
Everything you always wanted to know about multicore graph processing
but were afraid to ask

Jasmina Malicevic
EPFL

Baptiste Lepers
EPFL

Willy Zwaenepoel
EPFL

Abstract

Graph processing systems are used in a wide variety of
fields, ranging from biology to social networks, and a
large number of such systems have been described in the
recent literature. We perform a systematic comparison
of various techniques proposed to speed up in-memory
multicore graph processing. In addition, we take an end-
to-end view of execution time, including not only algo-
rithm execution time, but also pre-processing time and
the time to load the graph input data from storage.

More specifically, we study various data structures to
represent the graph in memory, various approaches to
pre-processing and various ways to structure the graph
computation. We also investigate approaches to improve
cache locality, synchronization, and NUMA-awareness.
In doing so, we take our inspiration from a number of
graph processing systems, and implement the techniques
they propose in a single system. We then selectively en-
able different techniques, allowing us to assess their ben-
efits in isolation and independent of unrelated implemen-
tation considerations.

Our main observation is that the cost of pre-processing
in many circumstances dominates the cost of algorithm
execution, calling into question the benefits of proposed
algorithmic optimizations that rely on extensive pre-
processing. Equally surprising, using radix sort turns
out to be the most efficient way of pre-processing the
graph input data into adjacency lists, when the graph in-
put data is already in memory or is loaded from fast stor-
age. Furthermore, we adapt a technique developed for
out-of-core graph processing, and show that it signifi-
cantly improves cache locality. Finally, we demonstrate
that NUMA-awareness and its attendant pre-processing
costs are beneficial only on large machines and for cer-
tain algorithms.

1 Introduction

Interest in processing graph-structured data has grown
over the last few years, especially for mining relation-
ships in social network graphs. Many graph process-
ing systems have been built, including single-machine,
cluster-based, in-memory and out-of-core systems [7, 8,
12–14, 16, 17, 19, 20, 22, 23, 26, 27, 29, 33, 36, 37]. In
this paper we focus on single-machine in-memory graph
processing systems. With the recent increase in main
memory size and number of cores, such machines can
now process very large graphs in a reasonable amount of
time.

With few exceptions [4, 28], most papers on graph pro-
cessing systems present a new system and compare its
performance (and occasionally its programmability) to
previous systems. While interesting, these comparisons
are often difficult to interpret, because systems are multi-
dimensional, and therefore a variety of features may con-
tribute to observed performance differences. Variations
in hardware and software infrastructure, input formats,
algorithms, graphs and measurement methods further ob-
scure the comparison.

In this paper we take a different approach. Rather than
comparing different systems, we compare different tech-
niques used in graph processing systems, and we try to
answer the question: what techniques provide what ben-
efits for what types of algorithms and graphs? We imple-
ment various techniques proposed in different papers in
a single system. We then selectively enable the different
techniques, and compare the performance of the result-
ing approach on the same hardware platform for the same
algorithms and graphs.

In particular we take an end-to-end view of graph pro-
cessing, often absent in other papers. Graph processing
involves loading the graph as an edge array from stor-
age, pre-processing the input to construct the necessary
data structures, executing the actual graph algorithm, and
storing the results. Most papers focus solely on the algo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148031013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rithm phase, but we demonstrate that there is an impor-
tant trade-off between pre-processing time and algorithm
execution time. While we recognize that pre-processing
can potentially be amortized over repeated executions,
we show that gains in algorithm execution time can be
completely undone by increases in pre-processing time.

We structure our investigation of algorithm execution
time along two dimensions. In a first dimension, we dis-
tinguish between a vertex-centric approach, in which the
algorithm iterates over vertices, and an edge-centric ap-
proach, in which the algorithm iterates over edges. In
addition, we propose a new iteration approach, adapted
from out-of-core systems [37], in which the algorithm
iterates over grids, with improved cache locality as a re-
sult. In a second dimension, we distinguish between al-
gorithms that push information to their neighbors, or pull
information from them. We also consider algorithms that
dynamically choose between push and pull.

To illustrate through a simple example the importance
of an end-to-end view, we analyze the push-pull ap-
proach to Breadth First Search (BFS)1. Earlier papers [2,
3, 29] have demonstrated that, for BFS, a push-pull ap-
proach results in better algorithm execution time than the
conventional push approach. Figure 1 shows the end-
to-end execution time of BFS on the well-known Twit-
ter follower graph [18] using both approaches. While
the algorithm execution time is indeed 3⇥ smaller for
push-pull, the overall execution is completely dominated
by pre-processing. The pre-processing time is 2⇥ larger
for push-pull, resulting in 1.5⇥ worse overall end-to-end
time.

In addition to different methods of iteration and infor-
mation flow, various optimizations have been proposed
to take advantage of memory locality on NUMA ma-
chines. These optimizations often take the form of par-
titioning data structures during pre-processing, such that
most accesses during algorithm execution are local to a
NUMA node. Continuing the theme of the trade-off of
pre-processing versus algorithm execution times, we in-
vestigate whether such pre-processing pays off for graph
processing.

The main results of this paper are:

• An illustration of the fundamental trade-off be-
tween pre-processing and algorithm execution time
in graph processing.

• An evaluation of different techniques for building
adjacency lists, showing that radix sort provides the
best performance when the graph is in memory or
when it is loaded from a fast storage medium.

• An evaluation of the pre-processing vs. algorithm
execution time trade-off for vertex-centric vs. edge-

1see Section 6 for a precise definition of push-pull

 0
 2
 4
 6
 8

 10
 12
 14

bfs
push-pull

bfs
push

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 1: Example of the trade-off between pre-processing
and algorithm execution time for BFS on the Twitter graph:
push-pull improves algorithm execution time, but the required
pre-processing time leads to overall worse end-to-end execu-
tion time (measured on Ligra [29]).

centric computation, showing that the construction
of adjacency lists for vertex-centric processing may
or may not pay off, depending on the algorithm ex-
ecution time.

• An evaluation of a push vs. pull information flow,
illustrating the benefits of reduced computation for
push vs. reduced synchronization for pull.

• An evaluation of the pre-processing vs. computa-
tion trade-off for combined push-pull information
flow, showing that the extra pre-processing costs as-
sociated with this combination outweigh gains in al-
gorithm execution time.

• The adaptation of an out-of-core technique for im-
proving the cache locality and the synchronization
overhead of an in-memory graph processing system.

• An evaluation of the pre-processing vs. com-
putation tradeoff for NUMA-aware optimizations,
demonstrating that their large pre-processing times
can be compensated by gains in algorithm execu-
tion time only on large NUMA machines and only
for certain algorithms.

