point is provided by an actuator. For example, the supply

air temperature from a cooling coil is controlled by adjusting the opening of a valve that

provides chilled water to the coil. The upper control level, also called supervisory control,

specifies set points and other time-dependent modes of operation.

Control of a variable air volume (VAV) cooling system (Figure 2.1) responds to changes

in building cooling requirements. As the cooling demand increases, the zone temperature

rises as energy gains to the zone air increase. The zone controller responds to higher

temperatures by increasing local flow of cool air by opening a damper. Opening a damper

reduces static pressure in the primary supply duct, which causes the fan controller to create

additional airflow. With greater airflow, the supply air temperature of the cooling coils

increases, which causes the air handler feedback controller to increase the water flow by

opening the cooling coil valves. This increases the chilled-water flow and heat transfer to

the chilled water (i.e., the cooling demand).

The control of a hot-water heating system (Figure 2.2) is similar. As the heating

demand increases, the zone temperature falls as energy gains to the zone air decrease. The

zone controller responds to lower temperatures by opening a control valve and increasing

the flow of hot water through the local reheat coil. Increasing water flow through the reheat

coils reduces the temperature of the water returned to the boiler. With lower return water

temperature, the supply water temperature drops, which causes the feedback controller to
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increase the boiler firing rate to maintain the desired supply water temperature.

In Europe, it is fairly common to have water-based distribution loops with radiant

heaters. Water is circulated to the rooms and heat exchange happens through radiation and

convection between the radiators and the room air rather than direct air exchange. The

control architecture in this type of system is similar to the one used in air-based systems.

Set points and operating modes for HVAC equipment can be adjusted by the supervisory

layer to maximize overall operating efficiency. In modern buildings, the control is performed

in a computerized energy management systems (EMS) that aims at reducing utility costs.

Standard supervisory control uses a collection of rules to determine the best operating

points for the system. This is referred to as rule based control (RBC). The design of the

rules is based on knowledge of the system, experience and tuning. As: (1) the complexity of

the system increases with the addition of extra equipment such as thermal storage, on site

generation and shading control; and (2) the objectives of the control system are becoming

increasingly complex, for example with peak shaving or optimal response to dynamic pricing,

the complexity of rule-based controllers also increases [99]. Tuning may be impractical and

RBC altogether inadequate for these complex objectives.

Numerous researchers focus on optimization-based strategies for energy-optimal control

of buildings. Early works such as [18] have used offline optimization to improve the operation

of the system, in this case the night setback strategy. [2] provides an extensive list of such

optimized strategies that can then be used in the rule-based controller to improve operation.

Recent years have shown a surge of interest in dynamic optimization and in particular model

predictive control(MPC) for energy-optimal control of buildings. The framework of MPC

is particularly suitable for building control due to its capability to handle constraints and

to account for future weather, occupancy, and electricity price predictions in the control

formulation.

2.1.3 MPC for Building Control

Building control has been identified early as a natural field for the application of MPC, due

to various reasons, including its ability to handle constraints and complex objectives easily,

the slow dynamics of buildings and the fact that stability is not the primary concern of

building control. The use of Model Predictive Control has been explored extensively in the

context of building control. Different objectives have been studied in the literature, such as

total cost minimization [101], [84], [38], peak power reduction[105], [83], energy-optimal

use of the building, and different types of demand response objectives [54], [148]. A variety

of systems has been considered, including mixed-mode buildings [64], [133], storage systems

[61], [85], [54], combined heat and power units [63] or passive solar systems [73].

It has been outlined that forecasts also play an important role, and have received special

attention, in particular models for occupancy [108],[27] and the impact of weather on the

building [107].

Specific efforts have been initiated in MPC theory to tackle building control problems,

such as handling of periodic constraints [45] or stochastic MPC [107], [160]
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It has been identified that MPC can help in understanding how to improve existing

rule-based controllers. In [94], simplified operating rules are extracted from the results of

the MPC simulations using data-mining procedures. Various factors influencing the energy

saving potential of a building (utility rates, building mass, internal heat gains, efficiency of

the HVAC system, and outside weather conditions) are studied in [60]. This study concludes

that the factors affecting the energy use of a building do not necessarily influence its energy

saving potential.

Summarizing the findings appearing throughout the literature, a few key advantages of

predictive control for buildings are:

• The ability to utilize more information than classic techniques about the current

and the future environment of the building when making control decisions: MPC

offers a very natural way to feed forward information about weather, occupancy, price

forecasts into the control scheme, and put it to best use thanks to the optimization

problem formulation.

• The possibility to specify complex control objectives and constraints in an intuitive

manner.

Experimental at-scale implementations have also been conducted. Of particular interest

are the works [85], [86] where a hierarchical MPC controller is designed to improve the

operation of the cooling system of the University of California, Merced campus buildings.

The high-level MPC controller manages the energy conversion systems, including chillers, a

cooling tower, pumps and takes the building as a load. A lower-level MPC layer takes care

of the air handling units (AHU) and the variable air volume (VAV) boxes. An improvement

of 19% of the average system COP is reported, resulting in significant savings. It lead to an

improvement of the rule-based controller by ‘imitation’ of the optimal strategy deployed by

the MPC controller. In other works, significant energy savings compared to the traditional

rule-based controllers are reported in [110] and [71] for campus buildings in Europe, operated

with reference tracking MPC controllers.

However, the key limiting factor to the deployment of MPC in buildings is usually the

availability of a prediction model. An interesting contribution in this regard is [136] which

reports that the identification, commissioning and installation costs for an MPC controller

may in many cases outgrow its potential economic benefits. Therefore, efforts to facilitate

the design of MPC controllers for building are still needed.

2.2 Building Simulation Tools

Various tools have been developed for building modeling, simulation and control design.

Their strengths and weaknesses vary depending on the application. The most mature ones

include Modelica, TRANSYS, ESPr, eQuest, and EnergyPlus [88]. Modelica is an equation-

based modeling language that has a free open source building library which covers HVAC

systems, multi-zone heat transfer and heat flow. It also enables real-time data exchange
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with building automations systems. TRANSYS provides a transient simulation environment

and is well suited for the detailed analysis of solar systems, HVAC systems, renewable

generation, and co-generation systems. ESPr is based on a finite volume, conservation

approach and is powerful for simulating scenarios in different operating and environmental

conditions. eQuest is a comprehensive building energy simulation tool and supports complex

geometries, and many HVAC configurations. EnergyPlus is a very detailed complete building

energy simulation software and includes many simulation capabilities.

The main differences between these tools lie in their simulation capabilities, modeling

approach, the way they handle interior and exterior surface convection, solar gain, data

exchange and the additional software they support. See [24] and Table 2.1 in [88] for a

detailed comparison of these tools.

2.2.1 EnergyPlus

EnergyPlus [25] is a detailed building energy simulation software developed by the U.S

Department of Energy (DOE) for the simulation of building, HVAC, lighting, occupancy,

ventilation, and other energy flows in a building. It is typically used by architects, engineers,

and researchers and helps to optimize the building design for energy and water usage.

EnergyPlus is a combination of many modules working together to determine the heating

or cooling energy requirement of a building. It include modules for shading computation, day

lighting, window heat transfer, sky model, air loops simulation, zone equipment simulation,

airflow network, and conduction transfer function. Each module simulates and determines its

energy impact on the building and the HVAC system. The integrated simulation approach

used in EnergyPlus means that all modules are simulated concurrently and a constant

feedback between the modules ensures that a physically realistic solution is obtained.

Some of the key features of EnergyPlus include the integrated, simultaneous solution

of the thermal zone conditions and HVAC system response, heat-balanced based solution

of radiant and convective effects, sub-hourly user definable time steps for interaction

between the thermal zone and the environment, combined heat and mass transfer models,

illuminance and glare calculations, component-based HVAC supporting both standard and

novel configurations, a large number of built-in HVAC and lighting control strategies, import

and export of data with other engines for co-simulation, and generation of detailed output

reports with user defined time-resolutions1.

EnergyPlus takes as inputs building description data and weather data as structured

ASCII text files. The core of the software is script based and does not have any official

GUI or user interface. Third-party software has been developed, e.g., OpenStudio [53] to

interface with EnergyPlus. Generally, EnergyPlus, like most of the other detailed building

simulation software, is not considered an easy-to-use tool and requires experience.

One of the strengths of EnergyPlus is that it allows the simulation of different types

of environments, building types, HVAC types and configurations, and external weather

conditions. It also enables the simulation of renewable, e.g., PV’s and co-generation units.

1https://energyplus.net/
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Another advantage is the free availability of a validated database of standard building

models of different types and locations provided by the Reference Buildings database of

the U.S. DOE [146]. It includes models for offices, warehouse, retail stores, malls, schools,

supermarkets, restaurants, hospitals, hotels, and apartment buildings. This database is

representative of approximately 70% of all the commercial buildings in the U.S. and is a

good resource to carry out simulations with a wide variety of buildings.

EnergyPlus building models are generally of good quality, and are considered to be

a reasonable representation of buildings. Various works have experimentally tested and

validated EnergyPlus models [1], [144], [93], [59]. However, EnergyPlus models, because of

their complexity, are not suitable as prediction models in optimization based control design.

Therefore, there is a need to develop a systematic modeling procedure to obtain simple, yet

representative models which can be used for control design.

2.2.2 MLE+

MATLAB is one of the most popular development and prototyping environment for control

design. It offers a flexibility much superior to specialized software such as EnergyPlus.

MLE+ has been designed as a bridge that interfaces Matlab and EnergyPlus. As we will

use MLE+ as the basis for the co-simulation interface of Openbuild, we give here a brief

presentation of its scope.

MLE+ [11] is a MATLAB / SIMULINK toolbox for co-simulation with EnergyPlus. The

toolbox provides an interface between EnergyPlus and MATLAB. It relies on BCVTB [156]

to handle the communication of data between the two pieces of software. It is useful to

carry out co-simulations where the building energy simulation is performed in EnergyPlus

and the controller design and implementation is done in MATLAB. It also helps collecting

data from EnergyPlus simulations for system identification or analysis purposes.

Using MLE+ requires the knowledge of EnergyPlus and involves manual processing for

setting up the co-simulation which can be cumbersome when a large number of simulations

is required.

2.3 Building Modeling

Building thermodynamic modeling can broadly be divided into three main categories - first

principles physics-based (white-box), data-driven (black-box), and a combination of physics-

based and data-driven (gray-box) modeling approaches [74], [3]. All these approaches have

been studied in the literature and have their associated benefits and drawbacks.

First principles physics-based modeling methods [74], [3] involve constructing a detailed

model of the building thermodynamics based on the principles of heat transfer through

conduction, convection, and radiation. A Resistance-Capacitance (RC) network of nodes is

constructed where each node represents the temperature in a specific zone, wall, surface,

ceiling, or floor. The interconnection of nodes is defined by the physical geometry of

the building. The model parameters (conduction, and convection coefficients, etc.,) are
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usually obtained from the knowledge of the construction material and architectural details.

Constructing these types of models is time consuming (especially for large buildings) and

requires expert knowledge of the building thermodynamics. The dimension of the model

can be quite large depending on the size of the building, whereas the quality of the model is

generally good.

Data driven modeling [125] approaches use experimental input-output data to learn a

dynamical model of the building thermodynamics. The advantage of this method is that it

does not require any knowledge of building construction or geometry, but the internal states

of the models obtained by this method lack any physical interpretation. The procedure can

be applied to either the whole building or to a subsection of the building. Usually, a large

data set is required to obtain models of reasonable accuracy which is difficult to obtain

for an occupied building. Moreover, the identification data is also required to have a rich

frequency content, which is difficult to obtain in a real building. Some authors have proposed

to use the data from the energy simulation software, e.g., EnergyPlus. OpenStudio was

used in [23] to perturb the EnergyPlus model and generate the experimental data which is

then used to fit a reduced-order linear model. The results demonstrated a model which

was accurate enough for control and was used in simulation to design an MPC controller.

Generally, there is no systematic method to select the structure and order of the model and

it might take several trial-and-error rounds to obtain a reasonable model.

Grey-box modeling or hybrid modeling [58] approaches first choose a model structure

based on the physical knowledge of the building and use parameter estimation techniques

to identify the model parameters. Using a physical model structure reduces the requirement

of a large training data set, and can provide a better quality model compared to black-box

methods. [19] proposes a transfer function based model with parameters constrained to

satisfy a physical representation for energy flows in the building. The model parameters were

identified using simulation data from TRANSYS and field data from a test site, resulting

in a satisfactory model quality. [10] presented a Monte-Carlo simulations based method

to estimate the model parameters. [111] used subspace identification with data generated

from EnergyPlus and divided the building into smaller parts to make sure that the estimation

algorithm could be applied with the available computational power, and combined the

identified parts together to obtain the complete model. The resulting model was validated

successfully. [88] proposed using a parameter adaptive building model with time-varying

parameters in a RC model to capture the time varying impact of the internal and external

disturbances on zone temperatures. The parameters were then estimated online using an

extended Kalman filter.

Experimental results have also been reported in the literature. [165] identified a low-

complexity data-based model and an RC model of an entire floor of Sutardja Dai Hall, an

office building on the University of California, Berkeley campus. Experiments were conducted

and semi-parametric regression was used for data based modeling. The comparison results

showed that the RC model was more accurate, but both models performed well for closed-loop

control. [137] obtained two models of a single zone test office using system identification

and physical modeling approaches and both the models showed a reasonable performance in
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predicting the room temperatures with the RC model being slightly more accurate at high

frequencies. [147] used grey-box system identification methods to obtain a thermodynamic

model for a building in Belgium for MPC operation.

All these methods are time consuming and often are difficult to generalize. At minima,

the parameter estimation part of the modelling procedure needs needs to be repeated for

every new building. Therefore, a systematic modeling approach is required which can be

used with minimal effort to construct a good quality control oriented model.

Remark 2.1. Concurrently and independently to the development of OpenBuild, a similar

effort was undertaken in the development of the BRCM toolbox [139]. This toolbox also

helps to create discrete-time state-space (bi-)linear models for buildings using a physical

modeling approach. The Toolbox is based on [138] and constructs a RC model of the

building zones while the model parameters are provided by the user or can partly be obtained

from EnergyPlus. The model validation with EnergyPlus shows a reasonable performance

for the considered case. However, it does not provide input data compatible with the model

for weather and usage description, and does not offer co-simulation capabilities. �

2.4 MPC for Building Control

This section provides an overview of the ingredients used in MPC for buildings. It serves as

reference for the rest of the thesis.

2.4.1 Optimization Problem

We start from a standard MPC problem formulation:

minimize
x,u

J(u) (2.1)

subject to xt+1 = f (xt , ut , dt) (2.2)

ut ∈ U (2.3)

yt = g(xt) (2.4)

yt ∈ Y (2.5)

t = 0, . . . , N − 1

where u = (u0, u1, . . . , uN−1), x and y are the control, state and output sequence over

the control horizon, respectively. The choice of the cost function (2.1) is discussed in

section 2.4.4. Equations (2.2) and (2.4) embed the dynamics of the system and the

effect of the disturbance and are discussed in section 2.4.2. Equation (2.3) gathers the

input constraints and (2.5) represents the zone temperature constraints as discussed in

section 2.4.3.
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2.4.2 Model of the system

As we already mentioned, an MPC controller requires a model of the system. We usually

consider discrete-time state-space models of the form:

x+ = f (x, u, d)

y = g(x)
(2.6)

where x denotes the state of the system, u the controlled input to the system, d the vector

of disturbances affecting the system and y represents the output of the system. In the

case of buildings the output is usually the temperature in different zones of the buildings.

The inputs are the control variables of the HVAC system: depending on the type of HVAC,

these inputs can be flow rates, supply temperatures, temperature setpoints, blind positions,

or thermal power inputs, for example.

Buildings are affected by large disturbances coming from weather and internal gains,

and it is crucial to model the effect of these disturbance in our model to have a good

prediction quality. d typically regroups the effect of the outside temperature, sun irradiance,

occupancy, and internal gains from equipment, lighting, etc.

We will see in Chapter 3 that the model in our approach is decoupled in two parts: the

model for the thermodynamics of the building, which takes as inputs thermal power inputs

to the zones and as outputs the temperatures inside the building, and the model of the

HVAC system which is system dependent and takes as inputs the actual controlled inputs

and outputs the resulting thermal flows to the rooms.

2.4.3 Constraints

One of the most advertised advantages of MPC is its natural ability to handle constraints

on inputs and states of the problem. In the case of buildings, the constraint will typically

include constraints on the inputs captured in (2.3) which model the operational limitations

of the system, for example limits on power inputs, flow-rates, supply temperature, . . . In

addition, it is frequent to impose comfort constraints, captured in (2.5). We usually define

a comfort range for the zone temperatures as [Tref − β, Tref + β] where Tref is the optimal

temperature and β a parameter defining the size of the comfort range.

Notice that for commercial buildings, it is customary to relax the temperature during

unoccupied hours in order to reduce the total energy consumption, a strategy referred to

as night-time setbacks. In that case, the comfort range is extended during the night so

that the constraint reads yt ∈ [Tref − βt , Tref + βt ] with βt a time-varying quantity.

2.4.4 Objective Function

Another advantage of MPC is the possibility to specify various types of objectives. Temper-

ature tracking is rarely the objective of the control for buildings and quadratic costs are

not common. Instead, economic performance is commonly specified as the objective of

the problem. Assuming a relationship is known between the control inputs applied to the

18



2.4. MPC for Building Control

Table 2.1 – Cost functions in MPC problem

Minimum energy J(u) =
∑N
t=0 et

Minimum cost J(u) =
∑N
t=0 ctet

Peak charge J(u) = cpeakmaxt∈[T0,Tf ] pt

system and the amount of energy used (electricity or other), so that et = h(ut , xt , dt) with

et the energy consumption at time step t, a minimum energy objective reads:

J(u) =

N∑
t=0

et

A minimum cost of energy objective is formulated as:

J(u) =

N∑
t=0

ctet

with ct the time-varying cost of energy. Buildings are often subject to differentiated tariffs

so that ct changes according to a schedule, with alternating periods of peak demand with

high cost of energy and periods of low demand with lower cost of energy. In other cases,

the price is dynamic, and changes continuously. In this case, the cost of energy might need

to be forecast [4].

A typical objective is also to reduce peak demand over predefined periods of time, as

specified by a lot of utility tariff plans. The cost can then include a term of the form:

J(u) = cpeak max
t∈[T0,Tf ]

pt

with cpeak the cost of peak electricity consumption and p the power demand.

Table 2.1 recaps these classical costs.

Demand Response objectives can be formulated. Event-driven Demand Response

sometimes requires pre-specified power decrease upon request. For example, [114] studies

such a problem and uses the following cost function:

J =

NOC−1∑
t=0

V et − δtV drt

with V et = c
t
t et the cost of electricity consumption, V drt = c

d
t (Bd,h − pd,h), the payment

from DR participation, where Bd,h is the baseline consumption at time step t (day d , hour

h) and cdt the payment for power reduction. The baseline consumption for an hour h is the

average energy consumption during hour h over a set of previous days Sd,h, and is given by:

Bd,h = βd,h
1

|Sd,h|
∑
j∈Sd,h

pd−j,h,
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where Sd,h is the set of days used to compute the baseline, βd,h is a weather correction

factor. δk is the binary variable indicating the status of DR participation at time step k .

An objective mixing different costs can be chosen and it is possible to penalize deviations

from optimal comfort using one of the metrics introduced in Appendix B. Even when not

directly using comfort metrics in the cost, a soft-constrained formulation is often used. In

that case, extra decision variables st referred to as slacks are introduced and the temperature

constraints are transformed into y ∈ [Tref − βt − st , Tref + βt + st ] while the slacks are

penalized in the cost so that:

J(u) = . . .+ ρ(s)

with ρ a loss function.

2.5 Summary

Looking back at the MPC problem formulation (2.1)-(2.4), we see that when considering a

particular building for control, the challenge is to gather and compile all the information

necessary to build up the elements of the MPC problem, namely, the system model, the

disturbance inputs to the model and the constraints description. In particular, we have

outlined in the literature review a lack of systematic approaches to construct building models

that are appropriate for control and optimization.

We introduce the OpenBuild toolbox in the next chapter: one of the main functionality

of the toolbox is to construct automatically the model of the building together with the

disturbance inputs corresponding to the simulated usage and weather.
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3.1 Contribution

The primary objective of the OpenBuild toolbox is to facilitate the implementation, testing

and validation of MPC controllers for buildings. It features the following novel elements:

• The OpenBuild toolbox enables the extraction of building models that are suitable for

control and optimization purposes, based on available and standard building description

data.

• The disturbance data affecting the building including weather, internal gains and

occupants, is also extracted with the toolbox.

• Through Openbuild, users can access a large amount of data about existing buildings

and realistic input data to simulate various occupancy, weather and usage scenarios.

This is possible because OpenBuild works in combination with the popular simulation

environment EnergyPlus.

• It facilitates the design of controllers and observers, in particular predictive control

algorithms, and their validation through cosimulation with EnergyPlus, by integrating

the cosimulation interface MLE+. The user only requires input data files in EnergyPlus

input format to create building models, without knowledge of modeling or EnergyPlus,

and can co-simulate controllers from MATLAB. Therefore, the toolbox is particularly

suited for control engineers and researchers that want to prototype building controllers.

3.2 Structure of the Chapter

The rest of this chapter is organized as follows: Section 3.3 gives a very brief overview of

the modeling principles used to derive the building thermodynamic models. Section 3.4

gives an overview of the components of the toolbox. Section 3.5 discusses the quality of

the model extracted through OpenBuild. Section 3.6 gives a simple example that illustrates

what a user needs to do to use the OpenBuild toolbox.
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3.3 Thermodynamics model explanation

The goal of the modeling procedure is to obtain a model which is simple enough to be

suitable for control (especially MPC), yet satisfactorily captures the dynamics of the building.

A physical modeling approach is adopted. The following physical phenomena are modeled:

• Heat transfer through conduction

• Heat transfer through convection

• Long-wave radiation on all internal and external surfaces

• Internal gains (lighting, occupancy, equipment) on all internal surfaces

• Solar radiation on internal and external surfaces

We give in this section a brief overview of the modeling procedure, and refer the reader

to Appendix A for a detailed description.

3.3.1 Modeling Fundamentals

The well-established RC modeling framework [138, 79] is used to model the thermodynamics

of the building. It consists of representing the building as a set of thermal nodes in a graph

where each node’s temperature is assumed to be representative of the temperature of a

physical portion of the building and the temperature dynamics of each node is described by

a linear differential equation. A parallel with electrical circuits illustrates best the concepts:

temperatures of the zone air and of the building elements are represented by the voltages

at each node of the RC network. The heat fluxes between the nodes are equivalent to the

currents between the nodes of the RC network. Coefficients of heat conduction between

the nodes and convection between the zone air and the building surfaces are modeled by

resistances in the RC network. The thermal capacity of the zone air and of the layers in

the building surfaces are modeled by the capacitors. Long wave radiation from outside and

between surfaces are also linearized and represented by resistances.

3.3.2 Model Parameters

The computation of the parameters in the RC model is carried out using both the input data

file and the post processed EnergyPlus data (surface view factors, convection coefficients,

etc.). The thermal capacities and the conduction coefficients in the RC model depend

on the physical properties of the materials used in the building construction, as described

in the building data file. The convection coefficients in the RC model depend on the

material properties, but also on other external factors including weather conditions. In

EnergyPlus, the computation of convection coefficients can be carried out using different

algorithms (see [29], pp.64-74, 78-94), and yields time-varying convection coefficients. A

constant time averaged coefficient is considered in the model extraction and is collected

from the post-processed EnergyPlus data. The long-wave radiation from the external
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Figure 3.1 – Model Structure (green nodes: zone air, blue node: outside surfaces, black

nodes: inside surfaces)

sources and between the internal surfaces of the building is characterized by a nonlinear

function (see [29], pp. 76-77). This function is linearized, viewing factors are obtained

from the post-processed EnergyPlus data and the physical properties of the construction

material are obtained from the building data file. The solar radiation and the internal gains

acting on the building surfaces are obtained from the post-processed EnergyPlus data and

are applied to the corresponding nodes of the RC network. Lastly, EnergyPlus computes

equivalent U-values capturing the overall heat transfer through windows, which are used by

OpenBuild for window modeling. All model parameters are retreived from EnergyPlus input

files or computations. In the absence of building description data, these parameters would

need to be identified, which is beyond the scope of the Openbuild toolbox.

3.3.3 Model Structure

Figure 3.1 illustrates the construction of the RC structure created for a three zone building.

Note that the actual node network created is more complex but is simplified here for

illustration purposes. The following energy flux balance equation is applied at each node of

the RC model:

Cn
dTn

dt
= Qc +Qg +Qr +QHVAC, (3.1)
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where Cn is the thermal capacity and Tn is the temperature of node n, respectively. The

temperature Tn of each node represents the average of the temperature over a physical

portion of the building. Qc combines the heat fluxes acting on the node due to conduction

and convection, Qg is the flux from solar and internal gains, Qr is the flux due to longwave

radiation exchange, and QHVAC is the flux from HVAC acting on the node. Note that Qc

and Qr depend on the temperature at other nodes of the network while Qg represents

thermal fluxes from the outside of the system. This equation for all nodes forms a set of

linear differential equations. The windows are a special case in the model, since they are

assumed to have no thermal capacity: they are modeled by a set of algebraic equations (see

[29], pp. 225-231). For simplicity, we use a linearized version of these equations to obtain

explicit expressions of the window surface temperatures and substitute it in the differential

equations of the rest of the temperature nodes.

This procedure provides a continuous time linear state-space model of the building:

ẋ = Ax + Buu + Bdd

y = Cx

which is discretized at a desired time step to obtain a model of the form:

xk+1 = Axk + Buuk + Bddk

yk = Cxk
(3.2)

where xk ∈ Rn is the state vector (containing the temperatures of all the zones, surfaces,

and internal nodes), uk ∈ Rnu is the control input (QHVAC), and dk ∈ Rnd is the weather

(e.g., outside temperature and solar gains) and internal gains disturbance vector. The

predicting quality of the model resulting from the modeling approximations is discussed in

Section 3.5.

Remark 3.1. The complete modeling procedure described in this section, including creating

an RC network graph, computing of the model parameters, solving of algebraic equations

and obtaining the linear model (3.2) is carried out automatically, taking as input only the

building data description file and the weather description file. �

3.4 Code structure and simulation workflow

The main objective of OpenBuild is to enable the design and testing of advanced controllers,

especially MPC controllers, in realistic simulation scenarios. It builds on the co-simulation

interface MLE+ to provide control experts most of the tools and data required for controller

design for buildings, as pictured in Figure 3.2. The OpenBuild toolbox helps to collect and

construct these components, and streamlines their use in an integrated workflow.

Co-simulation is considered a valuable option for control design [155]. EnergyPlus is a

widely used high-fidelity simulation environment, but it is not suited for complex controller

design. Recent contributions [11] have enabled co-simulations between EnergyPlus and
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Figure 3.2 – Dataflow in OpenBuild co-simulations

MATLAB, where the controller is designed and simulated in MATLAB. However, co-

simulations require a number of other elements including building description data, description

of weather, occupancy and usage of the building. MPC design requires models of the

building and HVAC system suitable for optimization. Simulations also require the conversion

of weather and occupancy data to the actual inputs of the models used for control. This

section details each of these components as they are included in OpenBuild. Figure 3.2

summarizes the different modules of OpenBuild with letter labels referring to the following

subsections.

3.4.1 Building and weather data (A)

EnergyPlus allows the direct use of existing description data for buildings, such as the DOE

reference buildings dataset [146]. In addition, tools are available to help users to easily

create new models for EnergyPlus [53]. Lastly, conversion from other building description

formats is often possible. EnergyPlus input data files include schedules of occupancy,

equipment, lights, etc. that OpenBuild can directly interpret.

EnergyPlus takes standard weather data files as input. Typical weather data for numerous

locations is readily available. Moreover, using EnergyPlus utility programs, additional weather

files can be created based on measured or forecast weather data, also reconstructing missing

or corrupted data. This is useful to construct predictions of the weather disturbances for an

MPC controller. For example, a database of weather forecasts has also been collected: it

can be used to test controllers with realistic historical forecasts, which are not easily found.

3.4.2 Thermodynamics simulator (B)

EnergyPlus can be used as the simulator for the thermodynamics of the building. It is

possible to control some variables in EnergyPlus through an external interface, and [11]

provides ways to run co-simulations from MATLAB. However, two main difficulties arise:

first the external interface lacks flexibility and requires knowledge of EnergyPlus and in

some cases manual modifications of the files. Second, only specific variables are available
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for external control, mostly setpoints for thermostats. For most systems in EnergyPlus,

no direct control of the low-level actuators and variables is possible (valve and damper

positions, massflows, etc.). This presents from testing low-level controllers for the HVAC

system. However, setpoint control is in many cases more realistic than low-level control

of components, since they are usually equipped with local controllers and the supervisory

controller of the building only manipulates temperature and flowrate setpoints.

Therefore, to enable flexible HVAC simulation, OpenBuild typically uses EnergyPlus

only for the thermodynamics of the building. From MATLAB’s point of view, the inputs

to the zones are heat fluxes to the rooms or surfaces of the building. This allows the

decoupling of the simulation of the building and the HVAC. This is a reasonable setup since

the thermodynamics of the building is mostly independent from the HVAC type.

Remark 3.2. The models generated by OpenBuild can also be used to simulate the building

in MATLAB without co-simulation. �

3.4.3 HVAC simulator (C)

Modeling the HVAC is a complex task, which is very difficult to perform automatically. The

complexity of the HVAC descriptions in EnergyPlus are high, at a level of detail which is not

required for controller design. Most works from the literature report targeted case-by-case

modeling efforts for the HVAC, which is very time-consuming. The models used in an MPC

controller need to be simple enough for optimization purposes, which disqualifies EnergyPlus.

This motivates the modeling of HVAC systems directly in MATLAB. The models should

map the actual input (such as electric power input, valve and damper positions or fluid flows)

to the heat fluxes into the different rooms and surfaces. A framework is proposed to specify

new HVAC system models easily. Some simple HVAC models have been developed and

include simple forced-air systems, thermally activated building systems, electric boilers, heat

pumps, and blind controls. In addition to simulating the HVAC, the HVAC simulator also

computes appropriate inputs to the external interface of EnergyPlus. Additional modules

such as batteries or storage tanks can easily be added and simulated together with the

building. Notice that HVAC components can still be simulated in EnergyPlus in co-simulation

but that requires manual processing of the files and good knowledge of EnergyPlus inner

workings.

