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Abstract 

  

Designers are faced with many options on material and technical solutions during the design phase 

of the building. Different studies proposing solutions and guidelines are presented in the literature. 

They help to guide the building project toward low CO2-eq solutions. Despite all these studies, the 

influence of building dimensions on embodied environmental impacts hasn’t been treated. The 

dimensions are the first parameters to be defined in the early design phase and can have significant 

influence in building’s impacts. In this study, we aim to introduce the relationship between the 

dimensions of the building and their influence in its embodied environmental impacts. Here we 

limit our study in the case of buildings with structure in cementitious materials, to derive some 

general principles for design. To do so first, we have assessed the environmental impacts of a single 

room by progressing its span. Secondly, the impacts have been assessed by multiplying the room in 

length, width and then in height, by transforming it into a building. Thirdly, we addressed the 

problem of defining optimal dimensions of a building and construction from an environmental point 

of view. Finally, the environmental impacts of two different structures, reinforced concrete beam-

columns and shear-walls have been compared. According to the type of construction considered, 

earthquake forces and dimensions in plan and height the study identified the progression of the 

environmental impacts and the definition of optimal dimensions of the buildings. A good definition 

of dimensions can reduce significantly the embodied impacts of the buildings. However, further 

work is necessary for better identifying the optimal dimensions of building by adding to this work 

the impacts of operation phase. 
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Introduction 

The necessity of minimising the environmental impacts of buildings it is widely acknowledged, 

as they are highlighted as responsible for 33 percent of greenhouse gases emissions as well as for 40 

percent of the primary energy used [1]. During the last 20 years, Life Cycle Assessment (LCA) 

method has been applied in several studies with a focus on the assessment of the environmental 

impacts of buildings and its materials, components or systems. The objective of such research 

efforts was the identification of building’ elements, components or systems having the biggest 

impacts to the environmental impacts [2-4]. Other studies focused their efforts on the improvement 

of elements or components for the minimization of impacts of the operation phase [5, 6].  

Moreover, further work has been focused in the identification of influence that design parameters 

such as lifetime, thermal inertia, thermal transmittance, shading system, etc, in for developing low 

impact projects [7, 8]. Even though, the building shape have significant influence in the 

environmental impacts previous works have been focused only on the identification that this 

parameter has to the energy efficiency of the buildings [9, 10]. Yet it appears that few work has 

addressed the buildings dimensions related impacts and their structural principle. Motivated by this 

gap, in this study we aim to identify the effect of building’s dimensions on its embodied 

environmental impacts. 

Method 

The effects of dimension on embodied environmental impact of buildings are calculated by 

integrating the dimension of a “small room” (Fig. 1), for residential destination with a supposed 

lifetime of 50 years. First, the stratigraphy of the external walls, slabs and roof have been chosen 

among 42 different scenarios developed by the combinations of different insulation, wall elements 

and coverings. The thermal proprieties of wall, slab and roof elements are kept equivalent for 

covering the same functional unit. According to France regulations RT-2012 [11], the thermal 

transmittance of slabs should be greater than 3 m² K / W and for the roof greater than 4.5 m² K / W. 

Then, the environmental impacts of all stratigraphies are assessed with the help of Environmental 

Product Declarations (EPD) from the French national database INIES [12]. The stratigraphy 

presenting the lower CO2-eq emission have been considered as supposed to be the most pertinent 

for our study. This choice was motivated by the reason that the low CO2-eq stratigraphy is the most 

disadvantageous to the results of this study, because the effect of the dimensions is supposed to be 

lower in this cases. We have made this choice for calculating the minimal significant effects that the 

dimensions will have in the impacts. 

The structural elements are pre-dimensioned according to Eurocodes norms [13, 14].  Since the 

seismic map separate France in five different zones [15], and the zones 1 to 3 cover almost 90% of 

the territory we have considered for the study only the seismic loads of zone 3 that cover also the 

other two. Consequently, of the loads considered in the calculation of the structure, the results of 

this study are not representative for the other 2 seismic zones (4 and 5) of France with higher 

seismic risk. An average ductility of the structure is considered and the earth of category C for 

considering earthquake loads via design spectrum according to Eurocode 8 [16]. In the end, the 

verifications of the structure for all load combination are carried out by modelling the projects 

scenario in ETABS software [17].  

