
1

Quantization Design for Distributed Optimization
Ye Pu, Melanie N. Zeilinger and Colin N. Jones

Abstract

We consider the problem of solving a distributed optimization problem using a distributed computing platform, where the
communication in the network is limited: each node can only communicate with its neighbours and the channel has a limited
data-rate. A common technique to address the latter limitation is to apply quantization to the exchanged information. We propose
two distributed optimization algorithms with an iteratively refining quantization design based on the inexact proximal gradient
method and its accelerated variant. We show that if the parameters of the quantizers, i.e. the number of bits and the initial
quantization intervals, satisfy certain conditions, then the quantization error is bounded by a linearly decreasing function and the
convergence of the distributed algorithms is guaranteed. Furthermore, we prove that after imposing the quantization scheme, the
distributed algorithms still exhibit a linear convergence rate, and show complexity upper-bounds on the number of iterations to
achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithms and the theoretical findings for
solving a distributed optimal control problem.

I. INTRODUCTION

Distributed optimization methods for networked systems that have many coupled sub-systems and must act based on local

information, are critical in many engineering problems, e.g. resource allocation, distributed estimation and distributed control

problems. The algorithms are required to solve a global optimization problem in a distributed fashion subject to communication

constraints.

Inexact distributed optimization methods are attracting increasing attention, since these techniques have the potential to deal

with errors, for instance caused by inexact solution of local problems as well as unreliable or limited communication, e.g.,

transmission failures and quantization errors. Previous work has aimed at addressing the questions of how such errors affect

the algorithm and under what conditions the convergence of the distributed algorithms can be guaranteed. In [7], the authors

propose an inexact decomposition algorithm for solving distributed optimization problems by employing smoothing techniques

and an excessive gap condition. In our previous work [12], we have proposed an inexact splitting method, named the inexact

fast alternating minimization algorithm, and applied it to distributed optimization problems, where local computation errors as

well as errors resulting from limited communication are allowed, and convergence conditions on the errors are derived based

on a complexity upper-bound. Some other related references for inexact optimization algorithms include [6], [10] and [14]. In

[14], an inexact proximal-gradient method, as well as its accelerated version, are introduced. The proximal gradient method,

also known as the iterative shrinkage-thresholding algorithm (ISTA) [1], has two main steps: the first one is to compute the

gradient of the smooth objective and the second one is to solve the proximal minimization. The conceptual idea of the inexact

proximal-gradient method is to allow errors in these two steps, i.e. an error in the calculation of the gradient and an error

in the proximal minimization. The results in [14] show convergence properties of the inexact proximal-gradient method and

provide conditions on the errors, under which convergence of the algorithm can be guaranteed.

We consider a distributed optimization problem, where each sub-problem has a local cost function that involves both local and

neighbouring variables, and local constraints on local variables. The problem is solved in a distributed manner with only local

communication, i.e. between neighbouring sub-systems. In addition, the communication bandwidth between neighbouring sub-

systems is limited. In order to meet the limited communication data-rate, the information exchanged between the neighbouring

sub-systems needs to be quantized. The quantization process results in inexact iterations throughout the distributed optimization

algorithm, which effects its convergence. Related work includes [3], [9], [15] and [11], which study the effects of quantization

on the performance of averaging or distributed optimization algorithms.

We propose two distributed optimization algorithms with progressive quantization design building on the work in [14] and

[15]. The main idea behind the proposed methods is to apply the inexact gradient method to the distributed optimization

problem and to employ the error conditions, which guarantee convergence to the global optimum, to design a progressive

quantizer. Motivated by the linear convergence upper-bound of the optimization algorithm, the range of the quantizer is set to

reduce linearly at a rate smaller than one and larger than the rate of the algorithm, in order to refine the information exchanged

in the network with each iteration and achieve overall converge to the global optimum. The proposed quantization method is

computationally cheap and consistent throughout the iterations as every node implements the same quantization procedure.

Y. Pu and C.N. Jones are with the Automatic Control Lab, École Polytechnique Fédérale de Lausanne, EPFL-STI-IGM-LA Station 9 CH-1015 Lausanne,
Switzerland, e-mail: {y.pu,colin.jones}@epfl.ch.

M.N. Zeilinger is with the Empirical Inference Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany, e-mail:
melanie.zeilinger@tuebingen.mpg.de.

This work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC
Grant Agreement n. 307608. The research of M. N. Zeilinger has received funding from the EU FP7 under grant agreement no. PIOF-GA-2011-301436-
“COGENT”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148030835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

This work extends the initial ideas presented in [13] for designing a quantization scheme for unconstrained distributed

optimization. In particular, the paper makes the following main extensions and contributions:

• Constrained optimization problems: We consider distributed optimization problems with convex local constraints. To

handle the constraints, two projection steps are required. One is applied before the information exchange, and the other

after. The reason to have a second projection is that after the information exchange, the quantized value received by

each agent can be an infeasible solution subject to the local constraints. The second projection step therefore guarantees

that at each iteration every agent has a feasible solution for the computation of the gradient. We present conditions on

the number of bits and the initial quantization intervals, which guarantee convergence of the algorithms. We show that

after imposing the quantization scheme including the two projections, the algorithms preserve the linear convergence rate,

and furthermore derive complexity upper-bounds on the number of iterations to achieve a given accuracy. In addition, we

provide a discussion about how the minimum number of bits and the corresponding minimum initial quantization intervals

can be obtained.

• Accelerated algorithm: We propose an accelerated variant of the distributed optimization algorithm with quantization

refinement based on the inexact accelerated proximal-gradient method. With the acceleration step, the algorithm preserves

the linear convergence rate, but the constant of the rate will be improved.

• Distributed optimal control example: We demonstrate the performance of the proposed method and the theoretical results

for solving an distributed optimal control example.

II. PRELIMINARIES

A. Notation

Let v ∈ R
nv be a vector. ‖v‖ and ‖v‖∞ denote the l2 and infinity norms of v, respectively. Note that ‖v‖∞ ≤ ‖v‖2 ≤√

nv‖v‖∞. Let C be a subset of R
nv . The projection of any point v ∈ R

nv onto the set C is denoted by Proj
C
(v) :=

argminµ∈C
‖µ − v‖. Let f : Θ → Ω be a strongly convex function; σf denotes the convexity modulus f(v) ≥ f(µ) +

〈∂f(µ), v − µ〉 + σf

2 ‖v − µ‖2 for any v, µ ∈ Θ, where ∂f(·) denotes the set of sub-gradients of the function f at a given

point. L(f) denotes a Lipschitz constant of the function f , i.e. ‖f(v) − f(µ)‖ ≤ L(f)‖v − µ‖, ∀v, µ ∈ Θ. The proximity

operator is defined as

proxf (v) = argminw f(w) +
1

2
‖w − v‖2 . (1)

We refer to [2] and [8] for details on the definitions and properties above. The proximity operator with an extra subscript ǫ,

i.e. µ = proxf,ǫ(v), means that a maximum computation error ǫ is allowed in the proximal objective function:

f(µ) +
1

2
‖µ− v‖2 ≤ ǫ+ minw

{

f(w) +
1

2
‖w − v‖2

}

(2)

B. Inexact Proximal-Gradient Method

In this section, we will introduce the inexact proximal-gradient method (inexact PGM) proposed in [14]. Inexact PGM is

presented in Algorithm 1. It addresses optimization problems of the form given in Problem 2.1 and requires Assumption 2.2

for convergence with a linear rate.