The outline of this paper is somewhat unusual. We
start in Section 2 with an overview of the hardware and
software used in this paper. We discuss data structures
and pre-processing costs in Section 3. In Section 4
we look at the relationship between the data layout and
vertex-centric or edge-centric computation. Section 5
discusses methods for improving cache locality. In Sec-
tion 6 we evaluate the choice between push and pull
approaches and its implications for algorithm execution
time, pre-processing time and synchronization overhead.
Section 7 evaluates graph partitioning approaches to take
advantage of NUMA characteristics. Section 8 summa-
rizes results on graphs and algorithms not discussed in
previous sections. Section 9 provides an overview of all
the results in one place. Section 10 discusses the graph
processing systems from which we draw inspiration for
this work. Section 11 concludes the paper.



The code used for the experiments in this paper and
instructions on how to run them is available at: https:
//github.com/epfl-labos/EverythingGraph.

2 Experimental setup

Experimental environment. We evaluate the pre-
processing and algorithm execution times on two ma-
chines, each representative of a large class of machines.
Machine A has 2 NUMA nodes, and is less sensitive
to NUMA effects than machine B, which has 4 NUMA
nodes. More precisely, machine A has 2 Intel Xeon E5-
2630 processors, each with 8 cores (16 cores in total) and
a 20MB LLC cache, and 128GB of RAM. Machine B has
4 AMD Opteron 6272 processors, each with 8 cores (32
cores in total) and a 16MB LLC cache, and 256GB of
RAM. Unless otherwise stated, all experiments are run
on Machine B.

The pre-processing times, unless otherwise stated, as-
sume the graph is already loaded in memory. The costs
of loading the graph into memory and its implications on
pre-processing are discussed separately.

The subset of vertices or edges to be processed during
a computation step is kept in a work queue. Threads take
work items from the queue in large enough chunks to
reduce the work distribution overheads. We parallelize
both pre-processing and computation using the Cilk 4.8
parallel runtime system. When needed, Cilk balances the
work among threads by allowing threads to steal work
items from one another. Our experiments using OpenMP
and PThreads show comparable execution times and are
therefore not reported.

Algorithms. We select six algorithms with different
characteristics in terms of functionality (traversal, ma-
chine learning, ranking), vertex metadata, as well as the
number of vertices active during computation steps (iter-
ations).

We evaluate the following three traversal algorithms.
Breadth-first search (BFS) traverses a graph from a
given source vertex and builds a tree in breadth-first or-
der. Weakly connected components (WCC) discov-
ers connected vertices within a graph and classifies them
into components using label propagation. Single source
shortest path (SSSP) finds the (length of the) short-
est path between a given source vertex and every other
reachable vertex in the graph. We also evaluate two
algorithms that compute over the entire graph: Pager-
ank (PR) [24] is a ranking algorithm used to rank web
pages based on their popularity. Sparse matrix vector
multiplication (SpMV) multiplies the adjacency matrix
of a graph with a vector of values. The matrix entries
are stored as edge weights. Finally, Alternating Least
Squares (ALS) is an optimization method used in rec-
ommender systems.

Datasets. Table 1 gives an overview of the graphs
used along with their number of vertices and edges. We
use both synthetic and real-world datasets. The synthetic
datasets are power-law graphs generated by the RMAT
graph generator [5]. We generate graphs of different
sizes to evaluate the scalability of optimizations in terms
of graph size. RMAT26 is the biggest RMAT graph that
we can fit on all machines for all approaches. As a real-
world power-law dataset, we use the Twitter follower
graph [18], which is the largest real-world dataset that
fits on all machines for all approaches.

In addition to these two graphs, we also use the US-
Road graph from the DIMACS challenge [1]. This graph
has a different shape than power-law graphs: it has a high
diameter, and all vertices have a small in/out degree. We
use it to study the impact of the shape of the graph on
different computation approaches. Finally, for ALS we
use the bipartite Netflix graph [35].

Graph Vertices Edges
RMAT-N 2N 2N+4

Twitter 62M 1468M
US-Road 23.9M 58M
Netflix 0.5M 100M

Table 1: Graphs used in the evaluation, with their number of
vertices and edges.

Due to space constraints, in Sections 3 to 7, we primar-
ily present results for BFS and Pagerank (with 10 itera-
tions). These algorithms represent opposite ends of the
spectrum, both in terms of the percentage of the graph
that is active during each step of the computation and
in terms of computation complexity. Furthermore, we
report results primarily for the RMAT26 graph. We in-
clude results for other algorithms and graphs only when
they provide additional insights that depend on the algo-
rithm or the shape of the graph. Section 8 completes the
picture by presenting data on the combinations of algo-
rithms and input graphs not discussed in earlier sections.

3 Data layouts and pre-processing costs

In this section we first present different data layouts and
their associated pre-processing costs.

3.1 Data layouts

Edge arrays are the simplest and the default way to dis-
tribute graphs [27] and are used by many systems [6, 12,
27]. Graphs are stored as an array containing pairs of
integers corresponding to the source and the destination
vertex of each edge. In the remainder of the paper, we
assume the graph input takes the form of an edge array
and needs to be further converted into other formats.

https://github.com/epfl-labos/EverythingGraph
https://github.com/epfl-labos/EverythingGraph


Adjacency lists store edges in per-vertex edge arrays.
Each vertex points to an array containing the destination
vertices of its outgoing edges, and possibly also to an ar-
ray containing the source vertices of its incoming edges.

3.2 Pre-processing costs
Edge array. The layout of edge arrays matches the for-
mat of the input file, and it suffices to map the input file
in memory to be able to start computation. As such, edge
arrays incur no pre-processing cost.

Adjacency lists. We explore two techniques to build
adjacency lists.

The simplest technique consists of reading the input
file and dynamically allocating and resizing the edge ar-
rays of vertices as new edges are discovered.

The second technique avoids reallocations by loading
the graph as an edge array and then sorting it by source
vertex. Vertices use an index in the sorted edge array to
point to their outgoing edge array. The incoming edge
array is created by sorting the edge array by destination
vertex. This way the edges are stored contiguously in
memory, corresponding to compressed sparse row for-
mat (CSR). The performance of this approach depends
on the sorting algorithm.

The most common approach to sort edges is to use a
count sort. In a first pass over the edge array, we count
the number of outgoing (incoming) edges for each ver-
tex. In a second pass over the edge array, we place edges
at the correct location in the sorted edge array. Most ex-
isting graph analytics frameworks use this approach, as it
is optimal in terms of complexity (the input array is only
scanned twice).

An alternative approach is based on radix sort. Radix
sort treats keys as multi-digit numbers, and sorts the keys
into buckets one digit at a time. In the parallel version,
each thread recursively sorts a subset of edges into a
small number of buckets [32]. The advantage of radix
sort is that buckets are written sequentially, and therefore
have good locality. The complexity of the sort is rela-
tively low. We use a radix size of 8 bits (256 buckets)
which only requires log2(#vertices)/8 recursions to sort
the edge array (e.g., 4 recursions for a graph with 4 bil-
lion vertices, 8 recursions with 264 vertices).