A step by step progression is applied to the dimensions of the room. The span of the beam, slab 

and roof have been firstly variated between 2 to 10 m. The influence of the variation of the span 

between columns and consequently the span of beams, slab and roof to the impacts has been firstly 

calculated. Then the room for different spans has been multiplied X, Y and Z dimensions for the 

calculation of the effects of dimension in plan and height. For the multiplications in X, Y and Z 

dimension, we have considered that each room will have an internal door and a window if it faces 

the external façade of the building. 
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Figure 1: Details of the building and its elements.  

 

The areas of the kitchen, toilets, and corridors are not considered in the process of the 

multiplication of the room in three dimensions. This progression’s process transforms the room into 

a single house and then in a multi-residential building, (the dimension of the structures created can 

be compared with this building’s type). The progression of dimensions of the room are applied in 

two different structure. One structure is composed of reinforced concrete beam-columns and the 

other of reinforced concrete shear-wall. In the end, the environmental impacts of two structures 

types are compared.  

The assessment of the environmental performance of the building scenarios are undertaken 

according to the European standard [18]. As for the walls, slabs and roof the information of the 

EPDs available at INIES database are used for the assessment of the impacts of the whole scenarios. 

The impact categories of EPDs follow one of the NF P 01-010 standards [19]. The standard uses 

some impact categories from the CML 2001 method [20]. In this study, we have considered only the 

global warming potential (GWP) indicator but further information for other indicators can be found 

in Hoxha, (2015) [21]. Within the boundary of the assessment are considered only the materials and 

elements used for the construction of the building without considering the impacts of operation 

phase, since the aim of the study is the calculation of the effects of dimension only in embodied 

impacts of the building. This limit of the boundary, cannot affect the results because other studies 

have demonstrated that dimensions reduce the impact of operation phase. 

Results 

The environmental impacts of the building’s elements assessed for different spans are presented 

in Fig. 2. The environmental impacts of different elements vary differently when the span increases. 

Such elements are reinforced concrete shear-walls, walls in concrete blocks, columns, and 

foundations decrease their impacts when the span is increased from 2 m to 10 m. In the other hand, 

impacts of the roof decrease when the span is increased, due to the reason of the increment of the 

roof thickness for large spans. The impacts of the slab are always constant because the impacts of 

these elements increase with the span, but are in disproportion with the area of the building and 

consequently with unit considered for the assessment of the impacts in this study. In the end, 
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impacts of beams present a minimum for an intermediate value of the span, which demonstrates the 

potential of the presence of a possible optimum of the span for GWP indicator of the building. 

 

 
 

Figure 2: Effect of span in CO2-eq gases of different building’ elements. 

 

For better understanding, the influence of the span in the GWP indicator, Fig. 3 presents the 

overall impacts of the room for different spans. The results are presented for two types of structures. 

The structure in reinforced concrete beam-columns (B-C) present a minimum for a span of 5 m and 

the structure in reinforced concrete shear-wall (SH-W) a minimum for a span of 7 m. In addition, 

the results of Fig. 3 demonstrate that the B-C structure present lower environmental impact than the 

SH-W structure for the span between 2-8 m, but not for bigger spans. These results are valid in the 

case of a simple room, but for better understanding the stability of this conclusion and for 

calculating the effect of the dimension in plan in embodied impacts, we have multiplied the room in 

X and Y direction. 
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Figure 3: Effect of span in CO2-eq gases of reinforced concrete beam-column (RC: B-C) and shear-

wall (RC: SH-W). 

 

For the B-C structure, the results obtained are presented in Fig. 4. The variation of building 

dimensions in plan, respectively in direction X and Y reduce significantly (around 20% for a span of 

5 m) the overall impacts. It is important to be underlined that the reduction of the impacts can seem 

as significative only up to 25 m at X and Y direction. For more than 25 m, we remark only small 

reduction of impacts that can be presented as unsignificative. The results highlight the building with 

span of a 5 m as the best solution with lower impacts. Another remark of the results is that the 

earthquake loads have not influence in the CO2-eq gases when the dimension of the buildings in the 

plan is increased.  

