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Chapter 1

General properties of Ho
and Er

Prior to a discussion of the effect of alloying the two elements, their individual
respective properties shall be outlined. Both Ho and Er belongs to the rare
earth series, which in terms of electronic configuration are characterized by the
filling of the 4f shell with 0 to 14 electrons.

The electronic configuration of an individual rare earth atom can be calcu-
lated by means of local density theory as formulated by Hohenberg and Kohn
(1964), Kohn and Sham (1965). As a result it is seen that the 4f electrons are
close to the nuclei, well shielded by the 5d and 6s electrons as is illustrated in
figure 1.1.

Of great importance to the magnetic properties is the spin orbit coupling,
which for the 4f electrons is accurately described by the Russell–Saunders cou-
pling scheme. Within this procedure the individual electron spins are coupled
by the exchange interaction into a total spin S =

∑
i si and the orbital angular

momenta are coupled by the coulomb interaction into a total angular momen-
tum L =

∑
i li. These two couplings are sufficiently large to confine the system

to the ground state values of S and L which are found by Hund’s rules:

1. Maximize S.

2. Maximize L within the constraints of rule 1.

3. J = |L∓ S| with the sign changing at half filling of the shell.

The spin and orbital angular momentum operators are thus combined into
a total angular momentum operator J = L + S of length J = |L ∓ S|. The
actual values for holmium and erbium are summarized in table 1.1.

Within the ground state multiplet {|JLSMJ ⟩} the Wigner–Eckart theorem
implies, that the matrix elements of any operator can be related to those of
J . Taking the electronic gyro magnetic factor g0 as 2 this provides some very

1
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Figure 1.1: Radial wave functions for Ce illustrating the confinement of the 4f
electrons.

4fn L S J g ∆[K]
Ho 10 6 2 8 5

4 7500
Er 11 6 3

2
15
2

6
5 9350

Table 1.1: Values for the spin orbit coupling in holmium and erbium. ∆ is the
energy to the first excited multiplet.

useful relations between the quantum operators S, L and J . It is not neces-
sary to put g0 ≃ 2, but the simplicity of the resulting expressions justifies the
approximation. The Wigner–Eckart theorem gives:

⟨JLSMJ |L+ 2S|JLSMJ⟩ = gLandé(JLS)⟨JLSMJ |J |JLSMJ⟩, (1.1)

where the Landé factor (in the following denoted just g) is

gLandé(JLS) =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (1.2)

Bearing in mind, that it is only valid within the ground state multiplet, the
matrix element proportionality along with two implications can be written in
direct operator form:

gJ = L+ 2S

L = (2− g)J

S = (g − 1)J . (1.3)
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1.1 Rare earth metals

When combined into a solid metal the well embedded 4f electrons remain lo-
calized and the coupling of angular momenta take place as described for the
individual atom. The conduction electron gas is built from 5d and 6s electrons
moving in delocalized Bloch states. The direct magnetic contribution from the
conduction gas is negligible, but it plays an important role as mediator of mag-
netic interaction between the localized 4f angular momenta.

Most of the rare earths form hexagonal closed packed (hcp) or double hexa-
gonal closed packed (dhcp) lattices, both of which can be viewed as closed packed
trigonal symmetry planes (basal planes) stacked with a translation scheme as
ABAB or ABAC respectively. Actually both the fcc structure of Yb and Ce(α,γ)
and the rhombohedral symmetry of Sm can be identified with stacking of closed
packed planes in the sequence ABCABC and ABABCBCAC respectively. Be-
longing to the heavy rare earths, both holmium and erbium have hcp structure
with lattice parameters a and c given in table 4.2.

Figure 1.2: The hcp and dhcp lattices

The hexagonal closed packed lattice can be treated as a simple hexagonal
Bravais lattice with two atoms per unit cell. The three primitive axes are defined
as:

a1 = ax̂

a2 = a(
−x̂

2
+

√
3

2
ŷ)

a3 = cẑ. (1.4)

In the discussion of the magnetic anisotropy it is convenient to distinguish
between the directions along which the nearest neighbours lie and those in be-
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a=a1

b

c=a3

a2

 120o

(a) Real space (b) Reciprocal space

Figure 1.3: The real and reciprocal hexagonal lattice notation

tween. Therefore the crystal directions are defined orthogonal and parallel to
{x̂, ŷ, ẑ} respectively:

a = ax̂ = a1

b = aŷ = a1 + 2a2

c = cẑ = a3. (1.5)

For a crystal with more than one atom per unit cell, the relative position
dn of each site is specified with respect to the origin of the unit cell. In the hcp
crystal, the two atoms are situated at:

d0 = 0

d1 =
2a1

3
+

a2

3
+

a3

2
=

a

2
+

b

6
+

c

2
. (1.6)

The reciprocal lattice is defined with respect to the primitive axes through
exp ik ·R = 1 for R and k belonging to the lattices spanned by {a1,a2,a3}
and {b1, b2, b3} respectively. Though inconsistent, it is standard to call the
reciprocal primitive vectors b1 and b3 for a∗ and c∗ respectively despite the fact
that they are defined from {a1,a2,a3}. It is convenient to specify positions in
the reciprocal space in terms of Miller indices (h, k, l) where integer h, k and
l correspond to reciprocal lattice points. This choice of units is referred to as
reciprocal lattice units. A direction in reciprocal space is similarly written as
[h, k, l].

The fact that the unit cell is twice as high (in the c-direction) as the distance
d between two succesive basal planes is reflected in the reciprocal space scatter-
ing, where (0, 0, 2) is the first allowed reciprocal lattice point, while (0, 0, 1) is
extinct by the geometric structure factor as an artifact of the unit cell.
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Figure 1.4: Band structure in Ho, Er and Tm from top to bottom. Energies are
in Ry. The Horizontal line in the middle is the Fermi energy.
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As for the electronic configuration of the atom, local density methods such
as the Linear Muffin Tin Orbital method can be used in self consistent band
structure calculations in the metals. With help from H.L. Skriver, the band
structures of Ho (4f10), Er (4f11) and Tm (4f12) have been calculated, using
the TB-LMTO-ASA method developed by Skriver et al. (Andersen 1975, Skriver
1984, Andersen et al. 1985, Andersen and Jepsen 1984) Although very similar,
all three have been plotted in figure 1.4 as an illustration of how little the
electronic structure changes during the filling of the 4f shell.

The integrated density of states in figure 1.5 defines the Fermi energy EF

as the energy where there are 6 electrons (3 for each atom in the hcp unit cell).
There are 3 electrons per atom in the conduction bands, but the s, p and d bands
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Figure 1.5: Density of states and integrated number of electrons in Ho.

are fractionally filled as follows: Ns = 1.54, Np = 0.822 and Nd = 0.628. Since
there are no p electrons in the free atom, the p electrons are called s electrons,
and the 3 electrons are hence equally distributed among the s and the d bands.
Therefore the usual assignment 4fn5d26s1 is to be treated as a formal choice.

Though the right numerical values for the magnetic interactions are generally
not accessible, some qualitative features can be understood with a knowledge
of the electronic configuration. The form of the Fermi surface is believed to
explain the periodicity of the magnetic structures as discussed in section 2.2.4
on page 22.

The Fermi surface is defined by E(k) = EF and is found from the band
structure as the intersection between the bands and the Fermi energy. However,
a reasonable determination of the Fermi energy requires calculation of the band
structure not only along the symmetry lines as in figure 1.4 but in a fine mesh
through the reduced Brillouin zone. This quite comprehensive task has not been
performed. Instead the Fermi surface of Tb is shown in figure 1.6.

As illustrated for the band structure there are only small differences in the
Fermi surface for the different rare earths, and hence the Fermi surfaces of Ho,
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Figure 1.6: The Fermi surface of Tb illustrating how the parallel regions between
the toes result in periodic structures of periodicity q.

Er and Tm can be assumed to have similar forms.

The two parallel regions separated by q are believed to be responsible for
the periodicity of the structures in the rare earths (see section 2.2.4) and is
therefore worth a closer examination (Keeton and Loucks 1968). The center
of the dog-bone is denoted L. The axis parallel to q is the ML axis, and the
axis perpendicular to q is the LH axis, both of which are seen in the band
structures. The dog-bone shaped region of the Fermi surface can be identified
in the band structure. The ends of the dog-bone are seen as a band crossing the
Fermi surface between H and L, close to H. The width of the dog-bone is more
difficult to identify, but as seen in the closeup of the band structure in figure
1.7 it is present.

The Fermi surface intersects the ML line about 1/5 from L. This cor-
responds qualitatively to the universal periodicity Q(TN ) ≃ 0.28 observed in
most of the heavy rare earths.

Another interesting feature of the ML band structures is that the band dips
at L. In Ho L is outside the Fermi surface, in Er it is at the Fermi surface,
whereas it is just inside the Fermi surface in Tm. If this is a real feature it
means, that there is a small hole in the center of the dog bone. It is however
doubtful if such a hole will have any physical implications. Perhaps it can be
resolved in state of the art de Haas–van Alphen measurements.

On the other hand the feature is an effect of very small energy variations,
and in fact this might be one of the few cases where the Tight Binding and
Atomic Sphere approximations are too coarse. The spin orbit coupling, which
is not included in the presented calculations, does not split the degeneracy at
L, but the coupling to other bands could result in a shift of the two degenerate
energies across the Fermi energy. Therefore any further discussion of the details
of the dog-bone should be done on the basis of full LMTO calculations including
the spin-orbit coupling.
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(a) Ho (b) Er (c) Tm

Figure 1.7: Closeup of band structure the vertical axis run from -0.15Ry to
-0.09Ry. The Horizontal line in the middle is the Fermi energy.

1.2 Magnetic phases

The vast range of exotic and beautiful kinds of magnetic structures found in the
rare earths is the result of a “competition” between different magnetic interac-
tions acting on the 4f momenta of varying size.

Below the Néel temperature the rare earths order magnetically with all the
magnetic moments within a particular basal plane aligned parallel. But the
direction of the moments vary from plane to plane giving rise to different periodic
structures. If the structure repeats itself m times during N double layers, the
periodicity is described by q = m/N given in reciprocal lattice units or q =
mc∗/N as a reciprocal length.

Each of the rare earths show several different structures. The periodicity
of the structures decrease with decreasing temperatures, but in addition phase
transitions occur where the form of the structure changes in either a first or a
second order transition.

In general the periodicity is incommensurable with the lattice, but as it
decreases it passes integer fractions of the lattice periodicity and a lock-in can
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occur. The introduction of an external magnetic field can produce other kinds
of structures thus adding an extra dimension to the phase space. Since all
experiments described herein are performed in zero field, the field dependency
will not be discussed.

1.2.1 Holmium

The perhaps most pronounced structure is the helix — a helical structure where
the expectation values of J rotate with a constant angle between succeeding
planes. A variant of the helix is the cone where the helix is lifted out of the
basal plane building a constant c-axis component.

Those two structures describes the magnetism in holmium (Cowley and
Bates 1988). Holmium orders magnetically below the Néel temperature TN =
133 K where a helical structure is formed. The periodicity varies from q ≃ 0.28
at TN to a lock-in to q = 1/6 around 20 K. The commensurate lock-in is sup-
plemented by a second order transition to a cone phase where the angle of the
moments to the basal plane approach 10o in the zero temperature limit.

Magnetic fields in the c-axis will promote the cone phase. A field in the
plane eventually causes a basal plane ferromagnet, but for lower fields a fan
structure with the moments oscillating around the field axis will appear. Most
interesting Jensen and Mackintosh (1992) found so-called helifans in interme-
diate fields. The helifans are periodic fractional combinations of the helix and
the fan structures.

All these structures as well as magnetization and spin wave measurements
are well described by the standard spin Hamiltonian for the rare earths.

Recent the higher harmonics have been studied in details, which have re-
sulted in quite accurate knowledge about the types and numeric strength of
interactions in the crystals. For instance, evidence of an interaction with trigo-
nal symmetry has been seen (Simpson et al. 1995).

Finally the lock-in to commensurable structures has been comprehensively
studied by Jensen (1996a) within the same Hamiltonian and interpreted in terms
of so called spin slip structures (see page 39).

1.2.2 Erbium

The phases of erbium are a bit more complicated (Cowley and Jensen 1992).
Below the ordering temperature TN = 84 K a sinusoidally modulated c-axis
(CAM ) structure appears with a periodicity of approximately q ≃ 0.29. At a
second transition temperature T ′

N = 52 K the moments order in an elliptical
cycloid in the ac-plane, while the periodicity decreases to q = 1/4 at 18 K.
Below TC = 18 K erbium forms a cone structure just as holmium.

Besides the interactions present in holmium, spin wave measurements indi-
cated that anisotropic two-ion interactions play an important role (Cowley and
Jensen 1993). This along with the somewhat more complicated phase diagram
makes it difficult to account for the properties through the spin Hamiltonian.
Partly because there are too many free parameters leaving several choices for
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their numerical values, partly because there are some actual discrepancies be-
tween the model and the measurements.

For instance, the model predicts the cone phase to be only meta-stable with
a free energy per atom about 1 meV higher than the basal plane helix. Also the
basal plane high field magnetization curves are not satisfactorily described by
the present model for erbium.

Spin wave measurements have only been performed at liquid He tempera-
tures, and hence the temperature dependent interaction parameters are only
well determined at this temperature.

Generally, the problem in erbium is that the relatively low S = 3
2 makes

the simple isotropic exchange interaction sufficiently weak, that other two-ion
interactions play a substantial role. The many possible choices of such two-
ion interactions cannot be uniquely distinguished with the present experimental
data.

Bearing this in mind a model for the holmium–erbium alloys would be ex-
pected to be most successful when rich in holmium and at low temperatures.

1.2.3 The alloy

The magnetic properties of the rare earths are determined by the competition
between different terms in the Hamiltonian. This interplay can be investiga-
ted by alloying different elements thus continuously changing the conditions of
competition between the different interactions.

There exist quite a lot of work on rare earth alloys both theoretically and
experimental (Larsen 1987, Larsen et al. 1986, 1987, 1988). The work that most
directly connects to the holmium–erbium problem is presented in the following.

Magnetization measurements

Magnetization experiments have been performed on a number of compositions
of holmium and erbium at liquid He temperature (Bozorth et al. 1968, 1972).
A few of the magnetization curves are shown in figure 1.8.

It is seen, that the zero field limit of the c-axis susceptibility diverges, which
means that there is a ferromagnetic ordered moment along the c-axis. This is
the cone structure and the cone angle can be deduced as M/MS = sin θ in the
limit of zero field. It was furthermore seen, that for HoxEr1−x with x > 30% a
transition from the cone phase to a pure ferromagnetic phase occurs at higher
fields.

Pure Ho is very easily magnetized in the basal plane, whereas Ho87.5Er12.5,
Ho50Er50 and Er have a non zero critical field until which the structures are
magnetized linearly. All of the basal plane magnetization curves showed non
trivial development which indicates, that the zero field cone passes several in-
termediate structures on the way to a basal plane ferromagnet.

In Ho the b-axis is most easily magnetized in agreement with the crystal
field easy axis being in that direction. In Er the a-axis is preferred, whereas in
Ho50Er50 the competing easy axes of Ho and Er result in similar magnetization
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(a) Ho (b) Ho87.5Er12.5

(c) Ho50Er50 (d) Er

Figure 1.8: Magnetization curves by Bozorth et al. (1972)

curves for the two axes. The competition between the a and b-axis might be
responsible for the formation of an intermediate phase in Ho50Er50 as discussed
in section 5.3.2.

Finally Bozorth et al. (1972) presents a measurement of the transition tem-
peratures TN and TC as shown in figure 1.9 The linear behaviour of TN and the
rise in TC is in complete agreement with the present neutron scattering results.

Neutron scattering from Ho50Er50

A single crystal of Ho50Er50 has been studied using thermal (1.012Å) neutron
diffraction at the four circle diffractometer TAS2, Risø by Howard and Bohr
(1991). They measured the relative intensities of 50 nuclear peaks τ and the
corresponding 100 magnetic peaks τ ± q, where q is the periodicity of the
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Figure 1.9: Transition temperatures TN and TC measured by magnetization

magnetic structure.
The data were corrected with the Lorenz factor sin−1 2θ coming from the

spectrometer resolution (page 53) and for absorption. Extinction corrections
were estimated to be less than 5%. Using various analytic structures the inten-
sity of each peak was calculated from the scattering cross-section expression:

I(κ)e2W (κ)/A =
∣∣∣∑

j

bje
iκ·rj

∣∣∣2 + ∣∣∣∣∑
j

}γe2

mc2
1
2gF (κ)κ̂× (J j × κ̂)eiκrj

∣∣∣∣2 , (1.7)

where A is a scaling factor, bj ≃ 0.8055×10−12cm the nuclear scattering length
taken to be the average between Ho and Er. W (κ) ≃ Bκ2 is the Debye–Waller
factor , γ the gyro magnetic ratio of the neutron, g the Landé factor , F (κ) the
magnetic form factor and J j the angular momentum of the j’th plane.

The intensities calculated so were fitted to the experimental data using least
squares. Among the structures investigated were the basal plane helix , a cone
structure with either common or different cone angles for the two elements.
as well as a cycloidal structure and finally a “distinguishable modulated c-axis
basal plane spiral structure”. This structure must be a binary tilted helix with
different tilt angles θ′Ho and θ′Er respectively.

As depicted in figure 1.10, three distinct phases were observed. The low
temperature phase characterized by a ferromagnetic addition to the (1, 0, 0)
peak was found to be a single cone structure with identical cone angles θHo =
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Figure 1.10: Previously proposed magnetic phases of Ho50Er50 as deduced from
neutron and x-ray scattering experiments (Howard and Bohr 1991,
Pengra et al. 1994)

θEr ≃ 20◦, only qualitatively in agreement with the approximately 35◦ found in
both earlier magnetization measurements, the present data and predicted by the
mean field model. The intermediate phase revealing a 50% increased I(0,0,2−Q)

(figure 5.23) was assumed to be a basal plane helix.
A full parameter fit gave the simple basal plane helix (θHo = θEr ≃ 0)for all

T > TC = 35 K, but upon constraining to a slowly varying ordered moment,
the model responded with the binary tilted helix with opposite tilt directions
θHo = 27◦ and θEr = −43◦ respectively in order to accommodate the reduction
of scattering above 45 K. Tilting the helix enables a reduction of the c-axis
scattering, while the opposite tilt angles minimizes the in-plane effects by can-
cellation of the out-of-plane moments.

In general the investigation suffered from relatively high χ2 with as little
difference as from 12.8 for the best fit to 12.9 for other structures. As such it
serves as a good example of the inadequacy of “excercice brut” collection and
fitting of integrated peak intensities in magnetic structure analysis.

Magnetic x-ray diffraction experiments

Following up on the neutron scattering results the same sample was studied
using resonance-enhanced magnetic x-ray diffraction at the beam line W1 at
HASYLAB in Hamburg (Pengra et al. 1994).

In the technique of resonance-enhanced scattering the incident energy is
tuned to an absorption edge, which causes a resonance-enhancement of the
scattering from a magnetic structure (Hannon et al. 1988, Gibbs et al. 1988).
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By tuning the incident energy to the LIII edge in either holmium or erbium the
magnetic ordering of each element can be studied partially separated.

A priori it could be imagined that the two types of magnetic moments would
order at different temperatures, but both Ho and Er were found to order at
the same transition temperature TN . With the knowledge of the exchange
interaction this is also the only possible behaviour.

The x-ray data confirmed the existence of three phases, but were insufficient
to supply evidence for the structures proposed from the neutron scattering ex-
periment.

Also reported in the paper is an anomalous energy and polarization depen-
dence in the resonant satellites. This combined with the quite complicated
theory of resonance enhanced magnetic scattering made quantitative interpre-
tations of the data difficult.

What is new in this treatment?

As described some work has already been done on the holmium–erbium alloys,
but the present work include several new parts, which will be stressed here:

• Neutron scattering has been performed also on a Ho90Er10 crystal.

• Not only the main magnetic satellites have been investigated. Long scans
along [1, 0, l] and [0, 0, l] supply informations about the higher harmonics
and hence important details of the structures.

• A virtual-crystal mean-field model has been constructed enabling calcula-
tions on the magnetic structures and excitations.



Chapter 2

The model

The alloys are interpreted through a virtual-crystal model based on the mean-
field models for pure holmium (Jensen 1996a) and erbium (Cowley and Jensen
1992).

2.1 The localized 4f spin approximation

The magnetism of a solid is mainly determined by the electrons. A deter-
mination of the magnetic properties would therefore in principle require full
knowledge of the electronic structure of the alloy as determined by the general
Hamiltonian:

H =
∑
i

p2
i

2m
+ vext(ri) +

1

2

∑
ij

e2

|ri − rj |
+Hexc. (2.1)

This formidable task can however be simplified by the observation, that when
combined into a solid, the rare earth atoms loose their 5d and 6s electrons to the
delocalized Bloch states of the conduction band, whereas the 4f electrons stay
well localized. As in the free atom the 4f electrons can be considered by Hund’s
rules giving rise to a magnetic moment J at each atom. The conduction band
does not contribute directly to the magnetic properties. It is therefore possible
to restrict the problem to the space spanned by the 2J + 1 eigenstates of Jz.
This implies, that the Hamiltonian only depends on the J i operators instead of
the general ri,pi, σi.

