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Abstract
This dissertation discusses algorithmic verification techniques for concurrent component-

based systems modeled in the Behavior-Interaction-Priority (BIP) framework with both

bounded and unbounded concurrency.

BIP is a component framework for mixed software/hardware system design in a rigorous

and correct-by-construction manner. System design is defined as a formal, accountable and

coherent process for deriving trustworthy and optimised implementations from high-level

system models and the corresponding execution platform descriptions. The essential prop-

erties of a system model are guaranteed at the earliest possible design phase, and a correct

implementation is then automatically generated from the validated high-level system model

through a sequence of property preserving model transformations, which progressively refines

the model with details specific to the target execution platform.

BIP comes with a well-defined formal modeling language and a toolchain to support the rigor-

ous system design. The BIP modeling language offers a three-layered modeling mechanism, i.e.

Behavior, Interaction, and Priority for constructing complex system behavior and architectures.

Behavior is characterized by a set of components, which are formally defined as automata

extended with local data variables. Interaction specifies the multiparty synchronization of

components, among which data transfer may take place. Priority can be used to schedule the

interactions or resolve conflicts when several interactions are enabled simultaneously. The

key principle of this three-layered modeling mechanism is the separation of concerns, i.e.

system behavior is captured by a set of components, and system coordination is modeled by

interactions and priorities.

In BIP, algorithmic verification techniques are applied to ensure the essential safety properties

of the system designs. The first major contribution of this dissertation is an efficient safety

verification technique for BIP system models, where the number of participating components

is fixed and the data variables can have infinite domains, but their manipulation is limited

to linear arithmetic. The key insight of our technique is to take advantage of the structure

features of the BIP system and handle the computation in the components and coordination

between the components in the verification separately. On the computation level, we apply

the state-of-the-art counterexample abstraction techniques to reason about the behavior of

components and explore all the possible reachable states ; while on the coordination level,

we exploit both partial order techniques and symmetry reduction techniques to handle the

state space explosion problem due to concurrency, and reduce the redundant interleavings of

concurrent interactions. We have implemented the proposed techniques in a prototype tool
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and carried out a comprehensive performance evaluation on a set of BIP system models.

The second major contribution of this dissertation is a uniform design and verification frame-

work for parameterized systems based on BIP. Parameterized systems are systems consisting

of homogeneous processes, and the parameter indicates the number of such processes in

the system. A parameterized system, therefore, describes an infinite family of systems, where

instances of the family can be obtained by fixing the value of the parameter. Verification of

correctness of such systems amounts to verifying the correctness of every member of the

infinite family described by the system.

First of all, we propose the first order interaction logic (FOIL) as a formal language for parame-

terized system architectures and communication primitives. This logic is powerful enough

to express architectures found in distributed systems, including the classical architectures :

token-passing rings, rendezvous cliques, broadcast cliques, rendezvous stars. We also identify

a fragment of FOIL that is well-suited for the specification of parameterized BIP systems and

prove its decidability. Second, we provide a framework for the integration of mathematical

models from the parameterized model checking literature in an automated way. With our new

framework, we close the gap between the mathematical formalisms and algorithms from the

parameterized verification research and the practice of parameterized verification, which is

usually done by engineers who are not familiar with the details of the literature. Finally, we

provide a preliminary prototype implementation of the proposed framework. Our prototype

tool takes a parameterized BIP design as its input and identifies the classical model checking

results which can be applies to this BIP design.

Keywords : Component-based design, Concurrent system, Model checking, Algorithmic verifi-

cation, Parameterized verification, Predicate abstraction, Partial order reduction, Symmetry

reduction, Well-structured transition system
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Zusammenfassung
Diese Dissertation diskutiert algorithmische Verifikationstechniken für parallel laufende kom-

ponenten basierte Systeme, die im BIP-Framework (Behavior, Interaction, Priority) mit sowohl

begrenzter als auch unbegrenzter Parallelität modelliert sind.

BIP ist ein Komponenten framework für gemischte Software/Hardware Systementwicklung

welches mit einer rigorosen konstruktionsbegleitenden Korrektur ausgestattet ist. Systemen-

twicklung ist definiert als ein formaler, rechenschaftspflichtiger und kohärenter Prozess zur

Ableitung vertrauenswürdiger und optimierter Implementierungen aus hochrangigen System-

modellen und den entsprechenden Ausführungsplattformbeschreibungen. Die wesentlichen

Eigenschaften eines Systemmodells werden in der frühestmöglichen Entwicklungsphase

garantiert und eine korrekte Implementierung erfolgt dann automatisch aus dem zertifizierten

hochrangigem Systemmodell durch eine Sequenz von zielplattformspezifischen Transforma-

tionen, welche die Modelligenschaften bewahren und das Modell schrittweise verfeinern.

BIP ist mit einer klar definierten formalen Modelliersprache und einer Werkzeugkette zur

Unterstützung der rigorosen Systementwicklung ausgestattet. Die BIP-Modellierungssprache

bietet einen dreischichtigen Modellierungsmechanismus, d.h. Verhalten, Interaktion und

Priorität, für den Aufbau komplexer Systemverhalten und Architekturen. Das Verhalten ze-

ichnet sich durch einen Satz von Komponenten aus, welche formal als Automaten, erweitert

mit linearer Arithmetik, definiert sind. Interaktion gibt die Multi-party Synchronisation von

datenübertragender Komponenten an. Priorität kann verwendet werden um die Interaktionen

zu planen oder Konflikte zu lösen, wenn mehrere Interaktionen gleichzeitig aktiviert werden.

Das Hauptprinzip dieses dreischichtigen Modellierungsmechanismus ist die Trennung von

Aufgaben, d.h. das Systemverhalten wird durch einen Satz von Komponenten erfasst und die

Systemkoordination wird durch Interaktionen und Prioritäten modelliert.

Im BIP werden algorithmische Verifikationstechniken angewendet um die wesentlichen Sicher-

heitseigenschaften der Systementwicklung zu gewährleisten. Der erste wesentliche Beitrag

dieser Dissertation ist eine effiziente Sicherheitsüberprüfungstechnik für BIP-Systemmodelle

mit einer festen Anzahl an teilnehmenden Komponenten. Die Schlüsseleigenschaft unser-

er Technik ist, dass sie die Struktur BIP-Systeme nutzt um die Berechnung und Koordina-

tion bei der Überprüfung separat zu behandeln. Auf der Berechnungsstufe wenden wir die

State-of-the-Art-Gegenbeispiel-Abstraktionstechniken an, um das Verhalten der Komponen-

ten zu begründen und alle möglichen erreichbaren Zustände zu untersuchen. Auf der Ko-

ordinationsebene nutzen wir Halbordnungs- und Symmetriereduktionstechniken um das

Zustandsraum-Explosions-Problem aufgrund von Parallelität zu behandeln und die redun-
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danten Wechselwirkungen von gleichzeitigen Interaktionen zu reduzieren. Wir haben die

vorgeschlagenen Techniken in einem Prototyp-Tool implementiert und eine umfassende

Performanceevaluierung auf einem Satz von BIP-Systemmodellen vollzogen.

Der zweite Hauptbeitrag dieser Dissertation ist ein einheitliches Entwicklungs- und Verifizierungs-

Tool für parametrisierte BIP-Systeme. Parametrisierte Systeme sind Systeme, die aus homoge-

nen Prozessen bestehen, wobei der Parameter die Anzahl solcher Prozesse im System angibt.