Problem 2.1:

min
x∈Rnx

Φ(x) = φ(x) + ψ(x) .

Assumption 2.2:

• φ is a strongly convex function with a convexity modulus σφ and Lipschitz continuous gradient with Lipschitz constant

L(∇φ).
• ψ is a lower semi-continuous convex function, not necessarily smooth.

Algorithm 1 Inexact Proximal-Gradient Method

Require: Require x0 ∈ R
nx and τ < 1

L(∇φ)
for k = 0, 1, · · · do

xk+1 = proxτψ,ǫk(x
k − τ(∇φ(xk) + ek))

end for

Inexact PGM in Algorithm 1 allows two kinds of errors: {ek} represents the error in the gradient calculations of φ, and

{ǫk} represents the error in the computation of the proximal minimization in (2) at every iteration k. The following proposition

states the convergence property of inexact PGM.

3

Proposition 2.3 (Proposition 3 in [14]): Let {xk} be generated by inexact PGM defined in Algorithm 1. If Assumption 2.2

holds, then for any k ≥ 0 we have:

‖xk+1 − x⋆‖ ≤ (1− γ)k+1 · (‖x0 − x⋆‖+ Γk) , (3)

where γ =
σφ

L(∇φ) and x0 and x⋆ denote the initial sequence of Algorithm 1 and the optimal solution of Problem 2.1,

respectively, and

Γk =
k
∑

p=0

(1− γ)−p−1 ·
(

1

L(∇φ)‖e
p‖+

√

2

L(∇φ)
√
ǫp

)

.

As discussed in [14], the upper-bound in Proposition 2.3 allows one to derive sufficient conditions on the error sequences

{ek} and {ǫk} for convergence of the algorithm to the optimal solution x∗, where µ = 1− γ:

• If the series {‖ek‖} and {
√
ǫk} decrease at a linear rate with the constant κ < µ, then ‖xk − x⋆‖ converges at a linear

rate with the constant µ.

• If the series {‖ek‖} and {
√
ǫk} decrease at a linear rate with the constant µ < κ < 1, then ‖xk − x⋆‖ converges at the

same rate with the constant κ.

• If the series {‖ek‖} and {
√
ǫk} decrease at a linear rate with the constant κ = µ, then ‖xk − x⋆‖ converges at a rate of

O(k · µk).
Remark 2.4: Compared to [14], we modify the index of the sequence in Algorithm 1 from xk to xk+1 and the corresponding

index in Proposition 2.3, such that in Section III the quantization errors have the same index as the quantized sequences.

C. Inexact Accelerated Proximal-Gradient Method

In this section, we introduce an accelerated variant of inexact PGM, named the inexact accelerated proximal-gradient method

(inexact APGM) proposed in [14]. Compared to inexact PGM, it addresses the same problem class in Problem 2.1 and requires

the same assumption in Assumption 2.2 for linear convergence, but involves one extra linear update in Algorithm 2, which

improves the constant of the linear convergence rate from (1− γ) to
√

1−√
γ.

Algorithm 2 Inexact Accelerated Proximal-Gradient Method

Require: Initialize x0 = y0 ∈ R
nx and τ < 1

L(∇φ)
for k = 0, 1, · · · do

xk+1 = proxτψ,ǫk(y
k − τ(∇φ(yk) + ek))

yk+1 = xk+1 +
1−√

γ

1+
√
γ
(xk+1 − xk)

end for

Proposition 4 of [14] presents a complexity upper-bound on the sequence {Φ(xk+1)−Φ(x⋆)}, where the sequence {xk+1} is

generated by inexact APGM. The following proposition extends this result and states a complexity upper-bound on ‖xk+1−x⋆‖.

Proposition 2.5: Let {xk} be generated by inexact APGM defined in Algorithm 2. If Assumption 2.2 holds, then for any

k ≥ 0 we have:

‖xk+1 − x⋆‖ ≤ (1−√
γ)

k+1

2 ·
(

2
√

Φ(x0)− Φ(x⋆)
√
σφ

+Θk

)

, (4)

where γ =
σφ

L(∇φ) , x0 and x⋆ denote the initial sequence of Algorithm 1 and the optimal solution of Problem 2.1, respectively,

and

Θk =
2

σφ
·
k
∑

p=0

(1−√
γ)

−p−1

2 ·
(

‖ep‖+ (
√

2L(∇φ) +
√

σφ

2
) ·

√
ǫp
)

.

The proof of Proposition 2.5 will be given in the appendix in Section V-A. The upper-bound in Proposition 2.5 provides

similar sufficient conditions on the error sequences {ek} and {ǫk} for the convergence of Algorithm 2, which are obtained by

replacing µ = 1− γ in the sufficient conditions for Algorithm 1 in Section II-B with µ =
√

1−√
γ.

D. Uniform quantizer

Let x be a real number. A uniform quantizer with a quantization step-size ∆ and the mid-value x̄ can be expressed as

Q(x) = x̄+ sgn(x− x̄) ·∆ ·
⌊‖x− x̄‖

∆
+

1

2

⌋

, (5)

4

where sgn(·) is the sign function. The parameter ∆ is equal to ∆ = l
2n , where l represents the size of the quantization interval

and n is the number of bits sent by the quantizer. In this paper, we assume that n is a fixed number, which means that the

quantization interval is set to be [x̄− l
2 , x̄+ l

2]. The quantization error is upper-bounded by

‖x−Q(x)‖ ≤ ∆

2
=

l

2n+1
. (6)

For the case that the input of the quantizer and the mid-value are not real numbers, but vectors with the same dimension nx,

the quantizer Q is composed of nx independent scalar quantizers in (5) with the same quantization interval l and corresponding

mid-value. In this paper, we design a uniform quantizer denoted as Qk(·) with changing quantization interval lk and mid-value

x̄k at every iteration k of the optimization algorithm.

III. DISTRIBUTED OPTIMIZATION WITH LIMITED COMMUNICATION

In this section, we propose two distributed optimization algorithms with progressive quantization design based on the inexact

PGM algorithm and its accelerated variant. The main challenge is that the communication in the distributed optimization

algorithms is limited and the information exchanged in the network needs to be quantized. We propose a progressive quantizer

with changing parameters, which satisfies the communication limitations, while ensuring that the errors induced by quantization

satisfy the conditions for convergence.

A. Distributed optimization problem

In this paper, we consider a distributed optimization problem on a network of M sub-systems (nodes). The sub-systems

communicate according to a fixed undirected graph G = (V, E). The vertex set V = {1, 2, · · · ,M} represents the sub-systems

and the edge set E ⊆ V ×V specifies pairs of sub-systems that can communicate. If (i, j) ∈ E , we say that sub-systems i and j

are neighbours, and we denote by Ni = {j|(i, j) ∈ E} the set of the neighbours of sub-system i. Note that Ni includes i. We

denote d as the degree of the graph G. The optimization variable of sub-system i and the global variable are denoted by xi
and x = [xT1 , · · · , xTM]T , respectively. For each sub-system i, the local variable has a convex local constraint xi ∈ Ci ⊆ R

nmi .