3.4.4 Controller (D)

Good controllers are imperative for the efficient operation of a building. OpenBuild focuses

on MPC controllers. The controllers use a model of the dynamics of the system and solve a

constrained optimization problem to compute an optimal input sequence. The performance

of MPC controller relies greatly on the quality of the model. OpenBuild can directly extract

models for the thermodynamics of the building (cf Section 3.4.7) to facilitate the MPC

setup. Section 2.4 details a typical MPC formulation for buildings.
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3.4.5 Observer (E)

Full state information of the linear model is required for control with MPC, however it is

not available from EnergyPlus (or in a real building). Observers are required to estimate the

state of the building, HVAC system, and auxiliary systems attached to it. Observer design

can be challenging because of model mismatch and disturbance issues. By combining an

offset-free formulation [90] and Kalman filtering, good performance was generally achieved

in our simulations. The Kalman filter is also designed using the model of the building.

Examples of filters and controllers are available in the toolbox examples but tuning of the

observers has been observed to have a significant impact on the quality of the estimation,

therefore requiring a minimum effort from the user.

3.4.6 Data Processor (F)

Implementation of MPC controllers requires the prediction of the weather, including solar

gains, occupancy, and other internal gains. Occupancy and equipment use are usually

specified in the form of schedules directly in the EnergyPlus file. Weather data comes in

separate files which list temperatures, humidity ratios, weather conditions, solar irradiance,

etc. This data needs to be interpreted to evaluate the impact of the weather on the building,

e.g. through geometric computations to calculate the effect of the sun on each surface.

EnergyPlus performs these computations, which we can directly exploit in OpenBuild.

OpenBuild uses EnergyPlus as a pre-processing engine for the model. From only the building

and weather description, it automatically runs the appropriate components of EnergyPlus

to extract the corresponding weather and internal gain data compatible with the models.

This is a key feature of OpenBuild which facilitates simulation greatly by requiring minimum

user input.

3.4.7 Modeler (G)

When running simulations, EnergyPlus uses standard input files, describing the geometry

and construction of the building, the heating system and simulation parameters. Based

on the information in these files, it computes other quantities for the simulation, such as

equivalent U-values of windows, viewing factors of internal surfaces, etc. This processed

data is given out as an output of the simulations with EnergyPlus. OpenBuild automatically

generates a linear state-space model of the building thermodynamics based on the input

data files and the processed data from EnergyPlus. This automatic model generator is the

backbone of the OpenBuild toolbox.
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Figure 3.3 – Small Office

Table 3.1 – Characteristics of the Buildings

Small Office Warehouse

Floor Area (m2) 511 4835

No. of floors 1 1

No. of zones 5 3

Window-to-wall ratio 21.2% 0.58%

Peak Occupancy (people/100m2) 5.38 0.1

Exterior walls type mass metal

Roof type attic metal

Foundation Type mass floor mass floor

3.5 Validation of the building models

3.5.1 Data used for validation

One of the advantages of using EnergyPlus as the basis of our thermodynamic model

extraction is the availability of a number of typical building models of different types from

the Reference Building Database [146] of the U.S. DOE. The building models are in standard

EnergyPlus input data format and come with typical schedules for occupancy, and internal

gains (lighting, electrical equipment, etc.). The buildings comply with ASHRAE standards

for energy efficiency.

We selected two building models - Small Office and Warehouse from this database

for validating the quality of the models extracted using OpenBuild. The pictures of the

two models are shown in Figure 3.3 and 3.4, and their characteristics are summarized in

Table 3.1. These models together with their typical occupancy, internal gain patterns,

and typical measurement year (TMY) weather data of Chicago are used for the validation

experiments. Chicago has a large variation of temperatures over the year, allowing validating

the models in both summer and winter conditions.
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Figure 3.4 – Warehouse

3.5.2 Time-domain comparison

MPC based control schemes rely on the open-loop prediction models to generate the control

inputs. We compare the time-domain prediction quality of the linear models with the original

EnergyPlus models to evaluate the model quality. Two comparisons (open loop output

comparison and and open loop input comparison) are performed.

Open loop Output comparison
The zone temperatures (output) of the two models are compared when excited with the

same inputs. The EnergyPlus models are simulated using their default controllers with a

sampling time of 15 minutes. The zone temperatures track specified setpoints according

to the default schedules of the buildings. The thermal power input applied by the default

controller in each zone of the building, and the associated disturbance input (occupancy,

weather, etc.) are applied to the corresponding linear model in open loop. The zone

temperature trajectories from both simulations are compared. The zone temperatures

from the two simulations, for two of the zones of the small office model are shown in

Figure 3.5 for a period of one week. The monthly RMSE for each building model is shown

in Figure 3.6. The yearly maximum error, mean error, and RMSE for each building are

reported in Table 3.2. The results show that the small office and the warehouse have a

yearly RMSE of 1oC, and 0.6oC, respectively. It can be seen in Figure 3.6 that the RMSE

is slightly higher in summer months for the office building due to the increased impact of

the solar radiations. This effect is not seen in the warehouse model because it almost does

not have windows. We emphasize that in this simulation the output temperature of the

EnergyPlus model is the result of closed-loop control: it therefore appears very constant in

simulation compared to the output of the linear model which is essentially an open loop

profile. This is observed in Figure 3.5.

Open loop Input comparison
In this comparison, we aim to compare the thermal load of the model required to maintain

the same output temperature. This more directly measures the predicting ability of the
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Small Office Warehouse

RMSE (oC) 1.02 0.638

Max. Error (oC) 4.75 5.528

Mean Error (oC) 0.569 -0.132

Table 3.2 – Statistics of the open-loop output (zone temperatures) comparison

Small Office Warehouse

RMSE (kW ) 1.30 13.93

Normalized RMSE 0.0588 0.0273

Max. Error (kW ) 9.04 45.68

Mean Error (kW ) 0.675 6.477

Table 3.3 – Statistics of the open-loop input (total thermal power) comparison

model in terms of thermal power consumption. The EnergyPlus model is simulated with

its default controller to track a reference temperature of Tref = 23
oC. Next, an open-loop

optimization problem is solved for each month with the linear model (3.2) to compute the

trajectory of control input to achieve the same Tref as output. The total thermal power

input trajectories from the two simulations are compared. The two power trajectories for

the small office model are shown in Figure 3.7 for a period of one week. The monthly

normalized RMSE for each building model is shown in Figure 3.8. The power requirements

of different buildings vary due to the difference in their sizes, therefore the RMSE of each

building is normalized with respect to its peak thermal power consumption for comparison.

The peak power consumption of the small office and the warehouse is 22kW and 510kW ,

respectively. The yearly maximum error, mean error, RMSE, and the normalized RMSE for

each building is reported in Table 3.3. The results show that the normalized RMSE values

for the buildings are small. It can be seen in Figure 3.8 that the normalized RMSE has a

similar trend as for the output comparison due to the effect of solar radiations. Overall, the

models predict the thermal demand of the zones satisfactorily.

The two comparison results show that although the linear models have small errors

compared to the EnergyPlus models, they still capture the thermodynamics of the buildings

reasonably well, and are able to predict the thermal power requirements of the buildings in

open loop.

3.5.3 MPC versus PID

Our intended use for the models is in optimal control applications. We have seen that

the model captures the dynamics of the building quite satisfactorily but errors remain,

in particular some steady-state drifts. We perform closed-loop simulations here to show

how using the model generated with OpenBuild improves control. On one hand, a PI

controller is designed for each zone in each building to provide good tracking performance.

On the other hand, MPC controllers are also designed to track a reference temperature

of Tref = 23
oC. This second controller does not introduce integral action to compensate
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Figure 3.5 – Open loop output comparison: the same input is applied to both models and

the output temperature are plotted here - Small Office (zone 1 (top), zone 2 (bottom):

EnergyPlus - Blue, OpenBuild model - Red)
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Figure 3.6 – Monthly open-loop zone temperature RMSE
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Figure 3.8 – Monthly open-loop total thermal power RMSE

for errors (coming from model mismatch for example). This can be mitigated by using a

modified MPC controller where the model is augmented with a disturbance term affecting

the system, and where the disturbance is estimated as part of the state estimation step.

This third controller is referred to as the offset-free MPC (OFMPC) [91]. The output is

augmented with a disturbance term so that y = Cx + d and the disturbance vector d is

estimated together with the state x . A Kalman filter is tuned to estimate the state of the

system for both MPC controllers. The global tracking quality is measured by means of

the yearly root mean square error and maximum tracking error and reported in Table 3.4.

We can observe that MPC outperforms a well-tuned PI controller and in particular the

offset-free MPC improves the tracking significantly in all cases. We see that a large part

of the prediction error of the model can be offset by proper disturbance estimation, which

validates our objective to use the model for MPC applications.

To evaluate the impact of the weather on the quality of the model, we also reported

monthly RMSE for each building in Figures 3.9 and 3.10. We can observe a seasonal

pattern. For the office building, the quality of tracking is slightly worse in summer. This is

probably due to the fact that the effect of higher solar irradiance causes larger prediction

errors of the models. The warehouse does not have windows so the effect of sun is less

crucial. Notice that the OF MPC manages in the case of the warehouse to mitigate the

error more consistently all year round, which suggests a more persistent type of disturbance

that the estimation counteracts more easily.
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Figure 3.9 – Monthly tracking RMSE for the small Office

It would be possible to adapt the parameters of the model to different periods of the

year but this was deemed unnecessary.

Remark 3.3. As OpenBuild relies on a physical modeling approach, the quality of the model

obtained is dependent on the particular building considered. EnergyPlus includes a very

large quantity of modules that model different aspects of the building. The presence or

absence of certain types of object may affect the building model prediction quality as we

have observed in our investigations. We have continuously updated the toolbox to be able to

generate accurate models for more buildings1, but this is still an ongoing effort as we have

observed that some models may perform significantly worse at times, usually due to some

1see http://la.epfl.ch/openBuild for latest release

Table 3.4 – Yearly statistics of the comparison

RMSE(oC) Max Error(oC)

Small Office

PID 0.231 1.44

MPC 0.128 1.04

OFMPC 0.0671 0.55

Warehouse

PID 0.23 1.11

MPC 0.18 0.67

OFMPC 0.052 0.34
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Figure 3.10 – Monthly tracking RMSE for the Warehouse

part of the model not being processed or modeled as intended. An important aspect in this

regard in that through the cosimulation interface, it is possible to validate the quality of the

model automatically by comparing simulations of the EnergyPlus model and the extracted

model, as described earlier in this section. A short discussion about the use of OpenBuild

for system identification is provided in the concluding chapter, in section 8.2.1 �

3.6 Example use of the OpenBuild toolbox

This section gives a step-by-step procedure to carry out a simulation study using OpenBuild,

outlining how the toolbox helps the user performing the tasks easily. The study is purposefully

simple and aims at illustrating how the OpenBuild toolbox can be used.

We consider a large twelve storey office building located in New York taken from the

DOE Commercial Building Reference set [146]. The building has 19 zones served by a

forced air heating and cooling system. We focus in this example on the use of a thermal

storage for load shifting and minimization of the total cost of operation. We assume the

building has a cold water tank which is supplied by an electrical heat pump. A step-by-step

procedure to carry out this simulation using OpenBuild is given below

Step 1: A building object is initialized using as input the building data file and the weather

data file. All required data is imported to MATLAB. During this process, EnergyPlus is

first run once through OpenBuild and the processed data from the simulation is collected.
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Figure 3.11 – Example of Internal and Solar Gains for an office building.
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Step 2: The building data is used to automatically generate a linear state-space model

of the form of equation (??). At this point the inputs to the model are heat fluxes to

each zone. For simplicity, it is considered here that each zone is served by an individual

air handling unit which controls the heat flux to the room. The total cooling load of the

building is given by qload =
∑nu
k=1 uk where uk is the heat power input to zone k .

Step 3: A simulation engine object is initialized. This object handles the communication

between the different objects simulated, either in MATLAB or in EnergyPlus. EnergyPlus is

added as a simulator for the thermodynamics.

Step 4: A cold water tank is modeled in MATLAB and added to the simulation engine

object. The tank is assumed to be perfectly stirred and the heat pump has a fixed coefficient

of performance. Therefore, the tank dynamics model takes a very simple form:

CpV Ṫtk = α(Tr − Ttk)− ηcPe + qload (3.3)

where Ttk is the temperature of the cold water tank which stands in a room with constant

temperature Tr . Cp is the heat capacity of water, V is the volume of the tank, and α is a

coefficient representing heat leakage out of the tank. ηc is the coefficient of performance

of the heat pump (which we assume independent of the outside temperature in this case

for simplicity) and Pe is the electrical power consumption of the heat pump. This model is

created manually, and it is then added to the simulation engine automatically.

Step 5: This is the main step where user input is normally necessary. The user needs

to implement a controller in MATLAB, possibly using the building model constructed by

OpenBuild. In our case, the building model is discretized with a time-step of 30 minutes

and is reduced using the Hankel-Norm based balanced truncation method. The resulting

model is used as the prediction model along with the storage tank model in an MPC

controller. The MPC controller is designed to minimize the total cost of operation in the

presence of day-night electricity tariffs. An offset-free formulation [90] with soft comfort

constraints is implemented. Night and weekend setbacks (time varying constraints) on the

zone temperature are used (see Section 2.4). A prediction horizon of one day is considered.

The following constraints are applied:

0 ≤ Pe ≤ Pmax (3.4)

uk,min ≤ uk ≤ uk,max (3.5)

Tmin ≤ Ttk ≤ Tmax (3.6)

where Pmax , uk,minand uk,max are the maximum electrical power for the heat pump, and

the minimum and maximal inputs, respectively. Tmin and Tmax represent minimum and

maximal allowed temperatures in the storage tank.

Step 6: The models of the building and the storage are used to design the observer.

Step 7: Finally, the simulation engine runs the closed-loop simulation and the simulation

data is saved. The simulation is run for a period of one week during the summer of 2012,

using the real weather data of New York.
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Figure 3.12 – Percentage decrease in the total cost with varying size of storage
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We refer to the OpenBuild manual [49] for a more comprehensive description of the

toolbox use.

Remark 3.4. The data for weather, occupancy, and internal gains required to simulate the

linear models is also extracted from the EnergyPlus simulation output using OpenBuild. A

typical profile of occupancy patterns, solar gain, and internal gains for a period of one week

is shown in Figure 3.11. �
Simulations are performed for different sizes of the storage tank and the total electricity

consumption of the building over a period of one week is compared. The results are depicted

in Figure 3.12. As seen in this figure, the percentage reduction in the total cost of electricity

consumption compared to the case with no storage tank, increases with the size of the

storage tank. This is due to the capability of the building to shift its electricity consumption

to off-peak periods using the storage tank. The cumulative energy consumption over a

period of one week for the case with no storage tank and with a 30m3 storage tank is

shown in Figure 3.13. In this figure, the high tariff price periods have a shaded background.

With the storage tank, the cumulative electrical energy consumption during the peak price

periods is constant. Without storage the building consumes more electricity during the

higher price periods, increasing the total cost of operation. We can see that the use of

the storage does not allow to use less energy overall, but allows to shift energy use from

periods of high price to periods of low price, hence reducing the total cost of energy.
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Figure 3.13 – Impact of storage (30m3) on building’s cumulative energy use
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4 Use of the OpenBuild toolbox

OpenBuild has been developed to support our research and the research of our laboratory

(Automatic Control Lab, EPFL) in general. OpenBuild is developed on open-source principles

and is freely available for use of other labs and demonstrators, or for any entity or person

interested in the operation and optimal control of buildings. OpenBuild has been proven in

several contexts, and we present here all the contexts, to our knowledge, that OpenBuild

has been utilized.

4.1 Research

OpenBuild research has been repeatedly used for different projects in our group to generate

building models. The following papers have made use of data generated using OpenBuild:

• [114]: This paper studies the participation of buildings in the New-York system

operator demand response program. Realistic data for an office building located in

New York was generated using OpenBuild.

• [81]: An analysis of the participation of loads in the Swiss ancillary services market

from the economic point of view.

• [112]: An extensive simulation of frequency regulation participation in Switzerland in

the current market conditions.

• Theoretical papers [46], [15], and [134] include examples based on data from Open-

Build.

• OpenBuild has been used in combination with the OpenBuildNet software to perform

grid scale simulation as reported in [102]

4.2 External Research

OpenBuild has also been used by other research laboratories for generating realistic building

models. The following groups / projects have reported using OpenBuild:

• Energy Center, EPFL
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• Simulation examples based on the data generated from OpenBuild have been used in

the Ph.D. thesis [43].

• The toolbox has been reviewed in [36], [67], and the book [128].

• OpenBuild have also been reported to be used by other research laboratories for

master projects, e.g., the Institute for Dynamics System and Control, ETH, Zurich,

and by the Ruhr University Bochum.

4.3 Teaching

OpenBuild has been used for a number of teaching projects.

• The Eurotech winter/summer school, ‘Energy Systems: From Physics to Systems’

is a multidisciplinary two week course for PhD students covering a range of topics

related to energy systems, including control. A mini-project on model predictive

control for buildings was proposed and conducted by students participating to the

school. The building description data was obtained using OpenBuild.

• One of the course projects for the master level class Model Predictive Control features

energy-efficient control of buildings. The data for this project was extracted using

OpenBuild

• A number of semester and master projects have aimed at extending capabilities of

OpenBuild, or have used OpenBuild to generate data:

– Demand Response parametric study by Hervé Tommasi, aimed at generating

multiple building model using openbuild in order to study the most important

building features that influence its ability to provide demand response to the

grid.

– Modeling and control of a building with a battery storage system by Victor Saadé

. This project explored the control strategy for the PV + battery system that

will be installed in the EPFL solar decathlon building. The thermal model of the

building was obtained through OpenBuild using an EnergyPlus description file

for the planned building.

– Semester project: Parameter Estimation of the thermal model of a building using

OpenBuild and EnergyPlus by Bertrand Buisson. This project was exploring the

possibility to perform parameter identification for building modeling compared to

standard system identification techniques. The basic idea of the project was to

extract input data and a model structure from EnergyPlus through OpenBuild

and perform system identification and parameter identification.

– Data-based weather prediction models for control by Marlène Dollfus. This

project aimed at mitigating the effect of weather prediction error by using a

filtering/prediction strategy for the forecast error for the upcoming time slots
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fusing forecast/local measurement and knowledge from past data. The effect

of the strategy proposed was evaluated in a building control problem with data

generated from OpenBuild.

– Data-driven optimization for the Energy Bidding problem by Tiago Morim. This

project’s goal is to explore different strategies to model the uncertainty in the

uncertain energy regulation problem, in order to find the most effective way

to use available samples of the uncertainty from historical data. The strategy

was tested on an energy regulation problem for a building modeled through

OpenBuild.

4.4 Other

The toolbox is available publicly online1. To date, it has been dowloaded more than 200

times.

1https://sourceforge.net/projects/openbuild/
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A Detailed modeling

In this section, a fully detailed description of the modeling procedure is given. The modeling

procedure was largely inspired by the EnergyPlus modeling framework, but significant

differences are detailed when necessary. The RC modeling framework is employed. The

RC modeling framework simplifies the partial differential equations describing heat transfer

using a lumped parameter equivalent circuit. A number of thermal nodes are placed and an

equivalent thermal capacitance Ci is associated to each node. The thermal capacitance

represents the thernal mass present at that node and depends on the mass and material

describing that node. Nodes in the network are connected with thermal resistors that have

an equivalent thermal resistance Ri j . This resistance models the potential for heat transfer

between this nodes. Finally, a forcing term Qi at each node represents extra contribution

of heat transfer at that node and includes heat transfer through internal gains, from solar

radiation, from the heating system, etc. For each node a differential equation describes the

heat transfer and takes the from

Ci Ṫi =
∑
j∈Ni

1

Ri j
(Tj − Ti) +Qi (A.1)

where Ti is the temperature at node i in degree Celsius, Ci the thermal capacitance of

node i in J/oC, Ri j the thermal resistance between node i and j in oC/W , Ni the set

of nodes neighbouring i and Qi the thermal forcing term in W . Note that despite being

primarily designed to represent thermal conduction, thermal resistances simply induce a

linear differential equation structure and can therefore be used to model any exchange

phenomena that has a linear dependance on temperature difference, (that might be the case

after linearization). We used thermal equivalent resistances to model thermal conduction,

convection and longwave radiations, as detailed in the subsequent subsections.

A.1 Thermal node placement

Following recommendations and assumptions of EnergyPlus, one core assumption is that

the building is divided in thermal zones. A thermal zone usually designates a part of the

building served by a single terminal HVAC unit. The basic assumption concerning thermal

zones is that the temperature is uniform in that zone (in other words the air in that zone
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A.1. Thermal node placement

is “well-stirred”). Each thermal zone can therefore be represented by a single node on the

thermal graph. The capacitance associated to that zone directly corresponds to the thermal

capacitance of the air in the zone. Following [29], pp.7, the expression of the thermal

capacitance is:

C = CpρairV ∗ cz (A.2)

with V the volume of air in the zone and Cp the zone air specific heat. The density of air is

taken as in standard conditions with ρair = 1.204kg/m
3. At typical value of humidity ratio

of 50% and temperature of 25oC, an average value of the air specific heat of 1.02kJ/kgoC

is taken. The computation of the volume is performed by EnergyPlus and collected from

output data files. Finally, cz is a zone multiplier and may be added in EnergyPlus for

technical reason.

Next, nodes are placed in surfaces. To evaluate heat conduction inside surfaces, a

state-space model approach is also used in EnergyPlus. As detailed in [29], pp.37, a number

of nodes are placed across the surface, and conduction is modeled using lumped parameter

values. Although the precision of the method grows with the number of nodes a good

compromise was found positioning nodes at each interface between two materials inside the

surface.

Each layer of the surface has a total thermal capacitance which is computed as C =

ρCp lA with A the surface in m2, Cp the specific heat capacity of the material in J/kgoC, l

the width of the layer in m, and ρ the density of the material in kg/m3. The conductive

resistance between adjacent nodes is computed as R = l
kA

with k the thermal conductivity

of the material in W/oCm. By assumption the thermal capacitance of a node at the

interface of layers i and j takes half of the total capacitance of layers i and j , so that

C =
Ci+Cj
2 .

A.1.1 Special case of no mass materials

In EnergyPlus, some materials are specified as having no mass. They are treated slightly

differently as per [29], pp.40-41. Two cases may occur:

• If the no-mass layer is stuck between two “massive” layers, then the previously proposed

approach still works: the interface nodes will simply receive a zero mass contribution

from both. If several no-mass layers are together, they are transformed into one

equivalent no-mass layer first

• If the surface starts or ends with a no-mass layer, then the no-mass layer will be given

the same properties as air.

A.1.2 Remarks on EnergyPlus conduction modeling

Two notable differences can be noted between our approach and EnergyPlus. The first

is that EnergyPlus establishes a state-space model first with a number of nodes varying
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between 6 and 18 per layer of material, which is much larger than in our cases. Using a large

number of nodes is also possible in our case but would inflate the state-space size drastically,

which was not deemed necessary considering the small benefit in terms of prediction quality.

Secondly, EnergyPlus transforms the state-space model into a model that does not make

explicit use of internal nodes temperatures. It is converted instead into a model that takes

as inputs previously observed temperatures at the surfaces on the outside and inside faces

of the surfaces. While this has the advantage of eliminating the need for an observer later

on, the procedure to produce the CTF coefficient is reported to become unstable when

the time step shrinks too much (see discussion in [29], pp.38). On the other hand, using

state-space models is standard in control and well understood, which led us to keep that

representation.

A.1.3 Particular cases of surfaces: adiabatic surfaces

Some surfaces are modeled using the adiabatic boundary condition. As detailed in [29],

pp.93, Adiabatic boundary conditions are applied to two surface types in EnergyPlus: 1)

Surfaces with adiabatic outside boundary conditions 2) Internal Mass objects. For both

surface types, EnergyPlus will apply the same boundary conditions to each side of the

construction so that there is no temperature difference across the surface. In this case, all

heat transfer into the surface is a result of the dynamic response of the construction to

varying inside boundary conditions. The surface will store and release heat only at the inside

face of the surface (it is assumed that the outside face is not within the zone). Adiabatic

boundary conditions are dealt with by short circuiting the inside face and outside face node

of the surface considered. The heat balance at each point should not be applied directly. It

should appear from the point of view of the outside face that energy comes from the inside

face, but not the other way around.

A.1.4 Particular cases of surfaces: Ground connection

Some surfaces have a ground boundary condition. This appears in simulations where heat

exchange with the ground can be quite significant especially for single story buildings. A

temperature for the ground is computed as detailed in [28] on pp. 81. To achieve that,

the outside face temperature node is forced to the ground temperature which becomes a

new input to the building. Usually the ground temperature is quite consistent across the

year but it can be recovered from the EnergyPlus run. Forcing the node to the ground

temperature is like having a voltage source in the equivalent RC electrical network.

A.2 Convection

EnergyPlus proposes a number of models to take into account thermal convection from the

surfaces to the air, one of which can be explicitly specified in the input file. Convection
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takes a form similar to conduction.

Qconv = hc(Ta − Ts) (A.3)

where Ta is the temperature of the air, Ts the temperature of the surface, and hc a time-

varying convection coefficient which is computed based on various factors (temperature in

the room, humidity, etc), depending on the calculation method selected. Note that methods

to compute inside and outside convection are different. See [29], pp.76-92 to learn more on

the convection coefficient computation for inside convection and [29], pp.62-72 for outside

surface convection. In our case, a time invariant average of the convection coefficient is

extracted from simulation. Note that convection coefficients display typically a periodic

pattern so different models could be learnt for daytime and nighttime for example, but a

time invariant model was deemed more convenient and sufficiently accurate.

A.3 Internal longwave radiation

Internal longwave radiation describes the internal thermal exchange fluxes in the building

between internal surfaces. It has been observed that this represents a significant part of

the heat exchange in EnergyPlus and has therefore been modeled separately. As per [29],

pp.74-75, the thermal longwave radiation exchange is governed by equation:

qi ,j = AiFi ,j(T
4
i − T 4j ) (A.4)

with Ai the area of surface i , T temperatures in K and Fi ,j the ‘scriptF’ factor from

surface i to j . ScriptF factors are exchange coefficient between pairs of surfaces and take

into account all possible paths between these surfaces. For implementation in the model a

linearization is taken around typical conditions.

A.4 External longwave radiation

The outside surface of the building also exchanges thermal radiation with the surrounding

environment, namely the air, the sky and the ground. The total long wave radiation

exchange hence takes the form, per [29], pp.57-59:

QLWR = εσFgnd(T
4
gnd − T 4s ) + εσFsky (T 4sky − T 4s ) + εσFair (T 4air − T 4s ) (A.5)

where ε is the long-wave emittance of the surface and is collected from input data, σ is

the Stefan-Boltzmann constant and the F ’s are the view factor to air temperature, sky

temperature and ground surface temperature respectively. As in EnergyPlus, air and ground

surface temperature are taken to be the same. The expressions of the view factor are taken
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to be:

Fgnd = 0.5(1− cosφ)
Fair = 0.5(1− β)(1 + cosφ)
Fsky = 0.5β(1 + cosφ)

β =
√
0.5(1 + cosφ)

where φ is the tilt angle of the surface.

A similar linearization procedure is taken around average temperatures, as for internal

convection. Note that the sky temperature then becomes an input to the model whereas it

is not something directly measurable. EnergyPlus computes what the sky temperature is

as a function of outdoor temperature, cloud coverage and humidity ratio. Value for the

sky temperature is usually close but lower than outdoor temperature, especially in clear sky

conditions. Note that some cooling systems exploit the fact that sky temperature is low by

using a roof pool to cool down the water at night.

A.5 Solar heat gain rate

A large part of the gains affecting the system come from the sun. Detailed geometric

computations are performed in EnergyPlus to compute the global horizontal and normal

irradiance (GHI and NHI), as well as the resulting irradiance on each surface, outside and

inside the building. Total solar radiation heat gain rate are available for every surface in

the building and are collected and used as inputs to the model. While this has the benefit

of leveraging the whole computational power of EnergyPlus, it adds a new input for every

surface exposed to the sun in the building. Several improvements or alternatives could

be brought to the model. The difficulty of modeling solar radiation is that their effect is

time-varying (actually periodic with a period of one day and slow drift over the year), but

linear if the input is taken as the normal horizontal irradiance. It has been observed that

clustering all solar inputs in one yields a model which is too rough. The question is then if

linear time-invariant model with a large number of inputs is more convenient than a linear

time-varying model with a single input. A reasonable compromise can be to reduce the

number of inputs to a few significant ones (mostly depending on the main directions of

incidence. This would cause some inaccuracies, especially for indoor surfaces but would

probably yield a good approximating model. A data driven approach was adopted to cluster

disturbances that are very similar.

A.6 Internal gains

Different types of objects in EnergyPlus input files allow one to describe different types

of internal gains in the rooms, including gains from electric equipment, lights, and people.

Each piece of equipment produces a heat flux affecting the building, with a convective

part (which directly affects the room air), a latent part (through evaporation, this part is
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un-modeled in our building) and a radiative part. This split is described in the EnergyPlus

object, and a schedule describes the total heating rate for that object. This processed

data is used as inputs to our models. As described in [29], pp.1020, radiative gains are

distributed on surfaces in proportion to the value of their surface absorbtance.

Remark A.1. Gains from people are specific in the sense that they depend on indoor

conditions. It is a reasonable assumption that they are constant provided the zones

are air conditioned. In addition, internal gains from people usually represent a relatively

small share of internal gains. See [29], pp.1016-1020 for more details on internal gains

computations. �

A.7 Windows

Windows are modeled in great detail in EnergyPlus as explained in [29], pp.217-233. Two

modeling methods are employed. The first one models windows layer by layer, and is the one

implemented in EnergyPlus. The second, simpler, reuses the layer-by-layer approach but

converts first an arbitrary window performance into an equivalent single layer. OpenBuild

uses the second method for its computation. the first step is to recover the equivalent

U-value for that window. Following [29], pp.221-226, we have

1

U
= Ri ,w + Rl ,w + Ro,w

where Ri ,w is the inner film resistance, Ro,w the outer film resistance and Rl ,w the layer

resistance, all in m2K/W . From U all values can be computed using equations:

Ri ,w =

{
1

0.395073 ln(U)+6.949915 for U < 5.85
1

1.788041U−2.886625 for U ≥ 5.85

Ro,w =
1

0.025342U − 29.163853

A two layer model of the window is used, in the same fashion as other surfaces. The

layer resistance is used to specify the conduction between the two layers. Inside and outside

convection coefficients are recovered from the EnergyPlus run average value. A different

type of solar heat gain is affecting the window. It is computed in EnergyPlus under the name

‘Surface Window Total Glazing Layers Absorbed Solar Radiation Rate’ which is assumed

to be spread between the two layers equally. The window layers obey the same type of

differential equation that describe their temperature evolution, but the main difference

with other walls is that they are assumed to have no thermal inertia. This transforms

equation (A.1) in an algebraic equation by setting the left hand side part to zero. This

algebraic equation allows to express the temperature of the window layers as a function of

the temperature at the other nodes and the disturbance and substitute in the rest of the
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differential equations.