Ein parametrisiertes System beschreibt daher eine unendliche Familie von Systemen, in welch-

er Instanzen der Familie durch Festlegung des Parameters erhalten werden. Die Überprüfung

der Fehlerfreiheit solcher Systeme beläuft sich auf das Überprüfen der Fehlerfreiheit jedes

Mitglieds der unendlichen Familie, die durch das System beschrieben wird.

Zunächst schlagen wir die Interaktionslogik erster Ordnung als formale Sprache für parametrisierte

Systemarchitekturen und Kommunikationsprimitive vor. Diese Logik ist leistungsfähig genug

um Architekturen in verteilten Systemen auszudrücken, darunter die klassischen Architek-

turen wie Token-Passing Ringe, Rendezvous Cliquen, Broadcast Cliquen und Rendezvous

Stars. Wir identifizieren auch ein Fragment der Interaktionslogik erster Ordnung welches gut

geeignet ist für die Beschreibung von parametrisierten BIP-Modellen und beweisen seine

Entscheidbarkeit. Zweitens stellen wir ein Framework für die automatische Integration von

mathematischen Modelle aus der parametrisierten Modellprüfungsliteratur bereit. Mit un-

serem neuen Framework schliessen wir die Kluft zwischen den mathematischen Formalis-

men und Algorithmen aus der parametrisierten Verifikationsforschung und der Praxis der

parametrisierten Verifikation, die in der Regel von Ingenieuren durchgeführt wird, die mit den

Details der Literatur nicht vertraut sind. Schliesslich stellen wir eine vorläufige Prototypenim-

plementierung des vorgeschlagenen Frameworks zur Verfügung. Unser Prototyp-Tool nimmt

ein parametrisiertes BIP-Design als Eingabe und identifiziert die klassischen Modellverifika-

tionsresultate, welche auf dieses BIP-Design angewendet werden können.

Stichwörter: Komponentenbasiertes Design, Gleichzeitiges System, Modellprüfung, Algorith-

mische Verifikation, Parametrierte Verifikation, Eigenschafts Abstraktion, Partielle Auftragsre-

duktion, Symmetrieverkleinerung, Gut strukturiertes Übergangssystem
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Résumé
Cette dissertation traite des techniques de vérification algorithmique pour les systèmes con-

currents basés sur les composants, modélisés dans le cadre BIP (Behavior, Interaction, Priority)

avec des concurrences bornées et non bornées.

BIP est un framework de composants pour la conception rigoureuse et correcte par construc-

tion de systèmes de systèmes logiciels/matériels mixtes. La conception du système est définie

comme un processus formel, responsable et cohérent pour obtenir des implémentations

fiables et optimisées à partir de modèles de systèmes de haut niveau et des descriptions

des plates-formes d’exécution correspondantes. Les propriétés essentielles d’un modèle de

système sont garanties à la phase de conception la plus précoce possible et une implémenta-

tion correcte est ensuite générée automatiquement à partir du modèle de système de haut

niveau certifié par une suite de transformations préservant les propriétés du modèle, qui

affine progressivement le modèle avec des détails spécifiques à la plate-forme d’exécution

cible.

BIP est livré avec un langage de modélisation formel bien défini et une chaîne d’outils pour

soutenir la conception rigoureuse du système. Le langage de modélisation BIP offre un mécan-

isme de modélisation à trois couches pour construire des comportements et des architectures

de systèmes complexes, c’est-à-dire Comportement, Interaction et Priorité. ’Comportement’

est caractérisé par un ensemble de composants qui sont formellement définis comme des au-

tomates étendus par des variables de données locales. ’Interaction’ spécifie la synchronisation

multipartite des composants parmi lesquels le transfert de données peut avoir lieu. ’Priorité’

peut être utilisée pour planifier les interactions ou résoudre les conflits lorsque plusieurs inter-

actions sont activées simultanément. Le principe clé de ce mécanisme de modélisation à trois

couches est la séparation des préoccupations, c’est-à-dire que le comportement du système

est capté par un ensemble de composantes, et la coordination du système est modélisée par

des interactions et des priorités.

Dans BIP, des techniques de vérification algorithmique sont appliquées pour assurer les pro-

priétés de sécurité essentielles des conceptions du système. La première contribution majeure

de cette dissertation est une technique efficace de vérification de la sécurité pour les modèles

de systèmes BIP avec un nombre fixe de composants participants. L’idée principale de notre

technique est de profiter des fonctionnalités du système BIP et gérer le calcul et la coordination

dans la vérification séparément. Au niveau du calcul, nous appliquons les techniques d’ab-

straction de contre-exemple pour raisonner sur le comportement des composants et explorer

tous les états accessibles possibles ; alors qu’au niveau de la coordination, nous exploitons des
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techniques d’ordre partiel et de réduction de symétrie pour gérer le problème de l’explosion

de l’espace des états en raison de la simultanéité, et réduisons les interrelations redondantes

des interactions simultanées. Nous avons implémenté les techniques proposées dans un outil

prototype et évalué l’efficacité sur un ensemble de modèles de systèmes BIP.

La deuxième contribution majeure de cette dissertation est un cadre de conception et de

vérification uniforme pour les systèmes paramétrés basés sur BIP. Les systèmes paramétrés

sont des systèmes consistant en des processus homogènes, où le paramètre indique le nombre

de tels processus dans le système. Un système paramétré décrit donc une famille infinie

de systèmes où les instances de la famille peuvent être obtenues en fixant le paramètre. La

vérification de l’exactitude de ces systèmes revient à vérifier l’exactitude de chaque membre

de la famille infinie décrite par le système.

Tout d’abord, nous proposons la logique d’interaction du premier ordre comme langage formel

pour les architectures système paramétrées et les primitives de communication. Cette logique

est assez puissante pour exprimer les architectures trouvées dans les systèmes distribués,

y compris les architectures classiques : anneaux de passage de jetons, cliques de rendez-

vous, cliques de diffusion, étoiles de rendez-vous. Nous identifions un fragment de la logique

d’interaction du premier ordre bien adapté à la specification des modèles BIP paramétrés et

prouvons sa décidabilité. Deuxièmement, nous fournissons un framework pour l’intégration

de modèles mathématiques issus de la littérature sur la vérification de modèles paramétrés

de manière automatisée. Avec notre nouveau framework, nous comblons l’écart entre les

formalismes mathématiques et les algorithmes de la littérature sur la vérification paramétrée

et la pratique de la vérification paramétrer, ce qui est généralement fait par des ingénieurs qui

ne sont pas familiers avec les détails de la littérature. Enfin, nous fournissons un prototype

préliminaire d’une implémentation du framework proposé. Notre outil prototype prend une

conception BIP paramétrée comme entrée et identifie les résultats classiques de vérification

de modèle qui peuvent s’appliquer à cette conception BIP.

Mot Clef : Conception de composants, Système concurrent, Vérification de modèles, Vérifi-

cation algorithmique, Vérification paramétrée, Abstraction de prédicat, Réduction d’ordre

partiel, Réduction de symétrie, Système de transition bien structuré
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1 Introduction

Computer technology has become ubiquitous in daily life. The past few decades witnessed a

widespread deployment of embedded systems on controlling communication, transportation

and medical systems. The consequences of system failure can transcend mere annoyance

and may have profound negative effects on our lives, due to our ever-increasing reliance on

embedded systems, both at the personal and the organizational level (e.g. the explosion of the

first launch of Ariane 5 1). The correctness and robustness of embedded systems are ever more

important. Paradoxically, as the embedded system complexity escalates tremendously, current

design techniques and tools can hardly ensure sufficiently reliable systems at affordable costs.