The constraint on the global variable x is denoted by C =
∏

1≤i≤M Ci. The dimension of the local variable xi is denoted by

mi and the maximum dimension of the local variables is denoted by m̄, i.e. m̄ := max1≤i≤M mi. The concatenation of the

variable of sub-system i and the variables of its neighbours is denoted by xNi
, and the corresponding constraint on xNi

is

denoted by CNi
=
∏

j∈Ni
Cj . With the selection matrices Ei and Fji, they can be represented as xNi

= Eix and xi = FjixNj
,

j ∈ Ni, which implies the relation between the local variable xi and the global variable x, i.e. xi = FjiEjx, j ∈ Ni. Note

that Ei and Fji are selection matrices, and therefore ‖Ei‖ = ‖Fji‖ = 1. We solve a distributed optimization problem of the

formulation in Problem 3.1:

Problem 3.1:

min
x, xNi

f(x) =

M
∑

i=1

fi(xNi
)

s.t. xi ∈ Ci , xi = FjixNj
, j ∈ Ni , xNi

= Eix , i = 1, 2, · · · ,M .

Assumption 3.2: We assume that the global cost function f(·) is strongly convex with a convexity modulus σf and Lipschitz

continuous gradient with Lipschitz constant L, i.e. ‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖ for any x1 and x2.

Assumption 3.3: The local constraint Ci is a convex set, for i = 1, · · · ,M .

Assumption 3.4: We assume that every local cost function fi(·) has Lipschitz continuous gradient with Lipschitz constant

Li, and denote Lmax as the maximum Lipschitz constant of the local functions, i.e. Lmax := max1≤i≤M Li.

B. Qualitative description of the algorithm

In this section, we provide a qualitative description of the distributed optimization algorithm with quantization refinement

to introduce the main idea of the approach. We apply the inexact PGM algorithm to the distributed optimization problem in

Problem 3.1, where the two objectives in Problem 2.1 are chosen as φ =
∑M
i=1 fi(xNi

) and ψ =
∑M
i=1 ICi

(xi), where ICi

denotes the indicator function on the set Ci. The parameter γ is equal to

γ =
σf

L
. (7)

The communication in the network is limited: each sub-system in the network can only communicate with its neighbours,

and at each iteration, only a fixed number of bits can be transmitted. Only considering the first limitation, the distributed

optimization algorithm resulting from applying the inexact PGM algorithm to Problem 3.1 is represented by the blue boxes in

Fig. 1. At iteration k, sub-system i carries out four main steps:

1. Send the local variable to its neighbours;

2. Compute the local gradient;

6

Algorithm 3 Distributed algorithm with quantization refinement

Require: Initialize x̂−1
i = x0i = 0, ∇̂f−1

i = ∇fi(Proj
CNi

(0)), (1− γ) < κ < 1 and τ < 1
L

.

for k = 0, 1, 2, · · · do

For sub-system i, i = 1, 2, · · · ,M do in parallel:

1: Update the parameters of quantizer Qkα,i: l
k
α,i = Cακ

k and x̄kα,i = x̂k−1
i

2: Quantize the local variable: x̂ki = Qkα,i(x
k
i) = xki + αki

3: Send x̂ki to all the neighbours of sub-system i

4: Compute the projection of x̂kNi
: x̃kNi

= Proj
CNi

(x̂kNi
)

5: Compute ∇fki = ∇fi(x̃kNi
)

6: Update the parameters of quantizer Qkβ,i: l
k
β,i = Cβκ

k and ∇̄fkβ,i = ∇̂fk−1
i

7: Quantize the gradient: ∇̂fki = Qkβ,i(∇fki) = ∇fki + βki
8: Send ∇̂fki to all the neighbours of sub-system i

9: Update the local variable: xk+1
i = Proj

Ci
(xki − τ

∑

j∈Ni
Fji∇̂fkj)

end for

on the number of bits and the initial quantization intervals, which guarantee that xki and ∇fki fall inside the quantization intervals

for each iteration. Once we prove the three lemmas, we are ready to present the main result in Theorem 3.14.

Lemma 3.6: Let C be a convex subset of Rnv and µ ∈ C. For any point v ∈ R
nv , the following holds:

‖µ− Proj
C
(v)‖ ≤ ‖µ− v‖ . (8)

Proof: Since µ ∈ C, we have Proj
C
(µ) = µ. Lemma 3.6 follows directly from Proposition 2.2.1 in [2].

Lemma 3.7: Algorithm 3 is equivalent to applying the inexact proximal-gradient method in Algorithm 1 to Problem 3.1 with

φ =
∑M
i=1 fi(xNi

), ψ =
∑M
i=1 ICi

(xi),

ek =

M
∑

i=1

ETi ∇fi(x̃kNi
) +

M
∑

i=1

ETi β
k
i −

M
∑

i=1

ETi ∇fi(xkNi
) ,

and ǫk = 1
2‖xk − x̃k‖2. Furthermore, ‖ek‖ and

√
ǫk are upper-bounded by

‖ek‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

‖αkj ‖+
M
∑

i=1

‖βki ‖ , (9)

and
√
ǫk ≤

√
2

2

M
∑

i=1

‖αki ‖ . (10)

The proof of Lemma 3.7 will be provided in the appendix in Section V-B.

Remark 3.8: Lemma 3.7 shows that the errors ‖ek‖ and
√
ǫk are upper-bounded by functions of the quantization errors ‖αki ‖

and ‖βki ‖. We want to emphasize that the quantization errors ‖αki ‖ and ‖βki ‖ are not necessarily bounded by a linear function

with the rate κ. They are bounded only if the values xki and ∇fi fall inside the quantization intervals that are decreasing at a

linear rate. Otherwise, the quantization errors ‖αki ‖ and ‖βki ‖ can be arbitrarily large.

From the discussion in Section II-B, we know that if ‖ek‖ and
√
ǫk decrease linearly at a rate larger than (1 − γ), then

‖xk−x⋆‖ converges linearly at the same rate as ‖ek‖. Lemma 3.9 provides the first step towards achieving this goal. It shows

that if the values of xki and ∇fki always fall inside the quantization interval, then the computational error of the gradient ‖ek‖
and the computational error of the proximal operator

√
ǫk as well as ‖xk − x⋆‖ decrease linearly with the constant κ.

Lemma 3.9: For any parameter κ satisfying (1 − γ) < κ < 1 and a k ≥ 0, if for all 0 ≤ p ≤ k the values of x
p
i and

∇fpi generated by Algorithm 3 fall inside of the quantization intervals of Q
p
α,i and Q

p
β,i, i.e. ‖xpi − x̄

p
α,i‖∞ ≤ l

p
α,i

2 and

‖∇fpi − ∇̄fpβ,i‖∞ ≤ l
p

β,i

2 , then the error sequences ‖ep‖ and
√
ǫp satisfy

‖ep‖ ≤ C1κ
p ,

√
ǫp ≤ C2κ

p , (11)

where C1 =
M

√
m̄(LmaxdCα+

√
dCβ)

2n+1 and C2 =
√
2
2 · M

√
m̄Cα

2n+1 , and ‖xp+1 − x⋆‖ satisfies

‖xp+1 − x⋆‖ ≤ κp+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)(1− γ)

]

. (12)

7

The proof of Lemma 3.9 will be provided in the appendix in Section V-C. From Lemma 3.9, we know that the last missing

piece is to show that the values xki and ∇fki fall inside the quantization interval at every iteration k. The following assumption

presents conditions on the number of bits n and the initial quantization intervals Cα and Cβ , which guarantee that for each

iteration xki and ∇fki in Algorithm 3 fall inside the changing quantization intervals and the quantization errors decrease linearly

with the constant κ, which further implies that the Algorithm 3 converges to the global optimum linearly with the same rate

κ.