Cwall Ṫwall = A11Twall + A12Twindows + B1u

0 = A21Twall + A22Twindows + B2u

which gives Twindows = −A−122 A21Twall − A
−1
22 B2u and after substitution:

Cwall Ṫwall = (A11 − A12A−122 A21)Twall + (B1 − A12A
−1
22 B2)u

A.8 Infiltration

Infiltration is described by some specific objects in the EnergyPlus input files. As detailed in

[29], pp.360-361, infiltration describes any outdoor air that unintentionally enters the zones

by way of infiltration (that is, not through mechanical ventilation). It is assumed to be

instantaneously mixed with the zone air. The amount of energy that is exchanged between

the zone and the outside air is described by the equation

Qinf = ṁCairρair (To − Tz) (A.6)

where ṁ is the mass flow rate exchange in m3/s, Cair the thermal capacitance of air in

J/K/kg, ρair the density of air in kg/m3, To the outside temperature and Tz the zone

temperature. According to the documentation, the mass flow rate is computed as

ṁ = Iinf Fsch(A+ B|To − Tz |+ Cv +Dv2) (A.7)

where Iinf is the design maximum flow rate, Fsch a scheduled value that controls the flow

rate as a function of time, v the wind speed and A, B, Cand D user-chosen coefficients.

Default value in EnergyPlus is (1,0,0,0) so that the mass flow rate does not depend on

outside conditions. Even in that case, the flow rate is usually time-varying. For convenience,

we chose not to use a time-varying infiltration. Two options are available. The first

introduces a new input to the model which is the energy exchange through infiltration.

Values from the simulation can be used and should be relatively consistent if the indoor

temperature is not too far from the simulation temperature. It also allows to cascade the

system with a more detailed model for infiltration if desired. Otherwise, a constant mass

flow rate needs to be fixed: the average flow rate in simulation can be used.
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One of the most important objectives of building control is to maintain or improve occupants’

comfort. Comfort is a human’s perception of his environment, and therefore is difficult to

measure. This perception of comfort is different for different people and might also vary for

the same person at different times. Various measures of comfort have been reported in the

literature, e.g., the Predicted Mean Vote (PMV), the Predicted Percentage of Dissatisfied

(PPD), etc. PMV is based on the model developed by Fanger [35] and is the predicted

mean point rated by a large group of people. It is based on heat balance equations and

empirical data that rates how a person would feel about a thermal condition. PPD is a

function of PMV and analytical equations have been developed for this relationship [22].

The analytical equations defining PMV and PPD are complicated and are a function of

many parameters, e.g., operative temperature, relative humidity, air velocity, metabolic

activity, and clothing resistance, etc. Therefore, it makes them difficult to use for control

design.

Another similar, but slightly simpler measure developed by ASHRAE via a logistic

regression analysis performed on the data collected in the ASHRAE RP-884 database is

called ASHRAE Likelihood of Dissatisfied (ALD) [22] and is defined in literature as

ALD(T ) =
e0.008T

2+0.406T−3.050

1 + e0.008T
2+0.406T−3.050 ∈ [0.05, 1.00) (B.1)

where T = |Tzone − Tcomf ort |, Tzone is the zone temperature, and Tcomf ort is the optimal

comfort temperature. Unlike, PMV and PPD, ALD is only a function of the absolute

difference between the zone temperature and the optimal comfort temperature.

All these measures are for a specific building zone and for a specific point in time. A

measure called Long-term Percentage of Dissatisfied (LPD) has been proposed for an

average value of comfort throughout the building [22]. It accounts for the hourly-predicted

ALD calculated for each zone and is weighted by the number of people inside the zone, and

over time and is given as

LPD(ALD) =

∑T
t=1

∑Z
z=1(pt,zALDt,z)∑T

t=1

∑Z
z=1(pt,z)

(B.2)
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where ALDt,z and pt,z are the ALD and normalized occupancy of the zone z at time t.

Although ALD is only a function of zone temperatures and is simpler than PMV and

PPD, it is still difficult to use for control design because it is non-linear. In most of the

MPC based control design found in the literature, the comfort is usually defined by a bound

of temperatures around the optimal comfort temperature resulting in convex constraints for

the MPC optimization problem. However, ALD together with LPD can easily be used in

the post-processing to evaluate the occupants’ comfort.
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5 Robust tracking commitment

We introduce in this chapter the robust tracking commitment problem. After stating

a formal description of the problem, we briefly relate it to the main application that

motivated its formulation, the reserve provision problem. In Section 5.2, we review some

relevant literature before exposing the main results in Section 5.3. We present situations

where the robust tracking commitment problem can be solved tractably for large problem

instances in Section 5.4. We introduce a few extensions to the main problem formulation in

Section 5.5. Next an example of reserve provision by a building illustrates the applicability

of the approach in Section 5.7.1 while Section 5.7.2 develops the concept of virtual battery.

Finally, Section 5.8 develops ideas to extend the finite horizon guarantees obtained earlier

to the infinite horizon case.

The key ideas of this chapter were first published in [46] whose content was refined and

extended to write the manuscript [15] in collaboration with Altuğ Bitlislioğlu to form the

content of Sections 5.3, 5.4, 5.5 and 5.7.1. Section 5.8.2 is mostly extracted from [46],

while Sections 5.7.2 and 5.8 are original in this thesis. Part of the content of [15] on a

possible distributed implementation of the robust commitment problem is left out of the

thesis since it is due to my colleague Altuğ Bitlislioğlu.

Notation

We introduce the mathematical notation employed in the rest of the chapter. Rn denotes

the Euclidean space of dimension n, Z denotes the set of integers, and N denotes the

set of nonnegative integers. For two integers i ∈ Z and j ∈ Z such that i < j , let

Z[i ,j ] := {i , i + 1, . . . , j}. In denotes the identity matrix of dimension n, Tn the lower

unit triangular matrix and ⊗ denotes the Kronecker product. The notation
∏

is used

to described the cartesian product of multiple sets. For a matrix M ∈ Rn×m, an integer

i ∈ Z[1,n] and a set J ⊆ Z[1,m], M(i ,J ) indicates the set of components that belong to the

ith row and to columns whose indices belong to J . For a set Q ⊆ Rn×Rm, the orthogonal

projection operator is defined as Projx(Q) := {x ∈ Rn| ∃y ∈ Rm, (x, y) ∈ Q}. Given two

functions f : Rn → Rl and g : Rm → Rn, f ◦ g : Rm → Rl denotes the composition of f

and g , such that f ◦ g(x) = f (g(x)). We use a bold font to denote sequences over time:

for example u = (u0, . . . , uN−1). The horizon is omitted when it follows from the context.
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5.1. Motivation and Formalization

5.1 Motivation and Formalization

Consider a system described by the state-space difference equation:

x+ = f (x, u, ξ)

y = g(x, u, ξ)
(5.1)

where x ∈ Rnx denotes the state of the system, u ∈ Rnu the controlled input to the system

and ξ ∈ Rnξ a disturbance affecting the system. We call ξ the disturbance, but let us keep

in mind that it is a placeholder for any uncontrolled signal such as dynamic perturbation to

the system or external request signals. y ∈ Rny represents some output of interest for the

system. In addition, the system is subject to constraints:

xt ∈ Xt , ut ∈ Ut , yt ∈ Yt (5.2)

Remark 5.1. We will usually use yt ∈ Yt to specify tracking constraints. We will therefore

sometimes refer to these constraints as the tracking constraints, in opposition to the

‘regular’ state constraints xt ∈ Xt . �
When the system is in state x0 at time 0, the input sequence u = (u0, . . . , uN−1) is

applied, and the disturbance sequence ξ = (ξ0, . . . , ξN−1) is observed, the state at time i is

denoted by φi(x0, u, ξ), and the resulting sequence of states (φ1(x0, u, ξ), . . . , φN(x0, u, ξ))

by φ(x0, u, ξ).

We state the robust tracking commitment problem next:

Problem 5.2 (Robust Tracking Commitment). Let N be a fixed horizon. Given an initial

condition x0, find a set Ξ ⊂ RNnξ and a control policy π with πi : Ξ→ Rnu for i ∈ Z[0,N−1]
such that:

∀ξ ∈ Ξ, φ(x0,π(ξ), ξ) ∈ X , π(ξ) ∈ U , y ∈ Y (5.3)

and

π ∈ F (5.4)

where U =
∏N−1
t=0 Ut , X =

∏N
t=1Xt , Y =

∏N−1
t=0 Yt and F a set of functions �

F can be used to enforce structural constraints on the control policy such as causality.

If such a Ξ and π can be found, then we say that Ξ is (N-step) admissible for system (5.1)

with respect to the requirements F .

We can assume without restriction that the policy π depends on ξ only rather than ξ and

the state x . Indeed, the state at time t can be inferred from the sequence of disturbance ξ

affecting the system and control inputs applied up to time t − 1. See for example [52] for a

discussion on the equivalence of state sequence policies and disturbance sequence policies

under appropriate assumption. Finally, note that we are looking for a set Ξ in RNnξ which

implicitly mean that ξ can be time-dependent and time-correlated.
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This problem formulation is general, but in order to make the discussion more concrete,

we present next the reserve provision problem in order to show why we are interested in

this problem.

Example 5.3 (Reserve provision Problem). Suppose we have an energy system connected to

the power grid with a model of the form (5.1), where x describes the states of the system

(for example the temperatures in a building), u the control input to the system (for example

the setpoints of the heating system). We are interested in the power consumption of the

system over the next day, starting from the current initial condition x0. Assume that the

power grid operator sends a power consumption request ξ at a pre-determined frequency

that the system should follow. We can define y as the tracking error which can take the

form y = g(x, u) − ξ where g(x, u) is a model of the power consumption as a function

of the state and input to the system. We want to satisfy operating constraints captured

by Xt and Ut while maintaining a small power consumption tracking error (for example

‖y‖ ≤ emax).
We want to solve problem 5.2, where Ξ captures the set of power consumption

trajectories that can be tracked by the system, Depending if the power consumption request

is communicated in advance or on the fly, the control policy π needs to satisfy different

constraints captured by F .

A practical instance of this problem is the so-called frequency regulation problem, which

is described in greater detail in Part III. �
Our goal is to explore the space of admissible sets Ξ and find a good candidate that

satisfies desired properties. Possible desired properties include:

Volume In the case of the reserve provision problem, the system operator may offer a

payment for the flexibility the system can offer. A large set Ξ is naturally more

valuable than a small one, hence is rewarded with a higher payment.

Simplicity In the case of the reserve provision problem, the system operator or an aggregator

may collect admissible power consumption trajectory sets from a large number of

loads and generators, which it will use to determine an optimal reserve dispatch by

solving another large scale optimization problem involving the set representations. In

this case, a simple description of the sets is preferable. It may also be beneficial to be

able to interpret easily the characteristics of Ξ. An attractive idea is for example to

characterize an energy system as an equivalent ‘virtual battery’, meaning that it can

store and release energy in the same way as a lossless battery would. From the point

of view of power consumption, that allows describing the system using two intuitive

parameters: a power rating and a storage limit, and hence conceal the complexity of

the system. We will revisit the concept of virtual battery in subsection 5.7.2.

Structure Similarly, structural properties such as convexity may be required in order to use

Ξ in another layer of optimization.

The particularity of our approach that distinguishes it from more standard robust

reachability analysis is that we are not interested in certifying a particular disturbance set
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Ξ, but we want in some sense to optimize over candidate sets. That requires specific

instruments that will be presented in the next sections.

Example 5.4. Consider a linear system:

x+ = Ax + B(u + ξ)

subject to additive input disturbance and subject to constraints x ∈ X. Solving Problem 5.2

certifies that the system is robust to input disturbances in Ξ over a N step horizon. From

this, we can see that Problem 5.2 can serve as an analysis tool to look at the robustness of

systems. �

5.1.1 Special cases of Problem (5.2)

This problem formulation is general and covers some classical control problems. By exploring

here the connection of problem (5.2) to classical problems, we can get inspiration on how

to solve it.

If Ξ is fixed and π is restricted to not depend on ξ, then problem 5.2 becomes a N-step

robust reachability question and is equivalent to showing that:

∃u ∈ U : ∀ξ ∈ Ξ, φ(x0,u, ξ) ∈ X , y ∈ Y (5.5)

We define now the set of input and disturbance that satisfies all constraints over an

N−step horizon:

Q(x0) := {(u, ξ) |φ(x0, u, ξ) ∈ X , u ∈ U , y ∈ Y } (5.6)

In (5.5), the input sequence u is the same for every sequence ξ. On the other extreme,

if a different control trajectory u can be chosen for each trajectory ξ in Ξ, then the question

is whether:

∀ξ ∈ Ξ, ∃u ∈ U : φ(x0, u, ξ) ∈ X , y ∈ Y (5.7)

This case can be interpreted geometrically as explained in the following lemma:

Lemma 5.5. Equation (5.7) is equivalent to

Ξ ⊆ Projξ(Q(x0)) (5.8)

where Projξ(Q(x0)) denotes the projection of the set Q(x0) onto the ξ-subspace.

Proof. : The proof directly follows from the definition of the projection operator and of

Q(x0). Ξ ⊆ Projξ(Q) means that ∀ξ ∈ Ξ, ∃u : (u, ξ) ∈ Q(x0), i.e. ∀ξ ∈ Ξ, ∃u : u ∈
U , φ(x0, u, ξ) ∈ X , y ∈ Y, that is Equation (5.7) holds.
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5.1.2 On the notion of maximum size uncertainty sets

A natural question is whether there exists a maximal size uncertainty set Ξmax that contains

all possible admissible uncertainty sets. In other words, the question is if two sets Ξ1 and

Ξ2 are admissible, then is Ξ1 ∪ Ξ2 also admissible?

It turns out that it depends on F . In the case that F is RNnξ → RNnu , that is there

are no restriction on the policy, referring back to Lemma 5.5, we saw that admissibility in

this case is equivalent to the set inclusions Ξ1,Ξ2 ⊆ Projξ(Q(x0)), which directly leads to

Ξ1∪Ξ2 ⊆ Projξ(Q(x0)), that is Ξ1∪Ξ2 is admissible. In this case, the maximum admissible

is exactly Projξ(Q(x0)). Even if that case, it can be beneficial to look for a ‘lightweight’

approximation since the projection may be very complex to compute: even in the case

where Q(x0) is a polyhedron, computing its projection can have very high complexity if the

dimension of the space is large [66].

In the case of the open-loop robust reachability case (Equation (5.5)), the union of

admissible sets is not necessarily admissible. For example, it may be the case that Ξ1

is admissible with a control input u1 and Ξ2 with u2, but in general u1 �= u2 and there

exists no single input for which Ξ1 ∪ Ξ2 is admissible. In general, there is no maximum size

uncertainty set.

5.2 Relation to existing literature

The idea of looking into the modulation of uncertainty sets and representing complex

feasibility sets with simpler sets sits at the crossroads of output tracking, invariance,

reachability analysis, multi-stage programming, (semi-infinite) optimization, and model

reduction. It therefore connects to a large body of literature. This section aims at

highlighting the connections of that idea with other topics, and present the most relevant

literature therein.

5.2.1 Model predictive control

Finite horizon robust control for linear systems is well established in the model predictive

control (MPC) literature [95, 118]. The robust and stochastic MPC literature often

considers systems subject to additive disturbance and linear dynamics, for example:

x+ = Ax + Bu + w (5.9)

and subject to polytopic constraints on state and inputs, x ∈ X, u ∈ U. A time-invariant

disturbance is usually considered so that ∀t ≥ 0, wt ∈ W and one looks for a feasible policy

to maintain the system within the constraints at all time.

Problem 5.6. Find a state-feedback policy π such that, given x0 ∈ X:

∀wt ∈ W, xt ∈ X, ut = π(xt) ∈ U, with xt+1 = Axt + But + wt , ∀t ≥ 0 (5.10)
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�

It has been proven that using a policy π in the disturbance sequence is equivalent to

using a policy in the state [52]. Similarities between this problem and Problem 5.2 where w

plays the role of ξ are apparent. A number of solutions have been proposed [96, 117, 120,

52]. They rely on the usual characteristics of MPC to solve the problem:

• Approximate the infinite horizon with a finite horizon problem and repeat the procedure

in a receding horizon fashion

• Drive the state to a terminal state appropriately chosen to ensure recursive feasibility

• Parametrize the control policy to make sure the problem is computationally tractable

In particular, the so-called affine disturbance feedback MPC [52] is instrumental in the

results we will develop, we therefore give a brief summary of its results here. It proposes

to use an affine policy in the uncertainty, so that ut =
∑
i<tMt,iwi + dt , or in stacked

notation:

u =Mw + d (5.11)

where M is chosen strictly lower block-triangular as a result of causality requirements. In

addition, the state at the end of the horizon is restricted to lie in a terminal set Xf .
The following optimization problem is solved at each iteration:

minimize VN(M,d)

subject to ∀i ∈ Z[0,N−1]
∀w ∈ WN

φi(x, u,w) ∈ X
φN(x, u,w) ∈ Xf
ui ∈ U
u =Mw + d

(5.12)

Through an appropriate choice of VN and Xf , it is shown that Problem (5.12) is

recursively feasible and this controller is input to state stable. If X, U, Xf are all described

as polyhedra in inequality form, the solution to (5.12) implies solving a quadratic program

subject to robust linear constraints, which under some assumptions on the set W can

be transformed into a convex program which allows solving it efficiently even in large

dimensions.

5.2.2 Invariance

One ingredient of MPC is the use of invariant or robust invariant sets. Background

information is provided in Section C.1, we review it here in connection with Problem 5.2.
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A set Xf is robust controlled invariant for system x+ = f (x, u, w) with constraints x ∈ X
and u ∈ U and subject to disturbance w ∈ W if (see Definition C.3):

Xf ⊆ X and ∀x ∈ Xf ,∃u ∈ U : ∀w ∈ W, f (x, u, w) ∈ Xf

If Xf in problem (5.12) is chosen as a robust controlled invariant set, then solving

this problem in closed loop results in an infinite horizon robustly feasible system, which

solves (5.10). The feasible region of the problem actually is a robust invariant set. Therefore,

robust MPC can be seen as the way to substitute intractable offline computation with

repeated tractable online computations.

Note that knowing a robust invariant set Xf already solves Problem (5.10). Indeed,

from any point in Xf , it is then enough to find a control action u ∈ U that keeps the system

inside Xf for any value of ξ ∈ Ξ. We know that such a control action exists by definition of

a robust controlled invariant set. Using robust MPC allows extending the robust feasible

region with respect to Xf .

It is customary to look either for large invariant sets or ‘maximal’ invariant sets, or small

invariant set, depending on the context. Methods have been proposed to compute maximal

invariant sets, starting from [42] for autonomous systems, but are usually only applicable

in small dimensions. An interesting contribution is [116], where robust invariant sets are

computed based on an affine disturbance feedback policy. It displays similarities with our

approach in the sense that it optimizes over sets through transformations and Minkowski

sums. Considering a disturbance set Ξ, the key idea is that if a sequence of control policies

can be found that will shrink the disturbance set after k steps, a robust control invariant

set can be inferred. Some heuristics are also provided to maximize or minimize the size of

the robust controlled invariant set. The advantage is that the resulting algorithm solves a

convex program which scales nicely with the size of the system. The drawback is that it

is relatively tricky to optimize the robust invariant set since it is only indirectly related to

the control policy. Despite considering a fixed uncertainty set, this contribution showcases

affine disturbance feedback for invariance computation together.

5.2.3 Infinite, semi-infinite and robust programming

Notice that Problem (5.12) includes an infinite number of constraints, indexed by w . Such

a problem is referred to in the literature as a semi-infinite problem [135]. The most general

form of that type of problem is:

minimize f (x)

subject to x ∈ M
(5.13)

with:

M := {x |g(x, ξ) ≤ 0 ∀ξ ∈ Ξ(x)}
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The problem is called generalized semi-infinite program when the the set Ξ depends on

the decision variable x (rigorously speaking, Ξ : Rn ⇒ Rm is then a set-valued mapping). It

is a standard semi-infinite program if Ξ does not depend on x . An infinite program is a

program where the decision space is infinite dimensional, for example if we optimize over

control policies. This type of problem has been extensively studied in the literature. See

[135] for a recent literature review on the topic.

Semi-infinite programs are very general and perhaps the bridging gap between all the

topics introduced so far. Indeed it is easy to see that most problems presented so far can

be cast as semi-infinite programs.

Problem (5.13) can be rewritten:

minimize f (x)

subject to max
ξ∈Ξ(x)

g(x, ξ) ≤ 0 (5.14)

where the maximization over ξ is called the inner or lower problem. Semi-infinite programs

are in general difficult to solve. Citing [135]:

The main computational problem in semi-infinite optimization is that the

lower level problem has to be solved to global optimality, even if only a stationary

point of the upper level problem is sought.

In other words, there is no way to go around global optimization for the lower level

problem, which limits drastically the size of problem that can be solved.

Robust programming is closely related to semi-infinite programming and is the discipline

that studies optimization problem with some of the parameters being not exactly known, but

for which a set containing this uncertain parameter is available. It gives rise to inequalities

of the form:

h(x, ξ) ≤ 0 ∀ξ ∈ Ξ

The robust programming literature has mostly focused on computational complexity,

mostly by identifying instances of the problem that can be converted to convex finite

dimensional programs and therefore are tractable in medium to large dimensions [8, 9].

These are of particular interest for us since multi-stage problems tend to be plagued by

large dimensions very quickly. A description of the main results of interest is provided in

Appendix C.3 and will be referred to in the following developments, when they have been

used in this work.

5.2.4 Tracking

Another related problem is the one of output regulation, which deals with the capability

of a system to track a reference trajectory that is generated by an external dynamical

system [37]. In the finite horizon framework, the external system serves as a generator for
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the reference trajectory set. Most of the work in output regulation deals with asymptotic

tracking guarantees [37], [91]. Similarly, for systems subject to additive disturbances, the

authors of [76] show robust convergence to a neighborhood of a fixed reference that is

allowed to change occasionally. Our aim differs in that we want to guarantee tracking at all

times over a fixed horizon. Therefore, similar to [34], we are not looking for asymptotic

guarantees. In this direction, the authors of [26] utilize robust invariant sets to guarantee

tracking with specified error bounds during and after the finite prediction horizon. The

guarantees are sought for a given reference generator under the assumption that there exists

a feasible solution to the problem. However, none of the aforementioned works consider

the problem of modulating the uncertainty set while solving the control problem.

5.2.5 Recent developments in system flexibility modeling in the literature

The recent surge of interest in Demand Response and advanced interaction between loads

and the power grid have triggered numerous contributions in the domain of the modeling

of system flexibility, some of which have independently developed ideas that are close to

the ones developed in this chapter. We give a detailed description of the works that have

come to our attention in that domain and underline the main differences and similarities

that these works have with our own.

Using robust MPC is an established idea, including in the context of power grids, such

as in the recent work [153], where the authors allocate reserves while considering temporal

correlation of the demand-generation forecast and assuming the forecast error to belong to

a polytopic set defined over a finite prediction horizon. Considering temporal correlation

for uncertainty modeling is also found out to be beneficial in the context of the multistage

economic dispatch problem [80]. In both those works the uncertainty set is however fixed a

priori.

To the best of our knowledge, the first article that attempted to describe the flexibility of

a system in a synthetic way is [87]. In this work, upward and downward flexibility as well as

nominal consumption are simultaneously computed in a min-max robust MPC formulation.

The method however considers a single actuator and the solution is not robust to any

possible value of the tracking request in the same sense than in our work.

[152] and [5] consider aggregation of several subsystems to track a reference signal

and optimize maximum up-down limits on the reference, however the robust formulation is

again limited either to single dedicated actuators or predetermined schemes that distribute

the required change in the total power consumption among actuators. [158] considers

disturbance sets that are norm balls and optimizes over linear mappings to modify the

disturbance set utilizing dual norm formulations. This work was derived independently

from ours and also features the key idea of reformulating the commitment problem as a

standard robust optimization problem, also introduced in our work [46]. It was extended

in [159], which reframes the problem in a more general context by introducing the idea

of robust optimization problem with ‘adjustable’ uncertainty sets. It does not include the

extensive discussion on time correlation and information structure, but includes interesting
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developments on cases where the uncertainty sets are chosen as mapped from a space of

larger dimension, a case which is not explicitly covered in the manuscript [15]. Another

similar work is [149], where the authors propose optimizing over a linear map to be applied

to a polytopic reference set that represents energy constraints in frequency regulation

signals.

Other works have tackled similar problems in more specific contexts. [57] and [162]

propose aggregation methods for characterizing the power consumption flexibility of a

collection of thermostatically controlled loads (TCLs). This can be considered as a

particular case of the commitment problem and can be addressed with the methodology

proposed in this chapter. Another related work is [100] where the problem of serving a set

of time constrained load requests (such as electric vehicle charging) is tackled. Sufficient

conditions are given for a supply profile to be able to serve the loads and a dispatch strategy

is proposed. This work differs from ours by considering a continuous time formulation and

exploiting the specific structure of the problem to derive a solution.

A number of recent contributions are also closely related to the ones already mentioned

and prove that the idea of flexibility modeling is gaining momentum [7, 161, 89].

5.3 Main results

This section presents the main results developed to solve Problem 5.2. The core idea is to

recast this problem into another similar problem where the uncertainty set is fixed. We also

examine in detail how to ensure causality.

5.3.1 Information structure of control policies

Causality is an important characteristics of multi-stage programs and should be considered

with care, especially considering that the system in our case might be subject to heteroge-

neous sources of uncertainty which are observed at different times. We formalize here the

requirements on the control policy. We have to account for the fact that the uncertain

exogenous signals are revealed partially to the controller as time progresses. Generally

speaking, any decision variable uk might depend on a subset of the uncertainty vector ξ

and only on this subset. To make this claim more precise, the concept of the information

structure of a function f is introduced. The presentation follows concepts from Section

14.2 of [8] but adopts a different formulation.

Definition 5.7. Let I be a subset of Z[1,n], and

F(I) = {f : Rn → R | ∀x, x̂ ∈ Rn, xI = x̂I ⇒ f (x) = f (x̂)} (5.15)

where xI denotes the entries of x defined by the indices of I.

Let I = (Ik)k∈Z[1,m] be a collection of index subsets and

F(I) = {f : Rn → Rm, fk ∈ F(Ik) ∀k ∈ Z[1,m]} (5.16)
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If f ∈ F(I), then we refer to I as the information structure of f . �

Loosely speaking, F(I) denotes the set of real-valued functions that depend only on the

input indexed in I. For functions with multiple outputs, the information structure is defined

output-wise. I summarizes the information structure of the function f : the k th component

of f depends only on inputs indexed in Ik . For example, in the robust multi-stage control

setting considered here, a typical requirement of the control policy will be non-anticipativity

which states that the current control action can depend on observations made in the past;

in our notation, this fact translates to: for each stage, every control action can depend on

past measurements, so that πk ∈ F(Ik) with Ik ∈ Z[1,k−1]. Notice here a small abuse of

notation in the sense that πk is a function with values in Rnu , and by πk ∈ F(Ik) we mean

that every component of πk is in F(Ik).

Example 5.8. An open-loop policy does not depend on the realization of the uncertainty,

so that it has information structure Ik = ∅ for all k . Conversely, if control action can be

adjusted assuming full knowledge of ξ, then the information structure is Ik = Z[1,N] for all

k . �

In the following, we sometimes depict information structures using a matrix notation

where the k th row of the matrix represents the indicator vector of Ik (1 if the element

belongs to Ik , 0 otherwise).

5.3.2 Set admissibility

Following the ideas introduced in Section 5.1, we introduce the following definitions:

Given a set Ξ, we define the set of all admissible control policies mapping from

disturbance sequences to input sequences:

Δ(Ξ) :=
{
π : Ξ→ RNnu | ∀ξ ∈ Ξ, (π(ξ), ξ) ∈ Q(x0)

}
(5.17)

where we recall that Q is defined as:

Q(x0) := {(u, ξ) |φ(x0, u, ξ) ∈ X , u ∈ U , y ∈ Y } (5.18)

The argument x0 was dropped in the definition of Δ for notational simplicity. We are now

ready to introduce the main concept.

Definition 5.9. The set Ξ ⊂ RNnξ is admissible for system (5.1) in state x0 with respect

to the information structure I if

F(I) ∩ Δ(Ξ) �= ∅ . (5.19)

�

Based on Definition 5.9, we can write the family of admissible uncertainty sets for
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tracking with respect to a given information structure

Ω =
{
Ξ ⊂ RNnξ | ∃π ∈ F(I) ∩ Δ(Ξ)

}
(5.20)

Remark 5.10. We consider here a finite horizon N, but let us note that these definitions

conceptually extend to the infinite horizon case. �

First we tackle the problem of simply finding a N-step admissible reference set, without

attaching any cost function to the problem. The robust tracking commitment problem 5.2

can be written as:

find Ξ : Ξ ∈ Ω (5.21)

For a fixed uncertainty set, admissibility can be verified by searching over control policies.

However it is not obvious how to search over possible admissible sets and corresponding

control policies simultaneously. In order to treat the problem with a unified methodology,

we will characterize admissible sets mappings of an initial uncertainty set Ξ̂ by a modifier

function. The advantage of this approach will be evident in the following section 5.4,

when we formulate computationally tractable methods for evaluating the admissibility of

uncertainty sets for tracking, utilizing parameterized function based techniques available in

the robust optimization literature.

5.3.3 Implicit modulation of uncertainty sets

Let us formalize the modulation of uncertainty sets by modifier functions. We first define

the uncertainty modifier function ν : RNnξ → RNnξ , which is assumed to be bijective and

used for reshaping a given uncertainty set.