3.3 Evaluation
Table 2 presents, for all three approaches (dynamic,
count sort and radix sort), the execution times for cre-
ating outgoing per-vertex edge arrays and for creating
both incoming and outgoing per-vertex edge arrays, for
the Twitter graph and assuming the graph is already in
memory. Using a radix sort is 4.8⇥ faster than count sort.
Surprisingly, sorting using a radix sort is also 4.9⇥ faster

Adj. list pre-processing
variation

Twitter
out

Twitter
in-out

LLC
misses

Dynamic 20.0 27.2 69%
Count sort 19.5 23.9 71%
Radix sort 4.0 8.5 26%

Table 2: Adjacency list creation cost (in seconds) and percent-
age of LLC misses on machine B when the graph is in memory.

than dynamically building the per-vertex edge arrays.
Radix sort is faster, because it has better cache locality
than the other solutions. Both the dynamic approach and
count sort sequentially read the input edge array, but the
subsequent steps have poor cache locality. The dynamic
approach requires jumping between per-vertex arrays to
insert a newly read edge. Count sort requires jumping
between vertices as well in order to count their degree. It
then does another scan of the input to place edges at their
corresponding offsets in the sorted edge array. This step
jumps between distant positions in the array.

Figure 2 presents the evolution of the pre-processing
time for RMAT graphs depending on the graph size. All
approaches scale as the graph size increases. The radix
sort approach is always faster than the count sort and the
dynamic sort approach (3.3⇥ and 3.8⇥, respectively, on
RMAT26).

For smaller graphs, count sort is slower than both the
dynamic and radix approaches. The approach requires
reading the edge array twice (once for counting, and then
once to place edges in the sorted array). As the graph
grows, however, the fact that the second pass in count
sort does no reallocations makes it slightly better than the
dynamic approach (e.g. there are 32 million reallocations
for an RMAT26 graph).

 1

 10

 100

R
M

A
T2

3

R
M

A
T2

4

R
M

A
T2

5

R
M

A
T2

6

R
M

A
T2

7P
re

-p
ro

ce
ss

in
g

im
e

(s
ec

on
ds

)

Radix sort
Dynamic
Count

Figure 2: Scaling of pre-processing methods for adjacency
list creation. All methods scale linearly with the graph size.
RMAT-(N+1) is double the size of RMAT-N, and so is the pre-
processing time.

3.4 Loading and pre-processing

The previous discussion assumes that the graph is al-
ready loaded into memory. Conclusions are different
when the graph is to be read from storage or over the
network. Indeed, doing a radix sort can only be partially
overlapped with loading the graph in memory. In con-
trast, the dynamic approach of allocating and resizing



per-vertex edge arrays can be fully overlapped with load-
ing. For count sort, only the first pass can be overlapped
with loading.

3.5 Evaluation with loading included
Table 3 presents the combined loading and pre-
processing time when the graph is loaded from an SSD
(380MB/s maximum bandwidth) and from a regular hard
drive disk (100MB/s).

If we take loading speed into account, dynamically al-
locating per-vertex edge arrays becomes faster than radix
sort when the storage medium is slow. On the SSD the
total time for the radix sort approach is shorter than or
more or less the same as the dynamic approach. The re-
sults for count sort are, as before, inferior, and are not
included for that reason.

Pre-processing approach RMAT26
out

RMAT26
in-out

Dynamic, loaded from SSD 20.7 40.0
Radix-sort, loaded from SSD 21.2 27.0
Dynamic, loaded from disk 61.0 61.1
Radix-sort, loaded from disk 65.0 71.0

Table 3: The cost of pre-processing for adjacency list creation
with loading time included. Results show the time when build-
ing only the outgoing per-vertex edge arrays, and when build-
ing both the outgoing and incoming per-vertex edge arrays. The
pre-processing is overlapped with loading when the adjacency
list is created dynamically.

Summary. Costs associated with loading and building
data structures in memory are non-negligible, and differ-
ent approaches shine in different situations. Surprisingly,
using radix sort to build adjacency lists is the fastest ap-
proach when the input file is in memory or loaded from
a fast medium. When the graph is loaded from a slow
medium, building adjacency lists dynamically is a better
option, because it can be overlapped with loading.

4 Data layout and graph traversal

4.1 Vertex-centric vs. edge-centric
The choice of data layout impacts the decision of how
to traverse the graph. In this section, we show that the
best performing data layout and corresponding traversal
model depend on the algorithm.

Computation on edge arrays happens in an edge-
centric manner, and is quite simple: at every iteration
of the computation the whole edge array is scanned, and
the graph algorithm is called on every edge. This compu-
tation model is efficient, because scanning an edge array
is cache-friendly: most of the accessed data is prefetched

before being used. The drawback of this layout is that it
offers no easy way to work on a subset of the vertices: a
full scan of the edge array is required to find the edges of
a vertex.

Adjacency lists are a natural solution to this problem.
They enable vertex-centric computation, in which work
is only performed on the subset of active vertices.

4.2 Evaluation

To illustrate the impact of data layout and traversal
model on the end-to-end execution time, we show in Fig-
ure 3 the pre-processing and algorithm execution times
of BFS, Pagerank, and SpMV on RMAT26. For BFS,
vertex-centric computation performs the best, because
during an iteration BFS only works on a limited subset
of the graph. Edge arrays are not well suited for this type
of computation, as all edges of the graph are read at every
iteration.

In contrast, Pagerank accesses the entire graph in ev-
ery iteration. Looking only at algorithm execution time,
vertex-centric computation still performs a bit better, be-
cause it has better cache locality (all edges from a vertex
are processed on the same core). When taking into ac-
count the pre-processing time, however, the end-to-end
execution time is the same as for edge-centric computa-
tion.

Finally, SpMV is an algorithm that makes only a sin-
gle pass over the graph. Here, edge-centric computa-
tion produces the best end-to-end result, since the cost
of building adjacency lists for vertex-centric execution is
not amortized by any gains in algorithm execution time.

5 Cache-locality

Due to their irregular access patterns, graph algorithms
usually exhibit poor cache locality. Last-level cache
(LLC) misses may happen during three key steps of the
computation: fetching an edge, fetching the metadata as-
sociated with the source vertex of the edge, and fetching
the metadata associated with the destination vertex of the
edge. In this section, we study how to lay out the data in
memory to reduce the number of LLC misses, and we
explain the pre-processing costs associated with creating
those layouts.

5.1 Impact of the data layout

Edge array. In edge-centric computation, since edges
are streamed, they are prefetched efficiently and do not
incur cache misses. Fetching the metadata of the ver-
tices, however, leads to random accesses with poor spa-
tial and temporal locality.