Assumption 3.10: Consider the quantizers Qkα,i and Qkβ,i in Algorithm 3. We assume that the parameters of the quantizers,

i.e. the number of bits n and the initial quantization intervals Cα and Cβ satisfy

a1 + a2
Cα

2n+1
+ a3

Cβ

2n+1
≤ Cα

2
(13)

b1 + b2
Cα

2n+1
+ b3

Cβ

2n+1
≤ Cβ

2
, (14)

with

a1 =
(κ+ 1)‖x0 − x⋆‖

κ
, a2 =

M
√
m̄κ(κ+ 1)(dLmax +

√
L) +M

√
m̄L(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
, a3 =

M
√
dm̄(κ+ 1)

L(κ+ γ − 1)(1− γ)
,

b1 =
Lmax(κ+ 1)‖x0 − x⋆‖

κ
, b2 =

LmaxM
√
m̄κ(κ+ 1)(dLmax +

√
L) + Lmaxd

√
m̄L(κ+ 1)(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
,

b3 =
LmaxM

√
dm̄κ(κ+ 1) + L

√
dm̄(κ+ γ − 1)(1− γ)

Lκ(κ+ γ − 1)(1− γ)
.

Remark 3.11: The parameters of the quantizers n, Cα and Cβ are all positive constants. Assumption 3.10 can always be

satisfied by increasing n, Cα and Cβ .

Remark 3.12: For a fixed n, inequalities (13) and (14) represent two polyhedral constraints on Cα and Cβ . Therefore, the

minimal Cα and Cβ can be computed by solving a simple LP problem, i.e. minimizing Cα +Cβ subject to Cα ≥ 0, Cβ ≥ 0,

and inequalities (13) and (14). Since the minimal n is actually the minimal one guaranteeing that the LP problem has a feasible

solution, the minimal n can be found by testing feasibility of the LP problem.

Lemma 3.13: If Assumption 3.10 is satisfied and (1 − γ) < κ < 1, then for any k ≥ 0 the values of xki and ∇fki in

Algorithm 3 fall inside of the quantization intervals of Qkα,i and Qkβ,i, i.e. ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 .

The proof of Lemma 3.13 will be provided in the appendix in Section V-D. After showing Lemma 3.7, Lemma 3.9 and

Lemma 3.13, we are ready to present the main theorem.

Theorem 3.14: If Assumptions 3.2, 3.4 and 3.10 hold and (1− γ) < κ < 1, then for k ≥ 0 the sequence {xk} generated by

Algorithm 3 converges to the optimum linearly with the constant κ and satisfies

‖xk+1 − x⋆‖ ≤ κk+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)(1− γ)

]

. (15)

with C1 =
M

√
m̄(LmaxdCα+

√
dCβ)

2n+1 and C2 =
√
2
2 · M

√
m̄Cα

2n+1 .

Proof: Since Assumption 3.2, 3.4 and 3.10 hold, Lemma 3.13 states that for each iteration the values xki and ∇fki in

Algorithm 3 fall inside of the quantization intervals of Qkα,i and Qkβ,i. Then from Lemma 3.9, we know that the error sequences

‖ek‖ and
√
ǫk satisfy ‖ek‖ ≤ C1κ

k and
√
ǫk ≤ C2κ

k, and by Lemma 3.7 the sequence xk generated by Algorithm 3 satisfies

inequality (15).

Recalling the complexity bound in Proposition 2.3, we know that for the case without errors the algorithm converges linearly

with the constant 1−γ. After imposing quantization on the algorithm, it still converges to the global optimum linearly but with

a larger constant κ > 1−γ. We conclude that with the proposed quantization design, the linear convergence of the algorithm is

preserved, but the constant of the convergence rate has to be enlarged in order to compensate for the deficiencies from limited

communication.

D. Accelerated distributed algorithm with quantization refinement

In this section, we propose an accelerated variant of the distributed algorithm with quantization refinement in Algorithm 4

based on the inexact accelerated proximal gradient method in Algorithm 2. Compared to Algorithm 3, Algorithm 4 has an

extra accelerating Step 5 ỹkNi
= x̃kNi

+
1−√

γ

1+
√
γ
(x̃kNi

− x̃k−1
Ni

), and at each iteration the gradient ∇fki is computed based on ỹkNi
.

The accelerating step improves the constant of the linear convergence rate of the algorithms from 1 − γ to
√

1−√
γ, and

changes the condition on the quantization parameter κ to
√

1−√
γ < κ < 1.

8

Algorithm 4 Accelerated distributed algorithm with quantization refinement

Require: Initialize x̂−1
i = x−1

i = x0i = 0, x̃−1
Ni

= 0, ∇̂f−1
i = ∇fi(Proj

CNi
(0)),

√

1−√
γ < κ < 1 and τ < 1

L
.

for k = 0, 1, 2, · · · do

For sub-system i, i = 1, 2, · · · ,M do in parallel:

1: Update the parameters of quantizer Qkα,i: l
k
α,i = Cακ

k and x̄kα,i = x̂k−1
i

2: Quantize the local variable: x̂ki = Qkα,i(x
k
i) = xki + αki

3: Send x̂ki to all the neighbours of sub-system i

4: Compute the projection of x̂kNi
: x̃kNi

= Proj
CNi

(x̂kNi
)

5: Accelerating update: ỹkNi
= x̃kNi

+
1−√

γ

1+
√
γ
(x̃kNi

− x̃k−1
Ni

) and yki = xki +
1−√

γ

1+
√
γ
(xki − xk−1

i)

6: Compute ∇fki = ∇fi(ỹkNi
)

7: Update the parameters of quantizer Qkβ,i: l
k
β,i = Cβκ

k and ∇̄fkβ,i = ∇̂fk−1
i

8: Quantize the gradient: ∇̂fki = Qkβ,i(∇fki) = ∇fki + βki
9: Send ∇̂fki to all the neighbours of sub-system i

10: Update the local variable: xk+1
i = Proj

Ci
(yki − τ

∑

j∈Ni
Fji∇̂fkj)

end for

Lemma 3.15: Algorithm 4 is equivalent to applying the inexact accelerated proximal-gradient method in Algorithm 2 to

Problem 3.1 with φ =
∑M
i=1 fi(xNi

), ψ =
∑M
i=1 ICi

(xi),

ek =

M
∑

i=1

ETi ∇fi(ỹkNi
) +

M
∑

i=1

ETi β
k
i −

M
∑

i=1

ETi ∇fi(ykNi
) ,

and ǫk = 1
2‖xk − x̃k‖2. Furthermore, ‖ek‖ and

√
ǫk are upper-bounded by

‖ek‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

(
2

1 +
√
γ
‖αkj ‖+

1−√
γ

1 +
√
γ
‖αk−1

j ‖) +
M
∑

i=1

‖βki ‖ . (16)

and
√
ǫk ≤

√
2

2

M
∑

i=1

‖αki ‖ . (17)

Proof: The proof follows the same flow of the proof of Lemma 3.7. The only difference is that at each iteration the

gradient ∇fki is computed based on ỹkNi
, which is a linear combination of x̃kNi

and x̃k−1
Ni

. Hence, the upper-bound on the

computational error of the gradient ‖ek‖ is a function of the linear combination of ‖αk−1
i ‖, ‖αki ‖ and ‖βki ‖.