The development of reliable and robust embedded systems remains a grand challenge in both

computer science and system engineering [91, 134]. The main culprit is understood as the

lack of rigorous theories and techniques for embedded system design [92].

The design of embedded systems differs radically from pure software design. Embedded

system design must account not only for functional properties but also for extra-functional

requirements regarding the use of execution platform resources such as time and energy.

However, the systems being currently built are based on empirical approaches. Designers

use different frameworks, which are only loosely coupled to build sub-systems that are sub-

sequently composed into complete systems. The lack of an underlying unifying semantic

framework and rigorous theoretical foundations makes it difficult to ensure that the implicit

assumptions made during the design of sub-systems are satisfied after integration.

Further, the predictability of the system behaviour is impossible to guarantee at design time

and therefore, a costly posteriori validation remains the only means for ensuring the correct-

ness of the design with respect to the functional or extra-functional properties. Despite its

high complexity, this posteriori validation usually goes from the implementation level back

to model level, which cannot take advantage of the original design and in most cases, would

be computationally infeasible for large implementations. Therefore, we need a new design

methodology to develop correct implementations of systems in a predictable manner.

1. https://en.wikipedia.org/wiki/Ariane_5
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Chapter 1. Introduction

1.1 Rigorous system design

Rigorous system design [133, 135] has been proposed in response to the grand challenge

of design, manufacture and validation of large scale reliable mixed hardware and software

systems (e.g. cyber-physical systems). The main objective of the rigorous system design

methodology is to develop the theories, methods and tools for building reliable systems in a

predictable manner.

Rigorous system design follows the component-based approach, where complex system

models are constructed by assembling simple atomic components with some composition

entities. Atomic components are characterized by abstractions that ignore implementation

details and only describe behavior relevant to their composition, e.g. transfer functions,

interfaces. Composition entities are then used to build complex compound components from

atomic ones. Component-based design allows to build large-scale systems in an incremental

and predictable manner.

Rigorous system design can also be understood as a formal, accountable and coherent process

for deriving trustworthy and optimised implementations from high-level system models and

the corresponding execution platform descriptions. The essential properties of system models

are guaranteed at the earliest possible design phase using formal verification techniques.

Correct implementations are then automatically generated from validated high-level system

models through a sequence of property preserving model transformations, which progressively

refine the model with details specific to the target execution platform.

Figure 1.1 – The BIP instantiation of the rigorous system design flow

Figure 1.1 illustrates the rigorous system design flow, as it is instantiated in the Behaviour-

Interaction-Priority (BIP) framework [19]. One starts by designing the application model,

either directly in BIP or through a transformation from a domain specific language. The

model consists of a set of atomic components and connectors. Atomic components model the

application activities, from the control point of view, as finite state automaton. Each transition

of an autamaton has an associated C function call, which realises functional computations

and interaction with the environment (e.g. network communication protocols). This allows

strict separation of concerns between control and functional behaviour. Connectors define all

possible interactions between atomic components. Overall behaviour of the application is

defined by the BIP operational semantics and enforced at run-time by the BIP Engine. This

allows strict separation of concerns between stateful behaviour of individual components and
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1.1. Rigorous system design

stateless coordination of their concurrent execution.

The individual components are verified to prove elementary safety properties, such as ab-

sence of local deadlock, and satisfaction of basic requirements. These elementary properties,

serve as a basis for the proof of global properties, obtained by construction. Until recently,

by-construction correctness provided by the BIP design flow illustrated in Figure 1.1 was

limited to the fact that automatically generated executable code was guaranteed to satisfy

the properties established on the corresponding BIP models. Correctness of the high-level

application model was limited to deadlock freedom or had to be established by current model

checking techniques.

The application model is then extended with additional components modeling the target

platform to obtain the system model, which is used to perform platform specific analyses

and the optimisation of performance through the exploration of the design space (memories,

buses, mapping of software components to hardware elements etc.). Finally, the model is

enriched with platform specific information (e.g. communication primitives) and, after remov-

ing components modelling hardware elements, executable code is automatically generated.

Proving that the assumptions made at the modeling level to justify the separation of concerns

hold, indeed, at the platform level, guarantees that all the properties established throughout

the design process also hold for the generated code.

1.1.1 BIP component framework

BIP [19] is a component-based framework for rigorous system design. It addresses the fol-

lowing three main challenges to pursue essentials of the rigorous system design: 1) the devel-

opment of a uniform modeling framework with well defined semantics for the incremental

composition of heterogeneous components; 2) the development of verification methods for

essential safety properties in order to guarantee the correctness of the high-level system de-

signs, and 3) the development of automated support for component integration, validation

and code generation, meeting the given requirements.

BIP comes with a well defined modeling language and an associated toolset (shown in Fig-

ure 1.3 2) to implement the rigorous design flow. BIP modeling language provides primitives

for building composite components as the composition of simpler components, and it defines

a common semantic model that can be used at all stages throughout the design flow. BIP

also provides formal verification tools to check the deadlock-freedom of components, as

well as advanced techniques to ensure by-construction correctness of the design. In BIP, the

implementation (i.e. C++ code) can be automatically generated from the high-level system

model using specific code generators by taking into account the specific execution platforms

and environment.

2. This figure and the subsequent one are from the BIP website http://www-verimag.imag.fr/
Rigorous-Design-of-Component-Based.html.
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Figure 1.2 – BIP layered modeling framework

BIP language provides a three-layered modeling mechnism as shown in Figure 1.2. It allows

building complex system models by coordinating three layers of modeling: 1) Behavior is de-

scirbed by a set of components, each of which is formally specified as a finite state automaton

extended with local data variables. Transition labels of the automaton are exported as ports,

which are used to define the coordination between components. 2) Interaction specifies the

coordination between components. An interaction is formally defined as a finite set of ports,

and essentially it specifies a multiparty synchronization of the transitions, whose labels are

the connected ports. 3) Priority is used to schedule the interactions or resolve conflicts when

several interactions are enabled simultaneously.

BIP has clean operational semantics that describes the behavior of a composite component as

the composition of the behaviors of its atomic components. A detailed introduction to BIP

modeling language and its semantics is given in Chapter 2.

Figure 1.3 – BIP toolchain

BIP toolset includes the translators that translate various programming models, e.g. Simulink,
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1.1. Rigorous system design

Lustre into BIP, and the source-to-source transformers that can transform one BIP model

into another, e.g. a Send/Receive BIP model that is used in the distributed environment. It

also includes compilers that generate executable code for various dedicated engines. The

deadlock-freedom of the system model can be automatically checked, using the dedicated

model checker DFinder. Currently, DFinder can only handle systems without data transfer

among components. This limitation hampers the practical application of DFinder and of the

BIP framework, since data transfer is necessary and common in the design of real-life systems.

1.1.2 The role of formal verification

Being able to check or assert correctness of the system under design using scalable formal

verification techniques is an essential requirement in rigorous system design.