 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

adj. edge array

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Algorithm

(a) BFS on RMAT26

 0

 10

 20

 30

 40

 50

 60

adj. edge array

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Algorithm

(b) Pagerank on RMAT26

 0
 1
 2
 3
 4
 5
 6
 7
 8

adj. edge array

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Algorithm

(c) SPMV on RMAT26

Figure 3: Pre-processing and algorithm execution time for BFS, Pagerank and SpMV on RMAT26, using vertex-centric computa-
tion on an adjacency list or edge-centric computation on an edge array.

Adjacency lists. In adjacency lists, computation is
performed from the point of view of a vertex: a core it-
erates over all edges of a given vertex before processing
another vertex. As a consequence, the metadata of the
source vertex is read only once, after which it is cached.
This is beneficial for vertices that have a large number of
edges. Fetching edges may introduce a cache miss for the
first edge, but subsequent edges are prefetched, as with
the edge array. Also similar to the case of the edge ar-
ray, the metadata of the destination vertices exhibits poor
cache behavior.

Grids: optimizing edge arrays. To improve the
cache locality of edge arrays, data is laid-out as a grid
of cells. Each cell contains the edges from a range of
vertices to another range of vertices. Figure 4 shows an
example of a graph transformed into a grid. This data
structure is inspired by the grid data structure first in-
troduced in GridGraph [37], which aimed at maximizing
reuse of data read from disks. Computation then iterates
over cells. The goal is that the metadata associated with
the vertices in the cell stays in cache and can therefore
be reused. We construct the grid using the same radix
sort approach as for building adjacency lists. Instead of
bucketing edges by source vertex, we bucket them by
the cell to which they belong. The optimal number of
cells in the grid depends on the graph shape and size.
We experimentally find that a grid of 256x256 cells per-
forms best on the Twitter and RMAT26 graphs. Build-
ing a grid is slightly more expensive than building an
adjacency list (the number of cells in the grid is equal
to (#vertices/256)2, which is higher than the number of
vertices for large graphs).

We compare using radix sort with a dynamic approach
for buiding the grid, and the conclusions regarding dif-
ferent pre-processing approaches made in Section 3.2 are

0

1

2

3

0-1 2-3

0-
1

2-
3

(0,1)
(1,0)

(0,2)
(0,3)

(2,3)

Figure 4: Transforming a graph into a grid representation.

applicable to grids as well: radix sort is faster when the
graph is in memory or loaded from a fast medium, while
dynamically building the grid is faster otherwise.

Optimizing adjacency lists. An intuitive idea to im-
prove cache locality in adjacency lists is to sort the per-
vertex edge arrays by destination. Indeed, the metadata
of vertices with contiguous IDs is also contiguous in
memory, thus when accessing vertex 0 and then vertex 1,
the metadata of vertex 1 is likely to be present in cache.
Of course, sorting the per-vertex edge arrays increases
the pre-processing cost.

5.2 Evaluation
Figure 5 compares the pre-processing and algorithm ex-
ecution times of BFS and Pagerank on RMAT26, on
the unsorted adjacency list, the sorted adjacency list, the
edge array and the grid. Table 4 presents the cache miss
rate for these four data layouts.

 0
 2
 4
 6
 8

 10
 12
 14

adj.
unsorted

adj.
sorted

edge array grid

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

(a) BFS on RMAT26

 0

 10

 20

 30

 40

 50

 60

adj.
unsorted

adj.
sorted

edge array grid

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

(b) Pagerank on RMAT26

Figure 5: Impact of cache-related optimizations on pre-
processing and algorithm execution time for BFS and Pagerank
on RMAT26.



Data layout BFS Pagerank
Edge array 57% 83%
Grid 23% 35%
Adjacency list 63% 78%
Adjacency list sorted 63% 78%

Table 4: Cache miss ratio for BFS and Pagerank on RMAT26.

BFS. For BFS, the unsorted adjacency list remains
the solution with the best end-to-end execution time.
Looking at algorithm execution time alone, BFS is 2.4⇥
faster with a grid than with unsorted per-vertex edge ar-
rays. However, creating the grid adds significant pre-
processing time (9s), making the grid the slowest solu-
tion overall for BFS. Sorting the per-vertex edge arrays
also leads to end-to-end performance inferior to unsorted
adjacency lists. The pre-processing time increases, and
the algorithm execution time does not decrease. Table 4
shows that sorting the per-vertex arrays does not signif-
icantly impact the cache miss rate. The destination ver-
tices are accessed in order, but in practice a cache line
only contains the metadata associated with very few ver-
tices (64 in the case of BFS). Even when sorted, the
destination vertex identifiers in the per-vertex edge ar-
rays are sufficiently far apart for their metadata to fall in
different cache lines, which explains the limited impact
of this optimization on the number of cache misses and
therefore on algorithm execution time. The increased
pre-processing time for sorting the per-vertex arrays in-
creases end-to-end execution time.

Pagerank. Even with the added pre-processing cost,
the grid outperforms all other data layouts for Pagerank:
it is 1.4⇥ faster than an edge array and 1.3⇥ faster than
an unsorted adjacency list. This improvement is a direct
result of the reduced cache miss rate when using a grid.
As shown in Table 4, the cache miss ratio for the grid
is less than half of that for the other data layouts. As
for BFS, sorting the per-vertex edge arrays provides no
benefit for Pagerank, for the same reasons. A cache line
can fit at most 6 vertices for Pagerank, leading to an even
smaller improvement in spatial locality than for BFS.

Summary. Creating a grid improves cache reuse and
has a significant impact on algorithm execution time.
Yet, this comes at the cost of an extra pre-processing,
which is not always amortized. Different layouts also
shine in very different situations. For instance, the grid
is the best solution for Pagerank, but the slowest on BFS.

6 Information flow: Push and Pull

One of the core design decisions for a graph processing
system is the information flow model it adopts. Informa-
tion propagates through the graph in one of two ways:
a vertex either pushes data along its out edges, writing
to the state of its neighbors, or it pulls data along its

incoming edges and updates its own state. These two
approaches have important implications on computation,
synchronization and pre-processing that we detail in this
section.

6.1 Impact on end-to-end execution time

6.1.1 Impact on algorithm execution time

The push and pull approaches have different impact on
the number of vertices and edges that need to be accessed
during an iteration.

First, the push approach allows working on a sub-
set of the vertices, while the pull approach does not.
When pushing, vertices that do not need to propagate
their value can be safely ignored. In contrast, the pull
approach requires a vertex to scan all its incoming edges
for neighbors that could potentially propagate a value. It
also requires a pass over all vertices to check whether
they need to look at their incoming edges (e.g., whether
they have already been discovered in BFS).

Second, for some algorithms, the pull approach allows
stopping the computation for a vertex in the middle of
an iteration, while the push approach does not. Indeed,
while pulling data a vertex may stop pulling before ex-
ploring all its incoming edges. For instance in BFS, if a
vertex marks itself as discovered in the middle of an it-
eration, it stops exploring its remaining incoming edges.
This guarantees that the vertex is discovered only once.
In the push approach, vertices need to check that all their
neighbors have been discovered, which leads to redun-
dant work if multiple vertices have the same neighbors.