ν(Ξ̂) = {ν(ξ) : ξ ∈ Ξ̂} (5.22)

In the following, we will show that we can evaluate the admissibility of the set Ξ = ν(Ξ̂)

via conditions on the composite function π̂ = π ◦ ν that is applied to the initial set Ξ̂, as

depicted in Figure 5.1. This allows us to fix an initial uncertainty set Ξ̂, embed the modifier

function into the control policy and implicitly modulate uncertainty sets and control policies

simultaneously. To this end we introduce the following lemma:

Lemma 5.11. Let ν : RNnξ → RNnξ , be a bijection and Ξ̂ be a compact set with non-empty

interior . The set Ξ := ν(Ξ̂) is N-step admissible for tracking by system (5.1) in state x0

with respect to the information structure I if and only if

∃π̂ ∈ Δν(Ξ̂) : π̂ ◦ ν−1 ∈ F(I) (5.23)

where Δν is defined as

Δν(Ξ̂) := {π : ∀ξ ∈ Ξ̂, (π(ξ), ν(ξ)) ∈ Q} (5.24)
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Proof. : Suppose π̂ ∈ Δν(Ξ̂) and π̂ ◦ ν−1 ∈ F(I). Then we have

∀ξ̂ ∈ Ξ̂, (π̂(ξ̂), ν(ξ̂)) ∈ Q (5.25)

Let ξ := ν(ξ̂). Since ν is bijective, we have ξ̂ = ν−1(ξ). Therefore (5.25) is equivalent to

∀ν−1(ξ) ∈ Ξ̂, (π̂ ◦ ν−1(ξ), ν ◦ ν−1(ξ)) ∈ Q
⇔∀ξ ∈ ν(Ξ̂), (π̂ ◦ ν−1(ξ), ξ) ∈ Q
⇔∀ξ ∈ Ξ, (π(ξ), ξ) ∈ Q with π = π̂ ◦ ν−1

⇔π ∈ Δ(Ξ)

(5.26)

Moreover, we have that π = π̂ ◦ ν−1 ∈ F(I) by bijectivity of ν. This concludes that Ξ is

causally admissible for tracking according to Definition 5.9. The reverse direction follows

from the equivalence of all steps.

π̂

Ξ̂

ν(Ξ̂)

Q

ν

π̂ ◦ ν−1

π̂(Ξ̂)

Projξ(Q)

Figure 5.1 – Conceptual sketch of the relationships between uncertainty sets and applied

functions. The initial uncertainty set Ξ̂ is not necessarily a subset of the projection of

Q, therefore might not be admissible according to Lemma 5.5. However once we find a

feasible lifting of this set into Q, we can take its projection as an admissible uncertainty set,

which is given by Ξ = ν(Ξ̂). The corresponding admissible control policy can be obtained

by letting π = π̂ ◦ ν−1.

Remark 5.12. Since the modifier function ν is an arbitrary bijection, we do not lose generality

when we consider uncertainty sets that can be characterized as the image of a given initial

compact set Ξ̂ with non-empty interior, under ν. �

According to Lemma 5.11 we can write an equivalent formulation of the family of
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admissible sets for a given initial set Ξ̂

Ω =
{
Ξ ⊂ RNnξ

∣∣ ∃ν, π̂ : Ξ = ν(Ξ̂), π̂ ∈ Δν(Ξ̂), π̂ ◦ ν−1 ∈ F(I)} (5.27)

Figure 5.1 illustrates the relationship between the policies and the set in the case of

the full information. When we look for a N-step admissible set that belongs to Ω, the

description (5.27) allows us to implicitly manipulate uncertainty sets and control policies

simultaneously to verify admissibility, as will be seen in Section 5.3.4. However, while

searching for a modifier function ν, the condition π̂ ◦ ν−1 ∈ F(I) is difficult to evaluate

since it is a condition on a composite function that involves the inverse of ν. In the

following, we will propose a simple sufficient condition directly on ν, that is easy to evaluate

and ensures causal admissibility of the modified uncertainty set. We start by splitting the

causality conditions of the composite function π̂ ◦ ν−1.

Lemma 5.13. Let (Ik)k∈Z[1,m] be a set of information structures and f : Rn −→ R. If for

all k , f ∈ F(Ik) then f ∈ F(
⋂
k Ik).

The proof of Lemma 5.13, as well as other technical proofs in this section are grouped in

Appendix D.2. The results will be briefly discussed in this section and the reader is referred

to Appendix D.2 for more details. Lemma 5.13 states an intuitive fact, that is if the output

of a function f depends only on inputs indexed by I1 and I2, then it actually depends only

on inputs indexed by their intersection. This directly motivates the next lemma.

Lemma 5.14. Let g : Rn → Rn, be a bijection. Given an information structure I =
(Ik)k∈Z[1,n] , define Î = (Îj)j∈Z[1,n] as:

Îj =
⋂

{i |j∈Ii}
Ii (5.28)

The following equivalence holds

∀f ∈ F(I), f ◦ g ∈ F(I)⇐⇒ g ∈ F(Î) (5.29)

Equation (5.28) characterizes a set of functions which do not change the information

structure of f . Loosely speaking, it states that if f i depends on xj then g j should not

depend on anything that f i does not depend on. Notice that Îj is always nonempty and in

particular it contains j . This reflects the fact that a ‘diagonal’ mapping (where g j depends

only on j for all j in Z[0,N−1]) does not change the information structure of any function it

is composed with. for example, for linear functions it means that multiplying by a diagonal

matrix always preserves the sparsity pattern.

In Figure 5.2, the information structure Î for different information structures I are

presented. The k th row of the matrix represents the indicator vector of Ik . These matrices

can be thought of as sparsity patterns in the case where the control policies are linear. The
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I Î Notation

C0

C−l

Cl

C−l ,m

Figure 5.2 – For given information structures, the corresponding information structure of

the uncertainty modifier function

first column shows the sparsity pattern of the control policy π and the second column the

corresponding sparsity-preserving sparsity pattern. In other words, multiplying the matrix

from the first column by the matrix from the second column will result in the same sparsity

pattern. This directly helps us select control policies and modifier functions such that their

composition will still respect the required information structure. For example, as would be

expected, the first row of Figure 5.2 tells us that a lower triangular control policy composed

with a lower triangular modifier will still be lower triangular. However more complex features

in I, such as delays and forecasting, result in non-trivial sparsity patterns for Î.

5.3.4 Sufficient conditions for causal admissibility of modified uncertainty
sets

In view of Lemma 5.11, simultaneous optimization over π and ν would be beneficial for

searching admissible uncertainty sets. Lemma 5.14 is instrumental in proving that from

a control policy π̂ defined on Ξ̂ and an invertible mapping ν, a control policy defined on

ν(Ξ̂) which has the desired information structure can be recovered. Indeed, π̂ ∈ F(I)
and ν−1 ∈ F(Î) ensures that π̂ ◦ ν−1 defined on ν(Ξ̂) belongs to F(I) according to the
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lemma.

However, conditions on ν−1 are inconvenient since the aim is to optimize directly over ν.

Sufficient conditions on ν are sought to replace the condition ν−1 ∈ F(Î). Unfortunately,

a certain information structure for ν−1 does not usually result in a specific information

structure for ν. In particular, a sparse information structure for ν−1 does not generally

result in a sparse information structure for ν. For example, the inverse of a causal function

is not generally causal. The following lemma gives sufficient conditions on ν.

Lemma 5.15. Suppose ν : Rn −→ Rn is a continuous bijection of Rn and ν ∈ F(Î) as

defined by equation (5.28). Define G = {f ◦ ν | f ∈ F(I)}. We have

G = F(I)

Under mild assumptions, Lemma 5.15 states that composing f ∈ F(I) with ν results

in a function with the same information structure.

Corollary 5.16. Given an information structure I and Î as defined in equation (5.28), if ν

is a continuous bijection and ν ∈ F(Î), then ν−1 ∈ F(Î).

Proof. According to Lemma 5.15, F(I) = {f ◦ ν−1 | f ∈ G} = {f ◦ ν−1 | f ∈ F(I)}.
Hence, for any f ∈ F(I), it holds that f ◦ ν−1 ∈ F(I). The fact that ν−1 ∈ F(Î) follows

from Lemma 5.14.

Theorem 5.17. Let ν : RNnξ → RNnξ , be a continuous bijection and I an information

structure, Î defined by equation (5.28) and Δν in equation (5.24). ν(Ξ̂) is causally

admissible for tracking with respect to the information structure I if

F(I) ∩ Δν(Ξ̂) �= ∅
ν ∈ F(Î)

(5.30)

Proof. Suppose there exists π̂ ∈ F(I)∩Δν(Ξ̂). Since ν is a continuous bijection, ν ∈ F(Î)
implies that ν−1 ∈ F(Î) by Corollary 5.16. Lemma 5.14 in turn ensures that π̂◦ν−1 ∈ F(I).
Finally, application of Lemma 5.11 concludes the proof.

Theorem 5.17 provides sufficient conditions for causal admissibility of an uncertainty set

for tracking. We can define the family of admissible sets that comply with these sufficient

conditions as

Ω̃(Ξ̂) =

⎧⎪⎪⎨
⎪⎪⎩Ξ ⊂ R

Nnξ

∣∣∣∣∣∣∣∣
∃ν, π̂
Ξ = ν(Ξ̂), ν ∈ F(Î)
π̂ ∈ F(I) ∩ Δν(Ξ̂)

⎫⎪⎪⎬
⎪⎪⎭ (5.31)

For the definition of Ω̃ we have replaced the condition π̂◦ν−1 ∈ F(I) with the sufficient

but simpler conditions π̂ ∈ F(I) and ν ∈ F(Î). Therefore Ω̃ is a restriction of the original
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family of admissible sets Ω.

Ω̃(Ξ̂) ⊆ Ω (5.32)

The restriction will depend on the initial set Ξ̂ and thus the argument of Ω̃ is added to

reflect this fact. However, this restriction leads to tractable formulations based on the

available robust programming literature, as we will show in the next section.

Finally, we write the modified causal admissibility problem that is based on sufficient

conditions (5.30) as

find Ξ : Ξ ∈ Ω̃ (5.33)

5.4 Tractable approximations

The problem formulation (5.33) allows us to search over uncertainty sets implicitly by means

of modifier functions. However, the problem is still difficult in its general form, due to the

infinite dimension of the search space and the infinite number of constraints. Therefore we

will look for finite dimensional and tractable approximations of the tracking commitment

problem in order to solve it efficiently.

Using the definitions of Ω̃ and Δν , we can rewrite the modified robust tracking commit-

ment problem as

find π̂, ν

subject to ∀ξ̂ ∈ Ξ̂
(π̂(ξ̂), ν(ξ̂)) ∈ Q
π̂ ∈ F(I)
ν ∈ F(Î) .

(5.34)

Note that (5.34) is an adjustable robust optimization (ARO) problem [8]. In the

standard form of ARO, the uncertainty set is fixed, whereas the tracking commitment

problem requires optimization over possible uncertainty sets. Through manipulation of the

problem as discussed above, we have replaced the need to optimize over the uncertainty

set by the optimization of the modulation policy ν, therefore casting the robust tracking

commitment problem into the standard ARO framework, because the uncertainty modifier

ν can also be treated as a decision rule.

5.4.1 Linear policy and modifier functions

Tractable adjustable robust programming methods presented in [8] are applicable to robust

linear optimization problems. To utilize them, the following assumption is made:
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Assumption 5.18. The system is linear and described by:

x+ = Ax + Buu + Bξξ

y = Cx +Duu +Dξξ
(5.35)

with constrained state and inputs (xt , ut) ∈ Xt × Ut ⊂ Rnx ×Rnu , disturbance ξ ∈ Rnξ and

output y ∈ Rny . The sets Xt and Ut are assumed to be bounded polytopes. �

Following Assumption 5.18, the feasibility set Q also becomes polytopic and can be

written as

Q = {(u, ξ) | Hu +Qξ � q}

For the derivation of Q, H, and q see appendix D.1. This polytopic description of the feasi-

bility set allows the treatment of the modified robust tracking commitment problem (5.34)

in the uncertain linear optimization framework.

Until this point, we have not made any strong assumptions on the families of uncertainty

sets, policy and modifier functions. Results of section 5.3.4 apply to generic functions and

sets. Therefore, the sufficient conditions in (5.31) can be used to verify causal admissibility

of any uncertainty set, using generic policies and modifier functions. In the following, we

present restrictions on the family of uncertainty sets, control policies and modifier functions

that allow the verification of causal admissibility of the uncertainty set in a computationally

tractable manner.

The following assumption applies for the uncertainty set:

Assumption 5.19. The uncertainty sets under consideration are representable by intersec-

tions of convex cones as

Ξ̂ =
{
ξ | Fiξ + fi ∈ Ki , i ∈ Z[1,m]

}
(5.36)

where the cone Ki is proper (closed, convex with non-empty interior). �

In this section we build our formulation on the results of [8] which shows that restricting

the search space of policies to linear (or affine) functions leads to finite dimensional and

tractable formulations.

Let us define the linear versions of the control policy and the uncertainty modifier

π̂l in(ξ) := M̂ξ + m̂, ν l in(ξ) = Lξ + l (5.37)

where M̂ ∈ RNnu×Nnξ and L ∈ RNnξ×Nnξ is invertible. We can describe the causality

conditions by constraints on M̂ and L

M̂(k,Z[1,Nnξ]\Ik) = 0, k ∈ Z[1,N] ⇔ π̂l in ∈ F(I)

L(k,Z[1,Nnξ]\Îk) = 0, k ∈ Z[1,N] ⇔ ν l in ∈ F(Î)
(5.38)

71



Chapter 5. Robust tracking commitment

Note that the constraints (5.38) impose that the elements of M̂ and L multiplying the

elements of the uncertain variable which are not included in the information structure at

step k to be zero, thus enforcing causality of the linear functions π̂l in and ν l in with respect

to F(I) and F(Î), respectively.

Let us now formulate the set admissibility problem (5.34) with linear policies given

in (5.37) and conic uncertainty sets described by (5.36).

find M̂,L, m̂, l

subject to ∀ξ̂ : Fi ξ̂ + fi ∈ Ki , i ∈ Z[1,m]
H(M̂ξ̂ + m̂) +Q(Lξ̂ + l) � q
(M̂,L) satisfies (5.38)

(5.39)

The invertibility condition on L is not explicitly enforced. Invertibility can be checked a

posteriori when solving (5.39). In general, an appropriate choice of cost function results

in invertible matrices. Once the problem is solved, a feasible solution (M̂,L, m̂, l) can

be used to construct the uncertainty set that is causally admissible for tracking and the

corresponding control policies:

Ξ = LΞ̂ + l , π(ξ) =Mξ +m, M = M̂L−1, m = m̂− M̂L−1l (5.40)

To recover a tractable formulation of (5.39), the worst case realizations of the uncertainty

can be considered by enforcing the constraint; max
ξ̂∈Ξ̂

{
HMξ̂ +QLξ̂

}
� q −Hm̂−Ql where

the maximization is meant row-wise. As reviewed in Section C.3, one can replace the

maximization by dualizing this maximization problem. Thereafter, it is not necessary to

solve the min problem, since existence of a feasible dual variable is sufficient. Therefore,

the original semi-infinite constraint under uncertainty can be transformed into a finite

dimensional constraint on the dual variables. It reformulates as:

find Z, M̂,L, m̂, l

subject to ZTi ∈ K∗i , i ∈ Z[1,m]
m∑
i=1

Zi fi � q −Hm̂−Ql

m∑
i=1

ZiFi = −
(
HM̂+QL

)
(M̂,L) satisfies (5.38)

(5.41)

where the dual vectors are stacked in matrices Z i . The dual reformulation for the tracking

commitment problem (5.39) is convex in linear control policies parametrized by M̂, m̂

and linear uncertainty modifiers parametrized by L, l . Therefore, when the sets Ki are

polyhedral, second order or semi-definite cones, the problem formulation (5.41) allows

tractable computations of feasible reference sets admissible with respect to the information
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structure I, by system (5.35). Table 5.1 gives a summary of problem complexity in case of

most common uncertainty sets for the reference and disturbance.

Ξ Dual reformulation

F ξ � f LP

F ξ + f : ‖r‖2 � 1 SOCP

F ξ + f ∈ S+ SDP

Table 5.1 – Optimization type for (5.41), depending on the type of uncertainty set. Note

that the polytopic representation also covers 1 and ∞ norm balls. An extended table is

discussed in [51]

.

5.5 Extensions of the robust tracking commitment problem

5.5.1 Nonlinear policy and uncertainty modifiers

The formulation (5.41) is restricted to affine functions, but in certain cases it is possible to

deal with nonlinear policies (or modifier functions) in a computationally tractable manner.

The key principle, introduced in [8] and studied in greater detail in [41] is to consider a

modified uncertainty set which is the image of the original uncertainty under a nonlinear

lifting. If the lifted uncertainty set or its convex hull can be represented in the conic

form of (5.36), the machinery of linear policies and modifier functions can be applied.

An extensive list of tractable instances is given in [41] and an example is described in

Appendix C.3. The combination of the nonlinear lifting and linear policy and modifiers

results in a nonlinear policy and modifier function.

Consider again the constraints:

Hπ(ξ) +Qν(ξ) � q, ∀ξ ∈ Ξ (5.42)

We define the lifted uncertainty variable, and the corresponding uncertainty set as

Z := {ζ = Λ(ξ), | ξ ∈ Ξ} (5.43)

with Λ : Rk −→ Rk ′ a nonlinear lifting operator. Following [41], we may require that there

exists a retraction operator ρ such that ρ ◦ Λ = Ik , the identity operator. This ensures

that the lifted policy subsumes the linear policy and therefore if there exists a linear policy

satisfying constraints then there also exists a nonlinear one of that form. This implies that

k ′ ≥ k and Λ is injective. We can now choose the policy and modifier functions under the

form:

π(ξ) = M̃ζ + m̂ = M̃Λ(ξ) + m̂ and ν(ξ) = L̃ζ + l = L̃Λ(ξ) + l (5.44)
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and the objective is then to find M̃, L̃, m̂ and l such that:

HM̃ζ +QL̃ζ � q −Hm̂−Ql , ∀ζ ∈ conv(Z) (5.45)

As discussed in Appendix C.3, if the convex hull of Z can be recast in the form of (5.36),

then a tractable robust counterpart can be formulated.

5.5.2 Modulating the tracking error set

We start by making the following observation: The parameter q in Problem (5.41) enters

the problem linearly. This implies that it can be freely optimized. This can prove useful to

relate the size of the constraint set to the size or magnitude of the uncertainty.

Example 5.20. Consider a simple input tracking problem. Suppose ξ is a reference signal to

be tracked by the inputs. Say that:

y = c�u u − ξ

and Y = {y |Sy ≤ h}. Suppose we are looking for scalings of a normalized uncertainty

that can be tracked, so that ξ = λξ̂ with λ a scalar. It might be useful to also parametrize

Y such that h = ĥλ so that the allowed tracking error is proportional to the magnitude of

the scaling. In turn h enters linearly in q so the convex nature of the problem is conserved.

This situation exactly arises in the case of secondary frequency control since the tracking

error allowed is defined as a fixed percentage of the accepted bid, see section 7.4 for the

detailed implementation on an example. �

This also allows one to implement soft constraints on the system, which is typical in

MPC problems to ensure feasibility.

5.5.3 Optimal tracking commitment

As mentioned earlier, the set admissibility (5.21) is a feasibility problem. On the other hand,

the optimal set admissibility problem looks into minimizing a cost function.

minimize
π∈F(I)∩Δ(Ξ)

J(π,Ξ) (5.46)

Relying on the tractable formulation with linear control policies and uncertainty modi-

fiers (5.39), we can solve a tractable version of the robust tracking commitment problem 7.2.

minimize J(u,L)

subject to ∀ξ̂ : F ξ̂ + f ∈ K
HM̂ξ̂ +QLξ̂ � q −Hm̂−Ql
(M̂,L) satisfies (5.38)

(5.47)
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For notational simplicity, the uncertainty set is described by a single conic set here, but they

can also be defined as the intersection of several conic sets as in (5.36). The dependency of

the cost function on L captures the fact that the cost might depend on the transformation

applied to the uncertainty set. Typically, a large uncertainty set may be rewarded. For

example, following the simple observation that:

Vol(LΞ̂ + l) = det(L)Vol(Ξ̂)

where Vol denotes the volume of a set, we see that we can try to maximize the determinant of

L to maximize the volume of the modified uncertainty set. Using appropriate manipulations,

the problem remains convex. Another proxy can be to maximize the trace of L which also

favor ‘large’ uncertainty sets[159].

With a suitable cost function, the optimal commitment problem (5.47) can be solved.

Natural cost functions would usually depend on the realization of the uncertainty, that is

J = J(u, ξ,L) = J(ξ,L) since u is a function of ξ. It is typical then to consider either an

expected cost:

J̄ = Eξ
[
J(ξ(i),L)

]
(5.48)

for which a sample average approximation can be taken as:

J̄ =
1

Ns

Ns∑
i=1

J(ξ(i),L) (5.49)

where the ξ(i)’s are i.i.d. samples of the uncertainty. This requires either availability of

previously observed samples or some probabilistic information on ξ. Another approach is to

use a worst case approach, by transforming the problem into:

minimize γ

subject to ∀ξ̂ : F ξ + f ∈ K
HM̂ξ̂ +QLξ̂ � q −Hm̂−Ql
J(ξ,L) � γ
(M̂,L) satisfies (5.38)

(5.50)

Now depending on the nature of J, the robust constraint J(ξ̂, L) � γ ∀ξ̂ ∈ Ξ can be

converted to a tractable form. In particular, if J is linear in ξ̂, then that constraint can be

dealt with as discussed in Section 5.4.1.
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5.6 Discussion about the modeling assumptions and the use of
robust programming

Our aim is to solve an uncertain multi-stage optimization problem. We use here a robust

programming approach by restricting the uncertainty to belong to a set for which constraints

need to be satisfied. Another common approach to solve this type of problem are stochastic

programming methods [130], regrouping a number of methods whose common denominator

is to use a probabilistic description of the uncertainty. Similarly to robust programming

methods, stochastic programming methods require assumptions to solve the problem

efficiently. They often use realizations of the uncertainty, available under the form of

samples. One of the most common way of solving such problems is to form a so-called

scenario tree, a structure taking into account the causality requirement of the problem.

The complexity of the scenario grows exponentially when the horizon increases, which

is impractical for our purposes due to the large horizon we are faced with. A possible

simplification is to reduce the number of time stages to two.

The work [33] includes a comparison between a robust programming approach as

presented in this manuscript and a two-stage stochastic programming approximation. It

highlights that the stochastic version is less conservative than the robust one, a typical

observation. However, we have also observed that depending on the problem, the two-stage

approximation is too optimistic: in particular, in the case of the intraday market it results is

an unrealistic behavior of the controller.

Note that even in the robust programming case, the choice of the set in which the

uncertainty lies is implicitly associated to some probabilistic guarantees [92]. Finally, the

robust approach only applies to the constraints, while the cost can still be treated in a

probabilistic fashion, as briefly discussed in section 5.5.3.

5.7 Applications

In this section, we will illustrate the methods and concepts put forward above on an example

of a building providing ancillary services to the grid.

5.7.1 Power tracking with a building

Let us look at the problem of power consumption tracking with a building. Let us assume that

the building needs to declare two quantities ahead of time: its baseline power consumption

and the flexibility in power consumption around this baseline it can accommodate. For that,

it has to provide one number λ called the capacity bid that represents the maximum positive

or negative power consumption deviation the building is willing to support. For example, if

λ = 10kW, it means it could be required to increase (or decrease) its power consumption

by 10 kW for the period of commitment. We assume that the building receives its power

consumption deviation request in real-time. At the time it receives the signal, the building

controller needs to make sure it adjusts its power consumption by the amount requested
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with respect to the pre-declared baseline. We assume that the building can change its

power consumption much faster than the sampling time of the robust tracking commitment

problem, so that response can be assumed immediate. Deviations in the power consumption

tracking are allowed within an error margin proportional to the bid. For details on frequency

control, the reader is referred to [142] and the extensive discussion in Part III.

Notice that the robust tracking method we just described is particularly suited for this

application. Indeed, all possible requests can be represented by a reference set R, that

the building operator can modify (essentially in this case, scale up or down depending on

the value of λ). An optimal set size can be computed provided that an appropriate cost

function is chosen as will be demonstrated next. By choosing y defined in equation (5.1)

to be the total power consumption of the building and X and U to represent the operating

constraints of the building, we can formulate this problem as a robust tracking commitment

problem.

We consider an office building with three controlled zones served by individual air

handling units that we assume can control the heat fluxes to the zones. A linear state-space

model of the building was extracted and validated against EnergyPlus simulation data using

the toolbox OpenBuild, whose working principles are detailed in Part I. One week of typical

summer weather for the city of Chicago is used in this study. The model of the building is

a model of the form (5.70) with state dimension nx = 10 and input dimension nu = 3. The

input vector u represents the thermal power input power to the zones (which is negative

since it is cooling season). In this study, y is a scalar that represents the total electricity

consumption so that yk = α
∑nu
i=1 |ui | with α the electric to thermal conversion factor.

For simplicity, a linear relationship is assumed here but a more detailed model could be

used depending on the heating system, provided it is linearized. The peak thermal cooling

load of the building is 45kW for the summer period. The input constraint set U specifies

maximum and minimum cooling levels in the rooms so that ui ,min ≤ ui ≤ ui ,max = 0 for

each thermal zone input, reflecting the sizing of the equipment. The state constraints

X specifies temperature zones in the constraints so that the temperature is maintained

between 20◦C and 25◦C.

The uncertainty is divided in two parts, so that ξ = (w�; r�)� with w the disturbance

affecting the system and capturing the effect of internal gains, solar radiations and outdoor

temperature and r the tracking reference. Accordingly, the uncertainty takes the form:

Ξ =W ×R

The decision process goes as follows: at time t0 = 0, the building starts in initial condition x0.

The tracking period starts at time t1 and ends at time t2, therefore leaving a ‘preparation’

period for the building controller from t0 to t1. The building controller computes a baseline

consumption pnom and up-down regulation limits around this baseline. Up-down regulation

bids result in a ‘box’ uncertainty set. We therefore fix the basic uncertainty shape as the
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unit box:

R̂box = {r | ‖r‖∞ ≤ 1} (5.51)

For the external disturbance from weather and internal gains, the disturbance set is

defined as follows

W = {wnom + w stoch |wTstoch,iQiw stoch,i ≤ 1, i = 1, 2, 3} (5.52)

As such, W is the direct product of three ‘uncorrelated’ ellipsoidal uncertainty sets so

that W =Wsun ×Wgains ×Wtemp. wnom is the nominal prediction of the uncertainty over

the prediction horizon and the three ellipsoids represent confidence sets that should cover

a reasonable part of the possible outcomes for the disturbance. The choice of the Qi ’s

determines the size of the set W and should be done so that W contains the actual weather

realization with a high confidence (see , e.g. [92]). Generally speaking, the selection

of good uncertainty sets in classical robust optimization are a subject of active research

[14] and fall outside the scope of the present work, but notice that rather than fixing the

uncertainty W, the method proposed in this work could also be used to optimize for W as

well and by doing so, evaluate how much prediction error in the weather and the internal

gains can be accommodated.

Finally we have Ξ̂ = R̂ ×W.

We consider here an affine controller and modifier function as in (5.37). Assuming

that the flexibility needs to be constant over the tracking period as is for example required

in the Swiss flexibility market (see details in Part III), we have to restrict the modifier

function to a uniform scaling of the uncertainty set (that is, time-varying flexibility is not

allowed). For clarity we keep the description of the uncertainty split between the reference

to track and the external disturbance, so that: ξ = (r ,w) and ν = (νR, νW). We assume

the weather uncertainty is unknown at the time of the decision whereas the reference is

revealed as it needs to be tracked: this results in an information structure that is depicted in

Figure 5.3. We see that the modifier function could theoretically modify the uncertainty set

so as to “mix” the external disturbance and the reference. In this application, it would not

have physical sense so it is preferable to keep a block diagonal structure for the modifier’s

information structure. The disturbance uncertainty set is fixed a priori while the reference

set can be modified. Furthermore, in the case that the reference set is a fixed up/down box

along the horizon then the reference tracking set can only be scaled uniformly so that the

modifier function will reduce to the simpler form:

L =

(
λIN 0N,Nnw

0Nnw ,N INnw

)
(5.53)

Notice that enforcing (5.53) implicitly enforces the requirement that ν ∈ Î. The descrip-

tion of the uncertainty set Ξ̂ = R̂ ×W can easily be put into the form of equation (5.36)

since it is the Cartesian product of a polyhedron with three ellipsoids.

78



5.7. Applications

(a) I

(b) Î

Figure 5.3 – Information structure for the example. (a) shows that decisions at time step

t can depend on the reference up to time t and disturbance up to time t − 1. (b) is the

resulting information structure for the modifier function.

We assume that a payment proportional to the bid is made to the reserve provider, and

the energy is also paid for, yielding the cost function J = ce
�pnom − cflexλ where ce is the

vector of time-varying prices of electricity, pnom is the baseline consumption and cflex is the

unit reward price of the power tracking commitment (hence promising to track ±1kW for

the commitment period is rewarded at the price cflex).

The tracking error is sized proportionally to the tracking requirement so that tracking

errors amounting up to 10% of the maximum tracking requirement are allowed. This yields:

y ∈ Y := {e | ‖e‖∞ � 0.1λ}

which results in a tractable reformulation as described in section 5.5.2.

A horizon of one day with a time step of one hour is considered. For the sake of

illustration, we take c te << cflex in order to favor participation in the tracking commitment.

The problem solved is a second-order cone problem with 200,000 non-zero variables and 900

second-order cone constraints. Solving time on a 2.7GHz i-Core 7 platform was 7 seconds.

The optimal value of λ is 5.4, meaning that the building can offer a 5.4kW up/down power

tracking capacity for a period of 10 hours. This represents 8% of the peak cooling power
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Figure 5.4 – Trajectories for different weather and reference scenarios in the optimized

uncertainty set. Shaded region is the tracking commitment period. Black lines show the

’nominal’ scenario where the reference is zero and the weather takes its predicted value.

From top to bottom: temperature in zones, total power consumption, tracking reference,

tracking error, and weather scenarios.
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and 36% of the average power consumption for that day.