Since he Hamiltonian is built as a functional of the J i operators and some in-
teractions involve Si or Li, the Wigner–Eckart theorem will be used frequently.

2.2 Interactions

The spin Hamiltonian itself is a complicated problem, and whereas the deduc-
tion of the general Hamiltonian was straight forward, the spin Hamiltonian must

15
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be constructed using more physical intuition regarding the kinds of interactions
between the spins. The projection of the electron orbitals on to the |Jz⟩ states
should in principle be performed for the Hamiltonian too. This is however not
possible, and the model Hamiltonian is therefore constructed by a combination
of selected terms from the projection, and known spin interactions:

H = HZ +Hcf +Hex +Hdipole +Hmultipole. (2.2)

There are two main categories of operators in the Hamiltonian. One-ion
operators which act on each ion at a time, and two-ion operators which operate
on two ions at the same time. The one-ion operators represent the field that each
of the ions feel. These fields lift the degeneracy of the ground state multiplet.
The two-ion operators on the other hand represent the interaction between
the ions and as such is responsible for the magnetic ordering. Each of the
interactions in equation 2.2 will be presented in the following.

2.2.1 The Zeeman term, HZ

The perhaps simplest term in the spin Hamiltonian is the interaction with a
static external magnetic field H. Each electron spin interacts with the field
through its dipole moment as g0µBsi ·H, and in the Russell–Saunders coupling
this adds up to g0µBS ·H. The field contribution to the orbital Hamiltonian is
obtained by replacing pi → pi +

e
cA, where the vector potential can be chosen

to A = − 1
2r ×H. Then the kinetic energy becomes:

1

2m

∑
i

(pi −
e

2c
ri ×H)2 =

∑
i

p2
i

2m
+ µBL ·H +

e2H2

8mc2

∑
i

r2⊥i, (2.3)

where }L =
∑

i ri × pi is the orbital angular momentum. The last term is the
Larmor diamagnetic susceptibility term, which even at high fields is orders of
magnitudes smaller, than the second term. Combined with the spin interaction
and using the Wigner–Eckart theorem within the considered subspace the latter
can be written as the well known Zeeman term:

HZ = −gµBJ ·H, (2.4)

corresponding to a magnetic dipole moment gµBJ in a magnetic field, where g
is the Landé factor defined in equation 1.2.

2.2.2 Crystal field, Hcf

The 4f electrons will be affected by the electrical field due to the charge dis-
tribution in the crystal ρ(R). This crystal field which has the symmetry of the
point group, can be expanded in spherical harmonics. If the surrounding charge
density does not penetrate the localized 4f orbitals the crystal field will fulfill
Laplace’s equation, and the expansion becomes quite simple:
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vcf(r) =

∫
eρ(R)

|r −R|
dr =

∑
l m

Al
mr

lY l
m(r). (2.5)

The crystal field Hamilton in real space is the sum over occupied electron
states in the ion Hcf =

∑
i vcf(ri). The basis vectors |Jz⟩ of the ground

state multiplet are linear combinations of Slater determinants of single elec-
tron states |l′m′

l⟩. Hence the projected Hamiltonian will hold sums of terms
like ⟨l′m′

l|rlY l
m|l′m′

l⟩ = ⟨rl⟩l′⟨l′m′
l|Y l

m|l′m′
l⟩. Where ⟨rl⟩l′ =

∫∞
0

|Rl′(r)|2rl+2dr

is the radial wave function average of rl. Since 4f electrons have l′ = 3, the
matrix elements are only non vanishing for l ≤ 2l′ = 6. This can be expressed
as the fact, that 4f electrons can only have multipole distributions less than 6.

Since we remain within the ground state multiplet specified by Hund’s rules,
the Wigner–Eckart theorem allows to express the matrix elements of vcf(r) in
terms of the J operators:

Hcf(J) =
∑
l m

Am
l ⟨rl⟩αl

√
2l + 1

4π
Õlm(J), (2.6)

where αl are the Stevens factors and Õlm(J) the Racah operators obtained by
replacing (x, y, z) in the spherical harmonics by (Jx, Jy, Jz) and multiplying with
(4π/2l + 1)1/2.

The parameters in Hcf could in principle be derived from first principles.
However, most electronic structure calculations are based on assumptions like
the atomic sphere approximation (ASA) or methods treating the crystal sym-
metry as perturbations to the ASA. For this reason they are inadequate for
precise calculations of the crystal field, which exactly contains the symmetry
of the crystal. Therefore the parameters must be treated as experimentally de-
termined. Once this is realized, the crystal field Hamiltonian can just as well
be expressed in the computationally most convenient form, which is also the
customary practice:

Hcf(i) =
∑
l m

Bm
l O

m
l (J i). (2.7)

Bm
l are called the crystal field parameters, and Om

l (J) are the Stevens op-
erators. The f electrons can only have multipole distributions up to l = 6, but
this still leaves a considerable number of parameters. Fortunately symmetry
restricts the number of allowed parameters. For crystals with hexagonal point
symmetry only four terms remain: B0

2 , B
0
4 , B

0
6 and B6

6 . The corresponding
operators are:
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O0
2 = 3J2

z − J2

O0
4 = 35J4

z − (30J2 − 25)J2
z + 3J4 − 6J2

O0
6 = 231J6

z − (315J2 − 735)J4
z + (105J4 − 525J2 + 294)J2

z

− 5J6 + 40J4 − 60J2

O6
6 =

1

2
(J6

+ + J6
−), (2.8)

where J2 = J(J+1) is the squared length of the angular momentum J . The four
crystal field parameters given in table 2.1 are determined from magnetization,
elastic neutron scattering and spin wave experiments.

[meV] B0
2 B0

4 B0
6 B6

6 B6
6/B

0
6

Ho 0.024 0.0 −0.95·10−6 9.4·10−6 −9.89
Er −0.027 −0.3·10−4 1.3·10−6 −9.0·10−6 −6.92

B(Ho)/B(Er) −0.89 − −0.73 −1.04

Table 2.1: Crystal field parameters in Ho and Er.

The crystal field Hamiltonian is a one particle operator, that lifts the de-
generacy of states in the ground state multiplet. The O0

l operators are seen
to depend on J2

z only, and are therefore already diagonal (and symmetric in
Jz). The effect on Jz can be illustrated by calculating the classical value of the
crystal field energy as a function of Jz as seen in figure 2.1.

The eigenstates and corresponding eigenvalues of Hcf for Ho are shown in
table 2.2. The ground state expectation value of |Jz| is 3, which is also seen as
the minimum for discrete values of Jz in figure 2.1.

En [meV] |n⟩
0 1√

2
(|3⟩ − | − 3⟩)

0.16 ±0.08| ± 8⟩ ∓ 0.73| ± 2⟩ ± 0.68| ∓ 4⟩
0.54 ±0.23| ± 7⟩ ∓ 0.76| ± 1⟩ ± 0.61| ∓ 5⟩
0.76 −0.78|0⟩+ 0.44(|6⟩+ | − 6⟩)
4.24 1√

2
(|6⟩ − | − 6⟩)

4.54 −0.84| ± 7⟩+ 0.16| ± 1⟩+ 0.51| ∓ 5⟩
5.00 ±0.94| ± 8⟩ ∓ 0.17| ± 2⟩ ± 0.30| ∓ 4⟩
6.25 1√

2
(|3⟩+ | − 3⟩)

6.32 ∓0.33| ± 8⟩ ∓ 0.67| ± 2⟩ ∓ 0.67| ∓ 4⟩
6.42 ∓0.49| ± 7⟩ ∓ 0.63| ± 1⟩ ∓ 0.60| ∓ 5⟩
6.46 0.62|0⟩+ 0.55(|6⟩+ | − 6⟩)

Table 2.2: Eigenvectors and values for Hcf in Ho
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Figure 2.1: Classical crystal field energies in Ho and Er: 1)
∑
B0

l O
0
l 2) B0

2O
0
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3) B0
4O

0
4 4) B0

6O
0
6

The effect of B6
6 can again be understood classically by assuming:

(Jx, Jy) = J0(cosϕ, sinϕ).

Then the operators J± becomes:

J± = J0(cosϕ± i sinϕ) = J0e
±iϕ,

which leads to:

O6
6(J) =

1

2
(J6

+ + J6
−) =

1

2
J6
0 (e

i6ϕ + e−i6ϕ) = J6
0 cos 6ϕ. (2.9)

This function has 6 maxima at nπ/3 and 6 minima at (1+2n)π/6. Depending
on the sign of B6

6 this favours either the a- or the b-axis and the corresponding
axes. The maxima and the minima, called hard and easy axes respectively,
define 6 regions (hexants) separated by the hard axes. This hexagonal term
manifests itself in the eigenvectors, by the fact, that each eigenvector is a super-
position of |Jz⟩’s, with Jz−J ′

z = 6. In a system, where the exchange interaction
and the B0

l ’s produces a helix structure, B6
6 will modify the constant shift angle

between succeeding planes by pushing the spins from the hard axis towards the
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easy axis. Two spins within the same hexant will thus bunch as a pair around
the easy axis.

The energy difference 2B6
6J

6
0 ≃ 2 · 86 · 9 · 10−6 meV = 4.7 meV = 55 K

comprises a measure of the barrier the system has to overcome in order to move
a spin over a hard axis.

First principle calculations of the crystal field parameters meet with little
success, but two relative results can be obtained. By considering a hexagonal
lattice of point charges the ratio B6

6/B
0
6 can be found to be −77/8 for an ideal

ratio of c/a =
√
8/3.

Another interesting feature of the holmium–erbium alloy is that the Stevens
factors αl are equal in magnitude but have opposite signs for the two elements.
This can be seen from two symmetry properties regarding the matrix elements
⟨lml|Y l′

m′ |lml⟩ = f(ml):

f(ml) = f(−ml)∑l
ml=−l f(ml) = 0

}
=⇒

−1∑
ml=−l

f(ml) = −
0∑

ml=−l

f(ml). (2.10)

From this it is seen, that αEr
l = −αHo

l which means, that if the mean radius
⟨rl⟩ and the potential parameters Al

m are the same, the crystal fields are of the
same strength but with opposite sign.

Hence in the pure elements the bunching takes place along different axes
with a phase shift of π/6. In the alloy a competition between the two directions
takes place. For instance, in Ho90Er10 the Er spins are dictated by the Ho spins,
but the spin separation angle in a pair is larger than 30◦, so that two spins in
neighbouring pairs actually are closer together than the pair.

2.2.3 Dipole coupling, Hdipole

The two-ion interactions are generally of the form
∑

ij I(J i,J j). If the coupling
only depends on the dipole moment, the general two dipole coupling is:

Hdd = −1

2

∑
ijαβ

JiαJαβ(ij)Jjβ . (2.11)

One interaction of this kind is the classical dipole coupling, which is given
by:

Jαβ(ij) = g2µ2
B

3(Riα −Rjα)(Riβ −Rjβ)− |Ri −Rj |2

|Ri −Rj |5
. (2.12)

The coupling constants can be calculated for a hexagonal lattice with an
ideal c/a ratio or summed numerically for any given c/a ratio (Jensen and
Mackintosh 1991). Since holmium and erbium have very similar c/a ratios both
of them have a dipole coupling as:
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JD(q) = −4π(gµB)
2N/V (0.919 + 0.0816 cos(qc/2)− 0.0006 cos(qc)), (2.13)

with the one important exception that the dipole contribution vanishes at zero
wave vector JD(0) = 0. This discontinuity which can actually be observed by
spin wave measurements (Larsen et al. 1987) is responsible for the preference
of the cone phase rather than the tilted helix (Sherrington 1972) which will be
discussed later.

The coupling strength Jdd = 4π(gµB)
2N/V is evaluated for Er and Ho using

V/N =
√
3a2c/4 and µB = 0.05368 meVÅ

3
. In holmium the polarization of the

conduction electron gas has been estimated to give a correction of about 3%.
The resulting coupling strengths are:

J Ho
dd 0.0349 meV

J Er
dd 0.0316 meV

Table 2.3: Classical dipole coupling parameters

2.2.4 Indirect exchange coupling, Hex

Another type of interaction, which turns out to be dominant, is the indirect
exchange interaction. This deals with the fact that two different spins individ-
ually coupled to the intermediate conduction electron gas influence each other
through the latter. This indirect interaction can be calculated by first finding
the response of the conduction electrons to moment Sj and then the effect of
that conduction electron moment on the 4f moment Si.

The coupling of a 4f moment to the electron gas, with spin density σ(r) is
of the Heisenberg form:

H = − 2

N

∫
I(r −Ri)Si · σ(r)dr = −

∫
Hi(r) · µ(r)dr. (2.14)

I(r) is the exchange integral of the electron charge clouds, and the last equality
is defined by viewing the effect on the conduction electron moment density
µ(r) = µBσ(r) as arising from an inhomogeneous magnetic field

Hi(r) = I(r −Ri)Si/NµB . (2.15)

The response at position r to a spin at position Rj is thus:

µj(r) =
1

V

∫
χ(r − r′)Hj(r

′)dr′, (2.16)



22 CHAPTER 2. THE MODEL

where the matrix χ is the 3 × 3 dimensional susceptibility for the conduction
electrons. Thus by using equation 2.14 twice the coupling is found to be:

H = − 1

V

∫∫
Hi(r)χ(r − r′)Hj(r

′)drdr′. (2.17)

Summing over i and j, using S = (g−1)J within the multiplet and exploiting
the decoupling power of Fourier transformation the indirect exchange interaction
may be written as:

Hex = −1

2

∑
ij

J iJ (ij)J j , (2.18)

where the 3× 3 dimensional matrix J is given by:

J (ij) =
1

N

∑
q

eiq·(Ri−Rj)J (q)

J (q) =
(g − 1)2V

N2µ2
B

|I(q)|2χ(q), (2.19)

This includes the self energy of the ith moment, which is just a constant
term in the total energy. This can be avoided by subtracting

∑
q′ J (q′)/N

from J (q).
If spin orbit coupling of the conduction electrons and magnetization ef-

fects are neglected, the susceptibility becomes scalar, and hence J iJ (ij)J j =
J (ij)J i · J j . In this case the indirect exchange coupling is isotropic.

The susceptibility can be derived as:

χ(q) =
−2µ2

B

V

∑
nn′k

fn,k+q − fn′,k

εn(k + q)− εn′(k)
, (2.20)

and straight forwardly deduced from energy band calculations. The numerator
requires, that exactly one of the wave vectors k and k− q lie within the Fermi
surface, whereas the denominator favours small energy differences. Since they
are on different sides of the Fermi surface, both energies must be very close to
the Fermi energy . The k summation may therefore as a crude approximation
be restricted to the Fermi surface.

For a given q the denominator in the k summation will cause contributions
whenever k+ q coincides with the Fermi surface. The summation may thus be
seen as the area overlap of two Fermi surfaces separated by q. Parallel regions
of the Fermi surface will thus cause maxima in the susceptibility for q equal the
translation vector Q between the parallel regions as illustrated in figure 1.6.

The effect of this maximum for nonzero Q can be illustrated by Fourier
transforming the Hamiltonian:
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Hex = −N
2

∑
q

J (q)J(q) · J(−q) , J(q) =
1

N

∑
i

J ie
−iq·Ri . (2.21)

Thus the exchange interaction favours structures with nonzero Fourier com-
ponents for q = Q. This is the reason for all the interesting periodic struc-
tures observed in the rare earths. Figure 1.7 reflects a width of the toes
around 0.2, which does not agree perfectly with the observed starting peri-
odicity Q(TN ) ≃ 0.28. The reason for this discrepancy is to be found in the
other q dependent component in J (q).

The exchange integral I(q) on the contrary is very difficult to determine,
since it requires full knowledge of the electron orbitals and the screening ef-
fects. First principles calculations have been performed on for instance Gd(4f7)
(Lindg̊ard et al. 1975). With the half filled 4f shell the largest S = 3 1

2 and lowest
L = 0 in the the rare earth series is obtained from Hund’s rules. The maxi-
mum S provides a large isotropic Heisenberg exchange interaction, whereas the
lack of orbital momenta ensures that the anisotropic crystal fields are orders of
magnitude smaller.

By using energy-band structure and wave functions obtained from non-
relativistic augmented-plane-wave (APW) calculations the exchange integral
was calculated from the formal expression:

Inn′(k,k′) =
1

2l + 1

3∑
ml=−3

∫∫
d3rd3r′

|r − r′|
ψ∗
k,n(r)ϕ

∗
4f,ml

(r′)ϕ4f,ml
(r)ψk′,n′(r′).

(2.22)

In comparison with inelastic neutron scattering measurements of the magnon
dispersion relation, the overall q dependency is obtained, but the absolute val-
ues differ by a factor of 4. Furthermore the precise form and position of the
maximum in J (q) is not found. However, the calculations revealed that the
maximum is not solely determined by the nesting of parallel regions of the
Fermi surface.

The actual determination of the exchange coupling is therefore not possible
from first principles. Instead, the fact that J (q)−J (0) is very closely related to
the spin wave dispersion relation, is used to determine the coupling parameters.

As seen in table 2.4 the indirect exchange interaction is extended to the sixth
nearest neighbour. For Ho the parameters have been determined for several
temperatures between which linear interpolation is used, except between the
two lowest temperatures, where quadratic interpolation is used. In contrast only
one set of parameters is known for Er, which of course presents a limitation in
the success of exact description of the temperature dependencies of the alloys.

The temperature dependence of J (q) is a consequence of a self consistent
modification of the electronic structure due to the magnetic ordering. The for-
mation of periodic magnetic structures polarizes the conduction electrons and
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T [ K] J0 J1 J2 J3 J4 J5 J6

Ho 0 0.300 0.09 0.006 -0.0140 -0.006 -0.002 0.0
50 0.290 0.10 0.010 -0.0290 -0.005 0.008 -0.004
72 0.267 0.11 0.010 -0.0377 -0.001 0.004 -0.003
96 0.245 0.11 0.010 -0.0463 0.006 0.0 0.0
125 0.210 0.11 0.010 -0.0640 0.006 0.0 0.0

Er 4.5 0.165 0.073 -0.025 -0.006 -0.018 -0.003 0.0

Table 2.4: The inter-planar exchange coupling parameters in meV

causes gaps in the energy bands. This influences the electronic susceptibility
and as a result the maximum value J (QJ ) and position QJ both decrease as
the temperature decreases. This effect has been investigated with reasonable
agreement by Elliot and Wedgwood (1964) assuming a spherical Fermi surface.
The energy gaps were treated in a super-zone boundary notation giving a rea-
sonable description on the temperature dependence in Ho, Er and Tm. Also
the low temperature composition dependency in Y-Tb alloys was satisfactory
explained in terms of an averaged effective size of the magnetic moment.

2.2.5 Multipolar coupling, Hmultipole

The indirect exchange and the dipole couplings covered so far are only two
special and simple cases of possible two-ion interactions. A general form of a
two-ion interaction is:

Htwo−ion = − 1
2

∑
ij

Kmm′

ll′ (ij)[Om
l (J i)O

m′

l′ (J j) + (−1)m+m′
O−m

l (J i)O
−m′

l′ (J j)].

(2.23)

The possible terms are restricted by symmetry, but still comprise a large
number of parameters, which can only be decoupled and determined by physical
intuition. Instead of treating the expression as an expansion with the K’s either
to be determined from the first principles projection onto the ground state
multiplet or as parameters to be fitted from experiment, each possible cause of
interaction should be considered in order to restrict the number of parameters
(Jensen 1974).

Some of the symmetry restrictions for an hcp lattice are that l + l′ should
be even and (m + m′)/3 = p must be an integer. The exchange interaction
and the axial crystal field are p = 0 terms, whereas the hexagonal crystal field
corresponds to p = 2. But even the p = 0 interactions are not exhausted by
the Hamiltonian so far, and other of these may be necessary to obtain a good
model.