As opposed to the logic circuit synthesis and certified code generators for highly critical

systems, such as SCADE Suite 3, most of the system and software design workflows do not

combine verification of system models with guarantees that the final system satisfies the

verified properties. This is due to the decoupling of modeling and verification tools. The most

common workflow consists in verifying or simulating systems with dedicated modeling tools,

such as MathLab/Simulink, then manually implementing the resulting solutions. As a result,

the final executable code is not guaranteed to respect the verified properties, since errors

may be introduced during the manual implementation phase. Another approach consists

in extracting models from the implementation code for subsequent validation by existing

or dedicated model checkers. This approach, on one hand, does not benefit from design-

time analysis. On the other hand, the inevitable post-verification modifications of the system

are costly, due to the difficulty of establishing the backward link between the automatically

extracted model and the source code.

As discussed above, rigorous system design flow in BIP advocates correct-by-construction

design. The system implementation, which is automatically generated executable is guaran-

teed to satisfy the properties established on the corresponding BIP models. While we still

rely on correctness of the individual components to establish by-construction correctness

of the global system model. Until recently, correctness of the high-level application model

was limited to deadlock freedom. We still lack methods and tools to check general safety

requirements of the high-level application model.

Differing from simulation or testing techniques, formal verification provides a rigorous way

to prove or disprove that a system model meets the given requirements. The system being

checked is usually modeled as a state machine and the property is specified as a formula

in some temporal logic. In order to check if the system satisfies the given property, formal

verification usually uses an exhaustive search procedure (either explicitly or symbolically)

on the state space of the system model to check if the given property is satisfied on every

reachable state. If the property is violated, a counterexample is generated as the diagnostics to

3. http://www.esterel-technologies.com/products/scade-suite/
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help designers correct their designs.

Moreover, the growing power of formal verification tools makes the use of formal methods in

complex embedded system design possible, as reported in [122]. Notably, formal verification

has been successfully used in industry to help build reliable and secure systems. For instance,

as reported in [123], formal methods have been successfully used at Amazon Web Services to

solve difficult design problems and to build reliable web services. The authors reported that

at Amazon seven teams have used TLA+ 4 to find subtle but serious bugs that they would not

have found using other techniques, and also to devise optimized complex algorithms without

sacrificing quality. Another example is the High-Assurance Cyber Military Systems(HACMS)

program launched by Defense Advanced Research Projects Agency (DARPA) to create tech-

nologies to make networked embedded systems dramatically harder to attack 5. Specifically,

HACMS is pursuing a formal methods-based approach to the creation of high-assurance vehi-

cles, where high assurance is defined to mean functionally correct and satisfying appropriate

safety and security properties [67].

1.2 Evolution of formal verification

In this section, we give an overview of the development of formal verification. We postpone

the elaboration of the relevant theories to Chapter 3.

In the early time, Floyd-Hoare logic [71, 93] and Dijkstra’s predicate transformer [52] laid

theoretical foundations of the modern (semi-)automated verification techniques. In [93], a

formal framework for deducing the correctness of programs was introduced, also known as

Floyd-Hoare logic. Given a piece of program C , and two assertions P, Q, Floyd-Hoare logic

establishes the correctness proof in the form of {P } C {Q} (i.e. Hoare triple), which intuitively

means if the assertion P holds, then after the execution of C , the assertion Q must hold (if the

execution of C terminates). Dijkstra’s predicate transformer semantics of programs can be

understood as a reformulation of Floyd-Hoare logic. It provides a way to reduce the problem

of proving a Hoare triple to the problem of proving a first order formula.

In [48], a unifying framework, known as abstract interpretation, was proposed for automatic

program analysis and verification. Since the computation of the concrete semantics of a

program (i.e. the set of reachable states) is computationally infeasible in general, the idea

of abstract interpretation is to map the concrete property (i.e. a set of concrete states) to an

abstract property (i.e. an element in the abstract domain), and then computes the abstract

semantics of the program (i.e. an over-approximation of the set of concrete reachable states).

Abstract interpretation provides a disciplined way of building analysis over abstract domains.

Independently in [43] and [129], a technique, widely known as model checking, was proposed

as an automated approach to check if a given mathematical structure satisfies a formal logic

4. http://lamport.azurewebsites.net/tla/tla.html
5. http://www.darpa.mil/program/high-assurance-cyber-military-systems
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specification. In model checking, a system is formally described as a finite state machine,

and the property being checked is specified as formulae in temporal logics [112]. Then model

checking algorithmically enumerates all the states of the state machine to determine if it

satisfies a temporal logic specification. Model checking has been successfully applied to

hardware and protocol verification, which typically gives rise to relatively smaller state spaces.

However, it does not apply to real programs, due to the large or even infinite-state spaces.

Even for the hardware and protocol, the state space grows exponentially with the number

of participating processes or components in the system, which makes automated model

checking computationally infeasible. This problem is known as state explosion problem.

Over the last decades, a lot of effort have been made to tackle the state explosion problem,

and numerous advances in model checking, abstract interpretation and constraint solving

have pushed the frontiers of formal verification. We highlight the main achievements below.

Early attempts to deal with the state space explosion problem leverages on significant algorith-

mic advances that come in the form of symbolic techniques for succinctly representing large

sets of states as formulas. In symbolic model checking [116], states and transition relations are

symbolically represented as binary decision diagrams (BDD) that can be manipulated effi-

ciently. While in bounded model checking [24], the unfolding of the transition system and the

property being checked are encoded as a formula in propositional logic, whose satisfiability

can be checked using SAT solvers [18]. The capability of such techniques is still limited by the

underlying routines that manipulate the symbolic data structures.

One prevalent way to address the state explosion problem is to employ abstraction [109].

Informally speaking, abstraction aims at minimising the system model to be verified in such

a way that automated verification of the abstract model becomes computationally feasible,

while the desired properties are still preserved by the abstraction. Abstraction relies on the

observation that in most cases the system model contains information irrelevant to the desired

properties. Discarding such information reduces the verification burden dramatically. In

the past decades, various abstraction techniques have been developed. In [79], predicate

abstraction was proposed as a specific technique that over-approximates the semantics of a

program and constructs a finite state abstraction of the program, where each abstract state

represents possibly infinitely many concrete program states. This technique enables direct

application of finite state model checking approaches to programs which have large or infinite

state spaces. Since then, predicate abstraction has been widely investigated in research. In

[106, 107, 138], efficient SMT based symbolic techniques for constructing predicate abstraction

were studied. It has also been successfully applied in practice [50, 15, 16, 69].

Generally abstraction results in an over-approximation, which may introduce false positives.

In other words, verification of the abstract system may conclude that the property is vio-

lated, which is not the case for the concrete system. The counterexample guided abstraction

refinement (CEGAR) [39] approach offers a solution to this problem. Specifically, given a coun-

terexample (a faulty execution) found by analyzing the finite-state abstraction, CEGAR either

7
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confirms that the counterexample is real, i.e. it corresponds to a concrete execution, or pro-

poses a refined abstraction in which this counterexample is eliminated. Advanced abstraction

refinement techniques based on Craig interpolant have been popularized in [117, 118, 120].

Predicate abstraction and Craig interpolant abstraction refinement have been successfully

applied in practice. Notably, The SLAM project [17], initiated by Microsoft Research, applied

such techniques to build an industrial toolchain for verifying Windows device driver APIs, and

inspired a large interests in automated software verification research.