Figure 5.4 shows the trajectories generated in response to randomly generated weather

and reference signals inside the uncertainty sets. In each of the plots, the shaded band

shows the reference tracking times. The different plots show the average temperature in

the building as well as in individual zones, the total power consumption in the building, the

requested power consumption to be tracked on top of the nominal consumption, and the

tracking error. It can be observed that in the nominal case, the power consumption increases

during the day to compensate for the higher solar radiation and outside temperature as

shown in the bottom plot. Therefore, the baseline consumption varies during the day to

maintain the temperature at the nominal value of 22.5 oC. In addition, it is seen how

the temperature and power consumption changes in response to varying tracking requests

(depicted in the middle plot). As a result of the requested increase or decrease of the power

consumption, the temperature respectively drops or rises in the rooms, within the prescribed

comfort constraints.

5.7.2 Influence of the integral constraint in the uncertainty set and the
‘virtual battery’ concept

In the previous example, we impose that the building be able to offer up or down regulation

for a long period of time, which can be limiting for loads. In this section, we propose a way

of mitigating this issue by using time-correlated (meaning the constraint describing the set

couple different time stages) reference sets with integral constraints that capture more

accurately the capabilities of the load. Let us consider an uncertainty set of the form:

R̂batt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
r

∣∣∣∣∣∣∣∣∣∣∣

s0 =
smax

2

0 ≤ st ≤ smax, ∀t ∈ Z[1,N]
st+1 = st + rt ∀t ∈ Z[1,N]
− pmax ≤ rt ≤ pmax ∀t ∈ Z[1,N]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.54)

By analogy with the feasible set of a simplified battery model, we will refer to this

uncertainty set as the ‘battery’ reference set, where s represents the state of charge of

the battery. Notice that contrary to the box reference set, the battery reference set is

time-correlated.

We respectively consider a box reference set (5.51) and a battery reference set (5.54)

and compute the maximum bid that can be offered. Notice that the design of the battery

reference set requires the choice of a value for the integral constraint limit smax and the

maximum power pmax. We can first fix pmax = 1 without loss of generality since we will

be scaling the set. We assume for now that smax = 5.6kWh, which is then the capacity to

power ratio of the battery.

To study the influence of the integral limit in the reference set, the tracking bid is

evaluated as a function of the duration of the tracking commitment. A preparation time

of 8 hours without tracking is kept in order to cancel the effect of the initial condition.
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Figure 5.5 – Tracking capacity bid versus duration of participation for box and battery

reference set

The weather is considered known perfectly in advance in this case to rule out other factors

of uncertainty in the computation. Beyond 66 hours, the computational burden becomes

prohibitive. The maximum bids for the battery and the box uncertainty sets are reported

on Figure 5.5. We can observe that, beyond 12h of consecutive participation, introducing

an integral limit for the tracking commitment allows increasing the tracking bid, and more

so as the duration of participation time increases. Thanks to the integral constraints,

situations of long lasting positive or negative tracking requests are ruled out, thus relieving

the tracking requirements on the building, and leading to less conservative solutions.

This problem corresponds to the ‘virtual battery’ idea briefly mentioned in Section 5.1.

Knowing the values of the scaling λ∗ and baseline pnom computed, we can conclude that

the building can act (in terms of power consumption) like an ideal battery described by

parameters (λ∗;λ∗smax). Therefore, it makes sense to say that the building is a virtual

battery.

The virtual battery is described with two parameters (plus the baseline), and the

parameter pair above is just one possible battery that the building can behave like. It is

instructive to look at all possible parameter pairs that describe what the building can do.

For that, we can again exploit our method as follows. First let us notice that:

Rbatt = Rbox(pmax)
⋂
Rsoc(smax) (5.55)
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with:

Rbox(pmax) := {r | ‖r‖∞ ≤ pmax} = pmaxRbox(1)

and

Rsoc(smax) := {r | ‖TNr‖∞ ≤
smax

2
} = smaxRsoc(1)

and TN the unit lower triangular matrix that maps a power profile into the corresponding

state of charge trajectory.

If we consider a horizon of tracking N, it holds that Rbox(pmax) ⊆ Rsoc(smax) if

pmax <
smax
2N and conversely that Rsoc(smax) ⊆ Rbox(pmax) if smax < pmax. In addition, it is

straightforward to see that if the load can behave like the battery (pmax, smax) then it can

also behave like the battery (αpmax, αsmax) for any α ∈ [0, 1]. Therefore, we can fix one

of these two parameters and find the largest scaling of the resulting battery the system is

equivalent to. For example, let us fix the value of pmax to 1 and grid values of smax between

pmax and 2Npmax.

Using the notation Rbatt = {r |F r + f (smax, pmax) ≥ 0} with:

F = −
[
IN

TN

]
⊗
[
1

−1

]
and f (smax, pmax) =

[
12n ⊗ pmax
12n ⊗ smax

2

]

We solve:

maximize λ

subject to ZT ≥ 0
Zf (1, smax) � q −Hm̂−Ql
ZF = −

(
HM̂+QL

)
(M̂,L) satisfies (5.38)

L = λIN

(5.56)

This is a parametric linear program where the constraint matrix depends on smax.

In general, this type of parametric linear program is quite difficult to analyze and the

optimal value function is a piecewise rational function of the parameter vector [39]. Using

the particular structure of this problem, we can push the analysis further. Noting that

f (1, smax) = vsmax with v a column vector, we can rewrite the inequality as:

Zv ≤ 1

smax
(q −Hm̂−Ql)

for any smax > 0. Introducing m̃← m̂
smax

and l̃← l
smax

, the problem now takes the form of a

more standard parametric LP with the right hand side of the constraint affine in θ = 1
smax

.

We then know that the optimal solution is a piecewise-affine function of θ. In fact,
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for smax ≤ pmax, we have that Bbatt = Bsoc(smax) = smaxBsoc(1) and λ∗(smax) =
λ∗(1)
smax

.

Similarly, if smax ≥ 2Npmax, then Bbatt = Bbox(1) and therefore λ∗(smax) = λ∗(2N). We

report in Figure 5.6 the value of the optimal value function as a function of smax.
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Figure 5.6 – Maximum admissible battery scaling as a function of the state of charge limit

From these values we can reconstruct the parameters of all batteries that are admissible

for the system. To do so, we can use the previous curve and compute the values of

the parameters corresponding to the maximum scaling of each battery. For a battery of

parameter (1, smax), the maximum admissible scaling λ∗(smax) was computed which yields

the battery parameters (λ∗(smax), λ∗(smax)smax). Since λ∗(smax) was piecewise-affine in
1
smax

, then λ∗(smax).smax is a piecewise-affine function of smax. Consequently, the Pareto

curve of the maximum admisssible parameter pairs takes a piecewise affine form, as is

suggested by Figure 5.7, which depicts the parameters pairs of all causally admissible virtual

batteries.

5.8 Infinite Horizon guarantees

So far we have looked at finite horizon problems. However, we have no guarantees about

what happens beyond the horizon N. Ideally, we would like to be able to solve:

Problem 5.21. Given an initial condition x0, find a set Ξ indexed by N and a control policy

π with πt : Ξ→ Rnu for t ≥ 0 such that:

∀ξ ∈ Ξ, φt(x0,π(ξ), ξ) ∈ Xt , πt(ξ) ∈ Ut , yt ∈ Yt , ∀t ≥ 0 (5.57)
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Figure 5.7 – The shaded region shows all battery parameter pairs that define a causally

admissible battery reference set for the building over horizon N. p∗ are s∗ are the parameters

the smallest box and ‘soc’ box causally admissible, respectively.

and

π ∈ F (5.58)

�

Notice that Ξ then becomes infinite dimensional (indexed over time). Proving infinite

horizon tracking may prove significantly more involved, especially if we are still trying to

optimize over the set Ξ. In the most general case, Ξ will be time-correlated. For example,

the idea of the virtual battery discussed in section 5.7.2 can be extended to the infinite

horizon case by considering the reference set:

Ξ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
r

∣∣∣∣∣∣∣∣∣∣∣

s0 =
smax

2

0 ≤ st ≤ smax, ∀t ∈ N
st+1 = st + rt ∀t ∈ N
− 1 ≤ rt ≤ 1 ∀t ∈ N

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.59)

Even when Ξ is fixed, there is no known efficient way to solve this problem, because of

the time invariance and correlation of the problem. Additional assumptions are needed.
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Guaranteeing infinite horizon feasibility is a classical concern in MPC, as we discussed

in section 5.2.1. The usual way to handle this type of problem is to solve the problem on a

finite horizon while imposing terminal constraints. By solving the problem repeatedly with

a receding horizon, the existence of an infinite horizon policy is guaranteed provided the

problem can be solved for the initial condition. To follow the same approach, the following

assumption is required:

Assumption 5.22 (Time-invariance after N step).

∀t ≥ N, Yt = Y, Ut = U, Xt = X, Ξ = Ξ:N−1 × RN (5.60)

where R ⊆ Rnξ and Ξ:N−1 ⊆ RNnξ . �

Assumption 5.22 states that the problem becomes time-invariant after a finite time

horizon N. The uncertainty set may still be time-correlated over the first N steps.

At time step 0, we propose to solve the following problem:

find π, Ξ:N−1
such that ∀i = 0, . . . , N − 1

∀ξ ∈ Ξ:N−1
φi(x, u, ξ) ∈ Xi
φN(x, u, ξ) ∈ Xf
ui = πi(ξ) ∈ Ui
π ∈ F

(5.61)

The choice of Xf will be discussed next.

Remark 5.23. Problem (5.61) is identical to the robust tracking commitment problem 5.2,

with the addition of the terminal constraint φN(x,u, ξ) ∈ Xf . If Xf is a polytope, then, the

developments of Sections 5.3 and 5.4 can still be followed and the uncertainty set can still

be optimized tractably. �
Note that if control decisions at time step t can depend on disturbance up to time t − 1

(ie π ∈ C−1), we retrieve a problem close to a classical robust MPC problem. We then

need Xf to be a robust controlled invariant set, as discussed in section 5.2.1.

Lemma 5.24. Under assumption 5.22, if Xf is a robust controlled invariant set for sys-

tem (5.1) subject to constraints u ∈ U, x ∈ X, y ∈ Y with disturbance ξ ∈ R, solving

problem (5.61) with F = C−1 guarantees the existence of a solution to problem 5.21 with

Ξ = Ξ:N−1 × RN.

Proof. It follows directly from the definition of a robust controlled invariant set together

with the assumption of time invariance of the problem after horizon N.

In the case where decisions at time step t can depend on disturbance up to time t (ie

π ∈ C0), then another type of invariant set is required:
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Definition 5.25. A set Xf is invariant for tracking in set R for system (5.1) subject to

state, input and output constraints X, U and Y when:

∀x ∈ Xf , ∀ξ ∈ R, ∃u ∈ U : f (x, u, ξ) ∈ Xf , g(x, u, ξ) ∈ Y and Xf ⊆ X (5.62)

�

In contrast to most of the literature where it is assumed that the control input is chosen

before the disturbance affecting the system is revealed, in the case of robust tracking, the

disturbance is revealed prior to the choice of the control decision. This type of problem is

studied in [6] where multi-stage max-min problems are studied and solved using a dynamic

programming approach. We call invariant set for this type of situation invariant set for

tracking. Invariant sets for tracking are discussed in [115].

Lemma 5.26. Under assumption 5.22, if Xf is as an invariant set for tracking in set R

for system (5.1) subject to constraints u ∈ U, x ∈ X, y ∈ Y , solving problem (5.61) with

F = C0 guarantees the existence of a solution to problem 5.21 with Ξ = Ξ:N−1 × RN.

Proof. It follows directly from the definition of an invariant set for tracking together with

the assumption of time invariance of the problem after horizon N.

The two previous lemmas allow to solve the infinite horizon problem by looking at a

finite horizon problem.

5.8.1 Computation of maximal invariant sets for tracking

The computation of invariant sets is usually difficult. The computation of robust controlled

invariant sets have been studied in [116, 121] and their use in the context of tracking in

[26].

We give here few results pertaining to the computation of invariant sets for tracking

that complement the results from [115].

Let us denote for any ξ, X∞(ξ) the maximal controlled invariant set for the system

x+ = f (x, u, ξ), y = g(x, u, ξ) where ξ is fixed and known and X∞(R) the maximal invariant

set for tracking for system (5.1). The following holds:

Lemma 5.27. X∞(R) ⊆
⋂
ξ∈R X∞(ξ)

Proof. Let us first prove that there exists a maximal invariant set for tracking. If X1 and

X2 satisfy (5.62), then it is easy to see that X1 ∪X2 ⊆ X and for x ∈ X1 ∪X2, then either

x ∈ X1 and we can see that there exists u ∈ U such that f (x, u, ξ) ∈ Xf , g(x, u, ξ) ∈ Y
by (5.62) applied to X1, or x ∈ X2 and the same holds by (5.62) applied to X2. Finally,

this means that X1 ∪ X2 is also an invariant set for tracking in set R for (5.1).

Now, let us prove that X∞(R) ⊆
⋂
ξ∈R X∞(ξ), i.e. that for any ξ ∈ R,X∞(R) ⊆ X∞(ξ).

Consider ξ ∈ R. By (5.62), ∀x ∈ X∞(R), ∃u ∈ U : f (x, u, ξ) ∈ X∞(R), g(x, u, ξ) ∈
Y and X∞(R) ⊆ X, therefore X∞(R) is an invariant set for the affine system x+ =

f (x, u, ξ), y = g(x, u, ξ), and it follows that X∞(R) ⊆ X∞(ξ).
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The converse inclusion is not true, that is, in general
⋂
ξ∈R X∞(ξ) � X∞(R), as

illustrated by the following example:

Example 5.28. Consider the system x+ = −1.1x + u + ξ subject to the constraints

x ∈ [−5, 5], u ∈ [−0.2, 0.2] and R = [0.1;−0.1]. In this simple case, it is easy to see

that X∞(0.2) = [−2.9048, 3.0952], and X∞(−0.2) = [−3.0952, 2.9048], and consequently,⋂
ξ∈R X∞(ξ) = [−2.9048, 2.9048].

However, it is easily seen also that X∞(R) = [−1, 1] which is much smaller than⋂
ξ∈R X∞(ξ).

Actually, the reason that
⋂
ξ∈R X∞(ξ) � X∞(R) is that being in the intersection of the

X∞(ξ) guarantees that the state can be maintained in any X∞(ξ) but not necessarily in

their intersection. �

Consequently, it is not enough to be able to compute control-invariant sets to compute

invariant set for tracking and a variant of the procedure described in Section C.1 is needed.

For that, a new pre-set operation needs to be defined, as the tracking pre-set:

preRtrk(X) := {x |∀ξ ∈ R, ∃u ∈ U, f (x, u, ξ) ∈ X, g(x, u, ξ) ∈ Y } (5.63)

where the subscript trk denotes the fact that this is a tracking pre-set where the input u

can be different for each value of the tracking reference ξ. We can readily see that:

preRtrk(X) =
⋂
ξ∈Ξ

preξ(X) (5.64)

where the notation preξ denotes the preset for system x+ = f (x, u, ξ) is defined as:

preξ(X) := {x |∃u ∈ U, f (x, u, ξ) ∈ X, g(x, u, ξ) ∈ Y } (5.65)

Now, the Algorithm 1 on page 95 is valid to compute the maximal invariant set for

tracking, provided the pre-set operation is replaced as specified by (5.63).

Lemma 5.29. Under the assumption that U is convex, f is control and disturbance affine

(f (x, u, ξ) = f (x) + g(x)u + h(x)ξ) and R is polytopic, then the tracking pre-set of a

convex set X can be computed as:

preRtrk(X) =
⋂

ξ∈vert(R)

preξ(X) (5.66)

where vert(R) denotes the set of vertices of R

Proof. Since vert(R) ⊆ R, it holds that
⋂
ξ∈R preξ(X) ⊆

⋂
ξ∈vert(R) preξ(X).

Now, let x ∈
⋂
ξ∈vert(R) preξ(X). That means that for every vertex ξ(i) of R, there exist

a u(i) ∈ U such that f (x, u(i), ξ(i)) ∈ X. Consider any ξ ∈ R. ξ can be written as a convex

combination of the vertices of R, so that ξ̄ =
∑
i λ
(i)ξ(i) with

∑
i λi = 1 and λi ≥ 0∀i . We

know that by convexity of U, ū =
∑
i λiu

(i) ∈ U and f (x, ū, ξ̄) =
∑
i λ
(i)f (x, u(i), ξ(i)) ∈ X

88



5.8. Infinite Horizon guarantees

by convexity of X. This proves that x ∈ preR̄(X) for all x so that x ∈
⋂
ξ∈R preξ(X). Hence,⋂

ξ∈vert(R) preξ(X) ⊆
⋂
ξ∈R preξ(X) which concludes the proof.

Furthermore, under the same assumption, together with the convexity of the constraint

set X, we have that the maximal invariant set for tracking is convex [115]. Armed

with lemma 5.29, we can now compute invariant sets for tracking using ‘usual’ pre-set

computation for affine systems, using a finite number of points, provided we can enumerate

the vertices of the set R. This is particularly convenient when the reference has small

dimension: it is the case in the reserve provision case where the reference has dimension

one and therefore R has only two vertices.

Example 5.30. We compute the maximal invariant set for tracking for a linear system.

We consider one of the room of the LADR experimental setup, as described in the next

part in Section 7.3.2. Around an operating point, we would like to compute the maximum

invariant set for tracking for a reference set R. The system has dimension 2 and we

fix R = [−rmax; rmax], we compute the maximal invariant set for tracking with output

constraints y = Cx ∈ [Tref − β;Tref + β], input constraints u ∈ [0;Pmax] and tracking

constraints u − r ∈ [−ε, ε]. By applying Algorithm 1 on page 95 adapted to the tracking

case, we depict the result in Figure 5.8. In this instance, Tref = 23
oC, β = 2oC and

rmax = 0.27kW . The computation assumes that the system is at steady state with an

outside temperature of 0oC and no sun.

�

5.8.2 An implicit characterization of control-invariant sets for tracking

The explicit computation of maximal invariant set for tracking as described in the previous

section is only possible for small system dimensions. It is useful to have an implicit description

of invariant sets. We make the following assumption:

Assumption 5.31. We consider the system

x+ = Ax + Bu

y = Cx +Duu +Dξξ
(5.67)

In addition, the tracking constraints are only active until time step N, or in other words

Yt = Rny ∀t ≥ N �

This assumption is tailored to the reserve provision context, where the system is subject

to operational constraints captured in U and X and needs to commit reserves for tracking

on a predefined period of time, and therefore has practical relevance.

Under assumption 5.31, we propose a solution that does not rely on the (often expensive)

explicit computation of an invariant set. We introduce an implicitly defined terminal condition,

which ensures infinite horizon feasibility. We follow the idea of [75], by enforcing that xN is

a feasible steady state of the system.
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Figure 5.8 – The red region shows the state constraint set and the blue polyhedral regions

depict the successive iterations of the algorithm computing the maximal invariant set for

tracking for the system (4 iterations to termination)

It is easy to see that the set:

Xss = {x | ∃u ∈ U : x = Ax + Bu and x ∈ X} (5.68)

is an control-invariant set for the system.

Now, let us examine how to solve Problem 5.21 with Xf = Xss under assumption 5.31

and affine policies. We also define uN as an affine function of the reference, so that

uN = Mssξ +mss .

The equations xN ∈ X and uN ∈ U are additional robust inequalities and can be

dealt with according to the developments of Section 5.4.1. The steady-state condition

xN = AxN + BuN then remains. We have that xN is an affine function of ξ:

xN = Āx0 + B̄Mξ + B̄m, (5.69)

where Ā := AN , B̄ :=
[
AN−1B · · · AB B

]
. The steady-state equation from (5.68)
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yields:

Āx0 + B̄Mξ + B̄m = A(Āx0 + B̄Mξ + B̄m) + B(Mssξ +mss) ∀ξ ∈ Ξ (5.70)

If Ξ is full dimensional, then a necessary and sufficient for (5.70) is:

Āx0 + B̄m = AĀx0 + AB̄m + Bmss

B̄M = AB̄M + BMss

which are linear equality constraints in the decision variables. We can simply augment the

problem (5.41) with these to ensure infinite horizon constraint satisfaction.

Remark 5.32. In some applications, such as building control, it is preferable to keep the

system in a periodic steady state, due to the periodic nature of the disturbances and

constraints. The developments above directly extend to this case. �

5.8.3 Remarks on a receding horizon implementation

Once a set Ξ:N−1 has been found by solving problem (5.61), we then assume it is fixed

during operation. As in MPC, we will solve a similar problem in receding horizon where the

uncertainty set is fixed. The only major concern is the time correlation in Ξ:N−1. At time

step t, we will have observed disturbance up to time t − 1, denoted ξ0:t−1 (depending on

the assumption on the information structure). As as consequence, we will solve a problem

of the form:

find π

such that ∀i ∈ Z[t,t+N−1]
∀ξ ∈ Ξ(ξ0:t−1)
φi(x, u, ξ) ∈ Xi
φN(x, u, ξ) ∈ Xf
ui = πi(ξ) ∈ Ui
π ∈ F

(5.71)

where Ξ(ξ0:t−1) is the set of all disturbances that can be observed over the next N steps

and are consistent with the set Ξ optimized at the first iteration, more precisely:

Ξ(ξ0:t−1) := R
N if t ≥ N

Ξ(ξ0:t−1) :=

{
(ξt , . . . , ξt+N−1)

∣∣∣∣∣ (ξ0:t−1, ξt , . . . , ξN−1) ∈ Ξ:N−1ξi ∈ R for N ≤ t ≤ t + N − 1

}
if t < N

(5.72)

Application of this receding horizon policy solves (5.61), i.e. ensures infintie horizon

tracking in Ξ.

Remark 5.33. We can imagine re-optimizing the disturbance set while solving the receding
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horizon problem. If a solution was found at the first iteration, problem (5.61) could be

solved in receding horizon and would be recursively feasible, under some mild assumptions.

Roughly speaking, the parametrization of the set at iteration t + 1 should include the tail

of the set obtained at iteration t. �

5.9 Summary and conclusion

We have formulated the robust tracking commitment problem in order to tackle the problem

of reserve provision. It consists of a robust reachability problem where we also attempt to

optimize over the uncertainty set. We propose to optimize the uncertainty set by defining it

as the image of a fixed uncertainty set by a modifier function. By embedding the modifier

function into the control policy, we show how to recover a more classical semi-infinite

optimization problem, for which tractable instances are known. One particularity of our

problem is that the uncertainty may be heterogeneous and observed at different time

instants. This requires particular attention and motivated the introduction of information

structures. Sufficient conditions were derived to ensure appropriate constraints on the

policies in order to respect the information availability when taking decisions.

The method proposed is illustrated on a reserve provision problem, which also leads

to the concept of virtual battery as a proxy to describe a load from the point of view of

the electric power consumption flexibility. Finally, some solutions are provided in order to

extend some of the ideas developed to the infinite horizon case, under specific assumptions.

In the next part, one of the objectives is to demonstrate the applicability and relevance

of the approach developed in this chapter in a realistic experimental testbed.
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C Technical background

This appendix provides common definitions, and results used in this manuscript. For most

of the results, references are provided for proofs.

C.1 Invariance

Invariance is a fundamental problem in control, and bears connection to many sub-fields of

control theory.

Definition C.1. A set Xf is control-invariant for system x+ = f (x, u) with constraints

x ∈ X and u ∈ U if:

Xf ⊆ X and ∀x ∈ Xf ,∃u ∈ U : f (x, u) ∈ Xf

�

A useful characterization of control-invariant sets uses the notion of pre-set defined as:

pre(X) := {x |∃u ∈ U : f (x, u) ∈ X} = ProjxQ̄
with Q̄ := {(x, u) | f (x, u) ∈ X, u ∈ U}

(C.1)

and Projx denotes the projection on the x-subspace.

Lemma C.2. A set Xf is control-invariant for system x+ = f (x, u) with constraints x ∈ X
and u ∈ U if and only if:

Xf ∈ X and Xf ⊆ pre(Xf )

Notice that if X1 and X2 are control-invariant then it is straightforward to see that

X1 ∪ X2 also is control-invariant. From that follows the existence of a ‘maximal’ control-

invariant set that contains all control-invariant sets for the system. Computing this maximal

control-invariant set is of particular interest since it represents all controllable states under

the constraints. Unfortunately, computing maximal control-invariant sets is notoriously

difficult. A method was proposed in [42] for autonomous systems but can be easily

generalized to controlled systems. We give here a summary of the method.
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C.2. Farkas lemma

Algorithm 1 Algorithm to compute maximal control-invariant set

Oi ← X
loop
Oi+1 ← Oi ∩ pre(Oi)

if Oi+1 = Oi then
return O∞ = Oi

end if
end loop

Actual implementation of this algorithm requires the ability to compute the pre-set of

a set, which involves the computation of intersection of sets and projections. Software

packages are available to perform these operations such as [62], but they are computationally

intensive and it is usually only possible to apply algorithm 1 in restricted dimensions, even

for sets of simple form such as polytopes.

The definitions above extend to system subject to uncontrolled disturbances.

Definition C.3. A set Xf is robust controlled invariant for system x+ = f (x, u, ξ) subject

to disturbance ξ ∈ Ξ with constraints x ∈ X and u ∈ U if:

Xf ⊆ X and ∀x ∈ Xf ,∃u ∈ U : ∀ξ ∈ Ξ, f (x, u, ξ) ∈ Xf

�

The notion of maximal robust controlled invariant set can also be defined, as well as

the equivalent of the pre-set for system subject to disturbances as:

preΞ(X) := {x |∃u ∈ U : ∀ξ ∈ Ξ, f (x, u, ξ) ∈ X} (C.2)

Note that the characterization C.2 and the conceptual algorithm 1 extend to this case by

simply replacing the pre-set definition by the robust pre-set one. Maximal robust controlled

invariant sets can still be computed using this algorithm but complications arise very quickly.

For example, as discussed in [119], pre-sets for linear system subject to state-dependent

disturbance can be nonconvex, which complicates the problem drastically. An extension of

the classic algorithm is proposed for a subclass of piecewise-affine systems, but complexity

grows very quickly.

A detailed overview on set invariance is given in [16].

C.2 Farkas lemma

Farkas lemma is widely used in convex analysis.

Lemma C.4. [166] Let A ∈ Rm×n and b ∈ Rm. Exactly one of the two systems:

{x | Ax = b, x ≥ 0} and
{
y | A�y ≤ 0, b�y > 0

}
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is feasible.

Another variant of the lemma reads:

Lemma C.5. [166] Let A ∈ Rm×n, b ∈ Rm, a0 ∈ Rm and b0 ∈ R. Assume the polytope

P = {x | Ax ≤ b, } is nonempty. Then, aT0 x ≤ b0 holds for all x ∈ P if and only if there

exists z ≥ 0 a row vector such that zA = a0 and zb ≤ b0.
Extending this to polytopic inclusion, we have that P ⊆ {x | Cx ≤ d, } with C ∈ Rp×n

and d ∈ Rp if and only if there exists Z ∈ Rn×p such that Z ≥ 0, ZA = C and Zb ≤ d .

C.3 Robust Optimization

We present here the main results we will use that pertain to robust linear programming,

following a presentation close to [8].

Let us introduce the following robust linear constraint:

c�ξ ≤ b ∀ξ ∈ Ξ (C.3)

with

Ξ =
{
ξ | Fiξ + fi ∈ Ki , i ∈ Z[1,m]

}
(C.4)

where each Ki is a closed convex cone with nonempty interior. Note that, the considered

class of uncertainty sets is quite extensive, as it allows the description of well known cones

such as the non-negative orthant, the Lorentz cone and the positive semi-definite cone as

well as their intersections and products.

Equation (C.3) is equivalent to

max
ξ∈Ξ
c�ξ ≤ b (C.5)

By dualizing the maximization problem using conic duality, introducing vector Lagrange

multiplier vector zi ∈ K∗i the dual cone of Ki , inequality (C.3) is equivalent to:

∃zi ∈ K∗i :
∑
i

z�i Fi = −c�

∑
i

z�i fi ≤ b
(C.6)

(C.6) is called the dual reformulation of (C.3). It consists of a finite number of convex

inequalities and linear equalities, and only a limited number of extra variables have been

introduced. For the proof, we refer the reader to [8], Theorem 1.3.4.
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Extensions to this result have been studied in [8] and [41]. Assuming that the uncertainty

set takes the form:

Ξ = {Λ(ζ) | ξ ∈ Ξ} (C.7)

with Λ : Rk −→ Rk
′

a nonlinear lifting operator. If Ξ or its convex hull, denoted

convh(Ξ), can be represented in conic form (C.4), then a dual reformulation like (C.6) can

be formed. This is particularly useful to use nonlinear policies in the uncertainty. A list of

tractable cases has been identified in the robust programming literature including quadratic

lifting for ellipsoidal uncertainty sets, piecewise linear continuous lifting with box uncertainty

sets, polynomial lifting with box uncertainty sets. The reader is referred to [8] and [41]

for more details. Other works such as [13] propose mixed-integer reformulations for other

types of lifting operators.

As an example of a tractable robust program with a lifted uncertainty set, we briefly

summarize results from [8] showing that quadratic liftings can be handled with ellipsoidal

uncertainty sets. Consider the ellipsoidal uncertainty set:

Ξ = {Λ(ζ) | ‖T ζ‖2 � 1} (C.8)

with T an invertible matrix and:

Λ(ζ) =

[
1 ζT

ζ ζζT

]
(C.9)

That is ξ = Λ(ζ) contains all products of components of ζ and therefore can be used

to model quadratic policies in ζ. As shown in [8], the convex hull of the lifted uncertainty

set Ξ is given by:

convh(Ξ) =

{
ξ =

[
1 ζT

ζ W

] ∣∣∣∣∣ ξ � 0, tr(TWT T ) � 1
}

(C.10)

where ξ � 0 means that ξ is a symmetric positive semi-definite matrix. This representa-

tion can be put in the standard conic form of (C.4), and therefore allows a tractable dual

reformulation like (C.6). As an application example, in [164], the authors use quadratic

liftings to find the largest volume inner approximations of polytope projections.
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D Proofs and Derivations

D.1 Polytopic description of the feasibility set Q

The dense form of the system equations (5.35), which describes the evolution of the system

for N steps, is given by

x = Ax0 + Buu + Bξξ

y = Cx +Duu ++Dξξ

The matrices A ∈ RNnx×nx , Bu ∈ RNnx×Nnu , Bξ ∈ RNnx×Nnξ , C ∈ RNny×Nnx , Du ∈
RNny×Nnu and Dξ ∈ RNny×Nnξare defined as:

A :=

⎡
⎢⎢⎢⎢⎣
A

A2

...