For instance, spin wave measurements on Er revealed other two-ion aniso-
tropy effects other than the classical dipole coupling were required to fit the
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results using MF-RPA calculations (Cowley and Jensen 1992). The spin wave
dispersion relation at 4.5 K could not be described by the isotropic exchange
coupling alone. Among the different choices of anisotropic two-ion interactions
the one accounting most readily for the spin wave dispersions was:

H = −1

2

∑
ij

K2−2
33 (ij)[O2

3(J i)O
2
3(J j) +O−2

3 (J i)O
−2
3 (J j)]. (2.24)

The coupling parameters were found to be:

n 0 1 2 3 4 5

K2−2
33 0 -8 -7 -10 0 -3

Table 2.5: Inter-planar anisotropic coupling parameters in Er [meV/106]

2.2.6 Trigonal coupling, H3

Furthermore detailed neutron scattering on the higher harmonics of the cycloidal
phase in Er revealed, that another anisotropic interaction was needed. The
Hamiltonian so far does not reflect the different orientations of the two hexagonal
sub-lattices. A distinction between the two sub lattices will effectively double the
unit cell in real space and hence introduce twice as many magnetic peaks along
c∗ in reciprocal space. The detailed neutron scattering experiments showed
exactly such peaks. Therefore a coupling with trigonal symmetry was introduced
(Jensen 1996b). Such a distinction between the two lattices correspond to p odd,
and the lowest order terms must then have m +m′ = 3 and l + l′ = 4. There
exist three possibilities K21

22, K30
31 and K21

31. The trigonal interaction is chosen as
the latter and becomes:

H3 =
∑
ij

K21
31(ij)[O

2
3(J i)Jyj +O−2

3 (J i)Jxj ]. (2.25)

Recently a similar examination has been performed for holmium (Simpson
et al. 1995). Though roughly an order of magnitude weaker, evidence of the
trigonal coupling was found. The numerical determination of the coupling pa-
rameters provide a nice example of the difficulties due to the non-orthogonality
of the different interactions. The same data have been reinvestigated paying at-
tention to the effect of the trigonal interaction on various commensurate struc-
tures by Jensen (1996a). His values for the trigonal interaction in holmium and
erbium given in table 2.6 are roughly a factor of 5 weaker.

Although very faint the present measurements on both alloys show evidence
for the trigonal coupling. The distortion of the structures by the trigonal in-
teraction is most pronounced in the c-component of the moments, and hence is



26 CHAPTER 2. THE MODEL

n 0 1.2 3.
K21

31(Ho) 0 0.07 0.04 0.02
K21

31(Er) 0 0.6 -0.25 -0.05

Table 2.6: Inter-planar trigonal coupling parameters [meV/103]

to be found in the [1, 0, l] scans. Figure 2.2 shows the [1, 0, l] scan at 10 K on
Ho90Er10 fitted with a 7/36 structure with and without the trigonal interaction
included in the Hamiltonian. It is clearly seen, that the peak at l = 21/36 and
the bump at l = 15/36 are only present in the calculations when the trigonal
coupling is introduced.
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Figure 2.2: [1, 0, l] scan from Ho90Er10 at 10 K fitted with 7/36 structure with
and without the trigonal interaction.

The two structures of figure 2.2 are shown in figure 2.3. It is seen how the
trigonal interaction induces a 15/36 c-axis modulation in addition to the 12/36.
The c-axis modulation mainly affects the [1, 0, l] scattering.

2.3 Mean-field approximation

The spin Hamiltonian as discussed so far is still a coupled many-particle opera-
tor. Therefore the mean-field (MF) approximation is introduced by writing the
angular momentum operator as the thermal expectation value and the fluctua-
tion J = ⟨J⟩+ (J − ⟨J⟩):

J iJ j = J i⟨J j⟩+ ⟨J i⟩J j − ⟨J i⟩⟨J j⟩ + (J i − ⟨J i⟩)(J j − ⟨J j⟩).
1-ion operators constant 2-ion fluctuations

(2.26)

Neglecting the 2-ion fluctuations, the exchange Hamiltonian for each moment
can be written in terms of a mean field hi =

∑
j J (ij)⟨J j⟩:
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Figure 2.3: 7/36 structure with and without trigonal coupling. Ho moments are
blue, Er moments are green.

Hex = −1

2

∑
ij

J iJ (ij)J j ≃ −
∑
i

(J i −
1

2
⟨J i⟩)hMF

i . (2.27)

This decoupled Hamiltonian can be solved for each ion one by one. However,
the mean field is dependent on the solution, and the calculation must therefore
be iterated to obtained self consistency.

Other two-ion operators will have the form O(J i)O
′(J j) and a similar mean-

field approximation can be made by considering O(J) = ⟨O(J)⟩ + (O(J) −
⟨O(J)⟩:

O(J)O′(J ′) ≃ (O(J)− 1

2
⟨O(J)⟩)⟨O′(J ′)⟩+ (O′(J ′)− 1

2
⟨O′(J ′)⟩)⟨O(J)⟩.

(2.28)

For the trigonal coupling, the resulting mean-field approximated Hamilto-
nian becomes:
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H3(i ∈ p’th plane) = (−1)p
∑
n≤1

K21
31(n) (2.29)

×
[
{O2

3(i)−
1

2
⟨O2

3(i)⟩}⟨Jy(p+ n)− Jy(p− n)⟩

+ {O−2
3 (i)− 1

2
⟨O−2

3 (i)⟩}⟨Jx(p+ n)− Jx(p− n)⟩

− (−1)n{Jy(i)−
1

2
⟨Jy(i)⟩}⟨O2

3(p+ n)−O2
3(p− n)⟩

− (−1)n{Jx(i)−
1

2
⟨Jx(i)⟩}⟨O−2

3 (p+ n)−O−2
3 (p− n)⟩

]
.

The alternating sign can be written as (−1)p =
∑

τ e
iτ ·Rp . From this

the trigonal coupling is seen to produce harmonic modulations located around
(0, 0, l) points with both even and odd l.

2.4 Analytical approaches to the Hamiltonian

Even the mean-field approximated Hamiltonian comprises a complexity, which
cannot be solved analytically. But the iteratively converged self consistent so-
lutions can be hard to interpret in terms of the initial interaction parameters.
It is therefore useful to consider approximative and perturbative approaches in
certain limits.

2.4.1 The static susceptibility χ

The mean field concept can straight forwardly be used to derive the classical
magnetic susceptibility defined by M = χH or χ = −∂2F/∂H2 in the presence
of a magnetic field H. Neglecting the crystal field anisotropy and assuming the
effective field to be small the magnetization becomes:

M =
g2µ2

BJ(J + 1)

3kBT

N

V
(H +HMF)

HMF =
1

g2µ2
B

V

N

∑
j

J (ij)M =
J (0)

g2µ2
B

V

N
M. (2.30)

The expression is thus only valid above the spontaneous ordering tempera-
ture TN . Within these assumptions the static susceptibility follows the Curie–
Weiss law:

χMF =
g2µ2

BJ(J + 1)

3kBT

N

V

(
1− J (0)J(J + 1)

3kBT

)−1

≡ C

T − θ
. (2.31)
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where θ = J (0)J(J+1)
3kB

is the Curie temperature for magnetic ordering within

the model. Since J scales with (g − 1)2, the ordering temperatures should be
expected to scale with the de Gennes factor (g − 1)2J(J + 1). For Ho and Er
the de-scaled ordering temperatures are seen in table 2.7:

(g − 1)2J(J + 1) TN TN/(g − 1)2J(J + 1)
Ho 15/4 133 K 35.5 K
Er 21/10 85 K 40.5 K

Table 2.7: Observed and de-scaled ordering temperatures in Ho and Er.

Although the agreement is not perfect the scaling concept generally holds
throughout the entire rare earth series.

The classical susceptibility can be generalized from the spin Hamiltonian
through the Zeeman term HZ = −

∑
i µi ·Hi ≡ −

∑
i J i · hi. For convenience

the non local static susceptibility is defined through the last equation:

χαβ(ij) = − ∂2F

∂hiα∂hjβ
. (2.32)

In terms of the Fourier transforms, the defining equation can be brought to
a form similar to the classical macroscopic equation:

δ⟨J(q)⟩ = χ(q)δh(q). (2.33)

2.4.2 High temperature expansion

The high temperature expansion exp(−βH) ≃ 1−βH+1
2β

2H2+ · · · can be used
to approximate the inverse of the q-dependent susceptibility:

χ−1
αα(q) =

3kBT

J(J + 1)
+ (3δας − 1)

6(J − 1
2 )(J + 3

2 )

5J(J + 1)
B0

2 − J (q) +O(T−1).

(2.34)

From which it is seen, that the crystal field parameter B0
2 can be derived

from magnetization measurements as the difference between χ−1
∥ (0) and χ−1

⊥ (0)

with respect to the c-axis. Equation 2.34 can be derived without the MF ap-
proximation, which demonstrates, that the MF approximation is valid for high
temperatures. The fluctuations are not necessarily small at high temperatures,
but they are sufficiently uncorrelated to ensure the validity of the MF approxi-
mation.

Neglecting the crystal field term the previous Curie–Weiss behaviour is ob-
tained with J (q) instead of J (0). Spontaneous ordering will occur for the

maximum J (Q) at which χ = C
T−TN

with TN ≃ J (Q)J(J+1)
3kB

. Hence the ex-
change parameters can be chosen to fit the right ordering temperature.
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The lowest order crystal field correction is different for basal plane ξ, η and
c-axis ζ ordering:

TN,α =
J (Q)J(J + 1)

3kB

[
1− 2(3δαζ − 1)

5
(J − 1

2
)(J +

3

2
)B0

2/TN

]
. (2.35)

2.4.3 Landau expansion

Just below the ordering temperature TN the small magnitudes of the ordered
moments ⟨J i⟩ can be used as order parameters, and the free energy may be ex-
panded in powers of them. Due to time reversal symmetry the effective exchange
field term is the only odd component in the Landau expansion:

F ≃ F0 −
1

2

∑
ij

J (ij)⟨J i⟩ · ⟨J j⟩

+
∑
i

∑
α

Aα⟨Jiα⟩2 +
∑
αβ

Bαβ⟨Jiα⟩2⟨Jiβ⟩2 + · · ·

 . (2.36)

Assuming simple sinusoidal ordering ⟨J iα⟩ = Jσα cos(q · Ri + ϕα), where
the order parameters σ run from 0 in the not ordered phase to 1 in the totally
ordered phase, the Landau free energy can be written as:

F − F0

N
=

1

4
J2

∑
α

(2Aα − J (q))σ2
α +

1

8
J4

∑
αβ

Bαβ(2 + cos 2(ϕα − ϕβ))σ
2
ασ

2
β ,

(2.37)

if q is not commensurate with the lattice. The coefficients are found to be:

2Aα − J (q) = χ−1
αα(q)

∣∣
σ=0

Bαβ = B ≃ 9

20

J2 + J − 1
2

J3(J + 1)3
kBT. (2.38)

In Landau theory the ordering is determined by the development of the
parabolic second order term and the positive fourth order term. As long as
the second order coefficient is positive the minimum is obtained for σ = 0, but
below the temperature TN,α the parabola curves downwards, and the free energy
obtains two minima ±σ for nonzero ordering parameters.

Depending on the sign of B0
2 two different types of order appear. If B0

2 > 0
as in Ho, it is the basal plane components of the susceptibility that diverges
first, and hence the moments order transversely at the temperature:

TN =
J (Q)J(J + 1)

3kB

[
1 +

2

5
(J − 1

2
)(J +

3

2
)B0

2/TN

]
. (2.39)
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The minimum free energy is obtained for σζ = 0,

σξ = ση =

√
χ−1
ξξ (q)

8J2B
, (2.40)

and a phase difference ϕξ − ϕη = ±π/2. The stable structure thus corresponds
to the helix.

In Er where B0
2 < 0 the moments will order in a c-axis modulated structure

at the transition temperature:

TN =
J (Q)J(J + 1)

3kB

[
1− 4

5
(J − 1

2
)(J +

3

2
)B0

2/TN )

]
, (2.41)

with

σζ =

√
χ−1
ζζ (q)

6J2B
(2.42)

as the main Fourier component. When the temperature decreases, higher odd
harmonics can give contributions to the free energy, and hence the initially pure
sinusoidally modulated structure approaches a square wave.

In contrast to the transversely ordered systems, the longitudinal phases are
stressed by the two competing requirements, that the moments should order
periodically, but with small variations in the magnitude of the moments. As a
result the transverse susceptibility can induce a second phase transition, where
the moments gain a basal plane component with a phase shift of π/2 to the
c-axis modulation as in an elliptical cycloidal structure. Assuming the Landau
expansion still to be valid, the transition temperature can be estimated to be:

T ′
N =

J (Q)J(J + 1)

3kB

[
1 +

2

5
(J − 1

2
)(J +

3

2
)B0

2/T
′
N − 3

20
(1 +

1

2
(J + 1)−2)σ2

]
.

(2.43)

2.4.4 Hexagonal anisotropy — higher harmonics

The sixth order Landau expansion will contain the hexagonal anisotropy B6
6 .

This effect is easier illustrated through the free energy expression:

F ≃ F1 −
1

2

∑
ij

J (ij)⟨J i⟩ · ⟨J j⟩+
∑
i

B6
6⟨O6

6(J i)⟩. (2.44)

This can be minimized using an assumed structure of the form ⟨J i⟩ =
Jσ(cosϕi, sinϕi) where the angles due to hexagonal symmetry can be expanded
from the pure helix in the form: ϕi ≃ ui + γ sin 6ui + · · · , ui = Q ·Ri. Further
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the expansion exp(i(u + γ sin 6u)) ≃ eiu + γ
2 (e

i7u − e−i5u) + · · · allows for a
minimization in terms of the expansion parameter:

γ =
12κ66

(Jσ)2{2J (Q)− J (5Q)− J (7Q)}
, (2.45)

where the hexagonal anisotropy energy κ66(T ) has been estimated in the limit
of infinite J by Callen and Callen (1965). By considering the moments σn of
the relative magnetization σ in an exchange dominated system the temperature
dependence of the Stevens operators as well as the magnetization itself was
obtained a functions of the quantity x = β(J (0)J2σ + gµBJH). The relative
magnetization was found to be σ = cothx − 1

x = L(x). Hence by writing x =
L−1(σ) the expectation value of the Stevens operators and hence the hexagonal
anisotropy energy can be expressed in terms of the relative magnetization:

κ66 = B6
6J

(6)Î6 1
2
[σ], (2.46)

where J (n) =
∏n−1

m=0(J −m/2) i.e. 8(6) = 90090, and Îl+ 1
2
[σ] ≡ Îl+ 1

2
(x). The

ratio Îl+ 1
2
= Il+ 1

2
I 1

2
between the modified Bessel functions can be found from

recurrence relations, or estimated in the limits for σ:

Îl+ 1
2
[σ] =


Îl− 3

2
(x)− 2l−1

x Îl− 1
2
(x) x = L−1(σ)

σl(l+1)/2 |1− σ| ≪ 1
3lσl

(2l+1)!! σ ≪ 1

(2.47)

The low temperature limit agrees with a classical consideration of random
walk on a sphere (Zener 1951, 1954). For κ66 the σ21 dependency is responsible
for the rapid decay of the higher harmonics. It should be noted, that from
this free energy minimization, it follows that the hexagonal anisotropy distorts
the pure helix of periodicity Q with higher harmonics of order 6Q ±Q. Both
expansions used would, upon inclusion of higher order term, result in 12Q±Q
harmonics. The distortion of the helix will result in additional peaks in the
scattering cross-section and the relative amplitude of the 5’th harmonic will be
γ2/4, which will be discussed in section 5.1.4.

As an example γ can be estimated for Ho in the limit of zero temperature
using B6

6 = 9.4×10−6 meV, σ = 1 and 2J (Q)−J (5Q)−J (7Q) = 0.6374 meV
to γ = 0.25. This gives a bunching angle of θ = π/12−γ = 0.9◦, which is in poor
agreement with the 5.8◦ that is measured in pure Ho. Hence the expansion is
only useful as a qualitative description of the behaviour. But with such a large
γ it should be expected that the low order expansion breaks down. The B6

6 is
actually chosen to produce the right bunching angle out of the full mean-field
calculations.
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2.5 The virtual-crystal model

So far the standard model for a rare earth element has been presented. This
chapter describes the generalization of the model to an alloy of two different
elements in terms of a virtual-crystal (VC) model.

The entire idea of studying a holmium–erbium alloy is based on the very sim-
ilar chemical properties of the constituents, enabling the formation of a random
alloy with a non-distorted uniform hcp lattice where each site has a probability
nHo of hosting a Ho atom and nEr = 1− nHo of hosting an Er atom.

There are basically two main effects on the spin Hamiltonian upon alloying:

• Each lattice point contains either a Ho spin or an Er spin.

• The strength (and types) of the interactions will change.

Each of these effects will be dealt with in the following. If the detailed
distribution of the two elements is described by ni = 1 for a Ho atom and
ni = 0 for an Er atom, the spin system would be described by the moments
JVC

i = niJ
Ho
i ⊕ (1− ni)J

Er
i . For notational reasons the moment Jni is defined

to be JHo for ni = 1 and JEr for ni = 0. Since n2i = ni any functional O of the
moments will give: O(JVC

i ) = O(Jni
i ).

The Hamiltonian of the system can be written as:

H =
∑
i

Hni

one−ion(J
VC
i ) +

∑
ij

Hni,nj

two−ion(J
VC
i ,JVC

j ), (2.48)

where the distinction Hni is introduced in order to allow for different interaction
parameters depending on the types of spins involved.

The problem of decoupling the Hamiltonian is now to generalize the mean-
field approximation on the two-ion term. A general two-ion term can be written
in the form:

HVC =
∑
ij

Kni,nj (ij)O(JVC
i )O′(JVC

j ) =
∑
ij

Kni,nj (ij)O(Jni
i )O′(J

nj

j ). (2.49)

If the mean-field approximation 2.28 is introduced, the two-ion operator
becomes (with a change of summation indices in the last term):

HVC
MF =

∑
i

(O(Jni
i )− 1

2
⟨O(Jni

i )⟩)
∑
j

Kni,nj (ij)⟨O′(J
nj

j )⟩

+
∑
i

(O′(Jni
i )− 1

2
⟨O′(Jni

i )⟩)
∑
j

Knj ,ni(ij)⟨O(J
nj

j )⟩. (2.50)
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The evaluation of the mean field:

hni
i =

∑
j

Knj ,ni(ij)⟨O(J
nj

j )⟩ (2.51)

=
∑
j

njKnj ,ni(ij)⟨O(JHo
j )⟩+

∑
j

(1− nj)Knj ,ni(ij)⟨O(JEr
j )⟩

is accomplished by the approximation nj ≃ nHo. Hence the mean field is calcu-
lated as the mean field in a Ho crystal times nHo plus 1− nHo times the mean
field in an Er crystal.

The idea behind the virtual-crystal model can be viewed as the approxima-
tion ni ≃ nHo which corresponds to placing a composite moment on each lattice
site. The problem in this approximation is that n2i = ni whereas n2Ho ̸= nHo.
That is whenever a product JiJj appears an error will build up. Therefore the
approximation is only inserted where necessary.

The Hamiltonian is now brought on a decoupled form H =
∑

i H(i), and can
be solved for each i at a time. However, since the mean field is to be calculated
with both a holmium and an erbium atom at site i, the Hamiltonian has to be
solved for both ni = 1 and ni = 0.

It now remains to consider the effect of alloying upon the strength of the
interactions:

• The Zeeman term due to an external field must be the same as in the pure
elements.

• The crystal field due to the charge distribution in the crystal will of course
be affected, but the change is assumed small and is neglected. Each er-
bium nuclei will have one more unit charge, but on the other side will
there be one more 4f electron to shield it. For each type of ion, the pa-
rameters for the corresponding pure elements are therefore used without
any modification.

• The exchange interaction must deal with 3 cases namely Ho-Ho, Ho-Er and
Er-Er interactions. The mediating conduction electron gas will change.

This change is assumed to be a weighted average. But since the exchange
interaction actually operates on the spins S = (g − 1)J the scaling is
performed before the transition to the J operators:

J 0 = nHoJ Ho/(gHo − 1)2 + nErJ Er/(gEr − 1)2. (2.52)

The parameters are then scaled with (g − 1):

J Ho−Ho = J 0(gHo − 1)2

J Ho−Er = J 0(gHo − 1)(gEr − 1)

J Er−Er = J 0(gEr − 1)2. (2.53)
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• The classical dipole interaction is proportional to Jdd = N/V (gµB)
2.

Since the alloy is assumed to form a uniform lattice V/N =
√
3a2c/4

must be given by the averaged crystal parameters a = nHoaHo + nEraEr.
The three types of coupling are then scaled with g2Ho, gHogEr, g

2
Er respec-

tively. For consistency with the pure holmium model all of the parame-
ters are added the 3% conduction electron polarization correction found
in holmium.

• The higher order anisotropic interactions are so much weaker than the
exchange interaction, that their Ho-Er part is neglected. That is they are
calculated only for the Ho-Ho and the Er-Er interactions.

The virtual-crystal model as presented thus contains no free parameters,
since the parameters are determined from the pure Ho and Er models.

2.6 Calculations

Based on the presented mean-field Hamiltonian a computer program has been
developed, which enables iterative determination of the equilibrium structures
for the system.

J (q) has maximum in the c-direction, and hence each ab-plane orders ferro-
magnetically. Therefore the calculations can be simplified to a 1D structure in
the c-direction. The two-ion interactions are then averaged over each layer.

In the actual calculations only a finite number of layers can be treated. This
enforces a certain periodicity Q = c∗m/N given by the number of repetitions
m during the number of double layers N .

The calculation is initiated with a guess of the arrangement of the 2N single
layers. Then using periodic boundary conditions, the mean-field for the i’th
layer is calculated, and the corresponding Hamiltonian Hi constructed and di-
agonalized. From the eigenvectors and eigenvalues, new thermal expectation
values ⟨J i⟩ and ⟨O±2

3 ⟩ are calculated. This procedure is cyclically iterated until
convergence.