Figure 6 shows the per-iteration execution time of
pushing vs. pulling for BFS on an RMAT26 graph. Dur-
ing the first iteration and after the third iteration, pushing
is faster than pulling. During iterations 2 and 3, pulling
is faster than pushing. This difference is explained by the
percentage of the graph that is accessed during the iter-
ations: most vertices in the graph are discovered during
iterations 2 and 3. When pushing data, lots of redundant
work is done in these iterations.

Because pushing data and pulling data perform best at
different phases of the computation, some frameworks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8

E
xe

cu
tio

n 
tim

e
(s

ec
on

ds
)

Push

Pull

Figure 6: Per-iteration algorithm execution time for push vs.
pull for BFS on RMAT26.



dynamically switch between pushing and pulling, de-
pending on the number of active vertices in an itera-
tion [2, 3, 29].

6.1.2 Impact on synchronization

A significant part of the algorithm execution time may
involve synchronization. For example, in Pagerank on
an RMAT26 graph with 16 cores, 40% of the algorithm
execution time is spent in code protected by locks. The
goal of this section is to evaluate the possibilities for lock
removal, how they depend on the data layout and the in-
formation flow, and what if any pre-processing costs they
induce.

In push mode, a vertex pushes updates to all its neigh-
bors, and thus needs to lock them to update their meta-
data. In pull mode, a vertex only updates its own state.
Thus, lock removal with adjacency lists requires execu-
tion in pull mode.

The grid offers a natural partition of the graph: edges
in different rows have different source vertices, and
edges in different columns have different destination ver-
tices. To perform computation without locks in push
mode, it suffices to assign different columns to differ-
ent cores. To perform computation without locks in pull
mode, it suffices to assign different rows to different
cores.

6.1.3 Impact on pre-processing

Adjacency lists. To use push-pull, a system needs to iter-
ate over both outgoing and incoming edges. As a result,
when the graph is directed, we need to build both the out-
going and incoming per-vertex edge arrays. In contrast,
for push we only need to build the outgoing, and for pull
only the incoming per-vertex edge arrays. As a result,
for directed graphs push-pull comes with an increased
pre-processing cost, compared to push or pull, as seen in
Section 3.2. When the graph is undirected, it suffices to
build the outgoing per-vertex edge arrays (outgoing and
incoming edges are the same), and push-pull induces no
extra pre-processing cost.

Edge array. Computation over an edge array always
requires scanning all the edges in the graph, so there is
no advantage to using either push or pull. Furthermore,
since the computation is edge-centric and not vertex-
centric, locks need to be acquired for all updates. For
these reasons, edge arrays are not considered any further
in this section.

Lock removal. Lock removal does not require any ad-
ditional pre-processing, beyond what is otherwise neces-
sary for adjacency lists and grids, but it cannot be used
with edge arrays, which have zero pre-processing cost.

6.2 Evaluation
6.2.1 BFS

Figure 7 presents the end-to-end execution times for BFS
running on a directed RMAT26 graph, with adjacency
lists, using push-pull, push (with locks) and pull (without
locks). We do not show any results for edge array or grid
for BFS, as we have shown in Section 5 that these ap-
proaches lead to inferior results compared to adjacency
lists.

Push-pull is much faster in terms of algorithm execu-
tion time, but it is 1.5⇥ slower than the push approach in
terms of end-to-end execution time because of the extra
pre-processing time. When taking pre-processing time
into account, we find no combination of graphs, algo-
rithms and machines in which push-pull is beneficial on
directed graphs. On undirected graphs, push-pull does
not add any pre-processing time, and is thus much faster
than just pulling or pushing data. Furthermore, due to
the fact that, on average, only a small percentage of ver-
tices is processed per iteration, BFS in push mode per-
forms 20% better than BFS in pull mode, even though
push uses locks and pull does not.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

adj. 
push-pull

adj.
push(locks)

adj. pull
(no lock)

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 7: Pre-processing and algorithm execution time for
BFS on RMAT26 using push-pull, push (with locks) and pull
(without locks).

6.2.2 Pagerank

Figure 8 shows the end-to-end execution times for Pager-
ank in push mode on an adjacency list (with locks), in
pull mode on an adjacency list (without locks), in push
mode on a grid (with locks), and in pull mode on a grid
(without locks). Here, the advantages of removing locks
can be clearly seen. On adjacency lists, the version with-
out locks is 40% faster than the push version when look-
ing at end-to-end time. On a grid, the version without
locks shows a gain of 1.5⇥ in end-to-end time when
comparing to the version with locks.

Summary. Push and pull on adjacency lists have con-
flicting benefits. Push works better for algorithms that
only access a subset of the vertices in a given iteration,
while pull allows vertices to be updated without locks.
With grids, locking can be avoided regardless of whether
push or pull is used, but the advantage of push remains



 0

 10

 20

 30

 40

 50

adj. push
(locks)

adj. pull
(no lock)

grid
(locks)

grid
(no lock)

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 8: Pre-processing time and algorithm execution time
for Pagerank on RMAT26 for push (with locks) on an adja-
cency list (with locks), for pull on an adjacency list (without
locks), for push on a grid (with locks), for pull on a grid (with-
out locks).

for algorithms that only access a subset of the vertices.
Whether push or pull comes out ahead depends heavily
on the nature of the algorithm. A combined push-pull
approach requires extra pre-processing, which outweighs
the benefits in terms of algorithm execution time.

7 NUMA-Awareness

We evaluate the trade-offs between the potential benefits
of being NUMA-aware and the overheads it introduces in
both the pre-processing and algorithm execution phase.

7.1 Data layout
In NUMA-aware solutions, the graph is partitioned
across the NUMA nodes, and threads prioritize work
from partitions that are local to their NUMA node. The
partitioning scheme divides graph data evenly across
NUMA nodes and places related data on the same
NUMA node. Partitioning is performed so as to mini-
mize the number of edges whose source and destination
vertices are on different NUMA nodes, while still balanc-
ing the number of vertices and edges per NUMA node.

We evaluate in particular the partitioning schemes of
Polymer [33] and Gemini [36]. The vertices are split into
as many subsets as there are NUMA nodes. The outgoing
edges of vertices are colocated with their target vertices.
This approach avoids random remote writes and balances
the number of edges across NUMA-nodes. Threads first
process their local partitions. After that, they start work-
ing on remote partitions by updating the target vertices
that are local to their NUMA node.

7.2 Evaluation
We evaluate the potential performance improvement of
NUMA-aware data placement on the two machines pre-
sented in Section 2. Figure 9 shows the impact of
NUMA-aware graph partitioning of an RMAT26 graph
when running BFS and Pagerank. We compare NUMA
partitioning to a solution that randomly interleaves the

 0

 5

 10

 15

 20

 25

 30

A
inter.