Alternatively to the model checking and abstraction techniques, a proof rule for invariance

properties of transition systems was proposed in [113], which is also known as deductive veri-

fication approach. In order to prove an invariance property, deductive verification approach

aims at finding a stronger assertion that entails the invariance property, and then proves that

the assertion is inductive, which is done by first checking that all the initial states satisfy the

invariance property, and then checking that from the set of states satisfying the assertion, one

cannot reach a state that violates the assertion in one step. Deductive verification provides

a partial solution to the verification of invariance property, and it leaves open the questions

of how to find the auxiliary predicate. More recently, a novel technique for constructing the

inductive invariant incrementally, called IC3 in [32] (and also called PDR in [55]), has been

proposed.

The attention of the above mentioned techniques are mainly focused on the verification

problem for systems of fixed size, i.e. the number of participating processes or components

is fixed. There are systems where the number of participating processes is not fixed a priori,

but given as a parameter. Such systems can be widely found in the distributed context, e.g.

consensus protocols, where the number of participating processes could be arbitrary large.

The verification problem for such systems, known as parameterized verification, asks whether

the desired properties hold on system of all sizes.

Though being undecidable in general [11, 136], many interesting results and decidable frag-

ments have been obtained. One technique to prove that a fragment of the parameterized

verification problem is decidable is by reduction to the coverability problem of well-structured

transition system, whose decidability is known [1, 66]. Well-known well-structured transition

systems include Petri net, vector addition systems. Another technique is by reduction to a finite

collection of classical verification problems, known as cutoff techniques [60, 74, 58, 42, 10].

That is, in order to prove a property holds on system of all sizes, it is sufficient to prove the

property holds for system instances up to a fixed size, i.e. cutoff. However, cutoff does not

always exist. If it does exist, cutoff varies according to the property and the state machine of

the process being checked.

There is also a wide range of techniques that aim at solving the parameterized verification

problem automatically, instread of obtaining the decidability results. Counter abstraction

[127, 74] is one of such widely used techniques. The idea is that, for systems consisting of

an unbounded number of components, where each component is modeled as a finite state

8
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automaton, we only keep track of the number of components in each control location, instead

of tracking the exact control locations of all components. It abstracts a parameterized system

into a finite state system, which can be checked by using either classical model checking

techniques, or well-structured transition system based techniques [5, 6].

In [126], the authors extend the deductive verification approach to parameterized systems.

The key insight is to compute a quantified inductive invariant, which can prove properties for

all system sizes. The proposed way to compute such a quantified invariant is to first construct

an invariant for a system of fixed size, and then generalize this invariant to the parameterized

case. However, it is not guaranteed that the obtained invariant is inductive, or strong enough to

prove the desired property. In [30, 3], regular model checking is proposed as general framework

for algorithmic verification of infinite-state systems. In this approach, sets of system states are

represented via regular languages and automata. Symbolic procedures based on automata

manipulation can be applied to perform traversals of the infinite search space induced by a

parameterized system. In [75, 76], the authors propose using array-based systems to model

parameterized systems, and then apply a backward reachability analysis procedure, which

symbolically computes pre-images of the set of unsafe states, and checks safety and fixpoint

by using SMT solving. In [104], the authors propose the method of network invariant for

verifying temporal properties of parameterized systems. The idea is to find a single finite state

automaton (network invariant) that soundly abstracts the parallel composition of n processes.

The soundness is obtained by showing a simulation relation between the network invariant

and the concrete systems.

Automated verification and parameterized verification still remain very active areas of research,

particularly for concurrent and distributed systems. This brief survey is biased towards the

focus of this dissertation. We remark that there is a wide range of reduction techniques for

algorithmic verification of concurrent systems, called partial order reduction [77, 124, 46, 139],

that rely on the partial order semantics of concurrent systems. We postpone the elaborations

to Chapter 3. For detailed explanations of each verification technique, we refer to the various

books on formal verification [47, 13, 81, 28].

1.3 Challenges and contributions

The high-level contributions of this dissertation comprise new modeling framework and

verification algorithms that push the frontiers of algorithmic verification of component-based

systems modeled in BIP framework with both bounded and unbounded concurrency. By

systems with bounded concurrency, we mean the systems that consist of a fixed number

of components, and with unbounded concurrency, we mean the systems that consist of

a parameterized number of components. These contributions have been published in the

following articles:

1. Formal verification of infinite-state BIP models, Bliudze, Simon and Cimatti, Alessandro
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and Jaber, Mohamad and Mover, Sergio and Roveri, Marco and Saab, Wajeb and Wang,

Qiang, International Symposium on Automated Technology for Verification and Analysis

(ATVA 2015), pages 326–343, 2015, Springer.

2. Verification of component-based systems via predicate abstraction and simultaneous set

reduction, Qiang, Wang and Bliudze, Simon, International Symposium on Trustworthy

Global Computing (TGC 2015), pages 147–162, 2015, Springer.

3. Parameterized systems in BIP: design and model checking, Konnov, Igor and Kotek, Tomer

and Wang, Qiang and Veith, Helmut and Bliudze, Simon and Sifakis, Joseph, Proceedings

of the 27th International Conference on Concurrency Theory (CONCUR 2016), pages

30–1, 2016, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

4. Exploiting Symmetry for Efficient Verification of Infinite-State Component-Based Systems,

Wang, Qiang, International Symposium on Dependable Software Engineering: Theories,

Tools, and Applications (SETTA 2016), pages 246–263, 2016, Springer.

1.3.1 Algorithmic verification of systems with bounded concurrency

As we discussed in the previous section, the BIP modeling language offers a three-layered

modeling mechanism, i.e. Behavior, Interaction, and Priority, for constructing complex sys-

tem behavior and architectures. Behavior is characterized by a set of components, which are

formally defined as automata extended with linear arithmetic. Interaction specifies the mul-

tiparty synchronization of components, among which data transfer may take place. Priority

can be used to schedule the interactions or resolve conflicts when several interactions are

enabled simultaneously. The key insight underlying this three-layered modeling mechanism

is the principle of separation of concerns, that is, system computation is captured by a set of

components, and system coordination is modeled by interaction and priority.

Our approach is inspired by the Explicit Scheduler Symbolic Thread (ESST) approach to effi-

cient verification of SystemC programs [130]. In brief, we aim at decomposing the verification

of infinite-state component-based systems into two levels by taking advantage of the struc-

tural features of such systems, and, thus, we palliate the state space explosion by handling the

computation in the components and the coordination among components separately.

On the computation level, we exploit the state-of-the-art counterexample guided abstraction

refinement technique, to deal with the sequential computations and explore the reachable

states of each individual component; while on the coordination level, we resolve the redun-

dant interleavings of concurrent interactions by applying explicit state partial order reduction

techniques [77, 78, 124, 125, 46, 139, 140]. Specifically, we combine the lazy abstraction with

interpolant based abstraction refinement [90, 88, 119] and the persistent set partial order

reduction for BIP. We have implemented the proposed verification techniques based on the

Kratos model checker [36]. We also propose two further techniques to improve the reductions

of redundant interleavings. The first technique aims at exploring as many independent inter-

actions as possible simultaneously in one step, and the second technique exploits the system
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symmetry to improve the persistent set reduction.

These contributions are elaborated, respectively, in Chapters 4 and 5.

We remark that in the BIP framework, DFinder [22, 21] is a dedicated tool for invariant gen-

eration and deadlock detection. DFinder computes the system invariant in a compositional

manner: it first computes a component invariant over-approximating the reachable states of

each component and then computes an interaction invariant over-approximating the global

reachable states. The system invariant is then the conjunction of all component invariants and

the interaction invariant. Though being scalable for large system models, DFinder does not

handle system models with data transfer, which hampers the practical application of DFinder

and of the BIP framework, since data transfer is necessary and common in the design of

real-life systems (e.g. message passing). Besides, when the inferred invariant fails to prove the

property, DFinder produces a single state as the counterexample other than an execution path.