For most of the structures investigated, convergence was reached within
reasonable time, except in the vicinity of a second order phase transition, where
the convergence times increased substantially. However, the investigation of the
disordered 7/36 structures, where an increasing number of blocks of respective
5 and 7 layers were mixed at random, the calculations became a comprehensive
computational task.

Once satisfactory convergence is achieved, any physical observable can be
calculated from the 2N set of eigenvectors and eigenvalues. The quantities of
primary interest are of course ⟨J i⟩ and the total free energy

∑
ni nniεni.

In principle the combination m,N , resulting in least free energy after con-
vergence of the mean-field iterations, should be the most stable structure. The
success of such a free energy minimization is however very limited. Thus the
periodicity Q is a free parameter, that has to be chosen to fit the structures
observed in experiments.





Chapter 3

Magnetic structures —
classification

The maximum exchange interaction for non zero q ∥ c∗ produces periodic struc-
tures in the c-direction while the ab-planes order ferro-magnetically. The aniso-
tropic fields and interactions determine the actual form of these structures.

In order to understand and discuss the details of the structures, it is neces-
sary to describe them and to introduce some kind of classification.

The periodicity Q is generally incommensurate with the reciprocal lattice τ ,
but the anisotropic crystal field couples the energy of the magnetic periodicity
to the lattice, and hence lock-in to commensurate structures are seen in both
erbium (Cowley and Jensen 1992) and holmium (Jensen 1996a).

3.1 Basic structures

Throughout the entire series of rare earth magnetic ordering there are some
basic structures, which are seen in many different cases. In figure 3.1 they are
drawn with the origin of the moments condensed in the same point.

The helix is described by:

⟨J i⟩ = Jσ(cosϕ, sinϕ, 0), (3.1)

where ϕ = Q · Ri + ϕ0. It can be visualized as a spiral staircase, where the
moments rotate at a constant angle ∆ϕ = Q ·c/2 between succeeding planes. In
its pure form the helix is described by the order parameter σ and the periodicity
Q.

A variant of the flat basal plane helix is the cone structure:

⟨J i⟩ = Jσ(cos θ cosϕ, cos θ sinϕ, sin θ), (3.2)

where a ferromagnetic component is added to the helix in the c-direction. The
cone phase is characterized with the cone angle θCone defined as the angle from

37
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Helix CAMCone Cycloid

Figure 3.1: Four basic magnetic structures

the cone to the basal plane. The cone angle is sometimes defined as the opening
angle or half the opening angle of the cone, but the chosen definition has the
nice property, that it is zero for the basal plane helix.

Another variant of the helix is the tilted helix which is a helix with a modu-
lated c-axis component of the same periodicity as the helix.

The tilted helix was predicted in Ho by Sherrington (1972). Within the
model Hamiltonian:

H = −
∑
ij

J (ij)Si · Sj +
∑

K2S
2
zi +

∑
K4S

4
zi, (3.3)

where the effective anisotropy |K2| is assumed to increase as the temperature
is lowered, the static semi-classical energy minimization separates the helix and
the cone phase by the condition K2 ≷ J (0)−J (Q). But by transforming the el-
ementary excitations into Holstein–Primakoff boson operators the requirements
for both of the phases are seen to become more stringent: respective K2 > 0
and K2 <

2
3 (J (0) − J (Q)), hence leaving an intermediate region, where the

tilted helix should be prefered. The following phase transitions were proposed:

Helix
2. order−→ tilted helix

1. order−→ cone.

Mean-field calculations do not give the same picture, although calculations
on the cone and the tilted helix in holmium predict that they are very close
in energy. The energy difference is as small as −16.791 meV compared to
−16.782 meV in the zero temperature limit of holmium.

The tilted helix has not yet been observed in any of the rare earths. As
discussed in section 5.2.3, some early data from the Ho90Er10 crystal indicated
a tilted helix, but the data could not be reproduced.
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There exist other structures with a varying c-axis component, two of which
appear in erbium. Below the Néel temperature erbium forms a c-axis modulated
(CAM ) structure where ⟨Jz⟩ = Jσ cosϕ while the basal plane components are
zero. Below a second transition temperature an a-axis component with the same
periodicity develops (the a-axis is an easy axis in Er). This elliptical structure
is called a cycloid .

Other forms of structures have been observed in the rare earths, but the
above are the ones of interest in this context.

3.2 Spin slips

One of the sources for distortion of the pure structures is the hexagonal aniso-
tropy which becomes important at low temperatures. As mentioned in section
2.2.2 the hexagonal anisotropy pushes the spins in a helix towards the nearest
easy axis. Thus two succeeding spins in the same hexant will “bunch” in a pair.
A single spin in a hexant will align in the middle easy direction and is called a
singlet or a spin slip, since one spin in a pair is missing. These effects can be
included in the classification of the structure by introducing the bunching angle
θBunch from one spin in a pair to the easy axis, and a scheme for where the spin
slips appear. The detailed scattering from holmium was explained by Cowley
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(c) Ho90Er10 7/36

Figure 3.2: Basal plane spin arrangements in Ho 1/6, 2/11 and Ho90Er10 7/36

and Bates (1988) in terms of an average distance b between spin slip, a Gaus-
sian distance distribution σ and a bunching angle α. Later the commensurable
structures in both holmium and erbium have been interpreted in terms of spin
slip structures with a fixed repetition scheme for the spin slips. For instance,
the low temperature structure in holmium has Q = 1/6 corresponding to a full
turn in 12 layers. Hence there will be two spins in each hexant and no spin
slips (see figure 3.2(a)). But at higher temperatures the periodicity increases
and passes Q = 2/11 which corresponds to a spin slip after five pairs (figure
3.2(b)). This structure will be denoted (222221). The structure believed to
exist in Ho90Er10 below 25 K has Q = 7/36 and makes 7 complete turns in 72
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layers (figure 3.2(c)). The simple spin slip structure for this periodicity is (2221
221) which can also be expressed as {43}. The latter notation expresses the
fact that there are 4 and then 3 hexants between the spin slips (the hexant with
the spin slip is included). Following Cowley and Bates (1988), such a composite
spin slip structure can be described by a set (bn) describing the number of layers
between the spin slips. The periodicity of a spin slip structure (bn) is given by
Q =

∑
(bn +1)/6

∑
bn or in terms of an average length b =

∑
bn between each

spin slip Q = 1/6 + 1/6b. In this notation the Q = 7/36 = (8 + 6)/6(7 + 5)
structure is given by (7 5), hence alternating 7 and 5 layers between each spin
slip.

When performing calculations of free energy or the scattering cross-section
it is useful to have an analytic expression for ⟨Jn⟩ instead of a spin slip notation
like (2221 221). A simple expansion on the basis of the simple helix is

ϕn = un + γ sin 6un, where un = Q ·Rn. (3.4)

For the 1/6 no-spin-slip structure in Ho Q ·∆R = π/6 and un = nπ/6+ u0,
so ∆ϕ = π/6± 2γ and hence the bunching angle θ = π − γ can be determined.
The spin slip structures are only partly described by 3.4. As seen in figure 3.3

1 

2 

3 4 

5 

6 

7 

8 

9 10

11

12

(a) 1/6

1 

2 

3 4 

5 

6 

7 

8 

9 

10

11

(b) 2/11

Figure 3.3: Basal plane spin arrangement as given by ϕ = u+ γ sinu.

the bunching angles do not correspond to the real behaviour of the system in
figure 3.2.



Chapter 4

The experiment

Different magnetic phases of the rare earths were originally indicated by anoma-
lies in quantities like the specific heat. The periodic magnetic structures were
somewhat implied by magnetization measurements, but not until the applica-
tion of neutron scattering experiments were the structures determined.

The utility of the neutron as a probe for magnetic properties can be sum-
marized

• Through its spin it interacts with magnetic moments in the material.

• The neutral charge allows it to penetrate the crystal thus probing the bulk
properties.

• Thermal neutrons have energies of 5 − 25 meV and λ ∼ 4 − 2Å, which is
comparable with both lattice and spin wave quantities.

Scattering experiments are characterized by a scattering cross-section de-
scribing the scattered intensity as a function of energy and wave vector transfers.
The magnetic scattering cross-section contains enough information to almost
uniquely determine the magnetic structure of a system.

Some of the draw backs of neutron scattering are the relatively low intensities
and resolutions in comparison to for instance x-ray scattering. Nevertheless, as
long as the system is properly ordered and not too complex, neutron scattering
seems to be the perfect tool for this investigation.

Neutron scattering experiments were performed with the TAS1 triple axis
spectrometer at the DR3 reactor, Risø.

4.1 Neutron scattering

In a scattering experiment an incoming beam of neutrons in initial state |k, σ⟩
interact with a target and makes a transition to a final state

∣∣k′, σ′⟩. At the
same time the target goes from state |i⟩ to state |f⟩. The monochromatic
and collimated beam of neutrons which is used in scattering experiments can

41
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be treated as a plane wave state |k, σ⟩ = 1√
V
eik·r |σ⟩. The probability for a

transition is to first approximation given by Fermi’s golden rule applied to the
interaction Hamiltonian:

W (k, σ;k′, σ′) =
2π

}
∑
if

Pi

∣∣⟨k, σ; i|Hint

∣∣k′σ′; f
⟩∣∣2 δ(}ω − Ef + Ei), (4.1)

where Pi is the relative occurrence of the initial state |i⟩ and }ω = }2k′2/2m−
}2k2/2m is the energy transfer.

Using the plane wave states ⟨k|Hint

∣∣k′⟩ = 1/V
∫
Hinte

i(k′−k)·r which is
nothing but the Fourier transform Hint(κ) where κ = k′ − k is the wave vector
transfer. The incoming flux in a state with wave vector k is }k/VM and the
number of neutrons in a small energy interval dE around }2k2/2M is given by
δN = V/8π3(Mk′/}2)dEdΩ. Together this gives a scattering cross-section:

d2σ

dEdΩ
=
k′

k

M2

8π3}3
W (k, σ;k′, σ′). (4.2)

There are two means of scattering of an incoming neutron. Firstly the nuclei
interacts with the neutron. Secondly the neutron spin interacts with the charged
electrons in the target.

4.1.1 Nuclear scattering

Since the wavelength of the neutron is about 5 orders of magnitude larger than
the nuclear force range, the scattered waves from a single fixed nuclei will be
spherical symmetric of the form ψ = − b

r e
ik·r. The scattering length b expresses

the strength of the interaction, has to be determined experimentally. The corre-
sponding cross-section is found to be dσ

dΩ = b2, which can also be obtained from
equation 4.2 by introducing the Fermi pseudo-potential :

V (r) =
2π}2

m
bδ(r)

V (κ) =

∫
V (r)eiκ·rdr =

2π}2

m
b. (4.3)

Assuming the pseudo-potential also to be valid in a solid, the interaction with
a crystal is given by the sum V =

∑
j Vj(r −Rj) over all nuclei. The resulting

scattering cross-section is given by:

d2σ

dΩdE
=
k′

k

∑
if

Pi

∣∣∣∑
j

bj⟨i|eiκ·Rj |f⟩
∣∣∣2 δ(}ω − Ef + Ei). (4.4)

The expression can be rewritten using five important ingredients:
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• The integral representation of the energy δ-function:

δ(}ω − Ef + Ei) =
1

2π}

∫
e−i(}ω−Ef+Ei)t/}dt (4.5)

• The simple norm equality: |ab| = ab∗

• The completeness relation: 1 =
∑

f |f⟩⟨f |

• The thermal expectation value: ⟨A⟩ =
∑

i Pi⟨i|A|i⟩

• The time dependent Heisenberg operators A(t) ≡ eiHt/}Ae−iHt/}

which straightforwardly gives:

d2σ

dΩdE
=
k′

k

1

2π}2
∑
jj′

bjbj′

∫
⟨eiκ·Rj(0)e−iκ·Rj′ (t)⟩e−iωtdt. (4.6)

As a first approach, the time dependence can be treated in the harmonic
crystal approximation, where Rj(t) = Rj + ui(t). Neglecting all phonon pro-
cesses, the thermal expectation value in equilibrium is given by:

⟨eiκ·(Rj(0)−Rj′ (t))⟩ ≃ e−Wj(κ)−Wj′ (κ)eiκ·(Rj−Rj′ ), (4.7)

where W (κ) ∼ κ2⟨u2j ⟩/6 is the Debye–Waller factor . Reintroducing the en-
ergy δ-function and integrating over energy, the elastic scattering cross-section
becomes:

(
d2σ

dΩ

)
el

=
∣∣∣∑

j

bje
−Wj(κ)eiκ·Rj

∣∣∣2 . (4.8)

By writing the position of the d’th atom in the l’th unit cell of a non-Bravais
lattice as Rld = l+ d+ uld, the sum can be split according to:

(
d2σ

dΩ

)
el

=
∣∣∣∑

l

eiκ·l
∑
d

bde
−Wd(κ)eiκ·Rd

∣∣∣2
= N

∑
l

eiκ·l
∣∣∣∑

d

bde
−Wd(κ)eiκ·Rd

∣∣∣2
= N

8π3

v0

∑
τ

δ(κ− τ )
∣∣∣∑

d

e−2Wd(κ)bde
iκ·Rd

∣∣∣2
= N

8π3

v0

∑
τ

δ(κ− τ )|FN (κ)|2, (4.9)
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where the translational symmetry of l and the definition of the reciprocal lattice
points τ has been exploited. FN (κ) =

∑
d bde

−Wd(κ)eiκ·d is the nuclear struc-
ture factor. If the Debye–Waller factor Wd and the scattering length bd are site
independent, they can be extracted from the summation, which then reduces
to the geometric structure factor : FG(κ) =

∑
d e

iκ·d. The δ-function will cause
Bragg peaks at each reciprocal lattice point τ , weighted by the structure fac-
tor, which determines the phase and possible extinction of the Bragg peaks (see
figure 4.1). In the hcp lattice there are two ions per unit cell. For a wave vector
transfer κ = (h, k, l) this gives a structure factor of:

FG(κ) = eiκ·d0 + eiκ·d1 = 1 + e2πi(2h/3+k/3+l/2). (4.10)

It should be noticed, that (0, 0, 1) is extinct by the structure factor FN (0, 0, 1) =
0. This is a reminiscence of the fact, that c is twice the distance between
succeeding basal planes. Such extinct points are called forbidden reflections.

The presence of different isotopes or nuclear spins would result in different
scattering lengths bξ with relative occurrence cξ. If the variation is assumed to
be uncorrelated, then:

bξjb
ξ′

j′ ≃ bjbj′ =

{
bjbj′ for j ̸= j′

b2j for j = j′

}
= bjbj′ + δjj′(b2j − b

2

j ), (4.11)

where e.g. b =
∑

ξ cξb
ξ is the compositional average. This splits the cross-

section into a coherent and an incoherent part. The incoherent part deals with
the same nuclei at different times, and is therefore not interesting in elastic
experiments. The coherent scattering length b can be substituted into the ex-
pressions for the scattering cross-section derived above.

4.1.2 Magnetic scattering

The interaction between a neutron with magnetic dipole moment µn=−gnµNsn
at position rn with an electron of charge e, spin s with momentum p at position
re can be calculated by inspecting the electron energy with and without the
neutron present. The neutron gives rise to a vector potential An = µn × r/r3

and for generality an external vector potential Ae is assumed. The interaction
Hamiltonian is then to first order in µN given by:

Hint =
1

2m
(p+

e

c
(An +Ae))

2 + 2µBs ·Bn − 1

2m
(p+

e

c
Ae)

2

= 2µB(
1

}
An · p′ + s · (∇×An)), (4.12)

where p′ = p+ e
cAe. This is Fourier transformed into:

Hint(κ) = 8πµBµn · ( i
}κ

κ̂× p′ + κ̂× s× κ̂)e−iκ·re . (4.13)
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The expression consists of an orbital part and a spin part. The orbital motion
is dealt with by splitting re = Rj + r into the position of the j’th atom and
the motion around the atom. Under certain assumptions, the orbital and the
spin part can be joined using the Bessel-function expansion of the exponential
e−iκ·r:

Hint(κ) = 8πµB

∑
j

{ 1
2gF (κ)}je

−iκ·Rjµn · (κ̂× J j × κ̂), (4.14)

where the summation runs over all atoms in the target. F (κ) = < j0 > +
( 2g − 1)< j2 > is called the magnetic form factor and expresses the coupling

of the orbital and the spin part. To lowest order in the expansion, F (κ) is
independent of the direction of κ, and is determined by the radial average of
the Bessel functions: < jn >=

∫∞
0
r2R2(r)jn(κr)dr. In the data analysis the

magnetic form factor is calculated using the analytic approximation produced

by Jane Brown (ILL): < jn >=
∑

m jamp
n,m e

−jargn,m(κ/4π)2 with the parameters
given in table 4.1.

m 0 1 2 3

Ho jamp
0,m -0.0248 0.0566 0.3365 0.6317

jarg0,m 0.0 18.318 7.688 2.943

jamp
2,m 0.0268 0.2188 1.024 0.9251

jarg2,m 0.0 18.516 6.707 2.161

Er jamp
0,m -0.0251 0.0586 0.3540 0.6126

jarg0,m 0.0 17.980 7.096 2.748

jamp
2,m 0.0278 0.1710 0.9879 0.9044

jarg2,m 0.0 18.534 6.625 2.100

Table 4.1: Parameters for the form factor in Ho and Er.

The neutron spin matrix elements can be evaluated assuming unpolarized
neutrons. The squared matrix element is treated as:

| ⟨σ|H |σ′⟩ |2 = ⟨σ|H |σ′⟩ ⟨σ′|H |σ⟩ , (4.15)

and the summation over outgoing spin σ′ is seen as the identity. The remaining
expectation value can be evaluated using the Pauli representation and expressing
J in cartesian components labeled α, β. Combining the numeric factors using

the neutron gyro magnetic ratio γ = gn
2} , the classical electron radius e2

mc2 and
the vector relation (κ̂×J j×κ̂)·(κ̂×J j×κ̂) =

∑
αβ(δαβ−κ̂ακ̂β), the differential

cross-section becomes:
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d2σ

dEdΩ
=
k′

k

(
}γe2

mc2

)2 ∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{ 1
2gF (κ)}j{

1
2gF (κ)}j′

×
∑
if

Pi⟨i|Jjαe−iκ·Rj |f⟩⟨f |Jj′βe−iκ·R′
j |i⟩δ(}ω − Ef + Ei). (4.16)

Using the integral representation of δ(}ω − Ef + Ei) and subsequently ex-
ploiting the eigenvalue nature of Ei and Ej to move them inside the first ma-
trix element the f summation can be seen as the identity and hence removed.
Defining the time dependent operators J(t) = eiHt/}Je−iHt/} in the Heisenberg
picture and viewing the i sum as the thermal average, the Debye-Waller factor
can be introduced. Then the cross-section becomes:

d2σ

dEdΩ
=
k′

k

(
}γe2

mc2

)2 ∑
αβ

(δαβ − κακβ)
∑
jj′

{1
2gF (κ)}j{

1
2gF (κ)}j′

× 1

2π}

∫
dteiωte−iκ(Rj−Rj′ )⟨Jjα(t)Jj′β(0)⟩. (4.17)

If the magnetic form factor is site independent (one element with identical
sites) the cross-section can be expressed in terms of the Van Hove scattering
function

Sαβ(κ, ω) =
1

2π}

∫
dteiωt 1

N

∑
jj′

e−iκ(Rj−Rj′ )⟨Jjα(t)Jj′β(0)⟩, (4.18)

which in hand can be separated Sαβ(κ, ω) = δ(}ω)Sαβ
el (κ) + Sαβ

d (κ, ω) into an
elastic part

Sαβ
el (κ) =

1

N

∑
jj′

e−iκ(Rj−Rj′ )⟨Jjα⟩⟨Jj′β⟩, (4.19)

and an inelastic part which through the fluctuation dissipation theorem is re-
lated to the generalized susceptibility:

Sαβ
d (κ, ω) =

1

π

1

1− e−β}ω χ
′′
αβ(κ, ω). (4.20)

For an alloy in the virtual-crystal notation, one replaces:

{1
2gF (κ)}J →

∑
ξ

{ 1
2gF (κ)}ξcξJξ, (4.21)
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and Sαβ is replaced by Sαβ
ξξ′ . Sξξ′ and χξξ′ are defined through ⟨JξJ

′
ξ⟩.

Since the dynamic contribution Sd(κ, ω) is distributed in reciprocal space,
the main contribution to the energy integrated cross-section dσ/dΩ will be the
just derived elastic term. Therefore as opposed to elastic scattering experiments,
where only neutrons with wave vector k′ are detected, one can do neutron
diffraction by counting all neutrons in the direction of k′. The advantage of this
procedure is the gain in intensity obtained by leaving out the analyser crystal,
which filters the scattered neutrons by wave length. Possible limits for the
approximation are near phase transitions, where critical fluctuations will cause
considerable quasi elastic scattering.