A
NUMA

B
inter.

B
NUMA

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Partitioning
Algorithm

(a) BFS - RMAT26

 0
 10
 20
 30
 40
 50
 60
 70

A
inter.

A
NUMA

B
inter.

B
NUMA

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Partitioning
Algorithm

(b) Pagerank - RMAT26

Figure 9: Impact of NUMA-aware partitioning on machines
A and B. For each machine we show the pre-processing, par-
titioning and algorithm execution time for BFS and Pagerank
on RMAT26 with memory interleaving vs. NUMA-aware data
placement.

graph data on all NUMA nodes. We use, for each appli-
cation, the best algorithm in terms of algorithm execu-
tion, as presented in the previous sections (push/pull for
BFS and pull without locks for Pagerank). The end-to-
end execution time is broken down into pre-processing,
partitioning and algorithm execution.

Looking at Figure 9b, the NUMA-aware data lay-
out improves the algorithm execution time for Pagerank
1.3⇥ on Machine A and 2⇥ on Machine B. However,
only on the machine B, with 4 NUMA nodes, does the
end-to-end execution time benefit from being NUMA-
aware.

In contrast, looking at Figure 9a, for BFS the NUMA-
aware version is 3.5⇥ slower on Machine A and 1.8⇥
slower on Machine B. For BFS the time spent in par-
titioning dwarfs the algorithm execution time on both
machines. More surprisingly, even when looking only
at algorithm execution time, the NUMA-aware version
performs worse than the interleaved version. In BFS,
in a given iteration, only a small number of vertices is
processed, and these vertices often share a common an-
cestor (e.g., during the first iteration, all processed ver-
tices are the children of the root vertex). As a conse-
quence, vertices processed during a given iteration often
reside in the same partition. This leads to all cores ac-
cessing the same NUMA node, which creates memory
contention [9]. This undesirable effect is even more visi-
ble on high-diameter graphs with low-degree vertices, as
shown in Figure 10 when running BFS on the US-Road
graph. The NUMA-aware version is 12⇥ slower than the
interleaved version.



 0
 1
 2
 3
 4
 5
 6
 7
 8

B
inter.

B
NUMA

E
xe

cu
tio

n 
tim

e 
(s

) Pre-processing
Partitioning
Algorithm

Figure 10: Effect of contention on memory bus on high di-
ameter graphs. Pre-processing, partitioning and algorithm exe-
cution time for BFS US-Road graph with memory interleaving
vs. NUMA-aware data placement

Summary. NUMA-aware data partitioning has a high
pre-processing cost. This cost is amortized for algo-
rithms that run for a long time and that work on most of
the data during every iteration. For algorithms that run
only for a short time, this may not be the case. For al-
gorithms that only work on a subset of the data, NUMA-
aware partitioning may exacerbate memory contention.

8 Additional algorithms and workloads

Table 5 shows the best solutions for BFS and Pager-
ank for graphs not evaluated in previous sections. The
Twitter graph has a degree distribution similar to that of
RMAT, and benefits from the same approaches: using an
adjacency list while pushing data for BFS, and using a
grid for Pagerank. The US-Road graph leads to slightly
different conclusions. The best approach on Pagerank is
to use an edge array and not a grid. Since the graph has
a lower per-vertex degree than the RMAT and Twitter
graphs, the grid data structure reduces only slightly the
cache miss ratio, and therefore its pre-processing cost is
not amortized.

In Table 6 we report the best approaches for WCC,
SpMV, SSSP and ALS, their end-to-end execution time
and its breakdown over pre-processing and algorithm ex-
ecution time.

SPMV is a very short algorithm, and edge arrays
are always the fastest approach, as they induce no pre-
processing cost.

Intuitively, WCC should perform best on adjacency
lists, because it is a traversal algorithm (only a subset of
the graph is processed during every iteration of the com-
putation), but WCC runs on an undirected graph. We
therefore first have to build an undirected version of the
graph from the input file. In the case of adjacency lists,
an edge has to be inserted in both the outgoing edge array
of its source and its destination. Thus, the pre-processing
cost for creating adjacency lists is increased. In con-
trast, no additional pre-processing is required for edge
arrays and grids to perform computation on an undirected
graph. As a consequence, on graphs with a low diameter,
WCC works best with an edge array, because the pre-

processing time of building adjacency lists is too high.
On graphs that have a higher diameter, like the US-Road
graph, WCC needs more iterations to converge, and an
adjacency list works best.

SSSP is very similar to BFS, and previous conclu-
sions regarding the trade-offs between algorithm execu-
tion time and pre-processing for BFS are applicable to
this algorithm as well. The only difference is that BFS
discovers a vertex only once, whereas in SSSP a vertex
may update its path many times during the computation,
leading to an increase both in the number of iterations
and the number of vertices active in each iteration.

ALS computes recommendations from a bipartite
graph. The left side of the graph represents users and
the other side items being rated. During every iteration,
a subset of the graph (the left or right side) is active, and
hence adjacency lists are the best data layout.

9 Summary

Improvements in algorithm execution time often come
at the cost of increased pre-processing time. As seen in
the previous sections, no approach fits every graph, al-
gorithm or machine. In this section we try to provide a
roadmap for choosing between different data layouts and
computation approaches.

The first step consists of choosing an appropriate data
layout. The layout is chosen based on the algorithm and
graph characteristics. Short algorithms, such as SPMV,
that complete in one iteration, should use an edge array,
as it incurs no pre-processing cost. When the computa-
tion works only on a small subset of the graph at every
computation step, adjacency lists in push mode improve
algorithm execution time. The cost of building them is
usually amortized compared to computation over edge
arrays, especially on graphs with a high diameter. Other
algorithms that run on graphs that have a large average
per-vertex degree and iterate over most of the graph at
every iteration, may benefit from using a grid, because
the grid improves cache locality.

Second, if the machine is a large NUMA machine and
the algorithm execution time is predicted to be large, then
partitioning the graph to be NUMA-aware is beneficial
(Figure 9b).

Third, if the data layout and computation approach
chosen during the first step allow for execution without
locking (e.g., pull mode in grids), then it is always ben-
eficial to remove locks. We do not find any algorithm or
directed graph for which switching between a pull mode
without locks and push mode is beneficial when looking
at end-to-end execution time.

Finally, when pre-processing cannot be avoided, it in-
duces a non-negligible cost, and it should be optimized
by using appropriate sorting techniques.



Algo Graph Data layout Propagation model Pre-processing Algorithm Total
BFS Twitter Adj. list Push 5.8 2.3 8.1
BFS US-Road Adj. list Push 0.3 0.5 0.8
Pagerank Twitter Grid Pull (no lock) 23.2 37.8 61.0
Pagerank US-Road Edge array Pull 0.0 1.6 1.6

Table 5: Best approaches in terms of end-to-end execution time for BFS and Pagerank on the Twitter and US-Road graph.