 

 
 

Figure 4: Effect of X & Y dimension in CO2-eq gases of reinforced concrete beam-column 

structure. 

 

In the case of SH-W structure (Fig. 5), the results are almost the same as those of the B-C 

structure. The only difference is for a span of 10 m for which the impacts are lower than for span of 

2 m, while in the B-C structure the impacts for both spans 2 m and 10 m are similar. Another 

remark is that the structure B-C represents lower impacts than the SH-W structure for 1 level 

building. As for B-C structure, the span of 5 m presents the lower impacts compared to the impacts 

of a scenario where other values of spans are considered.  

For this reason, the influence of the dimension in height of the building to its environmental 

impacts are calculated only for the span of 5 m. Finally, the influence of dimension at height of the 

building to the embodied impacts is identified by multiplying the room in Z-direction. The 

variations of the CO2-eq gases of the building in function of the levels are presented in Fig. 6. In this 

case, the earthquake loads had significative influence on the impacts of the B-C structure elements 

and no influence on the impacts of the SH-W structure. The B-C structure, in the case of the 

negligence of the earthquake loads that corresponds to the zone 1 of the seismic map of France, 

presents the lower impacts whatever the number of levels. When the earthquake loads of the zone 3 

are considered the B-C structure present and optimum for 5 level or 15 m of height of the building. 

Even for 6 levels the CO2-eq gases are remained small and almost equal to those for 5 level, but for 
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up to 6 levels the impacts are significantly increased. Based on the results of Fig. 6, when the 

building is constructed in a moderate seismic zone, we can conclude that the reinforce concrete 

beam-columns structure presents lower impacts for dimension in plan 25 x 25m and height of 15 m. 

 
 

Figure 5: Effect of X & Y dimension in CO2-eq gases of reinforced concrete shear-wall column. 

 

For the SH-W structure, the earthquake doesn’t influence the impacts of the building. For this 

structure, the minimum is presented at 16 level or 48 m of height. Based on results we can conclude 

that the reinforced concrete shear-wall structure present lower impacts in the cases of a building 

situated in moderated seismic zone when tall buildings are planned to be build. In the case of the 

small building with the height lower than 15 m, the B-C structure is recommended, in both 

moderate and non-moderate seismic zone as they presented always lower impacts. 
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Figure 6: Effect of Z dimension in CO2-eq gases of reinforced concrete beam-column (RC: B-C) 

and shear-wall (RC: SH-W).  

 

In the end, Fig. 7 summarised the effect of dimensions on embodied environmental impacts of 

the building. The comparison of impacts of the single room with those of the building in plan and of 

the building in height, highlight the conclusion that a good definition of the dimension of the 

building can decrease drastically its impact, with around 50 %. This conclusion is almost the same 

for both structure types. 

 

 
Figure 7: Effect of dimensions on embodied environmental impacts of building for reinforced 

concrete beam-column (RC: B-C) and shear-wall (RC: SH-W). 
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Conclusion 

The dimensions have a significant influence to the embodied environmental impacts of the building. 

In this study, we show that a good definition of the dimension can reduce by 50% the CO2-eq gases 

of a building. The Z-dimension have a bigger influence in the reduction of CO2-eq gases than X and 

Y dimensions. These conclusions are valid for both, a reinforced concrete beam-column structure 

and shear-wall structure. The beam-column structure shows lower impacts than shear-wall structure 

when the building is situated in a non-seismic zone. Even in a moderate seismic zone, beam-column 

structure shows to be more CO2-eq friendly than shear-wall structure, when the height is lower than 

15 m. Only in the case of a building’ height up to 16 m situated in a moderate seismic zone, the 

reinforced concrete shear-wall structure is recommended to be employed as more CO2-eq friendly. 

Since the building’s dimensions show to positively influence the reduction of CO2-eq gases, the 

construction of dwellings must be more advantageous than single-houses. The conclusions of this 

work are mostly directed to architects, which must consider the advantage of dimensions for 

reducing the impacts of building at the early design phase.  

Further developments are necessary for better identifying the effect of the dimensions in embodied 

of buildings with T, U I, etc, shape. Furthermore, a better definition of the optimal dimensions of 

buildings would request in addition to this work the impacts of operation phase. 
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