Lemma 3.16: For any parameter κ satisfying
√

1−√
γ < κ < 1 and a k ≥ 0, if for all 0 ≤ p ≤ k the values of x

p
i

and ∇fpi generated by Algorithm 4 fall inside of the quantization intervals of Q
p
α,i and Q

p
β,i, i.e. ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and

‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 , then the sequences ‖ep‖ and
√
ǫp satisfy

‖ep‖ ≤ C3κ
p ,

√
ǫp ≤ C4κ

p . (18)

where C3 =
M

√
m̄(3LmaxdCα+κ

√
dCβ)

κ·2n+1 and C4 =
√
2
2 · M

√
m̄Cα

2n+1 , and ‖xp+1 − x⋆‖ satisfies

‖xp+1 − x⋆‖ ≤ κp+1

[

2
√

Φ(x0)− Φ(x⋆)
√
σφ

+
(2C3 + 2

√
2LC4 +

√

2σφC4)κ

σφ(κ−
√

1−√
γ) ·

√

1−√
γ

]

. (19)

Proof: The proof follows the same flow of the proof of Lemma 3.9 by replacing the upper-bounds on ‖ek‖ and
√
ǫk

in Lemma 3.7 and the upper-bound on ‖xp+1 − x⋆‖ in Proposition 2.3 by the ones in Lemma 3.15 and Proposition 2.5. In

addition, the proof requires the fact that
√

1−√
γ < κ < 1 and 1 < 1 +

√
γ < 2.

Assumption 3.17: We assume that the number of bits n and the initial quantization intervals Cα and Cβ satisfy

a4 + a5
Cα

2n+1
+ a6

Cβ

2n+1
≤ Cα

2
(20)

b4 + b5
Cα

2n+1
+ b6

Cβ

2n+1
≤ Cβ

2
, (21)

9

with

a4 =
2(κ+ 1)

√

Φ(x0)− Φ(x⋆)

κ
√
σφ

,

a5 =
6M

√
m̄(κ+ 1)dLmax +M

√
m̄κ(κ+ 1)(2

√
L+

√
σφ) + σφM

√
m̄(κ−

√

1−√
γ) ·

√

1−√
γ

σφκ(κ−
√

1−√
γ) ·

√

1−√
γ

,

a6 =
2M

√
dm̄(κ+ 1)

σφ(κ−
√

1−√
γ) ·

√

1−√
γ
,

b4 =
2Lmax(2κ

2 + 3κ+ 1)
√

Φ(x0)− Φ(x⋆)

κ2
√
σφ

,

b5 =
Lmax

√
m̄(2κ2 + 3κ+ 1)

κ2

[

d+
6MdLmax +Mκ(2

√
L+

√
σφ)

σφ(κ−
√

1−√
γ) ·

√

1−√
γ

]

,

b6 =
2LmaxM

√
dm̄(2κ2 + 3κ+ 1) + σφ

√
dm̄(κ−

√

1−√
γ) ·

√

1−√
γ

σφκ(κ−
√

1−√
γ) ·

√

1−√
γ

.

Lemma 3.18: If Assumption 3.17 is satisfied and
√

1−√
γ < κ < 1, then for any k ≥ 0 the values of xki and ∇fki in

Algorithm 4 fall inside of the quantization intervals of Qkα,i and Qkβ,i, i.e. ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 .

The proof of Lemma 3.18 will be provided in the appendix in Section V-E.

Theorem 3.19: If Assumptions 3.2, 3.4 and 3.17 hold and
√

1−√
γ < κ < 1, then for k ≥ 0 the sequence {xk} generated

by Algorithm 4 converges to the optimum linearly with the constant κ and satisfies

‖xk+1 − x⋆‖ ≤ κk+1

[

2
√

Φ(x0)− Φ(x⋆)
√
σφ

+
(2C3 + 2

√
2LC4 +

√

2σφC4)κ

σφ(κ−
√

1−√
γ) ·

√

1−√
γ

]

, (22)

with C3 =
M

√
m̄(3LmaxdCα+κ

√
dCβ)

κ·2n+1 and C4 =
√
2
2 · M

√
m̄Cα

2n+1 .

Proof: The proof follows directly from the proof of Theorem 3.14 by replacing Lemma 3.7, Lemma 3.9 and Lemma 3.13

by Lemma 3.15, Lemma 3.16 and Lemma 3.18.

IV. NUMERICAL EXAMPLE

This section illustrates the theoretical findings of the paper and demonstrates the performance of Algorithm 3 and Algorithm 4

for solving a distributed quadratic programming (QP) problem originating from the problem of regulating constrained distributed

linear systems by model predictive control (MPC) in the form of Problem 4.1. For more information about distributed MPC,

see e.g. [5], [4] and [12].

Problem 4.1:

min
z,u

M
∑

i=1

N−1
∑

t=0

li(zi(t), ui(t)) +
M
∑

i=1

l
f
i (zi(N))

s.t. zi(t+ 1) = Aiizj(t) +
∑

j∈Ni

Bijuj(t)

ui(t) ∈ Ui , zi(0) = z̄i , i = 1, 2, · · · ,M ,

M and N denote the number of subsystems and the horizon of the MPC problem, respectively. The state and input sequences

along the horizon of subsystem i are denoted by zi = [zTi (0), z
T
i (1), · · · , zTi (N)]T and ui = [uTi (0), u

T
i (1), · · · , uTi (N−1)]T .

The discrete-time linear dynamics of subsystem i are given by zi(t + 1) = Aiizj(t) +
∑

j∈Ni
Bijuj(t), where Aii and Bij

are the dynamic matrices. The initial state is denoted by z̄i. The control inputs of subsystem i are subject to local convex

constraints ui(t) ∈ Ui. li(·, ·) and l
f
i (·) are strictly convex cost functions. From Problem 4.1, we can see that subsystem i is

coupled with its neighbours in the linear dynamics.

We randomly generate a distributed MPC problem in the form of Problem 4.1. We first randomly generate a connected

network with M = 40 sub-systems. Each sub-system has 3 states and 2 inputs. The dynamical matrices Aii and Bij are

randomly generated, i.e. generally dense, and the local systems are controllable and unstable. The input constraint Ui for

sub-system i is set to Ui = {ui| − 0.4 · 1 ≤ ui(t) ≤ 0.3 · 1}, where 1 denotes the all-ones vector with the same dimension

as ui. The horizon of the MPC problem is set to N = 11. The local cost functions are chosen as quadratic functions

li(zi(t), ui(t)) = zTi (t)Qizi(t) + uTi (t)Riui(t) and l
f
i (zi(N)) = zTi (N)Pizi(N), where Qi, Ri and Pi are identity matrices.