AN

⎤
⎥⎥⎥⎥⎦ , Bu = E⊗ Bu, Bξ = E⊗ Bξ, C := [IN ⊗ C 0], D := IN ⊗D

with

E :=

⎡
⎢⎢⎢⎢⎢⎣
Inx 0 · · ·

...

A Inx · · ·
...

...
...

. . .
...

AN−1 AN−2 · · · Inx

⎤
⎥⎥⎥⎥⎥⎦

The polytopic state, input and output constraint sets can be described as:

X := {φ ∈ RNnx : Fxφ � fx}
U := {u ∈ RNnu : Fuu � fu}
Y := {y ∈ RNny : Fyy � fy}
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The feasibility set Q also becomes polytopic and can be written as:

Q = {(u, ξ) | Hu +Qξ � q}

with:

H :=

⎡
⎢⎣ FxBu

Fu

Fy (CBu +Du)

⎤
⎥⎦ , Q =

⎡
⎢⎣ FxBξ

0

Fy (CBξ +Dξ)

⎤
⎥⎦ , q =

⎡
⎢⎣ fx − FxAx0fu

fy − FyCAx0

⎤
⎥⎦

where 0’s are matrices of zeros with proper dimensions.

D.2 Proofs for theorems of Section 5.3.1

Notation: Given a set of indices J , let J̄ be the complementary of J in Z[1,n]. Denote m

the cardinality of J . As xJ denotes the entries of x indexed by J , νJ denotes the function

from Rn into Rm formed by the outputs of ν indexed by J . Given J , we also overload

notation and denote ν(xJ , xJ̄ ) to make explicit the respective dependency of ν on xJ and

xJ̄ . Accordingly, denote ν(xJ , .) the restriction of ν to {xJ } × Rn−m.

Proof of Lemma 5.13. Consider two information structures I1 and I2. Suppose f ∈
F(I1),F(I2). Let x, x ′ be such that xI1∩I2 = x

′
I1∩I2 . Choose y such that yI1 = xI1

and yI2 = x
′
I2 (this is possible because xI1∩I2 = x

′
I1∩I2). Since f ∈ F(I1), we have

that f (x) = f (y). Similarly, f ∈ F(I2) implies that f (x ′) = f (y). Together this gives

f (x) = f (y) = f (x ′) for all x, x ′ such that xI1∩I2 = x
′
I1∩I2 i.e. f ∈ F(I1 ∩ I2). Noticing

that
⋂
k Ik = I1 ∩ (

⋂
k 	=1 Ik), it is straightforward to extend the argument above to the

intersection of finitely many information structures.

Proof of Lemma 5.14. By convention, Îk = Z[1,n] if {i |k ∈ Ii} is empty.

Direction ⇐= : Assume g ∈ F(Î). Consider (x, x̂) such that xIj = x
′
Ij and f ∈ F(I)

. Let us prove that f ◦ g(x) = f ◦ g(x ′). Let us denote y = g(x) and y ′ = g(x ′). Let

us consider any k ∈ Ij . Then according to equation (5.28), we have Îk ⊆ Ij and hence

xÎk = x
′
Îk . In turn this implies yk = y

′
k by definition of F(Î). Since this holds for all k ∈ Ij ,

it holds that yIj = y
′
Ij and therefore f ◦ g(x) = f (y) = f (y ′) = f ◦ g(x ′) since f ∈ F(I).

Direction =⇒ : Assume g /∈ F(Î). There exists an index j such that gj /∈ F(Îj). Since

Îj =
⋂
{i |j∈Ii} Ii we can use Lemma 5.13 to conclude that there exists i such that gj /∈ F(Ii)

and j ∈ Ii . (The intersection is non-empty since if it was then Îj = Z[1,n], which contradicts

the possibility that gj(x) �= gj(x ′)). Then there exist x and x ′ such that xIi = x
′
Ii and

gj(x) �= gj(x ′). Consider the function f defined as follows: ∀k �= i , fk is identically 0. This

trivially implies fk ∈ F(Ik) no matter what I is. Define fi as:{
fi(y) = 1 if yj = gj(x

′)

fi(y) = 0 otherwise
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Consider y , y ′ such that yIi = y
′
Ii . Since j ∈ Ii , we have yj = y

′
j and hence fi(y) = fi(y

′).
Therefore fi ∈ F(Ii) and f ∈ F(I). However, fi ◦ g(x) = 0 and fi ◦ g(x ′) = 1 by definition

of fi . Putting everything together, we can conclude that xIi = x
′
Ii and f ◦ g(x) �= f ◦ g(x ′),

therefore f ◦ g /∈ F(I).

Proof of Lemma 5.15. G ⊆ F(I): It directly follows from Lemma 5.14.

F(I) ⊆ G: Consider g ∈ F(I). Showing that there exists f ∈ F(I) such that

g = f ◦ ν is equivalent to showing that f = g ◦ ν−1 ∈ F(I) (ν is a bijection). It is done by

contradiction. Suppose f /∈ F(I). This means that for some k, fk /∈ F(Ik). To lighten

notation, let Ik = J . There exist y , y ′ such that yJ = y ′J and fk(y) �= fk(y ′). By definition

of Î, νJ cannot depend on elements of J̄ , i.e. xJ = x ′J =⇒ νJ (x) = νJ (x ′). Fix x ∈ Rn.
We divide the remainder of the proof in intermediate steps for clarity.

Bijectivity of νJ (., xJ̄ ) : Notice that νJ̄ (xJ , .) is injective in Rn−m since ν is injective.

Denoting V (xJ ) = νJ̄ (xJ ,R
n−m), by continuity of ν, V (xJ ) is an open set. By injectivity

of ν, if νJ (x) = νJ (x ′) with xJ �= x ′J , then V (x) and V (x ′) are disjoint. By surjectivity

of ν, it also holds that ∪{x ′J |νJ (xJ ,xJ̄ )=νJ (x ′J ,xJ̄ )}V (x
′
J ) = R

n−m. Since Rn−m is connected,

it cannot be covered by a non-trivial union of disjoint open sets, which implies that

{x ′J |νJ (xJ , xJ̄ ) = νJ (x ′J , xJ̄ )} is reduced to {xJ }, which in other words means injectivity

of νJ (., xJ̄ ).
Surjectivity of νJ (., xJ̄ ) directly follows from the surjectivity of ν. Indeed, ∀y ∈ Rm there

exist x ′ such that νJ (x ′) = y . Then νJ (x ′J , xJ̄ ) = y . Together, this proves the bijectivity

of νJ (., xJ̄ ) for all xJ̄ .

Bijectivity of νJ̄ (xJ , .) : Injectivity directly follows from the injectivity of ν. For xJ
fixed, by injectivity of νJ (., xJ̄ ) there does not exist any other x ′J such that νJ (xJ , xJ̄ ) =
νJ (x ′J , xJ̄ ). Therefore, surjectivity of ν implies that νJ̄ (xJ ,R

n−m) = Rn−m, i.e. surjectiv-

ity of νJ̄ (xJ , .).
Contradiction : Consider xJ such that νJ (xJ , xJ̄ ) = yJ . Bijectivity of νJ (., , xJ̄ )

ensures its existence. In turn, bijectivity of νJ̄ (xJ , .) ensures that there exists xJ̄ , x
′̄
J

such that νJ̄ (xJ , xJ̄ ) = yJ̄ and νJ̄ (xJ , x
′̄
J ) = y

′̄
J . Combining the results above gives

ν(xJ , xJ̄ ) = y and ν(xJ , x ′̄J ) = y
′. Then, gk(x) = fk ◦ ν(x) = fk(y) and similarly

gk(x
′) = fk ◦ ν(x ′) = fk(y ′). Finally, this shows that gk(x) �= gk(x ′) which implies

gk /∈ F(Ik). this contradicts the assumption that g ∈ F(I). Finally, this confirms that

f ∈ F(I).
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6 Introduction and literature review

6.1 Introduction

Following the developments of the previous part, an experimental demonstration of this

work has been planned has led to the definition and implementation of the Laboratoire

d’Automatique Demand Response Testbed (LADR). The platform was designed to serve

as a validator for building control methods developed in the lab and has been built by a

group of students including myself, Faran Qureshi, Altuğ Bitlislioğlu and Luca Fabietti.

All important aspect of the platform development are briefly described in this chapter. A

stronger emphasis is put on aspects that I personally contributed most to.

The first part of this chapter introduces the terminology and the literature related to

the experimental implementation of ancillary services and Demand Response, in particular

using building HVAC systems.

6.2 State of the art and nomenclature

6.2.1 Overview and terminology

This subsection introduces some common terminology, and delineates traditional catego-

rizations coming under the umbrella of demand-side management. There is a large array of

services that loads can provide to the power grid. From the point of view of control, they

mostly differ by the timescales involved, both in terms of the duration of the service provided

and the time response required to offer these. Slow services, on timescales ranging from

hours to days, include peak shaving, energy dispatch, etc.The mechanisms of activation

of the loads are usually classified in two categories: direct load control and price-based

control. In the former, the authority organizing the service directly controls the resource

or sends commands to the system. In the latter, the operator of the service sends an

incentive to the resource, most of the time under the form of a price, and the participants
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choose to react to the price signal by adapting their power consumption how they see fit.

Historically, both types of systems have coexisted in energy markets. The dominant trend

is that services on slow timescales are price-based, and often procured in financial markets.

The best known example is the bulk energy market, structured in the form of day-ahead

and intraday markets. On the other hand, services on fast time scales usually require some

form of direct load control. Indeed, fast and precise actuation does not easily accomodate

mechanisms based on price since automating response to such signals is not straightforward.

Citing [20]:

We will not consider price response as a mechanism for achieving fully

responsive nondisruptive control for several reasons. First, electricity markets

do not presently clear on time scales faster than 5 min. Consequently, price

signals are not used for fast services such as regulation and spinning reserve

on the supply side. (We note that the 5-min threshold between price-based

and nonprice-based load response dates back at least as far as the seminal

work of Schweppe et al. in 1980 [47]). Second, having direct control over

loads increases the system operator’s ability to predict the loads’ responses

(though price response forecasts certainly are possible) and provides third-party

aggregators certainty over how much capacity they can bid into ancillary service

markets [43]. Finally, customers, especially small ones, may be disinterested

in (or incapable of) identifying their own demand curve (i.e., instantaneous

quantity responsiveness as a function of real-time price) if their objective is

to receive a service that is a function of energy use over time (e.g., thermal

comfort) rather than instantaneous consumption.

For example, secondary frequency control usually takes the form of a power consumption

tracking task, a direct form of control.

The literature also studies the adequacy of specific types of devices for providing grid

services. Particular features of appliances make them more or less apt for providing the service

needed. Characteristics of interest include rated power, ramp rates, continuous or on/off

nature of the power consumption, time constants, ability to store energy, communication

requirements, etc.Most commonly studied resources to provide grid services are batteries,

plugin hybrid electric vehicles (PHEVs)[145], Thermal Controllable Loads (TCLs)[70],

which include fridges, electric boilers, heat pumps. Building heating, ventilation and air

conditioning equipment (HVAC)[55] are also studied but are somewhat different since they

might combine different equipment with various characteristics. The reference [106] gives

guidelines to decide what type of service a particular resource could be suitable for, and

discusses the aforementioned type of systems. [163] outlines the peculiariry of commercial

HVAC systems:

The tested demand side resources can be categorized into three groups: (1)

Energy storage. It includes storage for electricity (e.g., battery and flywheel) and

thermal storage (e.g., water heater and ceramic storage). (2) Heating systems
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(e.g., electric boilers and resistance heaters). (3) Independent systems with

variable frequency drives (e.g., wastewater treatment pumps). However, these

tested systems are all independent systems (i.e., there are no interdependencies

with other related systems when providing frequency regulation(FR)). Therefore,

these systems do not require sophisticated controls and are easy to implement.

The commercial building HVAC systems; however, have many interdependent

subsystems and many forms of capacity limits to manage when providing FR.

Note that loads considered for grid services are usually small to medium size and

therefore this calls for an aggregation scheme, which is another major direction in the

literature [40, 44]. The goal of aggregation is to harvest the potential of a large number

of loads and control these loads simultaneously to provide the service required. Literature

on aggregation looks at combining a large number of identical or similar loads, but can

also look into combining completely heterogeneous loads to benefit from different types of

resources. Literature on finding interesting synergies between different types of providers is

relatively scarce, but represents a promising avenue of research. An interesting example in

this regard is the business model of the swiss company Tiko1, the only company to date

that offers secondary frequency control service in the Swiss market with residential loads.

Tiko controls a population of heat pumps and electric boilers whose start and stop times

can be shifted during the night, in order follow the power consumption requests. The main

source of revenue of Tiko comes from a contractual agreement with hydroelectric dam

operators that wish to participate in secondary control. Participation in secondary frequency

control requires some level of energy production from the dams, which they wish to obviate

during nighttime. It is hence advantageous for them to have Tiko provide the baseline and

tracking service during the night while they cover it during daytime.

6.2.2 Ancillary services with loads

In this section, we focus specifically on provision of ancillary services with loads. Frequency

regulation mechanisms take different forms in different regions but mostly rely on the

same underlying principles. Different works across the control, building systems and power

systems communities deal with the use of demand side resources for frequency regulation.

We outline here the most significant works from our point of view and identify common

trends and challenges that have been discussed in the literature and support our research

directions. As discussed in [20], one of the challenges of demand side resources for frequency

regulation is that the loads are (in most cases) not primarily aimed at providing this service

and must therefore make sure that they maintain an appropriate quality of service while

providing frequency regulation to the grid. Citing [20]

The primary characteristic of load control that distinguishes it from conven-

tional generation-based approaches is that it must deliver a reliable resource to

1https://tiko.ch/
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the power system while simultaneously maintaining a level of service commensu-

rate with customer expectations. These two objectives are often in competition,

and one of the greatest technical challenges to the competitiveness of engaging

loads in power system services is to develop approaches that balance these

objectives [1].

Modeling of the operating constraints of loads can prove challenging, especially in the

case of buildings where multiple subsystems are interacting. A widely observed characteristic

is the limited storage capacity of loads, meaning that their ability to store or release energy

over extended periods of time is constrained by physical limitations. The most obvious

example of that is an electric battery (or other types of storage technologies), where the

energy storage capacity is a defining characteristic and contributes largely to the price of the

device (the reader is referred to [65] for estimates of price of batteries as a function of power

rating and storage capacity). Similarly, it is quite natural to also think of thermal systems as

storage systems where the difference between the thermal state of the system with respect

to a desired state reflects an energy state of charge (for example, the temperature of the

water in a reservoir). The work [56] actually models a population of TCLs with a single

state battery model. It gives upper-bounding and lower-bounding ‘equivalent’ batteries for

the feasible set of the population of TCLs.

The limited capacity storage has early been identified as an obstacle for the integration

of loads in regulation provision, despite their superior capabilities in terms of tracking (they

usually can support higher ramp rates than traditional generation). Citing the FERC order

755:

The commission finds that the current frequency regulation compensation

practices of RTOs and ISOs result in rates that are unjust, unreasonable,

and unduly discriminatory or preferential. Specifically, current compensation

methods for regulation service in RTO and ISO markets fail to acknowledge

the inherently greater amount of frequency regulation service being provided

by faster-ramping resources. In addition, certain practices of some RTOs and

ISOs result in economically inefficient economic dispatch of frequency regulation

resources.

As explained in [163], the FERC has imposed a pay-for-performance criterion to the

power operators. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) has for

example chosen to decompose its regulation signal in two components, one favouring

slow ramping units (regA) and another fast ramping units (regD), to increase penetration

of storage systems and demand-side resources in the market. This measure has directly

favoured the penetration of load-side resources in regulation procurement and propelled

PJM as a leader in that domain.
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6.2.3 Ancillary services with buildings

The procurement of regulation services to the grid with building systems has attracted

increasing attention in research, as some markets are opening up to consumers. Two main

focuses can be found in the literature. A number of theoretical papers have focused on

the formal computation of the reserve size that can be offered by a resource or a pool of

reserves. A detailed review of these works is done in part II, see in particular Section 5.2.5.

These works do not necessarily restrict the analysis to buildings, but they often take as

examples building systems. We review here experimental and ‘realistic’ simulation works

focusing on building HVAC system control and discussing practical challenges related to

their implementation.

[163] proposes two methods to inject the regulation signal in either the fan duct pressure

or the zone temperature setpoint (which indirectly influences the consumption of the fan).

Detailed simulation is performed and the interaction between components is analyzed.

Results show that the setpoint modulation works better despite a more sluggish response.

[141] showcases the control of the variable speed compressor of a commercial HVAC chiller.

Control of the system is achieved through manipulation of the cooling water setpoint

temperature. The regulation signal is filtered in order to achieve energy neutrality over a

10 minute average. Despite this, the performance of the tracking controller is good enough

to meet the requirements of PJM for the tracking signal regD, which is designed for energy

neutrality over longer periods of time. In this study, only the chiller power consumption was

monitored, so the effect of this strategy on the overall power consumption is not measured,

but potential side effects are discussed in [140]. It is identified that the variation of the

chiller load will induce transient variations in the coefficient of performance of the equipment

but that can be dealt with with a properly tuned controller. The average COP on the

other hand will remain the same, therefore not deteriorating the overall performance of the

system. Moreover, induced variations in the pump power consumption should be minimal

while the fan will be impacted more significantly, with some delay making it more difficult

to compensate for. [78] studies the use of fans for frequency regulation. It is demonstrated

that fans offer a satisfactory performance for power modulation in the frequency band

[(1/10min; 1/30sec)]. The frequency band is limited in that way to ensure that the effect

on occupants is limited and that the fan modulation does not impact the chillers. A

common difficulty arising in these works is the difficulty to model short term changes in the

power consumption of the full HVAC system, in particular the interaction between different

components. In addition, in the absence of a model of the effect of the modulation on the

zone temperature, a choice is made to keep the impact on the zone temperature minimal,

which then reduces the ability to exploit the thermal storage of the building itself. Only the

inertia of the heating system itself is exploited, which may be very small and therefore does

not allow to cover for deviations whose frequency content is larger than 10 minutes.

Recent works [151] and [150] explore frequency regulation on an experimental testbed:

the testbed is equipped with a central cooling system and a VAV box. A three level control

architecture is used: a scheduler determines the reserve capacity for the next day, an MPC
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controller is used for supply air temperature control and a tracking controller is used to

control the fans at high speed and provide the regulation. Such a hierarchical controller

structure is necessary due to the interacting timescales. The scheduler solves a nonlinear

robust optimization problem by considering the extreme cases of the uncertainty. On the

intermediate level, an MPC controller makes sure to choose the supply air mass flow rate

appropriately by solving a problem similar to the scheduling problem but with fixed reserves.

A low-level switched controller controls the fan speed, based on the characteristic curve of

the fan and fine adjustments made through a proportional integral controller. Details of

the results and implementation is given in [151].

6.3 Motivation and goals

Based on the previous literature overview, common characteristics and issues appear in

relation to ancillary services provision with buildings:

• Slow and fast interacting timescales

• Determination of a baseline consumption

• Significant modeling effort

While going through these aspects, we will see how they relate to our work and how we

are set to tackle them in our own experimental work.

6.3.1 Slow and fast interacting timescales

While the provision of ancillary services is a service that requires fast responses of the

providers and continuous service, the market is cleared on a slow timescale: the fastest

timescale is below the second, whereas the ancillary services market is usually cleared on a

daily basis (even weekly in the current Swiss regulation). This has a number of consequences

that guide the design of controllers for ancillary services. First of all, a hierarchical structure

of the controller appears natural. A basic architecture requires at least two layers: A reserve

scheduler runs at a slow frequency and decides the amount of reserve to engage for the

upcoming time period (say one day), and possibly the baseline power consumption. In the

lower layer, a fast controller chooses the inputs of the heating system in order to meet

the tracking requirement in real time. A two-level architecture is sufficient for model-free

methods, such as in [78]. Schematically, a heuristic method can be used to determine

the regulation capacity offered at the upper level and the fast controller modulates the

equipment inputs to provide tracking. This is particularly appropriate if a single piece of

equipment equipment is used to provide the tracking, such as the fan in [78]. On the other

hand, it has several drawbacks: designing a good fast controller for a complex system with

multiple interacting subsystems (as is typical for an HVAC system) is difficult. The fast

timescale makes the recourse to optimal control difficult and the fast controller would

typically take the form of a simple PI-tracking controller which could lead the system away
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from optimal operation. Even in the case of a single actuator or equipment providing the

tracking service, it might be that the scheduler needs to take conservative margins in order

to ensure that the fast controller does not violate operational constraints while tracking.

We propose to use a three layer architecture in our work in [33] and [47] (cf figure 7.10).

The reserve scheduler remains unchanged, but a second layer that we call optimal planning is

added in order to update the plan of operation at a frequency of 15 minutes, and passes down

setpoints to the lower level controller around which to operate. In a three-level architecture,

the upper (regulation scheduling) layer still decides the amount of regulation provided

based on current state and forecasts for the system. A tracking controller still operates

at the fastest timescale to adapt the power consumption in real time. An additional

layer operates at an intermediate timescale (typically 15 minutes). This layer has the

opportunity to reschedule the operating point of the system based on updated forecasts

and can accommodate a model-based controller to achieve optimal operation. We will see

that the middle layer can for example naturally take care of baseline rescheduling through

intraday market trades.

6.3.2 The baseline consumption

A central issue of having loads participate in DR is the concept of a baseline power

consumption. The baseline power consumption should intuitively be the power consumption

a unit would have experienced if it was not providing a particular DR service. Supposing the

service consists of changing the power consumption of a power unit over time, it is necessary

to know with respect to what power consumption the tracking performance should be

measured. Depending on the type of service provided, the precision and speed required and

the particular market, different approaches are adopted. The most unambiguous solution is

to have the unit announce in advance what its power consumption would be if no regulation

service is provided, a scenario sometimes referred to as ‘full dispatchability’ [132]. While

being clearly defined, this method is not always applied because:

• It increases the operational burden of participation: units have to commit their baseline

consumption on a regular basis, which also typically needs to be automated.

• The predictability of units may not be total, in particular it may rely on other uncertain

factors such as weather. In this case, the unit should include an additional margin in

order to be able to accommodate for its own uncertainty. In addition, small systems

are typically subject to larger uncertainties, at least proportionally to their size. If

combining a large number of small units together helps reducing their associated

uncertainty, it can be expected that the errors on the individual predictions are

correlated, especially when they depend on exogeneous information such as weather

forecasts.

In our experiments, we have considered that the baseline is announced in advance as a

result of energy purchases on the intraday and day-ahead markets. This choice was made

for the following reasons:
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• It is the rule for participation to ancillary services in Switzerland, as of now. The

largest difference that was introduced in our simulation and experiment of secondary

frequency control is that the bidding is performed on a daily basis instead of a weekly

basis due to the unpredictability of loads on such a long timescale. It is expected that

this particular rule of the market will be made more flexible in coming years.

• This rule is relatively stringent and requires a good predictability of the unit. Success

in implementing this rule suggests that compliance with more ‘relaxed’ regulatory

frameworks should be easily achievable

Nevertheless, other approaches have been proposed and implemented. As was discussed

in detail in our work [113], demand response programs adopt a more flexible approach in

order to limit overall complexity. Rules to compute the baseline consumption a posteriori

are sometimes provided. As an example, The New-York ISO day-ahead demand response

program proposes to compute the baseline based on the power consumption of previous

‘similar’ days preceding a demand response event participation. The California Edison ISO

also takes into account the temperature prediction the day preceding the participation day

in the computation of its DR baseline rule.

For frequency regulation, several methods relying on timescale separation have been

proposed and experimented. Works [141] and [78] propose to track signals whose bandwidth

is pre-limited through filtering. Only fast frequencies are considered for tracking. The

baseline is then computed a posteriori by filtering the final power consumption keeping only

frequencies lower than the lowest of the tracking signal. While this does not correspond to

the actual market rules, these works are based on the PJM ancillary services market where

the baseline consumption is the result of the real-time market clearing which is difficult to

emulate. In [163], the baseline is computed online as the output of a slow controller that

chooses the cooling water setpoint so that the chiller works at a favorable coefficient of

performance. The baseline is therefore decided online. The treshold of 10 minutes was

chosen so as to keep the baseline close to the level decided by the slower controller and

hence maintain a good coefficient of performance, as well as to limit the impact of this

control on the other components in the system. Interestingly, it is reported that despite

having to filter the regulation signal, a sufficient quality of tracking was achieved according

to the PJM tracking quality criteria.

Finally, a related topic to the one of the baseline consumption is metering which goes

far beyond the scope of this work. We will simply report here our assumptions without

discussing extensively their practical implications. It is assumed that a unit participating

in a given service is equipped with its own metering unit. This means that if the unit

considered is the heating system of a building, it is metered separately from the rest of the

building electric consumption. This is assumed for simplicity and is often not too restrictive

since the rest of the power consumption could possibly be predicted quite accurately. A

corollary assumption to this one is that the unit considered should be independent of other

neighboring systems. This implies that the totality of the heating system should typically
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be considered if it includes interacting subsystems. This particular topic is the subject of

extended discussion in [141], [77], [163], among others.

6.4 The Swiss energy market

The experiments performed on the LADR platform considers the regulations of the Swiss

ancillary service market. We give here an overview of ancillary services and in particular of

the Swiss AS market, both from the technical and financial point of view to introduce the

reader who is not familiar with these concepts. The references [142, 126, 122] have been

used to write this section.

Energy in Switzerland is traded day-ahead in the European integrated wholesale market,

EPEX SPOT, grouping France, Germany, Britain, Switzerland, Austria, Belgium, the

Netherlands and Luxembourg. EPEX manages the trading of energy and cross border

exchanges between countries. In each country, the Transmission System Operator (TSO)

is responsible for the safe operation of the system and the delivery of energy according to

plan. In Switzerland, the TSO is SwissGrid.

Energy is traded on the day-ahead market for each hourly slot everyday for the following

day. Bids are collected from participants until 12:00 on day D for each hourly slot on

day D+1. Following market clearing, EPEX publishes the index of prices for the next day.

Following that publication, one hour or 15 minute slots can be traded on the intraday

market. Each hour, 15-minute periods or block of hours can be traded until 60 minutes

before delivery. Starting at 3pm on the current day, all hours of the following day can be

traded. Starting at 4pm on the current day, all 15-minute periods of the following day can

be traded.

That covers the energy trading part but does not suffice to ensure proper operation

of the grid since power consumption and generation cannot be predicted perfectly and

forecasting errors will cause discrepancies between real-time and scheduled operation. The

power consumption and generation need to be balanced very quickly in order to maintain

safe operating conditions for the transmission system. To cover imbalances, the TSO

contracts a number of resources for different services called ancillary services (AS). [122]

reviews technical characteristics of ancillary services across different European markets while

the companion paper [123] focuses on the economic aspects.

Frequency control is one of the categories of ancillary services, and is designed to

maintain the frequency of the system at the nominal 50 Hz. The deviation of the frequency

is precisely a measure of the imbalance between production and consumption across the

network, so that a frequency below 50 Hz indicates a production shortage and a frequency

above 50 Hz indicates a production surplus. Frequency control is divided into three categories,

namely primary, secondary and tertiary frequency control, for which we give a description

focused on the Swiss case. The reference [30] gives a detailed overview of ancillary services

in North America and Europe.
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6.4.1 Primary frequency control

For a steady-state frequency deviation δf from the nominal frequency, a generator partic-

ipating in primary control will change its generation by δP . The droop of the generator,

which is the gain of the feedback loop in the primary frequency controller, is then defined

as:

sG = −(δf /fn)/(δP/Pn) (6.1)

where Pn is the nominal output power. Primary control is in essence a decentralized

proportional control scheme that relies on the measurement of the frequency available

everywhere. To avoid jittering, the droop control is only active when the frequency deviation

comes out of an insensitivity band (±20mHz in Switzerland). Primary frequency control

should be fully active after 30 seconds at most according to European regulations. Primary

reserve in Switzerland should be fully active when the frequency deviation reaches ±200mHz.

On average, a total of ±74MW of primary reserve is contracted in Switzerland at an average

price of 15 CHF/MW/h (2016 average, total of 100 million CHF annual payments).

6.4.2 Secondary frequency control

Secondary frequency control introduces the integral control action necessary to bring the

frequency back to the nominal 50Hz and balance cross-border energy exchanges. Swissgrid

runs a central controller to compute a control signal called the area generation control

signal (AGC). This signal is dispatched at a one second rate to secondary frequency control

providers that are supposed to adapt their power consumption according to the AGC. If

the AGC is positive, they should increase their power generation (or decrease their power

consumption) accordingly and conversely. SwissGrid requires symmetric bids for secondary

frequency control so that providers need to indifferently be able to increase or decrease their

power consumption/generation. In the prequalification test for secondary frequency control

in Switzerland, a tracking error of 5% of the bid is allowed with a delay of at most 20 sec.

A total of ±396 MW of secondary reserve is contracted for Switzerland all year round.

The total cost for secondary reserve is 90 million CHF annually, which corresponds to

an average price of 40CHF/MW/h of up/down regulation offered (2016 averages).The

empirical distribution of the AGC signal computed by Swissgrid over the years 2014 and

2015 is reported in Figure 6.1. An interesting observation is that most of the time, the

AGC signal is close to zero, which means that the tracking request is very small compared

to the highest possible value it may take.

6.4.3 Tertiary frequency control

Tertiary frequency is the slowest form of frequency control. Tertiary control is used for the

relief of the secondary control reserve in order to restore a sufficient secondary control volume.

The tertiary control reserve is necessary for adjusting major, persistent control deviations, in
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Figure 6.1 – Empirical PDF of the 1-minute averaged AGC signal. Values are normalized

between -1 and 1 for minimum and maximum power requests. [Courtesy of SwissGrid]

particular after production outages or unexpectedly long-lasting load changes. Activation is

effected by the Swissgrid dispatcher by means of special electronically transmitted messages

to the providers, who must then intervene in power plant production to ensure the supply

of tertiary control power within 15 minutes. Therefore, tertiary frequency control is less

automatized than other levels of frequency control.

In Switzerland, tertiary control bid for negative and positive power are separated.