Algo Graph Data layout Propagation model Pre-processing Algorithm Total
WCC RMAT-26 Edge array Push 0.0 11.0 11.0
WCC Twitter Edge array Push 0.0 19.2 19.2
WCC US-Road Adj. list Push 0.6 56.8 57.4
SpMV RMAT-26 Edge array Push 0.0 4.4 4.4
SpMV Twitter Edge array Push 0.0 5.8 5.8
SpMV US-Road Edge array Push 0.0 0.3 0.3
SSSP RMAT-26 Adj. list Push 4.4 2.8 7.2
SSSP Twitter Adj. list Push 5.8 4.4 10.2
SSSP US-Road Adj. list Push 0.5 30.7 31.2
ALS Netflix Adj. list Pull (no lock) 0.8 7.7 8.1

Table 6: Best approaches in terms of end-to-end execution time for SpMV, WCC and ALS on different graphs.

System Data layout Iteration model Push or Pull Without locks NUMA-Aware
Ligra Adj list Vertex-centric Push&Pull Yes -
Polymer Adj list Vertex-centric Push&Pull Yes Yes
Gemini Adj list Vertex -centric Push&Pull Yes Yes
X-Stream Edge array Edge-centric Push - -
GridGraph Grid Grid-cell Push Yes -

Table 7: Overview of multicore graph processing systems that inspired this work and their features.

10 Related Work

Very few papers compare the benefits of different graph
processing systems. Satish et al. [28] evaluate vari-
ous single-machine and distributed systems and compare
them to a hand-optimized baseline. The paper looks
at complete systems rather than individual techniques.
Capota et al. [4] introduce a benchmark for graph pro-
cessing platforms.

A large number of graph processing systems have been
proposed [7, 8, 12–17, 19, 20, 22, 23, 25–27, 29, 31, 33,
36, 37]. We cover here only those works that have di-
rectly inspired the techniques evaluated in this paper. For
a brief summary of the main features of these systems,
see Table 7.

Beamer et al. [2, 3] are the first to propose push-pull
for BFS. Ligra [29] extends this idea to other graph algo-
rithms. It also uses radix sort for creating adjacency lists.
X-Stream [27] introduces edge-centric graph processing
in the context of out-of-core systems. GridGraph [37]
improves on this idea by organizing the edges into a grid.
Polymer [33] and Gemini [36] optimize graph processing
for NUMA machines. We use their data placement tech-
nique in Section 7. In addition to the techniques used
in Polymer, Gemini adds work stealing to balance work
across NUMA nodes.

Not explored in this paper, the use of GPUs for

graph processing has been the subject of some recent
works [10, 11, 21, 30, 34]. This approach could affect
the relative magnitude of pre-processing vs. algorithm
execution time, and thereby impact the conclusions for
certain algorithms.

11 Conclusion

We have presented an analysis of various techniques
aimed at improving the algorithm execution time in
graph processing systems, and we have explained their
impact on pre-processing time. Our main observation is
that pre-processing often dominates the end-to-end ex-
ecution time of graph analytics. Therefore, it is often
better to work with simple graph data layouts that in-
duce less pre-processing than to invest time in elabo-
rate pre-processing to speed up the algorithm execution
phase. We argue that future works on graph analytics
frameworks must more carefully consider this trade-off
between pre-processing and algorithm execution time.

Acknowledgments: This work was supported in part by Swiss
National Science Foundation Grant No. 167157 and by an EPFL-
INRIA postdoctoral fellowship. We thank our reviewers, our shepherd
Rong Chen, Laurent Bindschaedler, Florin Dinu, Rachid Guerraoui,
Tim Harris, Dushyanth Narayanan, Amitabha Roy and Nicolas Schiper
for their valuable feedback.



References

[1] http://dimacs.rutgers.edu/Challenges/.

[2] BEAMER, S., ASANOVIĆ, K., AND PATTERSON,
D. Direction-optimizing breadth-first search. In
Proceedings of the International Conference on
High Performance Computing, Networking, Stor-
age and Analysis (Los Alamitos, CA, USA, 2012),
SC ’12, IEEE Computer Society Press, pp. 12:1–
12:10.

[3] BEAMER, S., ASANOVIC, K., PATTERSON,
D. A., BEAMER, S., AND PATTERSON, D.
Searching for a parent instead of fighting over chil-
dren: A fast breadth-first search implementation for
graph500. Tech. rep.

[4] CAPOTĂ, M., HEGEMAN, T., IOSUP, A., PRAT-
PÉREZ, A., ERLING, O., AND BONCZ, P. Graph-
alytics: A big data benchmark for graph-processing
platforms. In Proceedings of the GRADES’15
(New York, NY, USA, 2015), GRADES’15, ACM,
pp. 7:1–7:6.

[5] CHAKRABARTI, D., ZHAN, Y., AND FALOUT-
SOS, C. R-MAT: A recursive model for graph min-
ing. In Proceedings of the SIAM International Con-
ference on Data Mining (2004), SIAM.

[6] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H.
Powerlyra: Differentiated graph computation and
partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Sys-
tems (2015), ACM, p. 15.

[7] CHENG, R., HONG, J., KYROLA, A., MIAO, Y.,
WENG, X., WU, M., YANG, F., ZHOU, L., ZHAO,
F., AND CHEN, E. Kineograph: taking the pulse of
a fast-changing and connected world. In Proceed-
ings of the ACM European conference on Computer
Systems (2012), ACM, pp. 85–98.

[8] CHING, A. Giraph: Large-scale graph process-
ing infrastructure on hadoop. Proceedings of the
Hadoop Summit. Santa Clara 11 (2011).

[9] DASHTI, M., FEDOROVA, A., FUNSTON, J.,
GAUD, F., LACHAIZE, R., LEPERS, B., QUEMA,
V., AND ROTH, M. Traffic management: a holis-
tic approach to memory placement on NUMA sys-
tems. In ACM SIGPLAN Notices (2013), vol. 48,
ACM, pp. 381–394.

[10] DAVIDSON, A., BAXTER, S., GARLAND, M.,
AND OWENS, J. D. Work-efficient parallel GPU
methods for single-source shortest paths. In Pro-
ceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium

(Washington, DC, USA, 2014), IPDPS ’14, IEEE
Computer Society, pp. 349–359.

[11] FU, Z., PERSONICK, M., AND THOMPSON, B.
Mapgraph: A high level API for fast development
of high performance graph analytics on GPUs. In
Proceedings of Workshop on Graph Data Manage-
ment Experiences and Systems (New York, NY,
USA, 2014), GRADES’14, ACM, pp. 2:1–2:6.

[12] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. Powergraph: distributed
graph-parallel computation on natural graphs. In
Proceedings of the Conference on Operating Sys-
tems Design and Implementation (2012), USENIX
Association, pp. 17–30.