By the time DFinder was developed, it was not clear how to efficiently refine the abstraction

automatically from the single state. In [95], the authors present an encoding of a subset of BIP

models into Horn Clauses, which are solved by the model checker ELDARICA [94]. However,

the encoding does not handle data transfer on interactions. As the current stage of their work,

the encoding still requires massive manual work.

An efficient instantiation of the ESST framework [130] for BIP has been presented in [26].

This ESST based technique encodes the components as preemptive threads with predefined

primitive functions and utilizes a dedicated stateful BIP scheduler to orchestrate the abstract

reachability analysis of the components. The scheduler interacts with components via primi-

tive functions, and also respects BIP operational semantics. Moreover, partial order reduction

techniques [78] are applied in the scheduler to reduce its state space.

1.3.2 Modeling and verifying systems with unbounded concurrency

Parameterized systems are systems consisting of homogeneous processes, where the parame-

ter indicates the number of such processes in the system. A parameterized system, therefore,

describes an infinite family of systems where instances of the family can be obtained by fixing

the parameter value. Verification of the correctness of such systems amounts to verifying the

correctness of every member of the infinite family described by the system. This problem is

undecidable in general [136]. However, many efforts have been invested into extending of

classic model checking to the parameterized case, leading to numerous parameterized model

checking echniques (see [28] for a recent survey).

Unfortunately, often parameterized model checking techniques come with their own mathe-

matical models, which makes their practical application difficult. To perform parameterized

model checking, the user needs to apply deep knowledge from the literature. First, the user

needs to manually inspect the parameterized models and match them with the mathemati-

cal formalisms from the relevant available parameterized verification techniques. Using the
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match, the users would then apply the decidability results (if any) for the parameterized

models, e.g. by computing a cutoff or translating the parameterized model into the language

of a particular tool for the specific architecture.

Thus, there is a gap between the mathematical formalisms and algorithms from the parameter-

ized verification research and the verification in practice, which is usually done by engineers

who are not familiar with the details of the literature. We aim at closing this gap by introducing

a framework for design and verification of parameterized systems in BIP. With this framework,

we make the following specific contributions:

1. We propose the first-order interaction logic (FOIL) within BIP framework as a formal

language for architectures of parameterized systems, i.e. system topologies and commu-

nication mechanisms. FOIL is powerful enough to express architectures found in param-

eterized systems, including the classical architectures: token-passing rings, rendezvous

cliques, broadcast cliques, rendezvous stars. We also identify a decidable fragment of

FOIL, which is important for practical applicability..

2. We investigate the decidability of the verification of parameterized BIP models, where

components are descirbed by finite state automata, and the system architecture is

specified by a FOIL formula. We prove that this problem is undecidable in general,

and also identify certain decidable fragments, relying on the well-structured transition

system theory [1, 66].

3. We provide a framework for the integration of mathematical models from the parameter-

ized model checking literature in an automated way: given a parameterized BIP design,

our framework detects parameterized model checking techniques that are applicable to

this design. We present how to identify the system architecture automatically by the use

of SMT solvers and standard (non-parameterized) model checkers.

4. We provide a preliminary prototype implementation of the proposed framework. Our

prototype tool takes a parameterized BIP design as its input and detects whether one

of the following classical results applies to this BIP design: the cut-off results for token-

passing rings by Emerson & Namjoshi [60], the VASS-based algorithms by German

& Sistla [74], and the undecidability and decidability results for broadcast systems

by Abdulla et al. [1] and Esparza et al. [64]. More importantly, our framework is not

specifically tailored to the mentioned techniques.

We remark that our framework builds on the notions of BIP, which allows us to express complex

notions in a terminology understood by engineers. Moreover, our framework allows an expert

in parameterized model checking to capture seminal mathematical models found in the

verification literature, e.g. [74, 64, 60, 42].

These contributions are elaborated in Chapter 6.
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1.4 Organization of this dissertation

The rest of the dissertation is organized as follows:

– In Chapter 2, we present some preliminaries of safety property verification, and introduce

the BIP modelling language, which we use in this dissertation as the formal system model,

and its operational semantics. We also present a symbolic encoding of BIP system models

as symbolic transition systems.

– In Chapter 3, we review the most relevant verification techniques for concurrent systems, in

particular, abstraction and partial order reduction technqiues.

– In Chapter 4, we present the main verification techniques for the class of BIP models with a

fixed number of components. In particular, we present an instantiation of the lazy predicate

abstraction technique and a partial order reduction for BIP, and also their combination. We

also present comprehensive experimental evaluations of the proposed techniques against

the state-of-the-art verification techniques in the end of this chapter.

– In Chapter 5, we present two further techniques for improving partial order reductions.

First, we investigate how to explore independent interactions simultaneously, instead of

postponing them as in the other classical partial order reduction approaches. Second, we

study how to exploit system symmetries to improve the reductions. We also present their

combinations with lazy abstraction and the experimental evaluations.

– In Chapter 6, we present the design and uniform verification framework for parameterized

systems in BIP, that is the systems with unbounded number of participating components.

We first present an extension of the current BIP framework to enable the modelling of a wide

range of parameterized systems. Then we present an automated verification framework

that can incorporate the existing parameterized verification techniques. We also present

some decidability results for certain fragments of parameterized BIP models.

– In Chapter 7, we summarize this dissertation and also present some perspectives and future

work.
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In this chapter, we first present some preliminaries of formal invariant verification. Then we

present the BIP modeling language for systems that consist of a fixed number of components.

In the end, we present an encoding of BIP system model as symbolic transition system.

2.1 Labeled transition system

We denote by V a set of integer variables, and the symbol V ranges over all possible valuations

of variables. We also denote by EV the set of expressions, and FV the set of formulae in the

theory of linear arithmetic over V. We denote by V |= φ the statement that a valuation V

satisfies a formula φ ∈FV . We denote by V[x := e] the substitution of variable x by expression

e in the valuation V. As usual, we use primed variables to represent the state of the system

after one step. The priming notation is extended to formulae and assignments in the standard

way.

In this dissertation, we use labeled transition systems to define the operational semantics of

computing systems.

Definition 2.1.1 (Labeled transition system) A labeled transition system (LTS) is defined by a

tuple T = 〈C,Σ,R,C0〉, which consists of

1. a set of states C;

2. a set of transition labels Σ;

3. a set of transition relations R ⊆ C ×Σ×C;

4. a set of initial states C0 ⊆ C.

For simplicity, we denote a transition 〈c, t,c ′〉 ∈ R by c
t−→ c ′. A transition t is enabled in the state

c , if c
t−→ c ′ , for some c ′ ∈ C. An LTS is deterministic if c

t−→ c1 and c
t−→ c2 implies c1 = c2, for any

c ∈ C and t ∈Σ. In this dissertation, we focus on deterministic transition systems.
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A trace (or an execution) of a transition system is a sequence of transitions from a given state.

We denote a trace by the sequence of transition labels. For instance, the sequence of transitions

c
t1−→ c1

t2−→ . . .
tn−→ c ′ is represented as c

t1t2...tn−−−−−→ c ′.