The initial states z̄i are chosen, such that more than 50% of the optimization variables are at the constraints at optimality.

10

Parameters Algorithm 3 Algorithm 4

Constant of rate 1− γ = 0.8093
√

1−
√
γ = 0.7505

κ 0.9333 0.7991

nmin 13 19

Table I: The parameters in Algorithm 3 and Algorithm 4 for solving Problem 4.2.

Problem 4.2:

min
x∈Rnx

f(x) =

M
∑

i=1

fi(xNi
) =

M
∑

i=1

xTNi
HixNi

+ hixNi

s.t. xi ∈ Ci .

By eliminating all state variables distributed MPC problems of this class can be reformulated as a distributed QP of the

form in Problem 4.2 with the local variables xi = ui and the concatenations of the variables of subsystem i and its neighbours

xNi
. Matrix Hi is dense and positive definite, and vector hi is dense. The constraint Ci = U

N
i is a polytopic set.

Table I shows the parameters chosen in Algorithm 3 and Algorithm 4, including the constants of the convergence rate of

the algorithms, i.e. γ =
σf

L
and

√

1−√
γ, the decrease rates of the quantization intervals κ satisfying 1 − γ ≤ κ ≤ 1 for

Algorithm 3 and
√

1−√
γ ≤ κ ≤ 1 for Algorithm 4 and the minimum number of bits required for convergence nmin.

Fig. 2 shows the relationship between the number of bits n and the minimum initial quantization intervals Cα and Cβ ,

which satisfy Assumption 3.10 for Problem 4.2. We see that the minimum number of bits required for convergence is equal

to nmin = 13, and as the number of bits n increases, the required minimum Cα and Cβ decrease.

Fig. 3 shows the performance of Algorithm 3 and Algorithm 4 for solving the distributed QP problem in Problem 4.2

originating from the distributed MPC problem. For Algorithm 3, n is set to 13 and 15, respectively, and the initial quantization

intervals Cα and Cβ are set to corresponding minimum values satisfying Assumption 3.10. For Algorithm 4, n is set to 19
and 23, and Cα and Cβ to corresponding minimum values satisfying Assumption 3.17. In Fig. 3 we can observe that the

proposed distributed algorithms with quantization converges to the global optimum linearly and the performance is improved

when the number of bits n is increased. Due to the acceleration step, Algorithm 4 converges faster than Algorithm 3. However,

Algorithm 4 requires a larger number of bits n to guarantee the convergence.

12 14 16 18 20 22
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

n

C
α
+

C
β

nmin = 13 Cα + Cβ

Figure 2: Relationship between the number of bits n and the minimum initial quantization intervals Cα and Cβ satisfying

Assumption 3.10 for Problem 4.2 originating from the distributed MPC problem.

V. APPENDIX

A. Proof of Proposition 2.5

Proof: By the strong convexity of the function φ, we know

σφ

2
‖xk+1 − x⋆‖2 ≤ Φ(xk+1)− Φ(x⋆) .

From Proposition 4 in [14], it follows that

‖xk+1−x⋆‖2 ≤ 2

σφ
(1−√

γ)k+1

√

2(Φ(x0)− Φ(x⋆)) +

√

2

σΦ

k
∑

p=0

(‖ep‖+
√

2L(∇φ)ǫp)(1−√
γ)−

p+1

2 +

√

√

√

√

k
∑

p=0

ǫp(1−√
γ)−p−1

2

.

11

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iteration k

‖
x
k
−

x
⋆
‖

Algo. 3, n=13

Algo. 3, n=15

Algo. 3, no errors

Algo. 4, n=19

Algo. 4, n=23

Algo. 4, no errors

Figure 3: Comparison of the performance of Algorithm 3 and Algorithm 4 with different n and corresponding minimum Cα
and Cβ with the exact algorithms (no quantization errors) for Problem 4.2.

By the fact
√
v + µ ≤ √

v +
√
µ for any v, µ ∈ R+, we simplify the inequality above as

‖xk+1 − x⋆‖2 ≤ 2

σφ
(1−√

γ)k+1

(

√

2(Φ(x0)− Φ(x⋆)) +

√

2

σφ

k
∑

p=0

(‖ep‖+ (
√

2L(∇φ) +
√

σφ

2
)
√
ǫp)(1−√

γ)−
p+1

2

)2

.

Taking the square-root of both sides of the inequality above, we get inequality (4).

B. Proof of Lemma 3.7

Proof: By the definition, the gradient computation error ek in Algorithm 1 is equal to

ek = ∇̂f(x̃k)−∇f(xk) =
M
∑

i=1

ETi ∇̂fi(x̃kNi
)−

M
∑

i=1

ETi ∇fi(xkNi
)

=

M
∑

i=1

ETi ∇fi(x̃kNi
) +

M
∑

i=1

ETi β
k
i −

M
∑

i=1

ETi ∇fi(xkNi
).

Then,

‖ek‖ ≤
M
∑

i=1

‖ETi ‖ · Li · ‖x̃kNi
− xkNi

‖+
M
∑

i=1

‖ETi ‖‖βki ‖ .

Note that the matrix Ei is a selection matrix, then ‖ETi ‖ = 1. Since xkNi
∈ CNi

and x̃kNi
= Proj

CNi
(x̂kNi

), Lemma 3.6 implies

‖x̃kNi
− xkNi

‖ ≤ ‖x̂kNi
− xkNi

‖. Hence, we have

‖ek‖ ≤
M
∑

i=1

Li · ‖x̂kNi
− xkNi

‖+
M
∑

i=1

‖βki ‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

‖αkj ‖+
M
∑

i=1

‖βki ‖ .

By definition in (2) and the fact that xk ∈ C and x̃k = Proj
C
(x̂k), we know ǫk = 1

2‖xk − x̃k‖2. Lemma 3.6 again implies

‖xk − x̃k‖ ≤ ‖xk − x̂k‖. Hence, we have

√
ǫk =

√
2

2
‖xk − x̃k‖ ≤

√
2

2
‖xk − x̂k‖ ≤

√
2

2

M
∑

i=1

‖αki ‖ .

12

C. Proof of Lemma 3.9

Proof: From the property of the uniform quantizer, we know that if x
p
i and ∇fpi fall inside of the quantization intervals

of Q
p
α,i and Q

p
β,i, then the quantization errors α

p
i and β

p
i are upper-bounded by

‖αpi ‖ ≤ √
mi · ‖αpi ‖∞ ≤ √

mi ·
l
p
α,i

2n+1
≤

√
m̄ ·

l
p
α,i

2n+1
, ‖βpi ‖ ≤

√

∑

j∈Ni

mi · ‖βpi ‖∞ ≤
√

∑

j∈Ni

mi ·
l
p
β,i

2n+1
≤

√
dm̄ ·

l
p
β,i

2n+1
,

where m̄ := max1≤i≤M mi and d denotes the degree of the graph of the distributed optimization problem. From Lemma 3.7,

we have

‖ep‖ ≤
M
∑

i=1

Li ·
∑

j∈Ni

√
m̄ · lpα,j
2n+1

+

M
∑

i=1

√
dm̄ · lpβ,i
2n+1

,

and
√
ǫk ≤

√
2

2

M
∑

i=1

√
m̄l

p
α,i

2n+1
.