4.1.3 Elastic scattering

Just as for the nuclear scattering the summation over lattice sites can be sep-
arated into two summations over unit cells and over atoms in the unit cell
respectively. Several of the simple structures can be represented by a spin con-
figuration like:

⟨J j⟩ = ℜ(⟨J⟩ eiQ·Rj ) =
1

2
(⟨J⟩ eiQ·Rj + ⟨J⟩∗ e−iQ·Rj ). (4.22)

Using the symmetry in α, β and the definition of the reciprocal lattice vectors
τ the elastic contribution to the cross-section for a Bravais lattice becomes:

dσ

dΩ
=
8π3N

v0

(
}γe2

mc2

)2

e−2W (κ)| 12gF (κ)|
2
∑
αβ

(δαβ − κακβ)ℜ(⟨Jα⟩ ⟨Jβ⟩∗)

×
∑
τ

1

4
(1 + δQ,0) [δ(τ +Q− κ) + δ(τ −Q− κ)] .

(4.23)

This can be interpreted as magnetic Bragg peaks located ±Q around each
reciprocal lattice vector. The location of the Bragg peaks in the reciprocal hl-
plane is illustrated in figure 4.1. The large circles are the nuclear peaks and
the smaller the surrounding magnetic satellites. Notice, that the (0, 0, 1) and
(0, 0, 1−Q) peaks are not allowed due to the geometric structure factor.

For non-Bravais lattices with p atoms per unit cell, the spins are given by
⟨J ld⟩ = ℜ(⟨Jd⟩eiQ·Rld). The summation over lattice points is split according
to Rld = l+ d, where l is the position of the unit cell and d is the relative po-
sition within the unit cell. The sum over unit cells gives the previous obtained
δ-functions, whereas the sum over atoms in the unit cell gives the magnetic
structure factor FMα(τ ) = |⟨Jα⟩|−1

∑
d⟨Jdα⟩e−iτ ·d. If the ordering is indepen-

dent of the sites in the unit cell the magnetic structure factor reduces to the
geometric structure factor FG(κ) =

∑
d e

−iκ·d.
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Magnetic sattelites
Forbidden peak

h

l
Nuclear peak

Figure 4.1: Bragg peaks in reciprocal space from a c-axis periodic structure.

dσ

dΩ
=
8π3N

v0

(
}γe2

mc2

)2

e−2W (κ)| 12gF (κ)|
2

×
∑
αβ

(δαβ − κακβ)| ⟨Jα⟩ ⟨Jβ⟩|
1

4
(1 + δQ,0)

×
∑
τ

ℜ{FMα(τ )F
∗
Mβ(τ )}(δ(τ +Q− κ) + δ(τ −Q− κ)).

(4.24)

Scattering from m/N structure

In a m/N structure with periodic boundary conditions each commensurate pe-
riod is denoted n and the unit cell individual unit cell within this period m′, so
that j = {n,m′}, J j = Jm′ and Rj = Rm′ + nNR. Again the sum is split:

∑
j

eiκ·RjJ j =
∑
n

einκ·NR
∑
m′

eiκ·Rm′Jm′ =
∑
τ

δ(τ −Nκ)
∑
m′

eiκ·Rm′Jm′ .

(4.25)

The first term results in N discrete peaks per reciprocal lattice unit. For
each of these peaks the last term is summed to give the amplitude.
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Scattering form spin slip structure

Rather than building a finitem/N structure and calculating the scattering cross-
section it would be preferable to obtain an expression for the scattering from
a distorted basal structure as for instance the spin slip structures. For such
a structure characterized by just one length b between the spin slips and a
bunching angle θ it is possible to obtain an expression for the intensity of the
peaks along [0, 0, l]:

I(κ) = 2J2σ2F (κ)2(1 + (−1)I)e−(σ sinα)2
∣∣∣∣1 + 2 sinBα

sinα
cos((B + 1)α+ θ)

∣∣∣∣2 ,
(4.26)

where B = (b − 1)/2, α = π(1/6 + I)/b, σ expresses the fluctuations in b and
θ. The integer I = 6b(κ−Q) selects the Bragg peaks, I = 0 corresponds to the
main magnetic peak, I = −1 is the fifth harmonic (Cowley and Bates 1988).

However, even this quite complicated expression is only valid for a single
(odd) b ̸= 6n− 1. There is therefore not more insight gained in using equation
4.26 rather than the general scattering from a m/N structure.

Another very simple analytic result is obtained for the structure expansion
ϕ = u + γ sinu introduced in section 2.4.4. Using the expansion eiϕ ≃ eiu +
γ
2 (e

i7u−ei5u) it is readily seen, that the relative amplitude of the fifth harmonics
should be γ2/4.

Scattering from a random alloy

The magnetic scattering from a random alloy can be treated in a similar fash-
ion to the isotopic formulation for nuclear scattering. The magnetic scattering
length is then put equal to:

bξi = cξi
}γe2

mc2
1
2gξFξ(κ)(J

ξ
i − κ̂(Jξ

i · κ̂)), (4.27)

where cξi = 1 if site i contains an atom from the element ξ (the notation is
inconsistent with respect to some literature (Squires 1978)). As for nuclear

scattering the distribution cξi is approximated by the composition average cξ.
The averaged scattering length: b̄ determines the coherent scattering, whereas
the incoherent scattering plays no interest in the experiments performed. Thus
for the alloy the previous results should be modified by replacing

1
2gF (κ)κ̂× J i × κ̂ =

∑
ξ

cξ
1
2gξFξ(κ)κ̂× Jξ

i × κ̂. (4.28)

In other words, the coherent magnetic scattering from a random alloy is
obtained by averaging the amplitudes before squaring to get the intensities.
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The structure expansion parameter γ should be calculated for each of the two
elements and then averaged, before squaring to get the relative amplitude of the
fifth harmonics in the alloys.

4.1.4 Inelastic scattering

The existence of an elementary excitation with energy }ω(q) results in a pole in
the generalized susceptibility. The absorptive part χ′′

αβ and hence the scattering
cross-section will have a peak for each pole. Thus a measurement of the inelastic
scattering is a direct measurement of the dispersion relation for quasi particles
such as spin waves.

In theoretical calculations the dispersion relation is calculated through the
generalized susceptibility, and it is therefore possible to perform a direct com-
parison with experiments, not only by comparing the dispersion relation but
also the amplitude or possibility for such excitations.

If the imaginary infinitesimal in the definition χ(ω) = limϵ→0+ χ(ω + iϵ) is
kept finite, it can be interpreted as the experimental energy resolution, hence
modifying the calculated scattering from a series of delta functions in E(k) into
a scan with finite size peaks.
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Figure 4.2: Calculated inelastic scattering from a Ho90Er10 1/5 structure at
30 K with ϵ = 0.01 meV, 0.1 meV, 0.25 meV and 0.5 meV. For
graphical reasons the scattering is scaled with ϵ.



4.2. SPECTROMETER 51

4.2 Spectrometer

As described above an ideal scattering experiment consists of a measurement of
the scattering cross-section (outgoing flux per incoming flux) at different incom-
ing k and outgoing k′ wave vectors measured relative to the sample. Except
for the k′/k factor all the dependency can be expressed through the energy

}ω = }2k′2 − }2k2 and the wave vector transfer κ = k′ − k = (h, k, l).

A spectrometer is in principle a setup supplying an incoming beam with
wave vector k and measuring the outgoing intensity with wave vector k′. Since
k and k′ represent 6 degrees of freedom, a general unrestricted spectrometer
should contain the same number.

The simplest way to consider the situation is to fix the sample. Then k and
k′ are determined by their length and two angles. If the scattering is restricted
to a reciprocal plane τ⊥ of the crystal, only one angle is needed for each k and
k′. In practice however it is not possible to move the source (a research reactor
in this case) and hence the direction of k in real space is not a free parameter.
Instead one rotates the sample around τ⊥, the angle of this rotation is called
ω (OM). The direction of k′ is then measured with respect to k and is denoted
2θ (2T). The reason for the factor of 2 is, that if only the length of κ is to be
changed the angles should be moved as ω = θ. Since two angles are defined
around the axis τ⊥ it is a kind of double axis.

The length and hence the energy of k and k′ respectively are defined using
Bragg reflection in a monochromator and an analyser crystal. The white beam
of thermal/cold neutrons emitted from the source is imposed on a known crystal
(pyrolytic graphite in this case). The sample is then placed with an angle of
2θM with respect to the white beam. By rotating the monochromator crystal
ωM = θM just like for the sample, a Bragg peak at τM = (0, 0, 2) can be
selected, and hence k is determined by Bragg’s law to be k = n τM

2 sin θM
.

The higher reflections can be removed by filtering. The wave length of the
first Bragg peak of a Be powder corresponds to 4.9 meV, and hence neutrons
with energies above that will be scattered out of the beam.

Although two angles are used for monochromating they are not independent
(once the Bragg peak τM is chosen) and they only determine the length of k.
The analyser operates in the same manner. The scattered beam is analyzed
through an analyser crystal using τA. The detector is placed with an angle θA
with respect to k′ and the crystal is oriented by ωA = θA.

The setup described is called a triple axis spectrometer (TAS). Since the
sample axis is a “double” axis, the TAS allows for 4 degrees of freedom. The
two missing degrees of freedom determines which reciprocal plane of the sample
is to be investigated. They can be restored by a goniometer which rotates the
sample around the two axes perpendicular to the sample axis τ⊥.
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Figure 4.3: Schematic illustration of a Triple Axis Spectrometer.

4.3 Data correction

The scattering theory as presented above is also known as kinematic scattering
theory. It dealt with one incident neutron and just multiplied by the incident
intensity.

The incident beam of neutrons will change within the crystal giving rise
to what can be seen as corrections to the kinematical results. This is called
dynamical scattering theory.

Instead of comparing calculated scattering directly with the real dynamic
scattering it is often used to correct the data. Thus the experimental data are
transformed to what they would be if the kinematic results were valid.

4.3.1 Extinction and absorption

There exist different sources of corrections. Perhaps the most readily under-
standable is the absorption of neutrons which then prevents them from con-
tributing to the scattering cross-section.

But even without absorption the fact that the beam is reduced with the
scattered neutrons, result in a correction to the kinetic theory. This is called
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primary extinction.

If the crystal consists of domains, the primary extinction will be relieved,
since the Bragg peak is now taken from different parts of the incoming beam.
However, when the beam passes a domain with an orientation already encoun-
tered secondary extinction will occur.

Depending on the shape of the sample, each reflection will have a different
effective propagation length through the crystal. Therefore the extinction and
absorption effects will change the relative amplitudes of the Bragg peaks.

4.3.2 Resolution of a TAS in elastic scattering

Apart from the sample specific dynamical scattering corrections to the ideal
delta-function Bragg peaks from kinematic scattering theory, the resolution of
the spectrometer must be taken into account. For various reasons the detector
will receive neutrons which have not followed the desired k to k′ path. The
result upon scattering from a single delta-function Bragg peak dσ

dΩdE = δ(q−q0)
will be a finite peak described by the resolution function R(q, q0). The form of
the resolution function can vary as a function of the Bragg position q0. The
generalized Gaussian resolution function has the form (Cooper and Nathans
1967):

R(Q,Q0) = N(Q0)e
− 1

2∆QM∆Q, (4.29)

where Q = {q, ω} and ∆Q = Q−Q0.

In the general space {q, ω} the resolution function is described by scattering
ellipsoids representing points of equal intensity. But if the scattering is con-
strained to elastic scattering along a single direction, it is sufficient to specify
two numbers for a given point q0:

• The amplitude (or normalization factor (Chesser and Axe 1972)) N =
C

A sin 2θS
affects the relative amplitudes of the peaks positioned at different

q0. C is a constant, A a relatively slow varying function and 2θS is the
angle of the incoming beam k to the out going k′. The main variation
1/ sin 2θS is called the Lorenz factor .

• The longitudinal Gaussian width of the peaks is represented by the matrix

M which relates to the width as M− 1
2 . Figure 4.4 shows the width for

the two types of scans reported is this work.

For accurate interpretations of scans with relatively few peaks (i.e. simple struc-
tures) the integrated intensity of each peak can be corrected properly. But in
a scan with inter peak distances less than the Gaussian width the peaks will
overlap hence mutually enhance each other. In its extreme consequence a dense
distribution of peaks can form one broad peak.
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Figure 4.4: Longitudinal Gaussian width of the resolution function for the TAS.

4.4 Samples

Measurements have been performed on two Ho90Er10 and two Ho50Er50 crystals:

1. 25mm3 Ho90Er10 used in most of the scans.
2. 500mm3 Ho90Er10 used for inelastic scattering and a few com-

parative scans.
3. 5mm3 Ho50Er50 used in most of the scans.
4. 2mm3 Ho50Er50 used to verify data from sample 3.

All samples were random alloys cut from larger single crystals grown by
the strained annealing method at AMES Lab, USA. The volumes of the three
samples used for elastic measurements were small enough to exclude multiple
scattering. The Ho50Er50 sample however showed some mosaic spread in the
[1, 0, l] scans but not in the [0, 0, l] scans, hence the spread was in the ab-plane.
The samples were mounted in a helium filled aluminium can and placed inside a
displex, which in turn was mounted on the sample goniometer of the spectrom-
eter. Unfortunately the exact origin and history of the samples is unknown.
Hence the Ho50Er50 crystals, which seem to be the fractions of one rectangu-
lar crystal, could be the same as the one investigated earlier by (Howard and
Bohr 1991, Pengra et al. 1994). The unidentified intermediate phase discussed
in section 5.3.2 could therefore be a crystal specific phenomena.

The samples were aligned for scattering in the ac-plane using the (1, 0, 0)
and the (0, 0, 2) Bragg peaks. The absolute position of these were also used to
determine the crystal parameters as given in table 4.2. It is seen, that the alloys
show lattice parameters consistently though very little larger than both of the
elements, but this is believed to be a question of spectrometer alignment rather
than a physical feature.
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[Å] Ho Ho90Er10 Ho50Er50 Er
a 3.578 3.564 3.560 3.559
c 5.618 5.630 5.618 5.585√

3/8c/a 0.962 0.967 0.966 0.961

Table 4.2: Crystal parameters for Ho, Er and the alloys.

4.5 Scans

The elastic scattering results can be summarized in different types:

• Long [h, k, l] scans varying l, hence revealing all the higher harmonics
within the interval. However, these scans are a compromise between step
size ∆L ∼ c∗/200, counting statistics > 10 and scanning time ∼ 4 − 10
hours. Therefore long scans have only been performed at a rather coarse
temperature stepping. The long scans can be fitted to the calculated
scattering thus testing the theoretically predicted structures.

• A single Bragg peak can be studied by performing two perpendicular scans
thereby finding the middle of the peak. These scans are fairly quick and
can therefore be performed for several peaks at a number of temperatures.
A series of single peak scans follows the position, width and amplitude of
the peak as a function of temperature.

ω

h,k,l[ ]

h

l

θ,2θ

Figure 4.5: The scan in reciprocal space

The scans move along different lines in reciprocal space as illustrated in
figure 4.5. The long scans are parallel to the l direction. The single peak scans
consists of the two subsequent scans ω and θ, 2θ. The ω scan moves along a
circle in the hl-plane, whereas the θ, 2θ scan moves in a straight radial line.





Chapter 5

Results — alloy features

The experimental data can be summarized as:

Ho90Er10 • [0, 0, 0.8 → 2.1] and [1, 0,-0.05 → 1.05] scans at T = 10 K–100 K

• One-peak scans of (1, 0, 0) and (0, 0, 2−Q)

• Few inelastic scans at (0, 0, l) points with 0 < ω < 2 meV

Ho50Er50 • [0, 0, 0.8 → 2.1] and [1, 0,-0.05 → 1.05] scans at T = 10 K–70 K

• One-peak scans of (1, 0, 0), (1, 0, Q), (0, 0, 2−Q) and (0, 0, 2)

The long scans can be used in two ways. Though coarse in temperature the
peaks present can be mapped as in a one-peak scan, giving more points in the
temperature dependence of the peaks. Secondly, the scans can be fitted directly
to the calculated scattering from a calculated structure, hence comparing not
only the peaks present in the scan but also exploring the possibility of unwanted
additional peaks from a wrong guess of structure. Since the long scans contain
all the higher harmonics, they supply information on the details of the structure,
which in hand sheds light on the types and strengths of the interactions in the
system.

Rather than basing the comparison between theory and experiment on the
types of data or the types of calculations, each feature of the systems will be
presented accompanied by the appropriate experimental and calculational re-
sults.

5.1 Common features

The features can be split into two groups — the common features which only
differ quantitatively and the qualitatively different features, which are unique
for each of the alloys.

As expected both samples showed an overall behaviour similar to Ho, starting
with a basal plane helix at TN and ending in a cone structure in the limit of

57
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zero temperature. Of course the numbers characterizing the two phases (TN ,
TC , Q(T ), θbunch etc.) are different for each system. But on the other hand
both alloys showed some interesting novel features such as a disordered state at
low temperatures in Ho90Er10 and an intermediate phase in Ho50Er50.

5.1.1 Magnetic onset — TN

The onset of magnetic ordering is characterized by the Néel temperature TN ,
where both alloys develop a helix structure. Figure 5.1 shows the measured
intensities of the main magnetic peak (0, 0, 2−Q) for the two crystals.
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Figure 5.1: Intensities of the main magnetic peak (0, 0, 2 − Q) for each of the
two alloys.

The experimental transition temperatures deduced from figure 5.1 can be
compared to a scaling of the known transition temperatures for the elements or
to mean-field calculations of the transition as summarized in table 5.1.

TN [K] Experiment Scaling MF Magnetization
Ho 133 132 131
Ho90Er10 125 128 126 126
Ho50Er50 104 109 105 106
Er 85 84 84

Table 5.1: The Néel temperature for magnetic ordering

The transition temperatures for the alloys are close to the simple weighted
averages. Since all MF theories have a critical order parameter exponent of 1

2
and the scattering intensity is proportional to |⟨J⟩|2 the MF calculations predict
a linear rise in I(0,0,2−Q) which is clearly not the case. However, the predicted
transition temperatures agree with the measured within the experimental error.
The exchange parameters of the elements are determined paying respect to the
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transition temperature which is therefore built into the model. But the data for
the alloys shows that the scaled electron gas assumption does not lead to wrong
transition temperatures.

In general mean-field theories are known to be inadequate in the vicinity
of phase transitions, but the long range nature of the interactions in the three
(as opposed to lower) dimensional rare earth systems ensures the unexpectedly
good agreement of the transition temperatures TN .

At zero temperature, the thermal expectation values ⟨J i⟩ becomes equal to
the ground state expectation value, the direction of which can be chosen as the
z-axis. Hence all of the moments will have their full length J at zero temperature
and the order parameter is σ = 1. The saturation value of the magnetic peak
(0, 0, 2) must therefore correspond to this totally ordered state.

Theoretically, the saturation value for the magnetic peak should be:

I(0,0,2−Q)

I(0,0,2)
=

1

4b2

(
}γe2

mc2

)2 {
1
2gF

}2
J2, (5.1)

assuming the structure to be totally ordered (σ = 1). The measured values are
however about 40% to low, which must be explained in terms of extinction and
absorption effects.
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Figure 5.2: Relative intensities of the main magnetic peak (0, 0, 2−Q) for each
of the two alloys.

5.1.2 Cone phase — TC and cone angle

Both Ho and Er develops a ferromagnetic component in the c direction at TC =
20 K and 18 K respectively, while the basal plane component forms a helix. The
cone phase is characterized by the transition temperature TC and the cone angle
sin θ = ⟨Jz⟩/⟨J⟩ of the cone to the basal plane in the limit of zero temperature.

Since the geometric selection rules for magnetic neutron scattering requires
the wave vector transfer to be perpendicular to the moments, the cone phase will
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cause scattering in the basal plane, and since it is a constant c-axis component
it corresponds to Q = 0 which means, that the magnetic scattering will coincide
with the nuclear peaks.

The cone phase can thus be studied from the experimental data by consid-
ering the enhancement I(1,0,0) of the nuclear (1, 0, 0) peak relative to the main
magnetic peak I(0,0,2−Q). For the cone phase equation 4.24 gives the following
relation between the two peaks of interest:

⟨Jz⟩
⟨Jx⟩

=
F (2−Q)

F (1)

√
I(1,0,0)

I(0,0,2−Q)
. (5.2)

Thus the cone phase transition can be investigated by scanning (1, 0, 0) and
(0, 0, 2 − Q) as a function of temperature. The relative intensity (I(1,0,0) −
Inuc(1,0,0))/I(0,0,2−Q) Since the magnetic (1, 0, 0) peak lies on top of the nuclear
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Figure 5.3: The cone phase transition TC illustrated by I(1,0,0).

(1, 0, 0) peak it is the enhancement of the peak that corresponds to I(1,0,0). The
derivation of the angles is summarized in table 5.2.