[13] GONZALEZ, J. E., XIN, R. S., DAVE, A.,
CRANKSHAW, D., FRANKLIN, M. J., AND STO-
ICA, I. GraphX: Graph processing in a distributed
dataflow framework. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2014),
OSDI’14, USENIX Association, pp. 599–613.

[14] HAN, W., MIAO, Y., LI, K., WU, M., YANG, F.,
ZHOU, L., PRABHAKARAN, V., CHEN, W., AND
CHEN, E. Chronos: A graph engine for temporal
graph analysis. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems (New York,
NY, USA, 2014), EuroSys ’14, ACM, pp. 1:1–1:14.

[15] HONG, S., CHAFI, H., SEDLAR, E., AND
OLUKOTUN, K. Green-Marl: A DSL for easy and
efficient graph analysis. In Proceedings of the Sev-
enteenth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2012), ASPLOS
XVII, ACM, pp. 349–362.

[16] ISARD, M., BUDIU, M., YU, Y., BIRRELL,
A., AND FETTERLY, D. Dryad: distributed
data-parallel programs from sequential building
blocks. In ACM SIGOPS Operating Systems Re-
view (2007), vol. 41, ACM, pp. 59–72.

[17] JU, W., LI, J., YU, W., AND ZHANG, R. iGraph:
an incremental data processing system for dynamic
graph. Frontiers of Computer Science (2016), 1–15.

[18] KWAK, H., LEE, C., PARK, H., AND MOON, S.
What is Twitter, a social network or a news media?
In Proceedings of the International conference on
World Wide Web (2010), ACM, pp. 591–600.

[19] KYROLA, A., BLELLOCH, G., AND GUESTRIN,
C. GraphChi: Large-scale graph computation on
just a PC. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-

http://dimacs.rutgers.edu/Challenges/


mentation (Berkeley, CA, USA, 2012), USENIX
Association, pp. 31–46.

[20] MAASS, S., MIN, C., KASHYAP, S., KANG, W.,
KUMAR, M., AND KIM, T. Mosaic: Processing a
trillion-edge graph on a single machine. In Pro-
ceedings of the Twelfth European Conference on
Computer Systems (New York, NY, USA, 2017),
EuroSys ’17, ACM, pp. 527–543.

[21] MERRILL, D., GARLAND, M., AND GRIMSHAW,
A. Scalable GPU graph traversal. In Proceedings of
the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New York,
NY, USA, 2012), PPoPP ’12, ACM, pp. 117–128.

[22] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Na-
iad: A timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 439–455.

[23] NGUYEN, D., LENHARTH, A., AND PINGALI, K.
A lightweight infrastructure for graph analytics. In
Proceedings of the Symposium on Operating Sys-
tems Principles (2013), ACM, pp. 456–471.

[24] PAGE, L., BRIN, S., MOTWANI, R., AND WINO-
GRAD, T. The PageRank citation ranking: Bring-
ing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999.

[25] PEREZ, Y., SOSIČ, R., BANERJEE, A., PUT-
TAGUNTA, R., RAISON, M., SHAH, P., AND
LESKOVEC, J. Ringo: Interactive graph analytics
on big-memory machines. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2015),
SIGMOD ’15, ACM, pp. 1105–1110.

[26] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J.,
AND ZWAENEPOEL, W. Chaos: Scale-out graph
processing from secondary storage. In Proceedings
of the 25th Symposium on Operating Systems Prin-
ciples (2015), ACM, pp. 410–424.

[27] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,
W. X-stream: Edge-centric graph processing us-
ing streaming partitions. In Proceedings of the
ACM symposium on Operating Systems Principles
(2013), ACM, pp. 472–488.

[28] SATISH, N., SUNDARAM, N., PATWARY, M.
M. A., SEO, J., PARK, J., HASSAAN, M. A.,
SENGUPTA, S., YIN, Z., AND DUBEY, P. Navi-
gating the maze of graph analytics frameworks us-
ing massive graph datasets. In Proceedings of the
2014 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, 2014),
SIGMOD ’14, ACM, pp. 979–990.

[29] SHUN, J., AND BLELLOCH, G. E. Ligra: a
lightweight graph processing framework for shared
memory. In ACM SIGPLAN Notices (2013),
vol. 48, ACM, pp. 135–146.

[30] WANG, Y., DAVIDSON, A., PAN, Y., WU, Y.,
RIFFEL, A., AND OWENS, J. D. Gunrock: A
high-performance graph processing library on the
GPU. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 2016), PPoPP
’16, ACM, pp. 11:1–11:12.

[31] WU, M., YANG, F., XUE, J., XIAO, W., MIAO,
Y., WEI, L., LIN, H., DAI, Y., AND ZHOU, L.
GraM: Scaling graph computation to the trillions.
In Proceedings of the Sixth ACM Symposium on
Cloud Computing (New York, NY, USA, 2015),
SoCC ’15, ACM, pp. 408–421.

[32] ZAGHA, M., AND BLELLOCH, G. E. Radix sort
for vector multiprocessors. In Proceedings of the
1991 ACM/IEEE conference on Supercomputing
(1991), ACM, pp. 712–721.

[33] ZHANG, K., CHEN, R., AND CHEN, H. NUMA-
aware graph-structured analytics. In ACM SIG-
PLAN Notices (2015), vol. 50, ACM, pp. 183–193.

[34] ZHONG, J., AND HE, B. Medusa: Simplified graph
processing on GPUs. IEEE Trans. Parallel Distrib.
Syst. 25, 6 (June 2014), 1543–1552.

[35] ZHOU, Y., WILKINSON, D., SCHREIBER, R.,
AND PAN, R. Large-scale parallel collaborative
filtering for the Netflix Prize. In Proceedings of
the 4th International Conference on Algorithmic
Aspects in Information and Management (Berlin,
Heidelberg, 2008), AAIM ’08, Springer-Verlag,
pp. 337–348.

[36] ZHU, X., CHEN, W., ZHENG, W., AND MA, X.
Gemini: A computation-centric distributed graph
processing system. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16)(Savannah, GA (2016).

[37] ZHU, X., HAN, W., AND CHEN, W. GridGraph:
Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX
ATC 15) (2015), pp. 375–386.


	Introduction
	Experimental setup
	Data layouts and pre-processing costs
	Data layouts
	Pre-processing costs
	Evaluation
	Loading and pre-processing
	Evaluation with loading included

	Data layout and graph traversal
	Vertex-centric vs. edge-centric
	Evaluation

	Cache-locality
	Impact of the data layout
	Evaluation

	Information flow: Push and Pull
	Impact on end-to-end execution time
	Impact on algorithm execution time
	Impact on synchronization
	Impact on pre-processing

	Evaluation
	BFS
	Pagerank


	NUMA-Awareness
	Data layout
	Evaluation

	Additional algorithms and workloads
	Summary
	Related Work
	Conclusion