Since the quantization intervals are set to l
p
α,i = Cακ

p and l
p
β,i = Cβκ

p, it implies that

‖ep‖ ≤ MLmaxd
√
m̄ · Cακp

2n+1
+
M

√
dm̄ · Cβκp
2n+1

= C1κ
p ,

and √
ǫk ≤

√
2

2
· M

√
m̄Cακ

p

2n+1
= C2κ

p ,

with C1 =
M

√
m̄(LmaxdCα+

√
dCβ)

2n+1 and C2 =
√
2
2 · M

√
m̄Cα

2n+1 , where Lmax := max1≤i≤M Li. Since (1−γ) < κ < 1, Lemma 3.7

and Proposition 2.3 imply that for 0 ≤ p ≤ k

‖xp+1 − x⋆‖ ≤ (1− γ)p+1‖x0 − x⋆‖+ (C1 +
√
2LC2)

L

p
∑

q=0

κq(1− γ)p+1−q−1

≤ κp+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)

L(1− γ)

p
∑

q=0

(
1− γ

κ
)p+1−q

]

.

Since 0 < (1− γ) < κ < 1, by using the property of geometric series, we get that the expression above is equal to

= κp+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)

L(1− γ)
· 1− (1−γ

κ
)p+1

1− 1−γ
κ

]

≤ κp+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)(1− γ)

]

.

Hence, inequality (12) is proven.

D. Proof of Lemma 3.13

Proof: We will prove Lemma 3.13 by induction.

• Base case: When k = 0, since Cα and Cβ are positive numbers and x̂−1
i and x0i are initialized to zero, it holds that

‖x0i − x̄0α,i‖∞ = ‖x0i − x̂−1
i ‖∞ = 0 ≤ l0α,i

2 = Cα

2 and ‖∇f0i − ∇̄f0β,i‖∞ = ‖∇f0i − ∇̂f−1
i ‖∞ = ‖∇fi(x̃0Ni

) −
∇fi(Proj

CNi
(0))‖ = 0 ≤ l0β,i

2 =
Cβ

2 .

• Induction step: Let g ≥ 0 be given and suppose that ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for 0 ≤ k ≤ g.

We will prove that

‖xg+1
i − x̄

g+1
α,i ‖∞ ≤

l
g+1
α,i

2
(23)

and

‖∇fg+1
i − ∇̄fg+1

β,i ‖∞ ≤
l
g+1
β,i

2
(24)

13

for i = 1, · · · ,M . We first show (23). From Algorithm 3, we know

‖xg+1
i − x̄

g+1
α,i ‖∞ = ‖xg+1

i − x̂
g
i ‖∞

≤ ‖xg+1 − x̂g‖∞

= ‖xg+1 − xg −
M
∑

i=1

ETi F
T
ii α

g
i ‖∞

≤ ‖xg+1 − xg‖∞ + ‖
M
∑

i=1

ETi F
T
ii α

g
i ‖∞

≤ ‖xg+1 − x⋆‖∞ + ‖xg − x⋆‖∞ + ‖
M
∑

i=1

ETi F
T
ii α

g
i ‖∞ .

Since Ei and Fii are selection matrices, then ‖Ei‖ = ‖Fii‖ = 1. The term above is upper-bounded by

≤ ‖xg+1 − x⋆‖2 + ‖xg − x⋆‖2 +
M
∑

i=1

‖αgi ‖2 .

By the assumption of the induction, we know ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for 0 ≤ k ≤ g. Then,

using Lemma 3.9, we obtain that the term above is upper-bounded by

≤ κg+1

[

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)(1− γ)

]

+ κg
[

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)(1− γ)

]

+
M

√
m̄Cακ

g

2n+1
.

By substituting C1 =
M

√
m̄(LmaxdCα+

√
dCβ)

2n+1 and C2 =
√
2
2 ·M

√
m̄Cα

2n+1 and using the parameters defined in Assumption 3.10,

it follows that the expression above is equal to

= κg+1

[

a1 + a2
Cα

2n+1
+ a3 ·

Cβ

2n+1

]

.

By inequality (13) in Assumption 3.10, the term above is bounded by Cα

2 κ
g+1. Thus, inequality (23) holds. In the

following, we prove that inequality (24) is true.

‖∇fg+1
i − ∇̄fg+1

β,i ‖∞ = ‖∇fg+1
i − ∇̂fgi ‖∞

= ‖∇fi(x̃g+1
Ni

)−∇fi(x̃gNi
) + β

g
i ‖∞

≤ ‖∇fi(x̃g+1
Ni

)−∇fi(x̃gNi
)‖∞ + ‖βgi ‖∞

≤ ‖∇fi(x̃g+1
Ni

)−∇fi(x̃gNi
)‖2 + ‖βgi ‖2

≤ Li‖x̃g+1
Ni

− x̃
g
Ni

‖+ ‖βgi ‖
≤ Li‖xg+1

Ni
− x

g
Ni

‖+ Li‖x̃g+1
Ni

− x
g+1
Ni

‖+ Li‖x̃gNi
− x

g
Ni

‖+ ‖βgi ‖

Since x
g+1
Ni

, x
g
Ni

∈ CNi
, x̃

g+1
Ni

= Proj
CNi

(x̂g+1
Ni

) and x̃
g
Ni

= Proj
CNi

(x̂gNi
), Lemma 3.6 implies ‖x̃g+1

Ni
− x

g+1
Ni

‖ ≤
‖x̂g+1

Ni
− x

g+1
Ni

‖ and ‖x̃gNi
− x

g
Ni

‖ ≤ ‖x̂gNi
− x

g
Ni

‖. Hence, the term above is upper-bounded by

≤ Li‖xg+1
Ni

− x
g
Ni

‖+ Li‖x̂g+1
Ni

− x
g+1
Ni

‖+ Li‖x̂gNi
− x

g
Ni

‖+ ‖βgi ‖
≤ Li‖xg+1

Ni
− x

g
Ni

‖+ Li
∑

j∈Ni

(‖αg+1
j ‖+ ‖αgj‖) + ‖βgi ‖

≤ Li‖xg+1 − xg‖+ Li
∑

j∈Ni

(‖αg+1
j ‖+ ‖αgj‖) + ‖βgi ‖

≤ Lmax(‖xg+1 − x⋆‖+ ‖xg − x⋆‖) + Lmax

∑

j∈Ni

(‖αg+1
j ‖+ ‖αgj‖) + ‖βgi ‖ .

Again by the assumption of the induction, we know ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for 0 ≤ k ≤ g.

14

Then, Lemma 3.9 implies that the term above is upper-bounded by

≤Lmaxκ
g+1

(

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)

)

+ Lmaxκ
g

(

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)

)

+
Lmax

√
m̄
∑

j∈Ni
(lg+1
α,j + l

g
α,j)

2n+1
+

√
dm̄l

g
β,i

2n+1

≤Lmaxκ
g+1

(

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)

)

+ Lmaxκ
g

(

‖x0 − x⋆‖+ (C1 +
√
2LC2)κ

L(κ+ γ − 1)

)

+
Lmax

√
dm̄Cα(κ

g+1 + κg)

2n+1
+

√
dm̄Cβκ

g

2n+1
.