SwissGrid uses on average 530MW of positive reserve at an average price of 2CHF/MWh

and 350MW of negative power reserve at an average price of 2.5CHF/MWh (averages for

2016).
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7 Frequency control with the LADR
platform following the Swiss market
regulations

7.1 Contribution and structure of the chapter

The contribution of this chapter is two-fold:

• It supports the developments of Part II in two main ways:

– It provides another example of how the theory developed is applicable to a

realistic problem, namely the provision of ancillary services with a building

heating system. We will see that the problem naturally formulates as a robust

tracking commitment problem.

– It provides experimental evidence that the method developed to characterize the

load’s power consumption flexibility works well. We will see that a significant

flexibility could be provided by our system while always respecting the operational

constraints of the system, as well as as maintaining a good level of comfort.

• It provides elements of response regarding the aspects discussed in Section 6.3 in the

previous chapter:

– Regarding the interacting timescales, we provide evidence that a three-level

control architecture helps the system to reach a good level of performance.

– Regarding the baseline consumption, it shows that a controllable load can achieve

full dispatchability, using a model based approach inspired by MPC, and more

since it offers extra flexibility. However, we will see that the amount of time

that the baseline needs to be declared ahead of delivery of the demand response

service is a key factor for exploiting the flexibility of the system.

We report in this chapter on a group of experiments conducted during the winter season

2015-2016. We detail in section 7.4 how these experiments extended our previous work as

well as existing works in the literature.
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Chapter 7. Frequency control with the LADR platform following the Swiss market
regulations

The rest of the chapter is structured as follows: Section 7.2 presents the LADR

experimental platform, Section 7.3 presents the identification procedure of the LADR

platform to built the model used in our MPC problem setups. Section 7.4 presents

the control architecture employed in our experiments while Section 7.6 reports on the

experimental results from secondary frequency control provision with the LADR platform.

Finally, Section 7.7 offers an experimental validation of the concept of virtual battery.

7.2 The LADR platform

7.2.1 Scope and objectives

The LADR platform was designed for fast deployment of building heating control algorithms

developed in the laboratory. The following desired characteristics have been listed for the

system:

• Availability of an electricity based heating/cooling systems

• Possibility to emulate other type of heating systems/ Flexible control of the heating

systems

• Possibility to control the actuation at a fast rate for regulation type experiments

• Monitoring of the heating system, in particular the electric power consumption at a

fast rate.

• Accurate and fast control of the system, especially regarding its power consumption.

• Control of heating systems in realistic conditions, subject to large unmeasured distur-

bance (live office)

The following constraints have also influenced the orientation of the project

• EPFL does not allow the installation of cooling systems in the offices.

• No thermal power input measurement is availalble at a fine grain level for the existing

water radiator system.

• A minimally invasive system is preferable due to the fact that occupied offices are

used so installation should be fast and seamless.

In accordance with these requirements, a modified electric heater has been developed by

Altuğ Bitlislioğlu to allow for fast variation of the power input to the heater. More details

are provided in section 7.2.3. The electric heaters were chosen because they combine

the following characteristics: (1) Modelling electric heaters is simple (2) It is possible to

measure their power consumption directly (3) They are highly responsive elements which

allows varying their power consumption very quickly. This is a key element to offer frequency
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N

NW N

SW

S2 SE

S1

Campaign 2015/2016

Campaign 2014/2015

Figure 7.1 – Floor map of the laboratory. The colored rooms represents the space used

for the experiments during the two field campaigns. Red box indicate the position of the

heaters and blue lines indicate fenestration areas.

regulation services as fast continuous control is required; (4) Electric heating represents a

significant share of the heating provision in Switzerland. Recent federal statistics indicate

the presence of a quarter million electric-based heating units accounting for 4% of the total

Swiss electricity consumption [104].

Two campaigns of experiments have been performed during the winter season of 2014-

2015 and 2015-2016. Field campaigns have been performed in different sets of offices as

detailed on Figure 7.1. Four rooms have been used during the first field campaign and five

during the second one. Offices are labeled according to their exposure to the sun. Rooms

NW, N, SW and S are individual offices. Room SE is a shared office occupied by six PhD

students.

7.2.2 Main milestones of the LADR platform

Below are the dates detailing the design and main implementation steps of the LADR

platform:

• Summer 2014: Definition of the LADR platform

• September/October 2014: Development of the LADR electric unit [Altuğ Bitlis-

lioğlu]
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• November 2014: The LA offices are equipped with Z-wave wireless sensors and

radiator actuators. [Luca Fabietti/Tomasz Gorecki/Faran Qureshi]

• December 2014 to January 2015: Identification experiments in LADR offices.

Identification of thermal input to temperature models. [Tomasz Gorecki/Faran

Qureshi]

• February to April 2015: First experimental campaign: Basic control tests, and

nighttime AGC tracking experiments. [Tomasz Gorecki/Luca Fabietti/Faran Qureshi]

• Summer 2015: Preparation of the publication on the first experimental phase,

submission of the LADR first experimental paper: [33]

• Autumn 2015: Update of the communication infrastructure to YARP[Altuğ Bitlis-

lioğlu]. Large refurbishment of the control code for reusability.

• November 2015 to February 2016: Second identification campaign: new offices,

multi-input identification with weather inputs. [Tomasz Gorecki/Faran Qureshi]

• January to April 2016: Second experimental campaign. Full day experiments in

occupied offices of AGC tracking with intraday participation. Study of the trade-

off between comfort and available flexibility in the offices. [Tomasz Gorecki/Luca

Fabietti/Faran Qureshi]

• Summer 2016: Preparation and submission of second experimental paper on the

LADR results [47].

• Autumn 2016: Preparation of the LADR for the following season. Adaptation for

autonomous operation over multiple days. Preparation of the platform for experiments

in coordination with the battery from the DESL laboratory.[Luca Fabietti/Tomasz

Gorecki]

• Winter 2016-2017: Dispatchable feeder + controllable building experiments. [Luca

Fabietti/Tomasz Gorecki]

7.2.3 Hardware

The rooms have been equipped with wireless sensors for temperature, humidity, presence

and light. Remote control Z-wave based valve have been installed on the existing radiators in

order to switch them off during experiments. Modified fan-based electric heaters have been

added to the controlled rooms. The heaters are rated at 1900 Watts at 230 Volts. The

heaters are normally equipped with a thermostat and a switch to adjust the level of heating

between three distinct levels. In order to be able to modulate their power consumption

continuously, the heaters were customized with additional hardware that allows pulse-width

modulation (PWM) at 4 Hz. They are equipped with micro computers and solid state

relays in order to control their power consumption at a one second resolution. Z-wave plug
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sensors have been added to the plugs to collect aggregate power consumption data at a

second resolution, and as failsafe devices to be able to disconnect the system automatically

in case of failure.

7.2.4 Software

Figure 7.2 summarizes the software and communication infrastructure. All the Z-wave

based sensors are monitored through the software Indigo Domotics1 that provides an

API to poll and communicate with the sensors. Weather data is collected in real-time

from Wunderground2 weather stations online through the WeatherSnoop3 plugin of Indigo.

Communication with the heaters is custom designed. A major upgrade was performed

for the second campaign and is briefly reviewed here. The YARP communication library

[97] has been used to handle the low-level communication layer. The YARP node library

developed in the laboratory is used to define the notion of node in a communication network.

Interfaces to MATLAB and Python allow to support code on different platforms. The

controllers of the heaters are implemented in Python and expose the heater as node on the

network. The central controller is run in MATLAB on a separate workstation. All the data

is collected in a centralized location on a web server designed with the Python framework

Django. Weather forecasts are obtained through different web services on a regular basis.

7.3 Identification

In absence of building data, an approach based on system identification was used. OpenBuild

could have been used to extract a structure of the model but considering the rooms are

equipped with independent heating units, it appeared quickly that the coupling betweeen

neighboring rooms was weak so that it was neglected and a separate model was identified

for each room. This made system identification manageable. In the first campaign, simple

models had been identified, taking as inputs the thermal power inputs to the heaters and as

outputs the room temperatures. The performance of this model was sufficient for nighttime

experiments with no excitation from the sun.

For the second campaign, an extended model was identified, taking into account the

effect of the sun and outside temperature on the rooms. Linear black box identification

was used. The MATLAB system identification toolbox was used to compute the model

parameters.

7.3.1 Solar radiation modeling and forecasting

We know that the effect of the sun on the room is going to be time-varying due to the

movement of the sun in the sky during the day. In order to be able to identify linear time-

invariant models, the direct or horizontal radiation may not be sufficiently representative of

1https://www.indigodomo.com/
2https://www.wunderground.com/
3http://www.tee-boy.com/
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Figure 7.2 – Structure of the communication network.

the impact of the sun on particular rooms depending on their orientations. In order to get

a better approximation, each room was identified taking as input the resulting radiation

level on surfaces facing the main orientation of the room. Total solar radiation on every

main cardinal directions is computed and the one giving the most satisfactory fit for the

identification was kept for each room. The best input for room NW was total radiation on

west facing surface, for rooms SW and S2 and SE, the the total radiation on south facing

surfaces is used. Room N was identified without sun input since they did not significantly

bring improvement to the predicting capability of the model.

Notice that the resulting solar irradiance on different surfaces is not directly measured

and must be inferred from total horizontal irradiance, time of day and year, etc. A simple

inference method was developed combining different available models and is reviewed here.

First notice that the total solar radiation on any surface is decomposed in a direct part

(resulting from sun rays hitting directly the surface) and a diffuse part resulting from the

diffusion of sun light by the clouds and the atmosphere.

Itot = Idir + Idiff (7.1)

where Itot is the total solar irradiance on a surface, Idiff is the total diffuse irradiance and Idir

the total direct irradiance. All solar irradiances are measured in W/m2. A simple model for
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diffuse radiation assumes that the diffuse radiation is uniformly contributed from the totality

of the sky dome. The amount of diffuse solar radiation a surface receives is therefore a

function of the fraction of sky it sees, and hence only depends on its tilt. As an example,

the amount of diffuse radiation is maximum for an horizontal surface, and the total amount

of diffuse irradiance received by a vertical surface is half of that maximum. We denote

by Ihor
diff and Ivertdiff the diffuse irradiance received by horizontal surfaces and vertical surfaces

respectively. It holds that Ihor
diff = 2I

vert
diff .

On the other hand, direct radiation depends on the relative orientation of the surface and

the position of the sun in the sky. Figure 7.3 indicates how the position of the sun is

described. The position of the sun can be computed as a function of location (longitude,

latitude, elevation) and UTC time following reference [124]. A third party implementation

in MATLAB [69] was used to compute elevation and Azimuth angles.

Figure 7.3 – Angles describing the sun position. Image courtesy of Sandia National Labo-

ratory https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/sun-position/.

The amount of direct normal radiation (solar radiation on surface facing the sun) is

related to the horizontal direct radiation by the equation:

Ihor
dir = I

norm
dir sin(θel) (7.2)

For a surface of tilt angle αtilt (computed like the elevation angle θel, so that a vertical

surface has tilt angle 0 and an horizontal one has tilt 90o) and orientation angle αo
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(computed like the azimuth angle θA so that a surface facing north has orientation angle 0

and one facing east has orientation angle 90o), the relation between direct normal solar

radiation and direct solar radiation on that surface is given by:

Idir = I
norm
dir cos(θel − αtilt) cos(θA − αo) (7.3)

For forecasts, the value of the total horizontal radiation is not usually available. The

only information available is often a qualitative description of the weather (such as clear,

scattered clouds, overcast...). The website openweathermap.org offers quantitative forecast

for the cloud cover, in percentage of sky covered with clouds. From this data, the average

horizontal radiation can be computed using the Zhuang-Huang Solar model [29], [157].

I =
1

k
.
[
I0. sin(h)(c0 + c1.CC + c2.CC

2 + c4.φ+ c5.Vw
]
+ d (7.4)

where: I = estimated solar radiation [W/m2]

I0 = global solar constant = 1355W/m2

CC = cloud cover [tenths]

Vw = wind speed [m/s]

φ = relative humidity [%]

c0, c1, c2, c4, c5, d = regression coefficients, given in [29], pp138-139.

The fraction of diffuse radiation on an horizontal surface fc =
Idir
Itot

also needs to be

estimated. We know that if the cloud cover is total then fc = 1. In clear sky conditions, a

simplified model can be used to compute the total direct and diffuse horizontal radiation as:

Ihor
dir = I0 sin(θel)t

m

Ihor
diff = 0.3I0 sin(θel)(1− tm)

(7.5)

where t = 0.75 is the average transmittance of the atmosphere and m = p
101.3 sin(θel)

with p the air pressure in kPa. In turn, the fraction of diffuse radiation on an horizontal

surface can be deducted. This fraction is valid for a cloud cover of 0. It is then assumed

that fc is an affine function of cloud cover and is interpolated from the values at CC = 0

and CC = 10.

To summarize: to compute the total solar radiation on a surface for forecasting, (1)

the forecast for cloud cover is recovered; (2) Equation (7.5) is used to compute the

diffuse fraction of radiation on an horizontal surface and the total horizontal radiation using

equation (7.3); (3) From these the horizontal diffuse and direct radiations are computed

and the direct, diffuse and total solar radiation on the surface are calculated by means of

equations (7.1), (7.4) and (7.2)

120



7.3. Identification

0 5 10 15 20 25 30 35 40 45 50

20

25

30

Time[h]

T
e
m

p
e
ra

tu
re

[C
] model

measurement

0 20 40 60
0

0.5

1

1.5

2

Time[h]

P
o
w
e
r

In
p
u
t[

kW
]

0 20 40 60
0

2

4

6

Time[h]

O
u
ts

id
e

T
e
m

p
e
ra

tu
re

[C
]

0 20 40 60
0

0.2

0.4

0.6

Time[h]

S
u
n

o
n

W
e
st

F
a
c
a
d
e
[k

W
/
m

2
]

Figure 7.4 – Validation over one of the experiments for Room NW

7.3.2 Identification

A series of experiments has been conducted to collect data for identification. To minimize

the effect of unmeasured disturbances, all experiments have been performed during nighttime

and week-ends/holidays. The controllable inputs of the heater have been controlled using

pseudo random binary sequences or step tests over long periods of time. A total of 12

experiments has been used for identification, with a few days worth of data for each room.

For each room, an autoregressive model with exogeneous inputs was identified.

A(z−1)y(t) = B1(z−1)q(t−1)+B2(z−1)To(t−1)+B3(z−1)qsun(t−1)+e(t) (7.6)

where A(z−1), B1(z−1), B2(z−1) and B3(z
−1) are polynomials of the delay operator z−1

and e(t) a white noise disturbance, q the input from the heat input, To the outside

temperature, y the room temperature and qsun the sun irradiance input for the room. Note

that due to the absence of measurement relative to occupancy, its influence is not explicitly

modeled and will be considered as a disturbance. It was found that a model of second

order for the dynamics and first order for the inputs was sufficient. Each model had an

average fit4 on experiments used for identification of 70% to 90 % depending on the room.

Figures 7.4, 7.5, 7.6, 7.7, 7.8 show validation plots for each model identified.

4matlab fit computed as one minus the normalized root mean square prediction error
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Figure 7.5 – Validation over one of the experiments for Room SW
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Figure 7.6 – Validation over one of the experiments for Room N
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Figure 7.7 – Validation over one of the experiments for Room SE
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Figure 7.8 – Validation over one of the experiments for Room S2
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Room NW SW S2 SE N

Gain from input to Temperature [C/(kW)] 5.5 5.7 4 1.6 4.3

Gain from Outside Temperature to Temperature[C/C] 0.2 0.2 0.05 0.15 0.1

Gain from Sun to Temperature[C/(kW/m2)] 3.6 11 2.3 9.3 NA

Slow Time constant[h] 1.4 2.5 1 2.2 1.4

Fast Time constant[h] 0.15 0.13 0.07 0.04 0.16

Rise Time for step response[h] 3 5.25 4.75 2 3

Equivalent U-value [W/m2/K] 1.28 1.21 0.15 1.46 1.35

Table 7.1 – Parameters of the models identified. The rise time is the 10 to 90 % rise time

for a step response

7.3.3 Model characteristics

We discuss here the most important characteristics of the models identified. They give an

idea of the storage capacity of the building.

The identified model reveals the main characteristics of the building: the impact of

the sun on the rooms is significant: static gains from solar inputs to temperature range

from 3 to 11oC/(kW/m2) depending on the room. Note that the daily peak horizontal

irradiance will range around 0.7 to 1kW/m2 during sunny winter days. The effect of outdoor

temperature is milder with static gains ranging from 0.1 to 0.2oC/oC(outside).

Two dominant time constants are identified for each room: one fast time constant

ranging between 5 and 10 minutes and one slow time constant ranging between 1 and 2.5

hours. This can be interpreted as follows: the faster time constant corresponds to the

air thermal mass that can be heated directly with our heating system. The slower time

constant corresponds to the heavier thermal mass of the building. This second mode is the

one that the controller will try to utilize to store energy in the system over a few hours.

The 10 to 90 % rise time for a step response ranges between 2 and 3 hours.

Finally, the bode plots of the systems identified are reported in Figure 7.9. As expected

the system is passive (there is no resonance in the system),

From the model of the system, we can estimate the amount of power needed to maintain

the inner temperature at a fixed level T1, when the outdoor temperature is at another fixed

level T2. Dividing this power by T1 − T2 and the area of outside envelope for each room

we get a rough estimate of the equivalent average U-value of the envelope of the building.

Values obtained range between 1 and 1.5W/m2/K. The U-value characterizes the thermal

conductance of materials or surfaces through conduction and convection. In our case, we

get an aggregate value that also includes gain through infiltration. Moreover, we neglect

the presence of internal gains in the room, so the number would appear smaller than it really

is. However, internal gains should be quite limited since identification experiments were

performed without occupants. For comparison, high-quality double glazing has a U-value of

about 2 W/m2/K. The notable exception is room S2 which has a much lower apparent

U-value: that can be explained by the fact that this room is subject to more significant

internal gains due to the presence of numerous computer servers and a lower window to
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Figure 7.9 – Frequency response of the identified models
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wall ratio. Subsequently this room was not used in experiments due to the fact that it

almost does not need any heating. The U-values suggest that the insulation quality of the

envelope is neither exceptionally high ( which was not expected since the construction is

old), nor very low. In that sense, the building can be considered relatively representative of

not-so-recent office buildings in Switzerland.

7.4 Predictive control of the heaters

This section reports the control design approach and is mainly taken from the publication

[47]. The main overarching theme of the experimental work was to demonstrate how

to optimally use the thermodynamic storage of commercial buildings to offer frequency

regulation services to the grid. The contribution of the second campaign with respect to

our previous work [33] was twofold: first, we provide a method to determine the amount

of regulation that can be provided taking into account the possibility to adjust power

consumption on the intraday market. Second, we show how to optimally trade regulation

commitment and comfort in the building during real-time operations.

The experimental demonstration extends existing experimental works presented in the

literature in the following ways:

• The method proposed is in full accordance with the Swiss regulation for secondary

frequency control. In particular, the baseline consumption is determined a priori as a

result of the day-ahead market trades. Any modification of the baseline during the

day respects the current rules of the intraday market.

• Modeling of the influence of outside temperature and the sun was performed for

these offices. Weather forecasts were incorporated in the optimization to improve

the previously proposed method.

• Experiments have been performed over extended periods of time (18 to 24h) in

occupied offices. Experiments were successful despite large uncertainties in weather

prediction and occupation and, therefore, demonstrate the robustness of the approach.

7.4.1 Control Structure

We consider a power consumer offering secondary frequency service. According to the

Swiss market regulations, a tailored control architecture is proposed. A schematic of the

controller structure is provided in Figure 7.10.

Table 7.2 reports the nomenclature for the following sections. The reserve scheduler

decides on the capacity bid γ and the baseline purchased on the day-ahead market p̄i |DA
for each time slot i of the following day. Subsequently it can readjust its power baseline

up to one hour in advance on the intraday market by placing an order p̄i |i−δ at time i − δ
for each time slot i . For simplicity, we assume that all intraday adjustments are made at

time i − δ, the closing time for intraday transaction for time slot i . The final baseline is

p̄i = p̄i |DA + p̄i |i−δ. During the operation, a normalized AGC signal at (we use t to denote
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Figure 7.10 – Architecture of the control system for tracking service procurement with

participation in the intraday market. See Table 7.2 for the definitions of symbols.

Symbol Description

γ Capacity bid

p̄i |DA Day-ahead baseline purchase

p̄i |i−δ Intraday transaction performed at time

i − δ for baseline at time i

p̄i Baseline Power Consumption after intraday

δ Minimum lag for intraday transactions

yi Outputs (Zone Temperatures)

εi Tracking error

pi Total Power Consumption

ui Control action

di Weather disturbance at time i

d̃ Weather forecast

ai Normalized AGC signal at time i

ã AGC forecast

Table 7.2 – Control architecture nomenclature.
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the fastest time step while we keep i for the 15 minute time step) is scaled by the bid γ

and dispatched at a rate of one second for tracking to the building, which has to adapt its

power consumption such that:

|εt | = |pt − p̄t − γat | ≤ αγ (7.7)

where εt is the tracking error. Note that the tracking error is allowed to scale in proportion

to the capacity bid with a factor α, in accordance with tracking regulation requirements

as per [143]. It is readily seen that the problem has multiple timescales interacting: when

deciding the capacity bid and day-ahead purchase, a prediction over a minimum of one

day is required, while during operation, the tracking signal is received at a one second rate.

Similarly to [151] and [33], the control architecture proposed is therefore hierarchical with

three interacting layers as depicted in Figure 7.10:

• The reserve scheduler commits the capacity bid for the next time period (one day)

and buys energy on the day-ahead market. At the start of each day, it computes a

capacity bid using the current estimate of the state of the system and up-to-date

weather forecasts. As a result of this computation, the bid γ and day-ahead purchases

p̄.|DA are committed. It is important to notice that the scheduler already takes into

account the possibility to adjust the baseline later on on the intraday market, as will

be detailed in Section 7.4.3.

• A Model Predictive Controller (MPC) operates at a fifteen minute timestep: its

purpose is two-fold: compute adjustments to the baseline using the intraday market,

and recompute optimal inputs for the heating systems based on updated forecasts.

As a result, an intraday trade is placed to adjust the baseline one hour ahead for a

value p̄i+δ|i . The inputs to the system for the upcoming time slot ui are passed down

to the fast controller.

• A fast controller modulates the power consumption of the HVAC at a fast rate

(consistent with the tracking rules) to provide the tracking service. Based on the

current received value of the AGC at and the committed baseline p̄t , the power input

of the HVAC is controlled to meet the tracking requirement.

Assumption 7.1. The intraday markets are assumed to be liquid, meaning that it is always

possible to sell or purchase energy according to the market clearing regulations. �

While this assumption cannot be verified directly, intraday market data we have examined

suggests that a large amount of energy is traded on the intraday market, especially just

before the final clearing, one hour before delivery, for most hours of the year. In addition,

liquidity on the intraday market is increasing every year.

In addition to experiments carried out during the day in occupied offices and for extended

periods of time, the main difference in the formulation with our previous work [33] is the

possibility to readjust the baseline in the intraday market. We will see that this feature is
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paramount to the robustness of the scheme. As was outlined in the introduction, demand-

side resources are subject to sustained prediction errors that hinder the ability to predict

accurately their power consumption on long time horizons. Therefore, the possibility to

partly reschedule baseline is fundamental. We will see that the intraday market allows us to

successfully meet the combined competing objectives of maintaining comfort and providing

accurate frequency regulation. Clearly, this statement depends on the predictive power of

our models, but the experiments demonstrate that for our system, which is affected by large

uncertainties, the statement holds, which is a significant improvement over our preliminary

work, where the level of uncertainty was smaller since experiments were conducted at

nighttime.

7.4.2 System Modeling

As discussed in Section 7.3.2, each room was identified with a model of the form of (7.6).

We transformed and combined the models from input-output form to state-space form

as:

xi+1 = Axi + Buui + Bddi

yi = Cxi
(7.8)

where x denotes the state of the system. The control input to the system is the pulse-width

modulation ratios sent to the heaters denoted u. Therefore u ∈ [0, 1]. A pulse-width ratio

directly results in an electric power consumption p = uPmax. Finally, the heaters being

resistive elements, the power consumption directly translates into a thermal power input to

the room q, so that q = p = uPmax. Knowing the model of the system and the operational

constraints, we can formulate the set of all feasible input trajectories that the building can

follow while respecting constraints. It takes the following form:

U(x̄ , d̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
u

xi+1 = Axi + Buui + Bd d̃i
yi = Cxi
|yi − Tref| ≤ β
ui ∈ U = [0, 1]nu
x0 = x̄ ,

∀i = 0, . . . , N − 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.9)

where N is the horizon covering the participation period, Tref the optimal temperature and

β a parameter controlling the allowed comfort level deviation from optimum. Notice that

this set depends on the initial condition x̄ and a forecast for the disturbance d̃.

7.4.3 Reserve scheduling

The reserve scheduler computes two quantities: a baseline energy consumption for the next

day p̄.|DA, and a capacity bid, γ. Conceptually, the computed capacity bid should be chosen

considering the following:
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• For a given capacity bid, the controller needs to schedule the baseline consumption

in such a way that regardless of the AGC signal it receives, it can shift its power

consumption by that amount and still satisfy operational constraints.

• The building operator receives a payment for the “flexibility” he offers which is

proportional to the bid. On the other hand, it also pays for baseline power. Intuitively,

in the absence of local controllable generation, a higher bid also requires a higher

baseline (since the building needs to be able to decrease its consumption by larger

amounts). Therefore, there is a financial trade-off between bid and baseline. [112]

develops how this trade-off depends on the ratio between the price of energy and the

reward for flexibility. If the reward for flexibility is high enough, maximizing the bid we

can offer will be optimal. For the sake of demonstration, we assume that it is the

case.

The computation of the bid was done in accordance with the theory developed in

Chapter 5. Assuming that a nominal bid of γ = 1kW restricts possible AGC realizations

to lie in the nominal set Ξ̂, then once the bid and baseline have been fixed, the system is

subject to the following tracking constraints:

|εi | = |pi − ai | ≤ αγ ∀a ∈ ν(Ξ̂) := γΞ̂ + p̄ (7.10)

This is a robust constraint where the uncertainty set is modulated. We can therefore

formulate a robust tracking commitment problem that fits the developments of Chapter 5

as we will see next.

Modeling of the AGC signal

The set Ξ̂ still needs to be characterized. Remembering explanations of Section 6.4.2, we

have in principle:

Ξ̂ = {a | ‖a‖∞ ≤ 1} (7.11)

However, we have also seen that the AGC tends to be very much concentrated around 0.

This is a piece of information we can utilize to restrict the set further. Using principles of

statistical inference, we can see that using a much more restricted set allows one to increase

the bid offered significantly at the expense of only a small sacrifice in terms of guarantees.

The design of uncertainty set for robust optimization is an active field of research and

different approaches have been proposed, see [14], [92], [21] and references therein.

We define the set:

Ξ̂ :=

⎧⎨
⎩a =

Ns∑
j=1

λ(j)a(j)

∣∣∣∣∣∣
∑
j

λ(j) = 1, λ(j) ≥ 0

⎫⎬
⎭ (7.12)

where the a(j)’s are previously observed realizations of the uncertainty from years 2013 and
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2014 (courtesy of Swissgrid). In other words, Ξ̂ is the convex hull of a set of previously

observed realizations of the uncertainty.

The key idea is that if the controller is able to handle values of the AGC that have been

observed in the past it should perform well for new realizations due to the consistency of

the AGC over time.

Computation of the bid

We solve the following problem:

Problem 7.2 (Reserve Scheduling Problem).

minimize J

s.t. ∀a ∈ γΞ̂ + p̄, (7.13)

(Building Contraints) u ∈ U(x0, d̃), (7.14)

(Recourse policies) u = π(a), (7.15)

p̄.|.−δ = κ(a), (7.16)

(Power Consumption) p = h(u), (7.17)

(Power tracking) ‖ε‖∞ = ‖p− a‖∞ ≤ αγ (7.18)

(Baseline Power) p̄ = p̄.|.−δ + p̄.|DA (7.19)

�

The decision variables are the capacity bid γ, the day-ahead baseline consumption p̄.|DA,
and the control policies π and κ satisfying causality requirements such that κ ∈ C−δ and

π ∈ C0 reusing the notation introduced in Table 5.2 on page 68.

x0 and d̃ are data of the problem and represent the initial condition of the system and

the prediction for the disturbances affecting the system, namely the weather and internal

gains.

Since the constraints as described in (7.9) are polytopic, assumption 5.18 is satisfied.

Similarly, the uncertainty set as described in (7.12) admits a conic representation so that

assumption 5.19 is satisfied. Affine policies can be used to parametrize π and κ and obtain

a tractable version of Problem 7.2:

π(a) =Ma+m and κ(a) = Na+ n

To ensure causality, appropriate constraint on M and N are imposed so that κ ∈ C−δ
and u ∈ C0. Namely, we impose that:

Mi ,j = 0 for j > i

Ni ,j = 0 for j > i − δ
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Cost function

The payment for regulation capacity offers a per-unit reward creg. Energy is bought at a

unit price ce . The cost function takes the form:

J(p̄, γ) = ce

N∑
i=1

p̄i − cregγ

In the context of the experiment, we aimed at demonstrating the total flexibility of the

buildings, and therefore we assume that creg >> ce so that ‘maximum’ capacity is offered.

Remark 7.3. The actual disturbance d is not known exactly at the time the problem is

solved, only a forecast is available. Conceptually, it could be treated exactly like a and

the solution of the problem could be robustified against forecast errors, for which data is

readily available (at least for weather). The control decision would then become a function

of the disturbance, i.e. u = π(a,d). In the optimization, we assume the disturbance will

take its nominal value and the control decision is a function of the AGC signal only. The

reasons for this are: 1) a simple static-gain analysis on the identified model of the building

suggests that the relative impact of a forecast error for the weather disturbance is at least

five times smaller than for the AGC signal, 2) forecasts are typically good enough on short

timespans like one day 3) not modeling the exogenous disturbance as uncertain variables

drastically reduces the controller complexity and 4) experimental results show that the

impact of forecast errors on comfort violations is not substantial (please refer to Section 7.6,

Table 7.4). �

7.4.4 Closed loop control

This section details the two lower-level layers of the control architecture. Once the capacity

bid has been computed together with the baseline, the task of the controller is to satisfy the

tracking constraint while making sure that operational constraints are simultaneously met.

MPC controller

We propose to use a predictive controller to maintain comfort. The controller relies on the

assumption that being at maximum comfort also maximizes the flexibility. It is approximately

the case if the maximum comfort temperature is chosen as the center of the comfort

constraint range and uncertainty is symmetric (that is positive and negative AGC are equally

likely). The steps of the MPC controller algorithm are:

1. Collect most updated current forecast for weather d̃. This forecast is recovered from

different web services. See section 7.6.1 for more details on the weather prediction.