F (2−Q)
F (1) I(1,0,0)/I(0,0,2−Q) θ

Ho90Er10 0.945 0.06 13.4◦

Ho50Er50 0.951 0.33 33.1◦

Table 5.2: The numbers leading to the measured cone phases angles

As is seen from figure 5.3 and table 5.3 the cone phase appears at higher
temperatures in the alloys than in the two elements. The explanation is to be
found in the fact, that Ho enters the cone phase from a flat helix, whereas Er
has a cycloidal structure above TC . The reason for that is the difference in
signs of B0

l and especially B0
2 which for Ho and Er favour respective small and

large c-components. In the alloys the Ho moments will not form a cycloidal
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Ho Ho90Er10 Ho50Er50 Er
TC 20 K 24 K 35 K 18 K
TC MF 21 K unstable 10 K meta-stable
Cone angle θ 10◦ 13.4◦ 33.1◦ 60◦

θ MF 10.4◦ − 32◦ 62◦

Magnetization 13◦ 17◦ 37◦ 60◦

Table 5.3: Cone phase transition temperature TC and maximum cone angle θ.

structure and induces a helix but the out of plane attraction for Er shifts TC for
the cone phase upwards. Another explanation for the rise in TC at intermediate
compositions of Ho and Er is that the cone gives the two kind of moments a
better chance to align slightly differently than is possible in the flat helix. The
data is in good agreement with earlier magnetization measurements (Bozorth
et al. 1972).
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Figure 5.4: The cone phase transition TC in Ho50Er50 calculated by mean field.

The success of MF calculations is limited with respect to the cone phase
(5.4). Since for the pure elements the model coincides with those of (Jensen
1996a) and (Cowley and Jensen 1992) both TC and θ are very well described in
holmium.

In the case of erbium the cone phase turns out to be meta-stable which
means, that the MF iterations converge both to a cone phase and a helix de-
pending on the starting structure. However, the cone phase has approximately
1 meV higher free energy. Hence TC cannot be predicted for erbium. Surpris-
ingly (or perhaps accidentally) the VC–MF model works best for the Ho50Er50
case. The cone angle of θMF = 33◦ agrees within the standard deviation of the
experimental data. However, as is seen in figure 5.4 the transition temperature
TCMF = 10 K is in direct contradiction for the tendency of higher TC for the
alloys.

In Ho90Er10 the cone phase is unstable upon iteration at all temperatures.
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When iterated, a starting cone structure will decay into a helical structure with
no or very little ferromagnetic component but with oscillations in the c-axis
(figure 5.5).
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Figure 5.5: The converged 7/36 structure in Ho90Er10 at 1 K, Ho moments are
blue, Er moments green.

The simplest and most transparent way to adjust the model to predict the
right cone angle is by imposing an external field. In a field of 7.5 kOe in
the c-direction the Zeeman term ensures the right cone angle of 13.4◦, without
disturbing the other interactions in the model. Therefore when fitting the cone
phase data this unphysical field is used rather than trying to adjust the other
parameters of the model. However, since magnetic scattering only probes the
part of ⟨J⟩ perpendicular to κ, the cone phase only appears in the [1, 0, l] scans.

5.1.3 Periodicity — Q(T )

The two-ion interactions are the mechanism responsible for the magnetic order-
ing. Of these the dominant is the indirect exchange coupling characterized by
the Fourier transform J (q) of the coupling strength. The periodic structures is
a consequence of the maximum of J (q) for nonzero QJ ∥ c∗. Except for small
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corrections such as lock-in to commensurable periodicities mc∗/n the period-
icity of the structures follows QJ as a function of temperature. The Fourier
transformed of J (q) is shown in figure 5.6 for the four cases of interest. The
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Figure 5.6: J (q) and QJ for Ho, Er, Ho90Er10 and Ho50Er50

periodicity of the system as expressed by Q must be the structure with least
free energy. Thus QMF = mc∗/N can be estimated by minimizing the calcu-
lated free energy for varying structures. Such calculated free energies for various
structures are shown in figure 5.7.
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Figure 5.7: Calculated free energy for structures with different q

The non-simple form of the free energy and the difference between the min-
ima QMF and QJ are both reflecting the other parts of the Hamiltonian.

The main magnetic peaks τ ± Q in the ordered phase have cross-sections
of the same order as the nuclear cross-section, and are therefore easily and
quickly measured with good accuracy. Figure 5.8 shows the periodicities Q(T )
as measured and as estimated from QJ and QMF.
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There is a qualitative agreement, but as is seen, the minimum energy cal-
culations cannot be used to find the actual structures of the system, since in
that sense there is quite some difference between for instance the 1/5 structure
and the modified 7/36 structure used in the fits at 10 K for this alloy. In terms
of spin slips the two structures are respective (221) and (2221 221). And the
scattering from the two structures is also very different. If the discrepancy is
measured in units of the difference QHo90Er10 −QHo it is 20 percent. The peri-
odicity Q must therefore be chosen to fit the experiments, but nevertheless the
structure calculations are very useful. For instance, the cone phase in Er is only
meta-stable according to MF free energy calculations (the basal plane helix is
about 1 meV lower), but MF still predicts the right cone angle.

Even though the model does not predict the right Q value, the discrepancy
amounts to of 0.01 meV which corresponds to 0.1 K. The very flat energy mini-
mum for Ho90Er10 is the reason for the un-relaxed disordered structure observed
below 25 K (see section 5.2.2). Although shifted relative to the observed peri-
odicity, the flatness depicts the little energy gained by adjusting the structure
to the absolute minimum. On the other hand it does not mean, that the sys-
tem easily can change the structure. The hexagonal anisotropy constitutes an
energy barrier for each spin that crosses a hard axis. Without any energetic
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motivation and dis-encouraged by the hard axes, the system behaves like a spin
glass, which cannot find the absolute minimum among the deep local minima.

Figure 5.8 reflects some interesting features of the temperature dependent
exchange coupling:

• All four systems have the same starting periodicity Q(TN ) ≃ 0.28. It is
this starting periodicity, that is determined by the exchange integral and
the form of Fermi surface, which both are very similar for all the heavy
rare earths.

• As the systems order, the conduction gas is polarized by the magnetic mo-
ments, hence distorting the Fermi surface. This polarization is dependent
of the size of the moments, and it is seen, that the decrease in periodicity
is monotonic with respect to the effective size of the magnetic moment in
the alloys as predicted by Koehler et al. (1963) and Elliot and Wedgwood
(1964).

5.1.4 Anisotropy, bunching angles and fifth harmonics

The crystal field and the anisotropic interactions give rise to modifications of
the simple structures. These distortions of the structures are reflected by the
presence of higher harmonics in the scattering cross-section.

MF calculations on a finite structure QMF = mc∗

N can only deal with correc-
tions commensurable to N i.e. integer harmonics of QMF. But by increasing N
keeping QMF ≃ Qexp the number of possible harmonics is increased to a desired
level. Through equation 4.23 the scattering cross-section can be evaluated and
compared to experimental scans. Such fits will be discussed in section 5.2.1 and
5.3.1. However, they do not directly elucidate the effect of the individual terms
in the Hamiltonian. It can therefore be useful to consider the corrections to the
pure structures one by one.

The most dominant correction comes from the crystal field term B6
6O

6
6(J).

As discussed in section 2.2.2, the hexagonal anisotropy can be expressed in
terms of hexants separated by 6 hard axes resulting in the formation of spin slip
structures. This distorted helix or cone structure is to first order of the form
⟨J i⟩ = Jσ cos θ(cosϕi, sinϕi, tan θ), where θ is the cone angle and:

ϕi = ui + γ sin 6ui, ui = Q ·Ri. (5.3)

The expansion parameter γ, which is connected to the bunching angle, can
be estimated in three ways:

• The free energy expansion 2.44 gives an estimate of:

γ =
12κ6

6

(Jσ)2{2J (q)− J (5Q)− J (7Q)}
, (5.4)
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• The calculated mean-field structures can be fitted to the structure expan-
sion varying γ and u0, using the mean square residue method.
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Figure 5.9: The γ-structure and the MF structure

Although the resulting γ is reasonable, there is quite some discrepancy in
the actual structures as seen from figure 5.9. The simple low order expan-
sion can of course not contain the complexity of the spin slip structures.

• As mentioned earlier the relative amplitude of the fifth harmonics should
be γ2/4, from which a direct experimental estimate can be made.

The three different estimates shown in table 5.4 for the two temperatures
10 K and 70 K are seen to be within the same order of magnitude at both
temperatures.

T [K] 1. 2. 3.
10 Ho 0.217 0.211 0.2

Ho90Er10 0.186 0.185 0.219
Ho50Er50 0.109 0.125 0.110
Er -0.219 -0.249 (-)0.2

50 Ho50Er50 0.0253 0.0258 0.0245
70 Ho90Er10 0.009 0.010 0.020

Table 5.4: The parameter γ estimated from 1. free energy minimization, 2. fit
to MF structure and 3. experiment

The reasonable agreement is quite surprising in the view of two different
complications. At low temperatures the bunching effect is substantial, and a γ
around 0.2 is not a small expansion parameter. At higher temperatures, where
the expansion might be expected to be valid, γ is very sensitive to the right
value for the ordering parameter.
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5.2 Ho90Er10

The results of the long scans can be summarized in a 3D plot of the intensity
as a function of position and temperature or a plot showing the peak locations
at different temperatures (figures 5.10 and 5.11).

Above TN only the nuclear Bragg peaks (0, 0, 2), (1, 0, 0) and (1, 0, 1) are
present. Below TN the main magnetic peaks κ = τ ± Q (i.e. (0, 0, 2 − Q),
(1, 0, Q) and (1, 0, 1−Q)) grows to magnitudes comparable to the nuclear peaks.
As the temperature decreases the anisotropic interactions start to modify the
pure structure resulting in higher harmonics. The most dominant are the 5’th
harmonics κ = τ ± 5Q, which since Q ∼ 1

5 are drowned in the mosaic tails
of the nuclear peaks in the [1, 0, l] scans. In the [0, 0, l] scans the two 5’th
harmonics (0, 0, 5Q) and (0, 0, 2−5Q) are accompanied by an unexpected peak at
(0, 0, 1), all three developing around 70 K. At 50 K the 7’th harmonics (0, 0, 7Q),
(1, 0, 7Q − 1) and (1, 0, 2 − 7Q) appear and finally around 20 K the 11’th and
13’th harmonics [0, 0, 4 − 11Q], (1, 0, 3 − 11Q), (0, 0, 4 − 13Q), (1, 0, 3 − 13Q)
and (1, 0, 13Q − 2) can be identified. Two third harmonics (1, 0, 1 − 3Q) and
(1, 0, 3Q) appears already at 60 K in the [1, 0, l] scan, whereas the (0, 0, 2− 3Q)
only appears as a faint shoulder to the (0, 0, 7Q) below 20 K. The (6n±1)Q peaks
are mainly due to the hexagonal anisotropic crystal field. The 3’rd harmonics
are distortions mainly in the c-direction due to the trigonal coupling.

The peak at (0, 0, 1) is not readily explainable, since the nuclear structure
factor forbids the peak. The peak can either be magnetic or nuclear of origin. A
first guess would be magnetic scattering, since it seems to develop at the same
T as the 5’th harmonics, and in that case it would probably be connected to
the bunching of the moments. The phenomena could be related to the different
hard axes in Ho and Er, but it has also been reported in experiments from pure
erbium and holmium: Lin et al. (1992) draws the conclusion, that the (0, 0, 1)
peak comes from nuclear scattering due to breaking of the hcp symmetry induced
by magnetostrictive effects. The peak is present in the figures of Cowley and
Jensen (1992); In holmium Cowley and Bates (1988) and Bates et al. (1988)
denotes it to second order scattering, but this cannot be the case. The (0, 0, 1)
reflection corresponds to a distinguishing between the basal plane components
of the two planes in the unit cell, which seems implausible.

The temperature independency of the tiny bump at (0,0,1.65) suggests, that
it is not from the sample.

Around l = 1.5 the [0, 0, l] scans show an increase in the background by a
factor of 5. This feature which is constant up to 100 K could be a result of
shielding problems, but no similar behaviour is seen in the Ho50Er50 sample.
It could be diffuse scattering due to thermal effects, disordering or stress. The
negligible temperature dependency rules out the thermal diffuse scattering, but
the presence of 10% Er atoms could very likely cause stress, as well as the
randomness is a kind of disorder.

The diffuse scattering is seen as very broad tails around the strong peaks.
Along [1, 0, l] the tails from (1, 0, 0) and (1, 0, 1) overlap, hence producing the
flat background seen in the scans along [1, 0, l].
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Figure 5.10: Scans in Ho90Er10
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Figure 5.11: Peaks in Ho90Er10
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5.2.1 Structure fits

Rather than interpreting the long scans in terms of structural parameters, they
are compared directly to the calculated scattering from the structures reached
by mean-field theory.

Ho90Er10 is assumed to order helical just as pure Ho. The starting structure
for the mean-field calculations is therefore chosen as a helix with the periodicity
QMF = m/N close to the measured Q. By design, the mean-field structures are
commensurate, but by increasing N keeping the approximately right QMF, the
commensurate effects can be investigated and avoided if they are not present in
the data.

The overall magnetic scattering intensity is taken from the main magnetic
peak, which is then automatically fitted correctly, since its position determines
m/N . The magnetic scattering amplitude could in principle be related to the
nuclear amplitude, thereby allowing an estimate of the degree of order given by
the ordering parameter σ(T ). This procedure is however of limited success due
to absorption and extinction effects. A more direct estimate of σ(T ) relies of
the fact, that σ = 1 in the limit of zero temperature.

The agreement of a such fit is characterized by two things, namely the ex-
istence of the right number of peaks, and the position and amplitude of each
peak.

Disregarding the (0, 0, 1), peak the calculated structures results in the right
number of peaks, which all have the right positions. The positions are deter-
mined as multiples of Q, which was chosen by hand, and the agreement in
positions is therefore expected.

That the relative amplitudes are in reasonable agreement means that the
anisotropic interactions are of the right strengths.

The tendency for the MF scattering to underestimate the (1, 0, Q) peak can
be explained by extinction and absorption effects.

5.2.2 Low temperature disordered 7/36 phase

Below 25 K the Ho90Er10 alloy enters a phase with a long range ordering pe-
riodicity of q = 7/36, but with a short range disorder. The disorder is seen as
a broadening of the higher harmonics beyond the widths caused by the experi-
mental resolution. The broadening is most profound along [0, 0, l] at 10 K, and
hence the attention is directed to fitting this particular scan.

The widths of the scan is a combination of a broadening due to non-perfect
order and the experimental resolution discussed in section 4.3.2. A folding of
two different widths will roughly inherit the largest of the two.

Apart from the normalization factor N , the resolution function causes an
averaging of the scattering, so that close lying peaks mutually lifts each other on
the account of isolated peaks, which decreases in relative amplitude. Eventually
close lying peaks can be folded into one broad peak. In the pure 7/36 structure
the minimum separation between the peaks is 1/36 ≃ 0.028rlu. With a width
of 0.01 as seen in the scans the overlap from peak to peak is around 2%, and
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Figure 5.12: Scans from Ho90Er10 fitted with MF structures 100 K to 60 K.
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Figure 5.13: Scans from Ho90Er10 fitted with MF structures 50 K to 30 K.
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Figure 5.14: Scans from Ho90Er10 fitted with MF structures 25 K to 10 K.

hence the resolution effects are not enough to model the broad peaks, and even
less successful in reducing the unwanted peaks as seen in figure 5.14

A disordered structure can in contrast to a pure periodic structure not be
described by a discrete Fourier transformation. Instead of ideally sharp Bragg
peaks it will have a periodicity distribution and hence peaks with finite widths.
The higher harmonics which are multiples of the main peak should be expected
to have a similar multiplied broadening. Therefore only the highest harmonics
(7’th and up) will reveal their intrinsic width beyond the experimental resolu-
tion.
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The origin of disorder can be explained by the fact that in a random alloy
there can be regions with differing concentration. Or that the solute atoms
are blocking the relaxation of the structure, so that the actual structure is a
mixture of different basal structures. For the 7/36 structure this can simulated
by appending a string of 7/35, 7/36 and 7/37 structures, but as seen in figures
5.15(b) and 5.15(c) the result is not satisfactory.

Upon closer examination the 7/36 structure is a spin slip structure described
by (2221 221), which means that after 3 doublets (i.e. 6 single layers) comes a
singlet (spin slip) then two doublets and finally a singlet before the structure
is repeated. In other words the helix makes 7/6 turns during 12 single layers,
and hence makes 7 full turns after 72 single layers or 36 double layers. One
manifestation of disorder could be, that the (2221) and (221) blocks do not follow
each other periodically, but are mixed more or less randomly. By mixing 6n of
each of the two blocks, thus ensuring the right Q and that the structure ends
with 7n complete turns, disorder can be introduced into the system. Denoting
by (1 + p)/2 the probability, that a (221) structure follows a (2221) structure,
the disorder can be continuously turned on, since p = 1 corresponds to the pure
(2221 221) and p = 0 corresponds to a completely random distribution of the
two blocks.

It can be seen from figure 5.16 that only the p = 0 structure with a completely
random distribution of the two blocks have no other peaks, than those seen in
the experiments. Most interesting is the fit to the [0, 0, l] scan at 10 K shown in
figure 5.17. The best fit is obtained for a random mixing of equally many blocks
of {4} and {3}, and an experimental width of the (0, 0, 2−Q) peak of 0.008 r.l.u..
It should of course be remembered that no attempts are made to fit the nuclear
peaks. Disregarding the (1, 0, 0) peak the agreement is very satisfactory. It is
seen, that the calculated background is to high. But the discrepancy is less than
a factor of five on a quantity four orders of magnitudes smaller than the main
magnetic peak. All the features including the right shoulder to (0, 0, 2−Q) are
qualitatively depicted in the fit.

The disordered 7/36 structure described above is therefore a very good candi-
date for the low temperature structure in Ho90Er10. The reason for this disorder,
which is in contrast to the extremely well ordered magnetic systems observed
in most of the rare earths can have different explanations:

• The 10% Er atoms does introduce a randomness and a microscopic concen-
tration fluctuation, but within the MF model presented here these effects
are averaged over an entire basal plane, and should therefore be negligi-
ble. If this effect should be investigated, the model should be reformed to
three dimensions with an increasing finite block size. The virtual-crystal
model could also be abandoned in favour of a random distribution of a
finite number of Ho and Er atoms.

• It could also be, that the reason for the disorder effect to appear in this
particular system is a coincidence between periodicity and low tempera-
tures. The periodicity corresponds to an average distance b = 6 single
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(a) Pure 7/36 with finite width
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(b) Mixed (7/35)3(7/36)(7/37)
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(c) Mixed (7/35)7(7/36)(7/37)

Figure 5.15: Scans along [0, 0, l] in Ho90Er10 at 10 K fitted with different struc-
tures.
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(a) Disordered with p = 0.6
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(b) Totally disordered with p = 0

Figure 5.16: Scans along [0, 0, l] in Ho90Er10 at 10 K fitted with disordered
structures.

layers between the spin slips, which cannot be satisfied by a simple spin
slip structure. A simple spin slip structure must have b odd, equal to 2
times the number of pairs plus one for the spin slip itself. The average
distance b = 6 is satisfied by a {43} structure. Where blocks of respective
{3} and {4} hexants between the spin slips occur with equal rate.

The interchanging of a {3} block and a {4} block is actually accomplished
by moving a single spin from a pair to a adjacent spin singlet. At low
temperatures, where the hexagonal anisotropy is large, the barrier for
doing so is very large. Since little energy is gained, the structure cannot
relax. The ordering of the moments into a structure must be assumed to
start at many different places. These individual growing domains have
no phase coherence (the phase of the helix), and when they meet, phase
shifts and hence disordering of the perfect spin slip structure takes place.
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Figure 5.17: Best fit to the [0, 0, l] scan in Ho90Er10 at 10 K.

• The flatness of the free energy minimum depicted in figure 5.7(a) means,
that there are a wealth of meta-stable local minima. In that sense the
system resembles a spin glass, where the number of meta-stable states is
so large, that the system will not relax even after long time. Therefore,
although the absolute minimum free energy is obtained for an ideally al-
ternating sequence of {3} and {4} blocks, the energy difference and the
thermal fluctuations are so mall, that the system is quenched in a meta-
stable state.

5.2.3 No tilted helix

The tilted helix discussed in section 3.1 has not been observed in any system,
although MF calculations predict it to be very close in free energy to the cone
phase. During the first series of experiments the cone phase transition was
measured in Ho90Er10. Figure 5.18, sample 1a shows an interesting jump in
I(1,0,0) at 12 K from the level of the nuclear peak. This indicated, that the finite
ferromagnetic component of the cone phase develops in a sharp transition at 12
K but disappears continuously around TC = 25 K.

This new phase could be just a basal plane helix, but a tilted helix would
explain the sharp transition. There is no simple continuous path form the cone
to the tilted helix and hence a transition between the two structures will be
sharp. The cone-helix transition should be continuous and secondly it seems
less plausible that the system should go from the helix to the cone and then
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Figure 5.18: I(1,0,0) as a function of temperature.

back to the helix.
Since only a few points (3-5) promoted the tilted helix the results were sought

verified in the second beam period. But as apparent in figure 5.18 no evidence
of the tilted helix phase was found neither in sample 1b o in sample 2.