A state c is reachable if there is a trace c0
t1...tn−−−→ c, where c0 ∈ C0 and ti ∈Σ, for each i ∈ [1,n].

Given a state c, we denote by en(c) ⊂Σ the set of transitions enabled in state c. A state c is a

deadlock state if there is no such t ∈ Σ, and c ′ ∈ C that c
t−→ c ′. We denote by RS the set of all

reachable states.

A set of states can also be represented by its characteristic predicate, that is, a predicate

represents all the states that satisfy it. Given a predicate p, we define the post operator as

follows:

post (p,R) = {c ′ ∈ C | ∃c ∈ C,p(c)∧ (c, t ,c ′) ∈ R}

In other words, post(p,R) characterises the set of states that are reachable from the states

satisfying the predicate p in one step by taking a transition in R. For instance, post(C0,R)

represents the set of states that are reachable from the initial states in one step. More generally,

the set of reachable states within i steps can be defined as follows using the post operator:

RSi = C0 ∨post (C0,R)∨ . . .∨post i (C0,R)

where post i represents the i th applications of post.

2.2 Invariant verification

An invariant is a safety property, which requires that ’something bad’ should never happen

in all possible executions of the system. An invariant is often given by a condition φ for the

system states and requires that φ holds for all reachable states. Formally it is defined as follows.

Definition 2.2.1 (Invariant) Given a labeled transition system T = 〈C,Σ,R,C0〉, a formula φ is

an invariant of T if ∀c ∈ RS, state c satisfies φ.

Problem 2.2.2 (Invariant verification) Given a labeled transition system T = 〈C,Σ,R,C0〉 and

an invariant property φ, the invariant verification problem asks whether for every state c that is

reachable from an initial state c0 ∈ C0, i.e. c ∈ RS, holds c |=φ.

One simple way to verify an invariant of a given labeled transition system T is to compute the

set of reachable states RS by repeatedly applying the post operator until a fixpoint is reached.

The existence of least fixpoint is guaranteed by the monotonic property of the post operator.
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We refer to [132] for more details. The invariant verification problem can be solved by checking

whether all the states RS satisfy the invariant or not. However, this approach does not work

well in practise: the state space is frequently much too large to be exhaustively explored, and

the fixpoint computation hardly converge, due to either data space explosion or concurrent

interleavings.

Another approach to prove that a formula φ is an invariant is to construct another formula φi

and prove that φi is inductive invariant such that φi =⇒ φ.

Definition 2.2.3 (Inductive invariant) Given a labeled transition system T = 〈C,Σ,R,C0〉, a

formula φ is an inductive invariant if the following two conditions hold:

1. ∀c ∈ C0, c |=φ, and

2. ∀c ∈ C, (c |=φ)∧ (c, t,c ′) ∈ R =⇒ (c ′ |=φ′).

where φ′ is the formula obtained by replacing all the variables in φ by the corresponding primed

ones.

Using the post operator, the second condition of inductive invariant can also be specified as

post(p,R) =⇒ p, or equally p = p ∨post (p,R). Thus, the strongest inductive invariant can

be expressed as the least fixpoint of the post operator, which characterizes exactly the set of

reachable states RS. However, computing the least fixpoint is computationally expensive as

stated above. We remark that finding inductive invariants automatically is a difficult task, and

it remains an active research area in formal verification. We refer to [113] for more information

about invariant verification.

An invariant property can also be specified dually by a set of error states Cer r or that violate

the invariant. We say T is safe with respect to Cer r or , if no states in Cer r or are reachable, i.e.

the intersection of Cer r or and RS is empty. Suppose the characterizing predicate of the set of

error states is per r or . Equivalently, we say that T is safe with respect to Cer r or , if ¬per r or is

an invaraint of T. Thus, the error-states reachability problem can be viewed as an invariant

verification problem and vice versa. In this thesis, we do not differentiate them and focus

on devising efficient techniques to solve the invariant verification problem for concurrent

systems, in particular the component-based systems.

2.3 BIP modeling framework

In this section, we present the fragment of the BIP language with multiparty synchroniza-

tion and priority. The BIP language only allows describing systems with fixed structure and

interaction topology. First, we present the syntactic BIP model 1.

1. There are two versions of BIP. We present the new version in this dissertation. We omit the langauge differ-
ences between these two versions, which are minor. For more information we refer to http://www-verimag.imag.
fr/New-BIP-tools.html.
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2.3.1 Syntactic BIP model

A BIP model contains a finite set of components. Each component is an instantiation of a

component type, which is formally defined as a finite state automaton extended with data.

Definition 2.3.1 (Component type) A BIP component type is defined as a tupleB = 〈V,L,P,E,�〉,
where

1. V is a finite set of variables;

2. L is a finite set of control locations;

3. P is a finite set of communication port types;

4. E ⊆ L×P×FV ×EV ×L is a finite set of transition edges extended with guards in FV and

operations in EV ;

5. � ∈ L is an initial control location.

Given a tuple of component types B̄ = B0 ∪ ·· · ∪Bk−1, and a tuple of natural numbers n̄ =
〈n0, . . . ,nk−1〉, where ni , i ∈ [0,k −1] represents the number of instantiations of component

type Bi , For each i ∈ [0,k −1], we denote by Bi [ j ], j ∈ [1,ni ] instantiations of the component

type Bi , where every element of Bi has a local copy in Bi [ j ]. We denote by Pi the set of ports

instantiated from the type Pi .

Since we have a finite number of components, we can refactor the index of components and

for the presentation simplicity, we denote by {Bi }n
i=1 the set of components instantiated from

all types B̄, and we do not distinguish the variables, control locations and the transitions of

component type Bi from its local copies, when it is clear from the context.

Transition edges in a component are labeled by ports, which form the interface of the com-

ponent. Ports are used for communication or synchronization with other components. We

assume that, from each control location, every pair of outgoing transitions have different

ports, and the ports of different components are disjoint. Thus, transitions with the same

ports are not enabled simultaneously. Given a component violating such assumptions, we can

easily transform it into the required form by renaming the ports, while still retaining the BIP

expressiveness power. For the simplicity of presentation, we denote in the sequel the identity

of the unique component where port type p is defined by i d(p).

Component coordination is realised by defining the set of allowed interactions, which synchro-

nise transitions of different components. In BIP systems with a fixed number of component,

an interaction is represented as a finite set of ports.

Definition 2.3.2 (Interaction) A BIP interaction is defined as a tuple γ= 〈g ,P, f 〉, where g ∈
FV , f ∈ EV and P ⊆⋃n

i=1 Pi , P �= �, and for all i ∈ [1,n], |P ∩Pi | ≤ 1.
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An interaction consists of a guard condition, a set of connected ports and an operation on the

variables, which are defined in the connected components. Condition |P ∩Pi | ≤ 1 imposes the

restriction that an interaction can connect at most one port from each component.

Intuitively, an interaction defines a guarded multiparty synchronization with data transfer:

an interaction γ is enabled only if the guard g is enabled, and when γ is executed, the data

transfer specified by f is executed first, and then the transitions labeled by the ports in P are

taken simultaneously. We denote by Γ a finite set of interactions.

Priority can be used to resolve the conflicts among interactions.

Definition 2.3.3 (Priority) Given a set of interactions Γ, a priority model Π is a strict partial

order on Γ. For γ,γ′ ∈ Γ, we write γ< γ′ if and only if (γ,γ′) ∈Π, which means that interaction

γ′ has a higher priority than γ.