2. Form a forecast ã for the average of the AGC over the next few hours sampled at 15

minutes. It has been shown in [82] that the AGC is a time-correlated signal, at least

up to two hours ahead. A predictor for the AGC over the prediction horizon is used:
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it exploits the time-correlation properties of the AGC over short timescales to predict

ahead.

3. Solve the following MPC problem

minimize ‖y − Tref‖2

s.t. ∀ j ∈ Z[i ,i+N−1]
xj+1 = Axj + Buuj + Bd d̃j

u ∈ U(xi , d̃)
‖ε̃‖∞ ≤ αγ
with ε̃j = pj − p̄j − γãj

(7.20)

where the decision variables in this problem are u, and p̄j |j−δ for j ≥ i + δ. γ, p̄ and

p̄i |i−δ for i < t + δ are fixed in that problem, and come respectively from the reserve

scheduling problem and previous iterations of the MPC controller. The controller aims

at maintaining the temperature in the middle of the comfort range for the nominal

predictions of the AGC and the disturbance acting on the system. The assumption

underlying this choice is that the middle of the comfort range corresponds to a state

of high flexibility. Note that the controller is free to adjust the baseline after a delay of

δ conformly to the rules of the market. Note also that a robust multi-stage problem

could also be solved at this level, where robust tracking constraints are enforced, but

this simplified formulation has provided satisfying performance, for a much lighter

computational cost.

4. Place an order on the intraday market to buy p̄�
i+δ|i , the intraday market trade

computed in Problem 7.20. This effectively adjusts the baseline for timeslot i + δ.

Pass down the computed control input u�t to the tracking controller. Go back to step

1) at the next iteration.

Tracking controller

The tracking controller receives the AGC signal at each second and chooses the control

input to the radiators. The tracking constraint reads ‖pt− p̄t−γat‖ ≤ αγ. Upon receipt of

the optimal control action u� from the MPC controller, the lower level controller computes

the power input share going to zone k as νk = u�k

‖u�‖ , where uk denotes the input to zone k .

Using the current value of the AGC, the control input uk = νk(p̄ + γa)/Pmax is computed.

This value is capped between 0 and 1 to give the actual input to the heater, which is

applied. It is easily seen that this strategy ensure exact tracking as long as the value of uk

is between 0 and 1. The optimal dispatch u� was computed using a forecast for the AGC:

as long as the forecast is not widely different from the actual realization, the value of uk is

close to the optimal value u� computed at the upper level. Note that if the forecast of the

AGC over the each 15 minute period was correct at the MPC level, then the temperature
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prediction was also correct. This is due to the fact that the thermal system is essentially a

low-pass filter and fast variation of the AGC will not affect the output of the system. They

can therefore be disregarded in the MPC problem.

7.5 Relationship between control authority and uncertainty mit-
igation

One of the objectives of the controller is to absorb the uncertainty coming from the AGC

signal. That basically consists in disturbance rejection. It should come as no surprise that an

increase in control authority will result in a higher ability to reject disturbances. That is for

example the case in Problem 7.2. If the minimum delay for intraday adjustments decreases,

the control authority increases through relaxed constraints on the recourse matrix N: this

results in a lower optimal value for the problem. For example, we elaborate on this concept

by quantifying the trade-off between control authority and uncertainty mitigation by looking

at the effect of the intraday market on the AGC signal.

Mitigating the effect of the AGC through intraday trades
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(a) AGC tracking without participation in the intraday
market.
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(b) Using the intraday market

Figure 7.11 – Empirical probability histogram of cumulative sum of the AGC signal over a

one-day period (two years of data). The values of the cumulative sum are given as kWh per

kW of capacity offered. Left plot shows the histogram for the ‘day-ahead filtered’ AGC and

right plot the ‘intraday-filtered’ AGC.

In problem 7.2, the intraday market is used to mitigate the uncertainty of the AGC.

In the following, we refer to the integral of the AGC as the energy request. If the energy

request reaches a large positive or negative value, it means that the AGC was consistently

positive or negative over extended periods of time. AGC signals with the highest energy

requests are the most problematic to handle since they require the system to store or release
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significant amounts of energy. This can cause two types of issues: (1) the limited energy

storage capacity of the system might not support such a request, leading for example to

constraint violations; (2) the system operates away from its optimal operating point which

might degrade the performance of the equipment. Through the use of intraday trades, it

is possible to reset the energy request close to zero by applying an appropriate filtering

strategy, as discussed in [82]. The filtering strategy consists of measuring the current

energy request of the sum of the AGC and previous trades on the intraday market, then

purchasing the negative of that quantity on the intraday market for time slot t + δ. This

strategy attempts to reset the energy request of the AGC to zero at every timestep, but is

affected by the delay of one hour caused by the clearing of the market. A ‘filtered’ AGC

signal is obtained that way as the sum of the actual AGC and the intraday trades. This

filtering strategy is a heuristic to maintain the state of charge of the AGC close to zero.

We emphasize that this filtering strategy is not used in problem 7.2, but simply illustrates

how the intraday market can be used in order to maintain the AGC state of charge closer

to zero. Instead, in problem 7.2, the recourse decision matrix N exactly embeds such a

filtering strategy to readjust the baseline through intraday trades taking into account the

state of charge of the AGC but also other factors such as forecasts for weather and current

state of the system.

Figure 7.11 shows how the energy request histogram is transformed by applying the

heuristic filtering strategy described above. Both the worst-case energy request and its

95th percentile are divided by a factor larger than two. This shows that the energy storage

capacity of the physical system needed is greatly reduced if we resort to the intraday market

to offset its ‘state of charge’. It is noticeable that the use of the intraday market reduces

the variance of the energy request and brings the storage requirement typically around one

kWh per kW of capacity offered against three to four times more when doing only day-ahead

purchases.

7.6 Simulation and Experimental study

7.6.1 Experiments

In this section, we present a series of experiments that have been performed in the period

from December 2015 to April 2016.

Each experiment extends over a period comprised between 18 and 24 hours. Experiments

differ in two ways:

• Half of the experiments are performed as described in Sections 7.4.4 and 7.4.3, with

the building controller computing a bid for tracking and purchasing energy in the

day-ahead and intraday market. In the other half, it is assumed that the building

cannot trade energy on the intraday market: therefore its baseline is entirely purchased

day ahead and it has no opportunity to reschedule it. The aim is to highlight the

effect of the intraday market in the ability of the building to successfully provide

regulation. In practice, no intraday trades can be enforced by simply setting variables
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(a) AGC tracking without participation in the intraday market.
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(b) AGC tracking with baseline readjustments in the intraday market.

Figure 7.12 – Two experiments of AGC tracking. The same AGC signal is used in both. Upper:

Power distribution across the four zones. Baseline applied energy consumption (solid black line)

advertised at time of bidding for subfigure (a) and the baseline after intraday transactions in subfigure

(b). The original baseline (day-ahead) in the intraday scheme is also displayed (purple solid line). The

blue line represents the total power to be tracked. Middle Up: Temperature variation for different

zones. Each color corresponds to the measured temperature in each zone. Middle down: AGC

signal variation and capacity bid. Lower: Transaction on the intraday market. Positive transactions

(buy) in green and negative transactions in pink.136
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Parameter Values

Pmax 1.9kW

α 0.05

Tref 23 oC

β 0.5; 1; 1.5; 2oC

N1 96 (1 day)

N2 24 (6 hours)

Ns 200

Table 7.3 – Parameters of the simulation and experiments

p.|.+δ in the bidding problem to zero a priori.

• For each case (with and without intraday tracking), experiments have been conducted

with different comfort ranges of ±0.5, ±1, ±1.5 and ±2oC respectively around the

comfort temperature Tref = 23
oC for all rooms. This allows exploring the trade-off

between comfort and the ability of the building to provide regulation services. Varying

the temperature comfort range is a simple way to control the comfort level.

Table 7.3 compiles the values of the parameters used in the simulation and experiments.

The sampling time of the model in Problem 7.2 and the controller (7.20) is 15 minutes. A

selection of representative previously observed AGC signals has been used in the different

experiments. Realizations of the AGC with large energy requests have been included since

they should illustrate best the influence of the intraday market.

A complete report on the experiments is found in Section E. One pair of experiments

has been selectively reported in Figure 7.12 to illustrate how the use of the intraday can

be beneficial. In Figure 7.12(a), the baseline was fixed at the beginning of the experiment.

At around 7 am, due to errors in forecasts and a request for reducing power consumption

(negative AGC), the controller ends up in a situation where it has to violate lower temperature

constraints for at least one room since its ‘budget’ for power consumption is too low. The

controller then takes a few hours to completely recover. Experiment 7.12(b) was performed

in similar conditions but with the possibility to resort to the intraday market trades. Notice

that the initial baseline schedule (purple line) is very close to the one for the first experiment,

and the AGC test signal is the same in both experiments. It can be seen that from the

moment the temperature starts to drop around 6am the controller anticipates the risk of

constraint violation and purchases extra baseline for the upcoming hours, which eventually

avoids constraint violation around 10am, when all temperatures reach the lower value of the

constraints. Besides, by explicitly modelling the fact that the baseline could be readjusted,

the optimal capacity computed in that case was larger by about 20%. A detailed discussion

on all experiments is reported in appendix E.

We will next support the claim that what is observed in that particular experiment

should be observable on average across all experiments and is characteristic of the difference

between the two control schemes. Figure 7.13 aims at quantifying the trade-off between

capacity offered and comfort. The capacity is reported as the percentage of the total power
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installed that could be offered as up/down regulation. Comfort is computed using the

ASHRAE likelihood of dissatisfaction (ALD) (see appendix B for more details). Experiments

have been grouped in pairs for readability where each pair was performed in similar conditions

(close weather, same AGC signal, and comfort constraints). In each pair, the round marker

represents the result of the experiment when using intraday trades and the square marker the

one without having intraday transactions. The first observation is that, in similar conditions,

experiments using the intraday market always resulted in higher capacity bids and higher

comfort.

Ultimately, each color of experiment corresponds to a different level of constraint

tightening β from ±0.5oC in red to ±2oC in green. As expected, as the constraints are

relaxed, higher bids for regulation can be offered, and result in lower average comfort.

7.6.2 Simulations

A series of simulations were also performed to compare with the experiments. The weather

recorded for 60 different days during winter 2015 was used for simulations. For each weather

scenario, the optimal bid is computed for 5 different levels of comfort tightening (the same

as in the experiment plus ±0.25oC, depicted in dark blue). The optimal computed controller

was applied for 9 representative scenarios of the AGC. The resulting level of comfort was

computed and reported in Figure 7.13. The conclusion derived from the experiments are

confirmed and can be summarized as follows:

• Trading energy on the intraday market to readjust the baseline allows to offer higher

capacity bids and improve comfort while offering regulation.

• Comfort level and regulation capability can be traded off, for example by relaxing the

temperature constraints. The more the relaxation, the lower the comfort and the

higher the bid.

Secondly, it can be seen that experimental results are consistent with the simulations in

the sense that computed bids are almost identical while comfort levels are close. Experiments

(especially when constraints are very tight), tend to display lower comfort with respect to

the simulations. This is expected since simulations assume perfect predictions and perfect

measurements, which of course is not the case in experiments.

Another conclusion seems to appear through the simulation results: for a given constraint

level, the use of the intraday market increases the capacity offer, but also mitigates the

variance of the comfort with respect to weather scenarios and AGC signals.

To illustrate the extent to which the intraday market is used, we report in Table 7.4

the statistics of the experiments. The total energy consumption, total net and absolute

amount of intraday trades, as well as total day-ahead energy purchased, are reported. For

the simulation columns, the number are averages over simulations performed with the same

set of experiments as for Figure 7.13, with an extended test set for the AGC scenarios. For

the experiments, averages over the 10 experiments of Figure 7.13 are reported.
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Figure 7.13 – Tracking capacity bid versus comfort achieved in closed-loop experiments

and simulation . Colors correspond to different levels of constraint tightening (dark blue

for ±0.25oC, red for ±0.5oC, orange for ±1oC, light blue for ±1.5oC, green for ±2oC).

White face markers correspond to simulation instances and colored ones to experiments.

Circles correspond to experiments with intraday trades and squares to experiments without

intraday trades. Desired improvement direction is to the top left

Quantity Simulation Simulation Experiment Experiment

(in kWh/h) (intraday) (no intraday) (intraday) (no intraday)

Total Consumption 3.2 3.3 4.1 3.8

Day Ahead Purchases 3.3 3.3 3.6 3.8

Net Intraday Purchases -0.1 0 0.5 0

Absolute Intraday Purchases 1 0 0.8 0

Avg Constraint Violation (oC) 0 0 0.026 0.047

Table 7.4 – Statistics of the experiments. Numbers reported are normalized by the length

of the experiments, yielding an average hourly consumption. The last line reports the

constraint violation, averaged over rooms and time, in degrees Celsius.
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Remark 7.4. When offering tracking, the total power consumption naturally depends on the

AGC request. A set of simulations with a controller that tracks the reference temperature

Tref in every zone was conducted. The resulting power consumption has been compared to

the one of the controller performing AGC tracking, but assuming that the AGC request is

zero. The power consumptions differ by only 1% on average, which suggests that in the

absence of an AGC request, the controller would perform almost identically to a controller

maximizing comfort. Roughly speaking, that follows from the fact that maximum flexibility

is available at the optimal comfort level when the temperature is in the middle of the

temperature constraints if positive or negative requests are equally likely (which is the case

regarding the AGC) �

The following observations are in order:

• The volume of intraday trades (sum of the absolute value of intraday trades) amounts

to about 25% of the total power consumption, both in simulations and experiments.

This demonstrates that the closed loop controller described in Section 7.4.4 is not

trying to overact on the intraday market to maintain the temperature in the comfort

range.

• In simulations, the net intraday energy trades are quite small on average: this means

that intraday trades tend to cancel out over time, leaving a net intraday purchase

below 5 % of the total power consumption.

• In the experiments, intraday trades are consistently positive at around 10 % of the

total power consumption. This means that the algorithm tends to underestimate the

needed power consumption slightly. Besides the fact that the number of experiments

is not statistically significant, it is difficult to identify a single factor explaining this

phenomenon: errors in weather forecasts, bias in the AGC signal received, model

mismatch and unexpected disturbances will together contribute to these prediction

errors. Note that if a consistent bias was confirmed over a more extensive set of

experiments, it should be possible to eliminate it by, e.g., readjusting the prediction

model. In general, it should be expected that prediction errors cannot be completely

eliminated.

• In experiments, the average amount of constraint violation is almost divided by two

when resorting to intraday trades. This confirms the observations made based on

Figure 7.12 and can be explained simply: in the case where the baseline cannot

be readjusted, the control authority available after the baseline has been fixed is

relatively limited, whereas it is significantly increased when intraday trades are available.

Therefore in the latter case, the controller is able to reject disturbances more efficiently

and therefore mitigate constraint violations and increase average comfort, despite

the fact that the regulation capacity offered is even larger. A by-product of this is

that the controller is then less sensitive to forecast and model prediction errors. This

directly relates to the discussion of Section 7.5.
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Finally, based on these remarks, we emphasize that the strength of our approach is that

the closed loop controller is able to overcome prediction errors and unexpected disturbance

more successfully when resorting to baseline readjustments. That is very important because

disturbances and errors cannot be avoided entirely in real-world applications. Conversely, it

also means that for a fixed level of performance of the controller, the quality of models and

forecast can be smaller when the baseline can be readjusted.

7.6.3 Discussion

Practical relevance and relations to other work

This work demonstrates how the inherent storage in a building can be used in order to offer

significant flexibility at a controlled level of occupant discomfort. Combining our findings

with those of other works considering commercial HVAC systems suggests some directions

for practical implementation of regulation with commercial buildings. The works [141] and

[78] have shown experimentally that frequency regulation could technically be provided by

variable speed drive chillers and fans. However, they limit the frequency band supported

by pre-filtering the regulation signal within a frequency band between 30 seconds and 10

minutes. By limiting the impact of the controls on the inside temperature as much as

possible, only the inertia in the HVAC system is used, and this inertia is quite small in the

absence of a storage system. Effectively, the inertia of the building system itself remains

unused. By modeling the thermal dynamics of the building, our work demonstrated that a

robust strategy could be used to exploit the inertia in the building heated space successfully

and, hence, extend the frequency range of the service.

An interesting research direction could be to combine both concepts. On one side, the

inertia of the HVAC could be exploited to absorb the fastest frequencies, for example by

changing the duct pressure setpoint [78]. On the other hand, thermal power demand of

the indoor space could be used to absorb slower frequencies. This requires the modeling of

the response of the room temperature to changes in thermal power input, which has been

demonstrated in our work. In general, a model of the effect of changes in the thermal power

demand on the electricity power consumption needs to be found, but for slower timescales

only, which mitigates the issue of modeling the interactions of all the components on fast

timescales. The difficulty of this task is system dependent.

Need for fast actuation

Realistic HVAC systems also have a limit in terms of how fast they can vary their power

consumption. Previous work on chillers and fans suggest that frequencies faster than 30

sec can pose operational issues for the equipment. To improve the quality of tracking, it

might be needed to attach to the system a fast storage element such as an electric battery.

Because of the high cost of battery capacity, the operation should try to limit the capacity

needed for the control task, and therefore absorb only the fastest frequencies with the

battery. Figure 7.14 gives the size of the battery needed to absorb the high frequency part
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Figure 7.14 – Characteristics of the battery needed to absorb the fastest frequency in the

AGC. Power ratings are in blue and energy storage capacity in red. Solid line is the worst

case over one year, and dashed line the value needed to cover 99% of the signal. Values

are computed for a 1 kW tracking capacity. The cutting period is the period corresponding

to the highest frequency that the battery needs to track.

of the AGC as a function of the filtering frequency.

7.7 Validation of the virtual battery concept

In order to illustrate the concept of the virtual battery, an experiment was designed to

highlight how the building can act as an energy storage resource. Once more, Problem 7.2

was solved with the difference that the reference set is chosen as in Equation (5.54), i.e. :

Ξ̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
a

∣∣∣∣∣∣∣∣∣∣∣

s0 =
smax

2

0 ≤ st ≤ smax , ∀t ∈ Z[1,N]
st+1 = st + at ∀t ∈ Z[1,N]
− 1 ≤ at ≤ 1 ∀t ∈ Z[1,N]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.21)

with smax = 2.5kWh. Excluding intraday trades in order to preserve the physical inter-

pretability, we compute the maximum scaling of Ξ̂ that the system can handle. Then, we run

the experiment as described in Section 7.4.4. The signal extracted from Ξ̂ is chosen such

that the ‘battery’ reference discharges initially, then recharges entirely and discharges again

finally, in alternating periods of five hours. The tracking signal is depicted in Figure 7.15 in

the bottom subplot.
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As a result, we observe in the middle subplot of Figure 7.15 that the temperature

drops when the reference signal is negative and rises when it is positive. It is interesting to

notice how most of the range of the temperature constraints is explored going from the

‘discharged’ state to the ‘charged’ state, which suggests that the scaling of the battery

selected is neither too conservative (which would result in a small exploration) or too large

(which would result in constraint violation). we can simply notice that temperatures are

slightly shifted down compared to the center of the comfort range. This is due in part to

the initial condition which happened to be quite low at the beginning of the experiment

and was not fully canceled after the first hour. That causes some small constraint violation

in one of the rooms and some extra slack in the higher range of temperature when the

reference is consistently positive. We recall that the baseline in that case was not readjusted

during the experiment, therefore there was no opportunity to cancel that shift by an positive

readjustment of the baseline.
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Figure 7.15 – Virtual battery validation

143



Appendix

144



E Full report of the experimental
campaign
We report in this appendix the time plots for all the experiments reported in Figure 7.13

and discussed in the section 7.6.1. The experiments are grouped in pairs, so that each

pair of experiments is performed with the same comfort constraint range in similar weather

conditions and in most cases with the same realization of the AGC signal. They only differ

in the fact that in the first experiment, the baseline was fixed day-ahead, and in the second

it was adjusted on the intraday market with a one hour delay. In each plot, the top graph

reports the electric power used in each room with stacked shaded colors. In purple the final

baseline consumption is reported, and in blue the final total power consumption (that is the

sum of the baseline and the scaled AGC signal). The second graph reports the temperature

in the four rooms, as well as the comfort range in dotted lines. The third plot reports the

scaled AGC signal and the bounds on the maximum AGC that the system can receive (in

other words the capacity) in dashed lines. Finally, the last plot of the second graph reports

the intraday trades for the experiment. Green is used for positive transactions (energy

bought) and purple for negative transactions (energy sold).

The experiments reported in Figure E.1 have already been discussed in Section 7.6.1.

Figure E.2 reports the results of the experiments when the temperature constraints were

the most stringent (only ±0.5oC). Accordingly, the bid is reduced and despite a relatively

large positive excursion of the AGC signal in positive values, we can see that the temperature

increases, but always within bounds. It can be also observed how the intraday purchases

correlate with the AGC values, with a streak of negative purchases after the AGC takes

positive values.

Figure E.3 reports experiments with constraints of ±1.5oC. Most noticeable here is that

in the intraday case, the initial condition for the building is particularly low, and the controller

resorts to large positive purchases to compensate for that initial mismatch. Overall, the

intraday purchases remain positive despite large positive excursions of the AGC signal. This

shows that the intraday purchases are performed not only in accordance to the AGC values,

but also in response to the current state of the system and estimated disturbance affecting

it.

In the case of the experiments of Figure E.4, it is quite clear how in the case of no

intraday, the temperature rises in relation to the values of the AGC: negative initially, and

positive at the end of the experiment leading to a drop and a rise of the temperature around
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Figure E.1 – Experiments from 26/02/2016, no intraday (top) and 27/02/2016, intraday(bottom).

β = 1oC. Capacities: ±3.5 and ±3.9kW
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Figure E.2 – Experiments from 02/03/2016, no intraday (top) and 28/02/2016, intraday(bottom).

β = 0.5oC. Capacities: ±1.6 and ±2.3kW
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Figure E.3 – Experiments from 05/03/2016, no intraday (top) and 04/03/2016, intraday(bottom).

β = 1.5oC. Capacities: ±3.7 and ±5.1kW
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Figure E.4 – Experiments from 10/03/2016, no intraday (top) and 08/03/2016, intraday(bottom).

β = 2oC. Capacities: ±4.6.9 and ±5.9kW
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Figure E.5 – Experiments from 14/03/2016, no intraday (top) and 15/03/2016, intraday(bottom).

β = 2oC. Capacities: ±4.6 and ±5.9kW
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the reference temperature, respectively. In the case of the intraday trades, by compensating

the AGC in the intraday market, the temperature is maintained more consistently close to

the reference.

Finally, in Figure E.5, we can also observe, how the transactions tend to be biased up

on average to maintain the temperature closer to the reference temperature.
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8 Conclusion

8.1 Summary

We have started by presenting the toolbox OpenBuild. This Matlab toolbox facilitates the

design of predictive controllers for buildings by:

1. Extracting controller-ready models for the thermodynamics of buildings using standard

building description data. These models feature a good prediction quality and help

estimating the thermal power required in the building accurately. They also come

with realistic input data modeling the effect of occupants, equipment and weather,

that allow simulating building controllers in realistic conditions.

2. Providing a co-simulation interface with EnergyPlus that allows to test these models

on a trusted simulation environment for validation.

Next, we have presented the robust tracking commitment problem. This problem

formulation was directly motivated by our main question related to the provision of grid

services with buildings and loads in general: How can we capture the flexibility of a load

in its power consumption, both synthetically and as accurately as possible. To answer

this question, the robust tracking commitment essentially formulates a multi-stage robust

optimization problem for a system subject to uncertainties, but with the particularity that

the set in which the uncertainty lies is part of the decision variables. This set can for

example capture the set of all power consumption tracking requests a load can follow.

In an effort to formalize the problem in a general setting, particular care was needed in

order to make sure that the decisions are not taken considering information that is not

supposed to be available at the time of the decision. This required the introduction of

information structures and we showed how to modulate the uncertainty sets while taking

this into account. Special cases of interest are listed where the robust tracking commitment

problem can be formulated and solved tractably for large problem instances. An example of

a building offering reserves to the grid illustrates the approach and the concept of ‘virtual

battery’ is discussed in detail.

The last part of the thesis puts into practice the concepts developed in the second

part. It reports the experiments conducted in the LADR experimental platform, a part of
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8.2. Future directions

our laboratory equipped with sensors and electric heaters for control experiments. It is

demonstrated that we are able to satisfactorily evaluate the amount of secondary frequency

control the system can provide, emulating the rules of the Swiss ancillary services market.

We focused there on two aspects:

• The trade-off between comfort and flexibility, whereby the comfort constraint are set

at different levels and we observe the resulting bids accordingly increase.

• The influence of the intraday market, which allows to readjust the power consumption

baseline up to one hour before delivery. By explicitly modeling the recourse to the

intraday market through the use of appropriate information structures, we see that

the system can offer more flexibility at an increased level of comfort when using the

intraday market.

8.2 Future directions

The topic of flexibility modeling is attracting a growing attention and numerous contributions

suggest future directions in this domain. Starting from the elements presented in this thesis,

four promising research venues are briefly presented here.

8.2.1 Data-driven modeling of buildings with OpenBuild

As we discussed in part I, the process of building model identification is heavy and requires

large amount of experimental data. Even when precise description data is not available,

OpenBuild can construct a structural model based on the geometry of the building. In

this structural model, a handful of parameters could be identified to match the output of

the EnergyPlus simulation (or field data) and the prediction of the model. This could be

performed automatically using the already existing code structure of OpenBuild. Using

this approach would allow to benefit from the processing power of OpenBuild, especially

regarding the impact of the sun which is time varying during the day and therefore cannot

be captured very well by a time-invariant linear model (as we have observed for room SW in

the LADR experimental setup in section 7.3). Efforts in this direction have been initiated

through master projects, but no conclusive result can be reported yet.

8.2.2 Computational aspects of large scale robust optimization

We have seen how to recast a problem with adjustable uncertainty set into a standard robust

optimization problem. This allowed us to leverage known results from the literature to

identify tractable instances of the problem in large dimensions, based on a dual reformulation

of the problem. It is frequent to start from a very large dimensional problem due to the large

system dimension and the very large horizon considered. The dual reformulation causes a

massive increase of the number of variables to consider, sometimes rendering the problem

too large. Moreover, this approach is only applicable under structural assumption on the

problem. Considering these limitations, alternative methods have been proposed to solve
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robust optimization problems. [98] propose a ‘cutting-set’ method where the problem is

solved in an alternating fashion: the decision variable is computed with a finite subset of the

constraint; based on that decision, a pessimizing realization of the uncertainty is computed

by maximizing the constraint function on the uncertainty set. That pessimizer is then added

to the surrogate uncertainty set and the procedure is repeated until convergence. It has

been reported in [12] that despite no general conclusion can be derived concerning the

computational advantage of the cutting set method compared to the dual reformulations,

the cutting set method can outperform reformulations in some cases.

We have developed preliminary results exploring this type of methods, which are presented

in the manuscript:

Tomasz T. Gorecki and Colin N. Jones. “Constrained bundle methods with inexact min-

imization applied to the energy regulation provision”. In: IFAC World Congress (accepted).

Toulouse, France, July 2017

In this work, an alternative method is proposed to solve large scale robust optimization

problems. It combines ideas from the cutting set method of [98] and of the bundle method

of [127] for constrained nonsmooth optimization. Instead of assuming exact solutions

to the minimization subproblems within the bundle method iterations, we propose to use

an approximate solution to the minimization step and in particular to use the alternating

direction method of multipliers (ADMM) [17] to perform this step efficiently. Beside taking

advantage of the celebrated robustness properties of ADMM, we saw that obtaining low

accuracy solutions to the minimization quickly allows to solve larger problems faster.

This method is demonstrated on ‘flexibility commitment problems’ arising in power

systems applications. We show how the method proposed allows to tackle instances that

could not be solved using convex reformulations. They also provide only slightly suboptimal

solutions on smaller instance faster and thanks to the monotonic feasibility property of the

bundle method used, usually provide feasible solutions.

This work is still under progress and can be extended to exploit more advanced bundle

methods, explore other minimization methods than ADMM, and perform a more compre-

hensive comparison of the methods proposed.

8.2.3 Infinite horizon tracking

We have listed a number of ways to get infinite horizon guarantees for the robust tracking

commitment problem. They rely on the knowledge of invariant sets of different kinds. As

we have seen, there is no known method to compute robust controlled invariant sets for

an adjustable uncertainty set. Some preliminary results have been developed that identify

special cases where invariant sets for tracking can be computed while the uncertainty sets

is optimized. Due to a very limited applicability, these results have been left out of the

thesis but further work in this area may bring more satisfying infinite horizon guarantees.

Finally, the infinite horizon tracking case with time-correlated uncertain sets, such as the

virtual battery case, is probably the most interesting case of study, but remains relatively

unexplored.
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8.2.4 Distributed versions of the robust tracking commitment problem

We have been mostly concerned with characterizing the flexibility of one resource. It

is expected that a large number of resources need to be aggregated in order to be offer

significant flexibility to the grid. For example, secondary frequency control requires minimum

bids of ± 5MW in Switzerland, which can rarely be met by a single building or resource.

Therefore, aggregation schemes are required to pool resources together. It follows that an

appropriate scheme needs to be devised to evaluate the flexibility of a pool of participants,

and dispatch the tracking requirement in an appropriate way. In addition, issues regarding

what data is shared arise in this situation due to privacy concerns.

A method to compute the flexibility of a collection of participants has already been

proposed in [15]. It relies on the ADMM algorithm. Approximate methods relying on

the robust tracking commitment can be imagined, which yield a minimum amount of

communication. In its simplest form, each load could compute a set of possible references

it can follow, for example solving a robust tracking commitment problem, using the full

knowledge of its model and constraints. The reference set would be broadcasted to the

aggregator which would choose one trajectory in the combination of all the reference sets of

all participants. This requires only one round trip of communication between the aggregator

and the providers in total for the period of time considered. Naturally, a closed loop version

of the algorithm can be implemented, where the participants would update their reference

sets over time, based on updated information and forecast. The effect of such a scheme

on the closed behavior of the system, as well as its suboptimality is unclear and require

a detailed investigation. Iterative schemes to improve on this simple version can also be

imagined.
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