In conclusion the evidence for the tilted helix could be ruled out as an exper-
imental error, although no such explanation seems evident. The temperature
was well stabilized during a period much longer than the scanning time, and
the spectrometer was thoroughly aligned at the Bragg peak prior to the scan.
Since the one peak scans follow the peak constantly adjusting to the maximum
position, a badly aligned starting point could converge to the maximum during
a number of points. But even this could not explain the quite sudden jump
from the first three points to the next.

I believe, that the first measurement really did catch a perhaps meta-stable
tilted helix or even an ordinary helix. Accidentally the uncontrolled cooling pro-
cess must have quenched the cone transition, which was released upon heating
above 12 K. The second experiment was performed in a different cryostat, and
hence the cooling conditions were not the same. If fast and controlled cooling is
performed the tilted helix might be reachable. However, the purpose of forcing
the system into an artificial state can be discussed.
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5.3 Ho50Er50

The Ho50Er50 crystals were expected to be more difficult to investigate - partly
due to the more complicated structures in the less well described Er - partly since
the 50− 50 composition is most far away from the two models of the elements.
Therefore this sample was offered the least attention during the limited amount
of beam time. The long scans taken are shown in figures 5.19 and 5.20.

As seen in Ho90Er10 the main magnetic peak is accompanied by higher har-
monics as the temperature is lowered. Between 50 K and 30 K the two fifth
harmonics as well as the (0, 0, 1) peak discussed earlier appears. Without any
indications at 40 K all higher harmonics suddenly becomes evident at 30 K.

The hexagonal anisotropy is responsible for the fifth, seventh and eleventh
harmonics, whereas the (0, 0, 1 + 4Q), (1, 0, 2Q) and (1, 0, 1 − 2Q) peaks are
generated by the trigonal coupling.

In comparison with Ho90Er10 there are some differences worth noting.

• The relative amplitudes of the higher harmonics is about an order of mag-
nitude weaker. This is a consequence of the opposite bunching directions
in Ho and Er.

• On the other hand, apart from the mosaic tails along [1, 0, l] there are no
broadening of the peaks.

• And also the diffuse scattering tails seen in Ho90Er10 are either absent or
much weaker, resulting in a lower background.

All in all the a priori conclusion is that the anisotropic effects are less pro-
nounced, and that no disordered low temperature phase is observed.

5.3.1 Structure fits

The structure fits show that the substantially weaker 5’th harmonics are almost
perfectly fitted except for the scan at 40 K, which will be discussed in the
following section. The other harmonics are generally a bit overestimated and
at 10 K a few peaks are predicted where none are observed. However, the
agreement is sufficient to conclude, that the calculated structures are right, and
only some details mismatch. Adjusting the anisotropy parameters could reduce
the discrepancy, but not enough to justify an abandoning of the parameter free
model.

5.3.2 Intermediate phase at 35 K < T < 45 K

An intermediate phase was found in Ho50Er50. The phase characterized by
sharp transitions and anomalies is not believed to be a pure helix as proposed
earlier. Possible explanations are discussed but none are found to be completely
satisfactory. The phenomena is believed to go beyond a change in the scattering
cross-section due to a magnetic structure phase transition.
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Figure 5.19: [0, 0, l] scans in Ho50Er50
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Figure 5.21: Scans from Ho50Er50 fitted with MF structures 60 K to 30 K.
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Figure 5.22: Scans from Ho50Er50 fitted with MF structures 20 K and 10 K.
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The Ho50Er50 crystals displayed three distinct phases as also found by Ho-
ward and Bohr (1991). The low temperature cone phase as identified in the
I(1,0,0) peak disappears in a rather sharp transition at TC = 35 K. The nuclear
amplitude I(1,0,0) remains constant from 35 K to above TN which means, that
there are no other occurrences of the cone phase.

An intermediate phase is seen as an abrupt 50% increase of the (0, 0, 2−Q)
peak at 35 K which disappears slightly less sudden around 45 K. Howard and
Bohr (1991) explains the behaviour with a flat helix in the intermediate region
followed by a binary tilted helix above 45 K. This proposal is abandoned as an
unphysical artifact of the scattering model. Their proposed cone angle with
cos2 20◦ ≃ 0.88 is insufficient to account for the drop in I(0,0,2−Q) below 35 K.
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Figure 5.23: The behaviour of the (0, 0, 2 − Q), (0, 0, 2), (1, 0, 0) and (1, 0, Q)
peaks within the intermediate phase.

At temperatures just below TN = 104 K, the Er moments must be forced to
order by the more strongly coupling Ho moments, as was also seen with resonant
x-ray scattering by Pengra et al. (1994). While the crystal field is unimportant
and the conduction gas is still unpolarized only the exchange coupling is relevant,
and the only difference between the two elements is the size of the total spin
S. On that basis a possible binary structure cannot be expected in the high
temperature regime. If, as is also observed to a much smaller degree in the MF
calculations, the two types of moments were to have different directions within
the same plane, it should be at low temperatures, where the opposite crystal
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fields are significant.
Disregarding this intermediate temperature range I(0,0,2−Q) grows smoothly

from a 2. order phase transition at TN to a zero temperature saturation value.
The smooth development of I(0,0,2−Q) from TN until saturation is identified as
the formation of a helical structure. The major problem for that assumption
is that the saturation value of I(0,0,2−Q) corresponds to full length moments
and hence maximum scattering cross-section. Without further assumptions the
increased scattering in the intermediate phase would correspond to angular mo-
menta larger than J which cannot be the case.

The intermediate region was investigated through the (0, 0, 2−Q), (0, 0, 2),
(1, 0, 0) and (1, 0, Q) peaks as well as the fifth harmonic (0, 0, 5Q). As seen in
figure 5.23 also the nuclear peak (0, 0, 2) shows anomalies which indicate either
a ferromagnetic basal plane component or a more complicated phenomena than
a simple magnetic phase transition.

The explanation could be related to the phenomena called extinction relief.
Primary extinction can cease in case of a domain formation with incoherent
phase shifts across domain boundaries. This explanation is however contradicted
by the (0, 0, 5Q) peak which does not increase, but suffers a decrease within the
same temperature interval. In spite of the poor statistical uncertainty caused by
the low intensity of the fifth harmonic it is clearly seen how the peak decreases
within the temperature region, comes back above 45 K, but then dies away due
to the strong temperature dependence of the fifth harmonics.

The weakening of the fifth harmonic could suggest a pure helix without
hexagonal anisotropy — perhaps due to a cancellation of the two competing
crystal field directions. Of course the main magnetic peak of the pure helix is
more intense than that of a bunched helix, which losses some of its intensity
to the higher harmonics. However, this difference can only account for a few
percent at most. Secondly since the anisotropic bunching only takes place below
50 K the structure is already pure above this temperature.





Chapter 6

Conclusion

Since conclusions have been drawn at the end of each of the preceding chapters,
this chapter is intended to summarize the most important results of this work.

6.1 Structures

The agreement between the measurements and the calculated scattering is suf-
ficient to uniquely determine the main structures in both alloys to be a basal
plane helix succeeded at low temperatures by a cone structure. As Ho possesses
the largest moments and the strongest interactions, the alloys were expected in
general to reflect this. However three novel features have been observed:

• Disordered non-equilibrium 7/36 phase in Ho90Er10

• Increased stability of the cone phase

• Unidentified intermediate phase in Ho50Er50

Whereas the ordering temperature TN scales linearly between the values
of the elements, the cone phase region is extended from TC ≃ 20 K in both
elements to TC = 35 K in Ho50Er50. This can intuitively be understood in
terms of the competition between the basal plane helix in Ho and the ac-plane
cycloid in Er.

The disordered phase in Ho90Er10 has been identified with a spin slip struc-
ture, where the ideal arrangement of alternating 3 and 4 hexants between the
spin slips are mixed at random. The relaxation of the disordered state lacks
motivation due to the flatness of the free energy minimum and is blocked by
the hexagonal anisotropy The occurrence of disorder in this particular alloy is
believed to be an accidental consequence of the combination of periodicity and
temperature.

The intermediate phase in Ho50Er50 has been studied. Abandoning the im-
plausible high-temperature binary tilted helix structure proposed by Howard and
Bohr (1991) leaves the intermediate phase unexplainable. Without introduction
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of scattering related phenomena, the increased magnetic scattering would cor-
respond to angular momenta substantially larger that in Ho. Furthermore, the
nuclear peaks shows anomalies around the transitions, and the phenomena is
most probably results from scattering effects, such as changes in the extinction
as the crystal passes through a phase transition.

6.2 Interactions

Based on the agreement with the VC-MF model it can be concluded that the al-
loys are governed by the same types of interactions as the elements. Concerning
the numerical strength, a few points are worth noting:

• The indirect exchange coupling is mediated by an averaged conduction
electron gas. Thus the three different interactions Ho-Ho, Ho-Er and Er-
Er all have the same form scaled with the appropriate (g − 1) factors.

• The one extra 4f electron in Er has the dramatic effect of changing the
sign of the crystal field . Hence the hexagonal anisotropy leads to different
bunching directions for the two types of spins. The resulting substantially
weaker fifth harmonics in the scans from Ho50Er50 are well described by
the model.

• Clear evidence of the trigonal coupling is seen as otherwise unexplainable
peaks in both Ho90Er10 and Ho50Er50, although the numerical strength of
the coupling could not be determined.

6.3 The VC-MF model

The VC-MF model constructed on the basis of models for Ho and Er has the
desirable property of having essentially no free parameters. It provides a re-
markably good description of the alloys. The physical importance of the model
can be discussed.

If only the structure is of interest, the MF-VC model can be considered
a sophisticated means of generating good structure guesses. In general the
generated structures produce scattering sufficiently close to the measured to be
of use.

On the other hand, given the models for Ho and Er, it is a microscopic
model, which can provide physical information. As such it has it successes and
failures:

• Neither the periodicity Q or the relative magnetization σ can be deduced
from the model. Therefore these two quantities have to be imposed on
the calculations — effectively introducing two parameters to the model.

• The first transition temperature TN is by construction right in pure Ho
and Er, and also the alloys are well described.
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• The mean-field model for Er only predicts the cone phase in Er to be
meta-stable. The failure of the VC-MF model to describe the cone phase
in the alloys was expected. Surprisingly Ho50Er50 is predicted to have a
cone phase with the right cone angle but wrong transition temperature.

• The relative intensity of the fifth harmonics are reproduced within a factor
of 1.4, which means that the competing hexagonal anisotropic bunching
angles are well described.

• Disorder as observed in Ho90Er10 can only be treated in model introduced
by hand. A more native description of disorder must be based on a regular
modification of the model.

• Within the intermediate phase in Ho50Er50. the model does not predict
any transitions at all. The intermediate phase could be the result of a pure
scattering phenomenon with an unchanged structure, but more likely it is
a magnetostrictive coupling between the lattice and the magnetic order-
ing. The investigation of such a coupling would require a comprehensive
extension of the model.

• In general, the right higher harmonics are predicted, but the amplitudes
are only partly satisfactory. This is interpreted as the right choice of
interactions, but a not perfect choice of parameters.

The model could be sought improved by adjustment of the parameters, but
that would change it to a completely phenomenological model. Furthermore,
once the interaction parameters are set free, the present experimental material is
insufficient to uniquely fix them again. In that case more detailed measurements
including field dependence and a study of the dynamics must be performed.

I believe that the limit of success for the model is drawn by the unsatisfactory
description of the relatively large anisotropic interactions in pure Er. Perhaps
if the model for Er is improved also the alloys would be better described.





Appendix A

Dynamics

Within the MF model for a magnetic structure like those those described so far
the configuration of each spin is determined by the corresponding crystal field
in competition with the exchange field.

For a given site the energy difference from the ground state to the first
excited state is in the order of 5 meV ≃ 60 K. Such single spin excitations
are of little interest first because they require a large excitation energy, second
because they are not eigenstates of the system and will decay rapidly. However,
there exist a different type of excitations, called spin waves or magnons. These
collective excitations are similar to the quantized collective modes of the crystal
motion called phonons.

A.1 Linear response theory —
generalized susceptibility

The classical magnetic susceptibility is defined as the linear response in the form
of magnetization in a magnetic material due to an external field M = χH.

This concept can be generalized to include the response of the system to
a perturbation varying in space an time. There are many possibilities for the
definition of such a response. The presentation chosen here is not in general the
most convenient, but for this specific purpose there is no need to bring the full
(and overlapping) set of definitions found in the literature into action.

Consider the linear effect of a perturbation Hamiltonian H = Af(t) on the
ensemble average ⟨B(t)⟩ of a macroscopic physical observable. This is best
expressed in terms of the Fourier transforms with respect to time, where it
takes the form:

⟨B(ω)⟩ = χBA(ω)f(ω). (A.1)

In principle the generalized susceptibility is not well defined for real values
of ω, but is defined as χ(ω) = limϵ→0+ χ(ω + iϵ).
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Since χAB is an analytical function, complex functional theory implies cer-
tain relations regarding symmetry and between the real and imaginary parts.

With the aid of the equation of motion in the interaction picture χ can be
derived from the operators A and B:

χAB(ω) = lim
ϵ→0+

∑
ab′

⟨a|B |b⟩ ⟨b|A |a⟩
Eb − Ea − }ω + i}ϵ

(na − nb)

= lim
ϵ→0+

{
Ea ̸=Eb∑

ab′

⟨a|B |b⟩ ⟨b|A |a⟩
Eb − Ea − }ω + i}ϵ

(na − nb)

+
1

kBT

iϵ

ω + iϵ

Ea=Eb∑
ab′

⟨a|B |b⟩ ⟨b|A |a⟩na − ⟨B⟩ ⟨A⟩

}
.

(A.2)

There is a close relationship between the defined χ and the time retarded
Green function GAB(t) ≡ ⟨⟨B(t);A(0)⟩⟩in that GAB(ω) = −χAB(ω).

A.2 Random phase approximation

The mean-field approximation was introduced in order to separate the two-
ion part of the Hamiltonian into single-ion operators by neglecting the two-ion
fluctuations. The spin waves however are collective fluctuations, and hence it is
necessary to improve the approximation. The i’th Hamiltonian in the presence
of a small perturbing field hi(t) can be written as:

H = HMF(i, t)− (J i(t)− ⟨J i⟩) ·
{∑

j

J (ij)(J j(t)− ⟨J j⟩) + hi(t)
}
. (A.3)

The MF approximation corresponds to putting J j(t) equal to ⟨J j⟩. With
⟨J i(ω)⟩ as the Fourier transform of ⟨J i(t)⟩ − ⟨J i⟩ this defines ⟨J i(ω)⟩MF =
χ0

i (ω)hi(ω). This one-ion susceptibility just reflects the single ion excitations.
Using equation A.2 it can be calculated from the eigenstates and eigenvalues

obtained from the mean-field structure calculations. The imaginary infinitesimal
iϵ is kept finite, which causes a smearing of the susceptibility. This broadening
in energy can be adjusted directly to fit the experimental resolution. Or, as
long as it is chosen smaller, it will be “eaten” when folded with the resolution
function.

A less drastic approximation would be to replace J j(t) with ⟨J j(t)⟩. This
would be valid if the differences for each j were uncorrelated in which case the j
sum would be a sum over random phase factors and hence cancel out. For this
reason it is called the random phase approximation. Within the RPA,

⟨J i(ω)⟩ = χ0
i (ω)h

eff
i (ω) , heff

i (ω) = hi(ω) +
∑
j

J (ij) ⟨J j(ω)⟩ . (A.4)
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Another general way of expressing the response is through the two-ion sus-
ceptibility coupling the i’th fluctuation to all the hj ’s:

⟨J i(ω)⟩ =
∑
j

χ(ij, ω)hj(ω). (A.5)

These two expressions for the i’th fluctuation combine into the self consis-
tence RPA equation:

χ(ij, ω) = χi(ω)
0
[
δij +

∑
j′

J (ij′)χ(j′j, ω)
]
. (A.6)

A.3 The RPA equation

The RPA equation is in general an infinite set of coupled equations. Depending
on the system under consideration the existence of translational symmetry can
be used to Fourier transform the equations into a finite matrix equation. In the
following the ω dependence will be suppressed.

A.3.1 The Heisenberg ferromagnet

In the ferromagnet χ0
i = χ0 and with the Fourier transformations:

J (q) =
∑
i

J (ij)e−iq·(Ri−Rj)

χ(q) =
1

N

∑
ij

χ(ij)e−iq·(Ri−Rj), (A.7)

the equation is solved as:

χ0(q) =
[
1− χ0J (q)

]−1
χ0. (A.8)

A.3.2 The commensurate helix

In the alloy there are two complications: first there are M different one ion sus-
ceptibilities and second there are two different types of ions. The first problem
is overcome straight forwardly by extending the Fourier transformation:

χ0(n) =
1

N

∑
i

χ0
i e

−inQ·Ri

χ(n, q) =
1

N

∑
ij

χ(ij)e−iq·(Ri−Rj)e−inQ·Ri . (A.9)
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Upon insertion, the RPA equations A.6 can be solved using the identity
relation 1 =

∑
i′ δii′ = 1/N

∑
i′m e−imQ·(Ri′−Ri), which enables a separation

by change of summation:

χ(n, q) =
1

N

∑
ij

χ0
i

[
δij +

∑
j′

J (ij′)χ(j′j))

]
e−iq·(Ri−Rj)e−inQ·Ri

=χ0
i (n) +

1

N

∑
ii′jj′

δii′χ
0
iJ (i′j′)χ(j′j)e−iq·(Ri′−Rj)e−inQ·Ri

=χ0
i (n) +

1

N2

∑
ii′jj′m

χ0
iJ (i′j′)χ(j′j)

× e−iq·(Ri′−Rj)e−inQ·Rie−imQ·(Ri′−Ri)

=χ0
i (n) +

1

N2

∑
ii′jj′m

χ0
i e

−i(n−m)Q·RiJ (i′j′)e−i(q+mQ)·(Ri′−Rj′ )

× χ(j′j)e−iq·(Rj′−Rj)e−imQ·Rj′

=χ0
i (n) +

∑
m

χ0(n−m)J (q +mQ)χ(m, q). (A.10)

With the definitions:

χ̃(q) ≡{χ(n, q)}
χ̃0 ≡{χ0(n)}˜̃

Mnm(q) ≡χ0(n−m)J (q +mQ), (A.11)

the equation can be brought to matrix form and solved:

χ̃(q) =χ̃0 +
˜̃
M(q)χ̃(q) (A.12.a)

=(1− ˜̃
M(q))−1χ̃0. (A.12.b)

Hence the two-ion susceptibility can be calculated from the one-ion mean-

field susceptibility by constructing and inverting a finite matrix (1− ˜̃
M(q)) for

each (q, ω) point. The dimension of the matrix is N2 times the dimension of
χ0

i .
As an extension of the mean-field program, a program has been developed

for the calculation of the two-ion susceptibility. For a given grid of (q, ω) points,
χ0(ωm) and J (q +mQ) has to be calculated once for each ω and q,m respec-
tively. In practice this leads to substantial computational tasks. For this reason
the calculations has been limited to a few illustrative cases.
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A.3.3 The binary alloy

The binary alloy described by J i ≡ ciJ1i + (1− ci)J2i is treated in the virtual-
crystal approximation. The mean-field exchange Hamiltonian for the i’th site
containing an atom of type r is approximated by replacing the alloy config-
uration variable cri in the mean-field term with the configurational average
cr =

∑
i cri:

HMF
r (i) =− cri(Jri −

1

2
⟨Jri⟩)

∑
js

J rs(ij)csj⟨Jsj⟩ ≃

HVC
r (i) =− cri(Jri −

1

2
⟨Jri⟩)

∑
js

J rs(ij)cs⟨Jsj⟩. (A.13)

From this the one-ion susceptibilities χ0
ri can be defined and calculated ac-

cording to equation A.2. The corresponding two-ion susceptibilities χrs(ij) are
then given by the RPA equation:

χrs(ij) = χ0
ri(δrsδij +

∑
j′s′

J rs′(ij
′)χs′s(j

′j)). (A.14)

Writing the exchange coupling as:

J rs(q) =γrsJ (q), where γrs = (gr − 1)(gs − 1),

and defining:˜̃
Mnm,r(q) =χ0

r(n−m)J (q +mQ), (A.15)

equation A.12.a can be generalized and solved:

χ̃(q) =δrsχ̃
0
r +

∑
s′

˜̃
M r(q)γrs′χ̃s′s(q)

∑
s′

(
δrs′ −

˜̃
M r(q)γrs′

)
χ̃s′s(q) =δrsχ̃

0
r(

1− ˜̃
M(q)γ

)
χ̃(q) =χ̃01

χ̃(q) =

(
1− ˜̃

M(q)γ

)−1

χ̃0. (A.16)

Again the two-ion susceptibilities can be found by inverting a finite matrix
for each (q, ω) point.