By substituting C1 =
M

√
m̄(LmaxdCα+

√
dCβ)

2n+1 and C2 =
√
2
2 ·M

√
m̄Cα

2n+1 and using the parameters defined in Assumption 3.10,

it follows that the expression above is equal to

= κg+1 ·
[

b1 + b2 ·
Cα

2n+1
+ b3 ·

Cβ

2n+1

]

.

By inequality (14) in Assumption 3.10, the term above is bounded by
Cβ

2 κ
g+1 =

l
g+1

β,i

2 . Thus, inequality (24) holds.

We conclude that by the principle of induction, the values of xki and ∇fki in Algorithm 3 fall inside of the quantization

intervals of Qkα,i and Qkβ,i, i.e. ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for all k ≥ 0.

E. Proof of Lemma 3.18

Proof: The proof is similar to the proof of Lemma 3.13. The difference is that at each iteration the gradient ∇fki is

computed based on ỹkNi
, which is a linear combination of x̃kNi

and x̃k−1
Ni

. We therefore only show a brief proof for the second

step, i.e. the inequality ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for any k ≥ 0 by induction.

• Base case: When k = 0, since Cβ is positive a number, x̃−1
Ni

and x0i are initialized to zero and ∇̂f−1
i = ∇fi(Proj

CNi
(0)),

it holds that ‖∇f0i − ∇̄f0β,i‖∞ = ‖∇f0i − ∇̂f−1
i ‖∞ = ‖∇fi(ỹ0Ni

)−∇fi(Proj
CNi

(0))‖ = 0 ≤ l0β,i

2 =
Cβ

2 .

• Induction step: Let g ≥ 0 be given and suppose that ‖xki − x̄kα,i‖∞ ≤ lkα,i

2 and ‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 for 0 ≤ k ≤ g.

We will prove

‖∇fg+1
i − ∇̄fg+1

β,i ‖∞ ≤
l
g+1
β,i

2
. (25)

From the algorithm, we know

‖∇fg+1
i − ∇̄fg+1

β,i ‖∞ = ‖∇fg+1
i − ∇̂fgi ‖∞

= ‖∇fi(ỹg+1
Ni

)−∇fi(ỹgNi
) + β

g
i ‖∞

≤ Li‖yg+1
Ni

− y
g
Ni

‖+ Li‖ŷg+1
Ni

− y
g+1
Ni

‖+ Li‖ŷgNi
− y

g
Ni

‖+ ‖βgi ‖ .

By substituting ŷ
g
Ni

= 2
1+

√
γ
x̂
g
Ni

− 1−√
γ

1+
√
γ
x̂
g−1
Ni

, y
g
Ni

= 2
1+

√
γ
x
g
Ni

− 1−√
γ

1+
√
γ
x
g−1
Ni

and Lmax := max1≤i≤M Li, and using the

fact that 2
1+

√
γ
≤ 2 and

1−√
γ

1+
√
γ
≤ 1, the expression above is upper-bounded by

≤ Lmax(2‖xg+1 − x⋆‖+ 3‖xg − x⋆‖+ ‖xg−1 − x⋆‖) + Lmax

∑

j∈Ni

(2‖αg+1
j ‖+ 3‖αgj‖+ ‖αg−1

j ‖) + ‖βgi ‖ .

By the assumption of the induction and Lemma 3.16, we obtain that the above is upper-bounded by

≤Lmax(2κ
g+1 + 3κg + κg−1)

[

2
√

Φ(x0)− Φ(x⋆)
√
σφ

+
(2C3 + 2

√
2LC4 +

√

2σφC4)κ

σφ(κ−
√

1−√
γ) ·

√

1−√
γ

]

+
Lmax

√
m̄d(2lg+1

α,j + 3lgα,j + l
g−1
α,j)

2n+1
+

√
dm̄l

g
β,i

2n+1
.

By substituting C3 =
M

√
m̄(3LmaxdCα+κ

√
dCβ)

κ·2n+1 and C4 =
√
2
2 · M

√
m̄Cα

2n+1 and using the parameters defined in Assump-

tion 3.17, the expression becomes

=κg+1 ·
[

b4 + b5 ·
Cα

2n+1
+ b6 ·

Cβ

2n+1

]

.

15

By inequality (21) in Assumption 3.17, the term above is bounded by
Cβ

2 κ
g+1 =

l
g+1

β,i

2 . Thus, the inequality ‖∇fg+1
i −

∇̄fg+1
β,i ‖∞ ≤ l

g+1

β,i

2 holds. The proof of the induction step is complete.

By the principle of induction, we conclude that the inequality‖∇fki − ∇̄fkβ,i‖∞ ≤ lkβ,i

2 holds for any k ≥ 0.

REFERENCES

[1] A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, pages
183–202, 2009.

[2] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex analysis and optimization. Athena Scientific Belmont, 2003.
[3] R. Carli, F. Fagnani, P. Frasca, T. Taylor, and R. Zampieri. Average consensus on networks with transmission noise or quantization. In European Control

Conference, pages 1852–1857, 2007.
[4] C. Conte, T. Summers, M.N. Zeilinger, M. Morari, and C.N. Jones. Computational aspects of distributed optimization in model predictive control. In

51th IEEE Conference on Decision and Control, pages 6819–6824, 2012.
[5] C. Conte, N. R. Voellmy, M. N. Zeilinger, M. Morari, and C. N. Jones. Distributed synthesis and control of constrained linear systems. In American

Control Conference, pages 6017–6022, 2012.
[6] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming, pages

1–39, 2013.
[7] Q. T. Dinh, I. Necoara, and M. Diehl. Fast inexact decomposition algorithms for large-scale separable convex optimization. arXiv preprint

arXiv:1212,4275, 2012.
[8] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
[9] A. Kashyap, T. Basar, and R. Srikant. Quantized consensus. Automatica, 43:1192–1203, 2007.

[10] V. Nedelcu, I. Necoara, and I. Dumitrache. Complexity of an inexact augmented lagrangian method: Application to constrained MPC. In 19th World

Congress of the International Federation of Automatic Control, pages 2927–2932, 2014.
[11] A. Nedic, A. Olshevsky, A. Ozdaglar, and J.N. Tsitsiklis. Distributed subgradient methods and quantization effects. In 47th IEEE Conference on Decision

and Control, pages 4177–4184, 2008.
[12] Y. Pu, M.N. Zeilinger, and C. N. Jones. Inexact fast alternating minimization algorithm for distributed model predictive control. In 53th IEEE Conference

on Decision and Control, pages 5915–5921, 2014.
[13] Y. Pu, M.N. Zeilinger, and C. N. Jones. Quantization design for unconstrained distributed optimization. In American Control Conference, 2015.
[14] M. Schmidt, N. L. Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. In 25th Annual Conference on

Neural Information Processing Systems, pages 6819–6824, 2011.
[15] D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard. Distributed average consensus with quantization refinement. IEEE Transactions on Signal Processing,

61:194–205, 2013.