The scattering cross-section for an alloy is obtained by substituting:

( 12gF (q))
2χ(q, ω) →

∑
rs

( 12grFr(q))χrs(q, ω)(
1
2gsFs(q)). (A.17)
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A.3.4 Other couplings

The static structures determine the eigenstates from which the one-ion suscep-
tibilities are calculated. In the evaluation of these eigenstates, the full model
Hamiltonian is used, but as presented above only the exchange interaction
has been directly included in the dynamic calculations. The dipole coupling
is straightforwardly treated by including it in the J zz component.

The quadrupolar coupling in Er can be introduced by writing the interaction
Hamiltonian in terms of generalized spins:

(5)

J =(Jx, Jy, Jz, O
2
3, O

−2
3 )

(5)

H =− 1

2

∑
ij

(5)

J i

(5)

J (ij)
(5)

J j

(5)

J =

(
J 0
0 K2−2

33

)
, (A.18)

and defining the corresponding 5× 5 dimensional susceptibility
(5)
χ .

The trigonal coupling is more complicated to incorporate, since it partially
breaks the translational symmetry into J (ij) = (−1)iJ (i− j).

A.4 Scattering cross-section —
magnon dispersion

As mentioned in section 4.1.2 the scattering cross-section is directly propor-
tional to the imaginary part of the generalized two-ion susceptibility. A naive
comparison with measurements is therefore just a problem of adjusting the ar-
tificial width introduced through the imaginary energy iϵ in equation A.2 to fit
the experimental resolution.

If however, the susceptibility is interpreted in terms of spin waves or mag-
nons, then the peaks along ω in the susceptibility form the dispersion relation,
the width corresponding to a finite life time. Therefore plots of the imaginary
part of the susceptibility depicts both the expected scattering from the system
as well as the structure of the excitations.

Without any experimental data to compare with, a relatively simple 1/5
structure existing in Ho90Er10 around 30 K is chosen as an example. A few
inelastic scans along ω has been performed on the large Ho90Er10 sample. How-
ever, as seen from figure A.2 the energy resolution of the TAS1 spectrometer
and neutron flux are insufficient to perform such experiments. Clear peaks
along ω are apparent, but they are very uncertain. In the scans are too few for
a dispersion relation to be determined.

However there is some resemblance between the scan and a calculation per-
formed at (0, 0, 1.6). Unfortunately the 7/36 requires too long computational
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Figure A.1: Calculated scattering from a 1/5 structure in Ho90Er10.

time for a calculation like figure A.1 to be performed. But with reasonable data
at hand, the effort could be rewarded with important knowledge about the form
of the interactions in the system.

A.5 Rotating coordinate system

The spin wave dispersion relation in the [0, 0, l] direction for a helical structure
consists of two branches each centred around τ ± q corresponding to the spin
wave propagating parallel or anti parallel to the helix. If the dispersion relation
is considered in a rotating coordinate system, these two branches becomes equal,
and the picture becomes simpler.

Introducing ϕi = 2πi/n = Q · Ri such a rotation is accomplished by the
transformation:

Jx′ =Jx cosϕ+ Jy sinϕ (A.19)

Jy′ =Jy cosϕ− Jx sinϕ
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Figure A.2: Inelastic scattering from Ho90Er10 at 4.2 K
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or J ′ = RJ = JR†, where R(ϕ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

.

This influences the one-ion Green functions through the terms ⟨J ′⟩ · ⟨J ′⟩ =
R⟨J⟩ ·R⟨J⟩ = R⟨J⟩ · ⟨J⟩R†, and hence χ′

i = RχiR
†.

The rotation of O±2
3 (J) is a bit different, since J ′

± = J±e
∓iϕ:

O′±
2 =

1

2
√
±1

(J2
+e

−2iϕ ± J2
−e

2iϕ) = O±
2 cos 2ϕ±O∓

2 sin 2ϕ. (A.20)

Writing
(5)

J = {Jx, Jy, Jx, O2
3, O

−2
3 } this can be incorporated into a 5 × 5

rotation matrix R, keeping in mind that R† = R−1 and R−1(ϕ) = R(−ϕ).
Now considering the coupling parameters, the coupling term of the Hamil-

tonian can be written as J iJ (ij)J j = J ′
i(R

†
i )

−1JR−1
j J ′

j , and hence J ′ =

RiJR′
j . However, since J is diagonal J ′ = R(ϕi − ϕj)J . Since ϕi − ϕj =

(Ri−Rj) ·Q, for instance J (ij) cos(ϕi−ϕj) becomes 1
2 (J (q+Q)+J (q−Q))

under Fourier transformation. Similar for the rest of the elements and in sum-
mary:

J ′
xx(q) = J ′

yy(q) =
1

2
(J (q +Q) + J (q −Q))

J ′
xy(q) = −J ′

yx(q) =
1

2i
(J (q +Q)− J (q −Q))

J ′
zz(q) = Jzz(q) (A.21)

K′
22(q) =K′

−2−2(q) =
1

2
(K(q + 2Q) +K(q − 2Q))

K′
2−2(q) =−K′

−22(q) =
1

2i
(K(q + 2Q)−K(q − 2Q)).

Upon rotation the dispersion relations in figure A.1 becomes simpler, as
depicted in figure A.3. The overall form of the curve is roughly given by −J (q),
whereas the gaps are effects of the spin slip structure. There are two spin slips
during the ten single layers in a 1/5 structure, and they cause gaps in the
magnon energies. Therefore the scattering from a 7/36 structure should have
the same overall form due to the exchange coupling, but different (if any) spin
gaps.
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Figure A.3: Calculated scattering from a rotated 1/5 structure in Ho90Er10.



Appendix B

X-ray measurements

X-ray measurements have been performed on the Ho90Er10 crystal at the ro-
tating anode, Risø in the period 18-22/7. Due to the last minute nature of the
work, the results have not been thoroughly analyzed, and are therefore only
reported in this appendix. Although ordinary x-ray scattering does not probe
the magnetic structure, three questions could be addressed:

• The high resolution of an x-ray spectrometer could reveal the details of
the nuclear peaks. A perfectly homogeneous random alloy with well de-
fined effective lattice parameters would give a sharp symmetric peak. A
crystal with composition fluctuations would give a peak, the shape of
which reflects the lattice parameter distribution. In the extreme case of
macroscopic clusters of Er, two distinct peaks should be observed.

• If the unexpected peak at (0, 0, 1) occurring below 70 K was purely mag-
netic of origin, it would not be observed with x-rays. On the other hand,
a peak due to lattice distortion should also be observed with x-rays.

• More generally, the improved resolution and intensity of x-ray measure-
ments would enable an investigation of the magnetostrictive effects in the
system. Magnetostriction is the coupling between the lattice and the mag-
netic structures.

B.1 Results

Since with x-ray scattering, the Bragg peaks can be resolved sufficiently to
observe splitting and other effects, the definition of the lattice parameters and
hence the reciprocal lattice units is not unambiguously defined. Therefore the
results are reported in units of inverse Ångstroms. The relation to reciprocal

lattice units is roughly: 1 rlu ≃ 1.11 Å
−1

.
The two fundamental peaks at (0, 0, 2) and (0, 0, 4) were scanned in order to

identify any splitting. As evident in figure B.1 the peaks are not ideally sharp
and symmetric.

101
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Figure B.1: X-ray scan of the peaks (0, 0, 2) and (0, 0, 4)

The (0, 0, 4) peak actually splits into two peaks separated by 0.01 Å. The
rotating anode is tuned to the CuKα, which actually contains two wavelengths
corresponding to α1 and α2 respectively, and the splitting could simply be the
two different incident wavelengths. However figure B.2 depicts that one of the
two peaks around (0, 0, 5) disappears, which could not be the case if it was an
α splitting. Therefore the splitting of the (0, 0, 4) peak is believed to reflect the
existence of different lattice parameters in the crystal.
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Figure B.2: X-ray scans around (0, 0, 5).

Even a perfectly random alloy can not be completely uniform, since every
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one out of ten atoms is an Er atom. This does introduce lattice distortions which
might explain also the quite non trivial behaviour around the forbidden (0, 0, 5)
peak depicted in figure Although the details of the peaks is not immediately
explainable, their presence proves, that lattice distortions do exist.
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Figure B.3: X-ray scan around (0, 0, 5) at 250 K.

Not depicted in figure B.2 is a scan at 250K, where the strongest peak still
occur. This means, that it cannot be a lattice distortion caused by the mag-
netic ordering, which does not enter before TN = 125 K. On is seen, that the
other initially (at low temperatures) equally strong peak decays with increasing
temperature, disappearing between 70 K and 80 K. this agrees with the decay
of the unexpected (0, 0, 1) peak in the neutron results. This suggests a magne-
tostrictive coupling between the lattice and the magnetic ordering. However if
the two latter peaks are connected, it is not clear, why the first peak around
(0, 0, 5) does not appear in the neutron data.

Also the (0, 0, 1) and (0, 0, 3) peaks could be observed, although very faint.
Scattering due to lattice distortions is proportional to Q2, which could explain
the low intensity of the (0, 0, 1) and the (0, 0, 3) peaks. But the (0, 0, 3) should

be positioned around 3.33 Å
−
1, and the offset is not believed to be an alignment

problem.
The overall conclusion of the x-ray results must be, that the alloying does

introduce some distortions to the lattice, effectively breaking the symmetry
slightly. A discussion of the type of lattice distortions and their connections
to the composition of Ho and Er would require a thorough modeling and data
analysis, for which the time was too short.



104 APPENDIX B. X-RAY MEASUREMENTS

1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15

20

40

60

80

100

120

Q [1/A]

I [
ar

b 
un

its
]

Ho90Er10  (0,0,1)  at 10K

3.25 3.3 3.35 3.4 3.45
20

30

40

50

60

70

80

90

Q [1/A]

I [
ar

b.
 u

ni
ts

]

Ho90Er10  (0,0,3)  at 10K

Figure B.4: X-ray scans of the peaks (0, 0, 1) and (0, 0, 3).
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Highlights of Condensed Matter Theory,
Horth Holland.

S. Bates, C. Patterson, G. McIntyre, S. Palmer, A. Mayer, R. Cowley and
R. Melville (1988),
The magnetic structure of holmium: II,
J. Phys. C 21, 4125–4141.

R. Bozorth, A. Clark and R. Gambino (1968),
Magnetization, Crystal Anisotropy and Fanning in Single Crystals of Ho-Er
Alloys,
in Proceedings of the Eleventh International Conference on Low Temperature
Physics, edited by J.F.Allen,
pp. 1106–1109.

R. Bozorth, A. Clark and J. van Vleck (1972),
Magnetic Crystal Anisotropies of Holmium-Erbium Alloys,
Intern. J. Magn. 2, 19–31.

E. Callen and H. Callen (1965),
Magnetostriction, Forced Magnetostriction, and Anomalous Thermal Expan-
sion in Ferromagnets,
Phys. Rev. 139(2A), A455–A471.

N. Chesser and J. Axe (1972),
Derivation and Experimental Verification of the Normalized Resolution Func-
tion for Inelastic Neutron Scattering,
Acta Crystallogr. A29, 160+.

105



106 BIBLIOGRAPHY

M. Cooper and R. Nathans (1967),
The Resolution Function in Neutron Diffractometry,
Acta Crystallogr. 23, 357+.

R. Cowley and S. Bates (1988),
The magnetic structures of holmium: I,
J. Phys. C 21, 4113–4124.

R. Cowley and J. Jensen (1992),
Magnetic structures and interactions in erbium,
J. Phys. C 4, 9673+.

R. Cowley and J. Jensen (1993),
Non-Planar Magnetic Structures and Trigonal Interactions in Erbium,
Europhys. Lett. 21(6), 705–710.

R. Elliot and F. Wedgwood (1964),
The temperature dependence of magnetic ordering in the heavy rare earth
metals,
Proc. Phys. Soc. 84, 63–75.

D. Gibbs, D. Harsmann, E. Isaacs, D. McWhan, D. Mills and C. Vettier (1988),
Polarization and Resonance Properties of Magnetic X-Ray Scattering in
Holmium,
Phys. Rev. Lett. 61(10), 1241–1244.

J. Hannon, G. Trammel, M. Blume and D. Gibbs (1988),
X-Ray Resonance Exchange Scattering,
Phys. Rev. Lett. 61(10), 1245–1248.

P. Hohenberg and W. Kohn (1964),
Inhomogenous Electron Gas,
Phys. Rev. 136, B864–B871.

B. Howard and J. Bohr (1991),
Binary Magnetic Structures in HoEr,
Phys. Scr. T 39, 96.

J. Jensen (1974),
Anisotropic exchange interaction in the conical magnetic phase of erbium,
J. Phys. F 4, 1065–1072.

J. Jensen (1996a),
Theory of comensurable magnetic structures in holmium,
To be published.

J. Jensen (1996b),
The three-fold symmetric two-ion coupling in the hcp rare-earth metals,
To be published.



BIBLIOGRAPHY 107

J. Jensen and A. Mackintosh (1991),
Rare earth Magnetism: Structures and Excitations,
Oxford University Press.

J. Jensen and A. Mackintosh (1992),
Novel Magnetic Pahses in Holmium,
J. Magn. Magn. Mater 104, 1481–1484.

S. Keeton and T. Loucks (1968),
Electronic Structure of Rare-Earth Metals. I. Relativistic Augmented-Plane-
Wave Calculations,
Phys. Rev. 168(3), 672–678.

W. Koehler, H. Child, E. Wollan and J. Cable (1963),
J. App. Phys. 34, 1335.

W. Kohn and L. Sham (1965),
Self-Consistent Equations Including Exchange and Correlation Effects,
Phys. Rev. 140, A1133–A1138.

C. Larsen (1987),
Magnetic Excitations in Heavy Rare Earth Alloys,
Ph.D. thesis,
Risø National Laboratory.

C. Larsen, J. Jensen and A. Mackintosh (1987),
Magnetic Excitations in Commensurable Periodic Structures,
Phys. Rev. Lett. 59(6), 712–715.

C. Larsen, J. Jensen, A. Mackintosh and B. Beaudry (1988),
Spin dynamics of thulium ions in terbium,
J. Phys. (Paris) 49, C8–331.

C. Larsen, A. Mackintosh, H. B. Møller, S. Legvold and B. Beaudry (1986),
Rare earth solutes and the magnetic properties of terbium,
J. Magn. Magn. Mater 54-57, 1165–1166.

H. Lin, M. Collins, T. Holden and W. Wei (1992),
Magnetic structures of erbium,
Phys. Rev. B 45(22), 12873–12883.

P.-A. Lindg̊ard, B. Harmon and A. Freeman (1975),
Theoretical Magnon Dispersion Curves for Gd,
Phys. Rev. Lett. 35(6), 383–386.

D. Pengra, N. Thoft, M. Wulff, R. Feidenhans’l and J. Bohr (1994),
Resonance-enhanced magnetic x-ray diffraction from a rare-earth alloy,
J. Phys. C 6, 2409–2422.



108 BIBLIOGRAPHY

D. Sherrington (1972),
Prediction of a Possible New Intermediate Spin Ordering in Holmium,
Phys. Rev. Lett. 28(6), 364–367.

J. Simpson, D. McMorrow, R. Cowley and D. Jehan (1995),
Trigonal interactions in holmium,
Phys. Rev. B 51(22), 16073–16082.

H. Skriver (1984),
The LMTO Method,
Springer-Verlag.

G. Squires (1978),
Thermal Neutron Scattering,
Cambridge University Press.

C. Zener (1951),
Interaction Between the d Shells in the Transition Metals,
Phys. Rev. 81, 440–444.

C. Zener (1954),
Classical Theory of the Temperature Dependence of Magnetic Anisotropy
Energy,
Phys. Rev. 96, 1335–1337.



List of Figures

1.1 Radial wave functions for Ce . . . . . . . . . . . . . . . . . . . . 2
1.2 The hcp and dhcp lattices . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The real and reciprocal hexagonal lattice notation . . . . . . . . 4
1.4 Band structure in Ho, Er and Tm . . . . . . . . . . . . . . . . . 5
1.5 Density of states and integrated number of electrons in Ho. . . . 6
1.6 The Fermi surface of Tb . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Closeup of band structure . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Magnetization curves . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Transition temperatures TN and TC measured by magnetization 12
1.10 Previously proposed magnetic phases of Ho50Er50 . . . . . . . . . 13

2.1 Classical crystal field energies in Ho and Er . . . . . . . . . . . . 19
2.2 [1, 0, l] scan from Ho90Er10 at 10 K fitted with 7/36 structure

with and without the trigonal interaction. . . . . . . . . . . . . . 26
2.3 7/36 structure with and without trigonal coupling. Ho moments

are blue, Er moments are green. . . . . . . . . . . . . . . . . . . . 27

3.1 Four basic magnetic structures . . . . . . . . . . . . . . . . . . . 38
3.2 Basal plane spin arrangements in Ho 1/6, 2/11 and Ho90Er10 7/36 39
3.3 Basal plane spin arrangement as given by ϕ = u+ γ sinu. . . . . 40

4.1 Bragg peaks in reciprocal space from a c-axis periodic structure. 48
4.2 Calculated inelastic scattering from a Ho90Er10 1/5 structure . . 50
4.3 Schematic illustration of a Triple Axis Spectrometer. . . . . . . . 52
4.4 Longitudinal Gaussian width of the resolution function for the

TAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 The scan in reciprocal space . . . . . . . . . . . . . . . . . . . . . 55

5.1 Intensities of the main magnetic peak . . . . . . . . . . . . . . . 58
5.2 Intensities of the main magnetic peak . . . . . . . . . . . . . . . 59
5.3 The cone phase transition TC illustrated by I(1,0,0). . . . . . . . . 60
5.4 The cone phase transition TC calculated by mean field. . . . . . . 61
5.5 The converged 7/36 structure in Ho90Er10 . . . . . . . . . . . . . 62
5.6 J (q) and QJ for Ho, Er, Ho90Er10 and Ho50Er50 . . . . . . . . . 63
5.7 Calculated free energy for structures with different q . . . . . . . 63

109



110 LIST OF FIGURES

5.8 Q(T ) for Ho90Er10 and Ho50Er50. . . . . . . . . . . . . . . . . . . 64
5.9 The γ-structure and the MF structure . . . . . . . . . . . . . . . 66
5.10 Scans in Ho90Er10 . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.11 Peaks in Ho90Er10 . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.12 Scans from Ho90Er10 fitted with MF structures 100 K to 60 K. . 71
5.13 Scans from Ho90Er10 fitted with MF structures 50 K to 30 K. . . 72
5.14 Scans from Ho90Er10 fitted with MF structures 25 K to 10 K. . . 73
5.15 Scans along [0, 0, l] in Ho90Er10 at 10 K fitted with different struc-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.16 Scans along [0, 0, l] in Ho90Er10 at 10 K fitted with disordered

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.17 Best fit to the [0, 0, l] scan in Ho90Er10 at 10 K. . . . . . . . . . . 77
5.18 I(1,0,0) as a function of temperature. . . . . . . . . . . . . . . . . 78
5.19 [0, 0, l] scans in Ho50Er50 . . . . . . . . . . . . . . . . . . . . . . . 80
5.20 Peaks in Ho50Er50 . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.21 Scans from Ho50Er50 fitted with MF structures 60 K to 30 K. . . 82
5.22 Scans from Ho50Er50 fitted with MF structures 20 K and 10 K. . 83
5.23 The behaviour of the peaks within the intermediate phase. . . . . 84

A.1 Calculated scattering from a 1/5 structure in Ho90Er10. . . . . . 97
A.2 Inelastic scattering from Ho90Er10 at 4.2 K . . . . . . . . . . . . 98
A.3 Calculated scattering from a rotated 1/5 structure in Ho90Er10. . 100

B.1 X-ray scan of the peaks (0, 0, 2) and (0, 0, 4) . . . . . . . . . . . . 102
B.2 X-ray scans around (0, 0, 5). . . . . . . . . . . . . . . . . . . . . . 102
B.3 X-ray scan around (0, 0, 5) at 250 K. . . . . . . . . . . . . . . . . 103
B.4 X-ray scans of the peaks (0, 0, 1) and (0, 0, 3). . . . . . . . . . . . 104



List of Tables

1.1 Values for the spin orbit coupling in holmium and erbium. . . . . 2

2.1 Crystal field parameters in Ho and Er. . . . . . . . . . . . . . . . 18
2.2 Eigenvectors and values for Hcf in Ho . . . . . . . . . . . . . . . 18
2.3 Classical dipole coupling parameters . . . . . . . . . . . . . . . . 21
2.4 The inter-planar exchange coupling parameters in meV . . . . . . 24
2.5 Inter-planar anisotropic coupling parameters in Er [meV/106] . . 25
2.6 Inter-planar trigonal coupling parameters [meV/103] . . . . . . . 26
2.7 Observed and de-scaled ordering temperatures in Ho and Er. . . 29

4.1 Parameters for the form factor in Ho and Er. . . . . . . . . . . . 45
4.2 Crystal parameters for Ho, Er and the alloys. . . . . . . . . . . . 55
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