We remark that priority restricts the coordination of the system. Thus, ignoring the priority

would be a safe over-approximation in terms of the invariant verification.

In BIP, we can construct a compound component by composing a finite number of com-

ponents with interactions, and then use this compound component as a building block to

construct a hierarchical model. However, in this dissertation, we do not consider hierarchical

models. A BIP model is a single flat compound component, constructed by composing atomic

components with interactions.

Definition 2.3.4 (BIP Model) A BIP model is a tuple MBIP = 〈{Bi }n
i=1,Γ,Π〉, where {Bi }n

i=1 is a

finite set of components, Γ is a finite set of interactions for all components, and Π is a priority

model on Γ.

In the rest of this section, we use two examples to illustrate the BIP modeling framework.

Example 2.3.5 (Ticket mutual exclusion protocol [110]) Figure 2.1 depicts a BIP model of

the ticket mutual exclusion protocol with two processes. The protocol works as follows. Upon

entering the critical section, each process requests a fresh ticket from the controller, then the

process waits until its ticket equals to the number to be served next. When leaving the critical

section, the process resets its ticket and the controller increases the number to be served by one.

Notice that all the variables are local to the component where they are defined.

We model the process by a component with one integer variable t i cketi , and three control

locations Ii , Wi , and Ci , i ∈ {1,2}, where Ci represents the critical section. Each component also

defines three ports r equesti , enteri and l eavei , representing the transitions of requesting the

ticket, entering and leaving the critical section respectively.
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S

leave request
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[t i cket2 = next ]

r equest1

enter1

leave1

r equest1

W1
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t i cket1 = 0

leave1

enter1

enter

r equest

enter2

leave2

r equest2

I2

W2

C2

t i cket2 = 0

enter2

leave2 r equest2

I1

t i cket1 = number

[t i cket1 = next ]

number ++

next ++
l eave

ti cket2 = number

Figure 2.1 – Ticket mutual exclusion protocol

The synchronisations between the controller component and the processes are defined by six

interactions. Each interaction is depicted as a wire in Figure 2.1. The ports connected by a

wire are synchronized. When a port belongs to several interactions (e.g. the leave port of the

central component), it must be synchronised through exactly one of them each time that it is

fired. An interaction may also have a guard, e.g. the interaction {enter1,enter } is guarded by

[t i cket1 = next ], and an operation, e.g. upon firing of the interaction {r equest1,r equest },

the operation ti cket1 = number updates the variable t i cket1 to number . For simplicity, the

constant guard tr ue and the empty assignment are omitted.

To request a ticket number, the process i (i ∈ [1,2]) synchronizes its transition r equesti with the

controller’s transition request, whereby the process copies the value of number to ti cketi . This is

achieved by interactions (true, {r equesti , request}, t i cketi = number), where i ∈ [1,2]. To enter

the critical section, a process synchronizes its transition enter with the controller’s transition

enter. This is achieved by interactions ( [t i cketi = next], {enteri , enter}, skip), i ∈ [1,2]. To leave

the critical section, a process synchronizes its transition leave with the controller’s transition

leave. It is denoted by interactions (true, {leavei , leave}, skip), i ∈ [1,2].

Initially the controller sets both number and next to be 1, and the local variable of each process

is 0. The mutual execlusion property requires that the two processes cannot enter the critical

location at the same time.

This model is specified in the BIP language as shown in Figure 2.2.

Example 2.3.6 (Temperature control system [9]) In Figure 2.3, we show a graphical represen-

tation of the BIP model of a coolant temperature control system in a reactor tank. There are three

atomic components: controller in the middle, and two rods on left and right side. These three
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Figure 2.2 – Ticket mutual exclusion protocol in BIP language
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component are composed by five interactions: (tr ue, {tick, tick1, tick2},skip), (tr ue, {cool,cool1},

skip), (tr ue, {cool,cool2},skip), (tr ue, {reset,reset1},skip), and (tr ue, {reset,reset2},skip). No

guards or actions are defined in these interactions.

The temperature of the tank (denoted by the variable t in the controller) rises with the rate of

υr = 1◦/s, modeled by the transition (S3, tick, tr ue, t := t +1,S3). When the temperature reaches

the upper bound of 100◦, the controller will refrigerate the tank by moving one of the two rods

(i.e. firing one of the interactions {cool,cool1}, {cool,cool2}). The temperature will then decrease

with the rate of υd = 1◦/s. When the temperature the lower bound of 50◦, the controller removes

the rod from the coolant (i.e. firing the corresponding interaction {reset,reset1} or {reset,reset2}).

A rod can be moved again only when 100 time units have elapsed after the last movement, e.g.

transition (S1,cool1,[c1 >= 100],skip,S2)

reset
t:=0

r eset2
c2 := 0

r eset1
c1 := 0

tick
t:=t+1

r eset1 r eset2

[c1 ≥ 100]
cool1 cool

[c2 ≥ 100]
cool2

[t=50]
S1

S2

S3

S4

S1

S2

controller r od2r od1

[t ≥ 100]

cool2cool1

tick tick
t:=t-1 t i ck2t i ck1

t i ck1 t i ck2

c1 := c1 +1
t i ck1

cool reset

c2 := c2 +1
t i ck2

Figure 2.3 – Temperature Control System in BIP

This model is specified in the BIP language as shown in Figure 2.4.

2.3.2 BIP operational semantics

A state of a BIP model comprising the components {Bi }n
i=1, with each Bi = 〈Vi ,Li ,Pi ,Ei ,�i 〉,

is a tuple c = 〈〈l1,V1〉, . . . ,〈ln ,Vn〉〉, where for all i ∈ [1,n], li ∈ Li and Vi is a valuation of Vi . A

state c0 is initial if for all i ∈ [1,n], li = �i and Vi is the initial valuation of Vi . A state c is an error

if for some i ∈ [1,n], li is an error location. We say an interaction γ= 〈g ,P, f 〉 is enabled in a

state c = 〈〈l1,V1〉, . . . ,〈ln ,Vn〉〉, if
⋃n

i=1 Vi |= g and for every component Bi , such that P ∩Pi �= �,

there is an edge 〈li ,P ∩Pi , gi , fi , l ′i 〉 ∈ Ei and Vi |= gi .

The labeled transition system semantics of a BIP model is defined as follows.
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Figure 2.4 – Temperature control system in BIP language
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Definition 2.3.7 (BIP operational semantics) Given a BIP model MBIP = 〈{Bi }n
i=1,Γ,Π〉, its

operational semantics is defined by a labeled transition system TBIP = 〈CB I P ,ΣB I P ,RB I P ,C0B I P 〉,
where

1. CB I P is the set of states as defined above,

2. ΣB I P = Γ,

3. RB I P is the set of transitions, such that there is a transition from a state c to another c ′, if

and only if there is an interaction γ= 〈g ,P, f 〉 such that,

(a) γ is enabled in c;

(b) for each component Bi such that P∩Pi �= �, there is an edge 〈li ,P ∩Pi , gi , fi , l ′i 〉 ∈ Ei ,

then V′
i = Vi [ fi ( f (V))];

(c) for each component Bi such that P ∩Pi =�, l ′i = li and V′
i = Vi ;

(d) there does not exist an interaction γ′, such that γ′ is enabled in c and γ′ > γ.

4. C0B I P is the set of initial states.

Notation Vi [ f (V)] represents the update of variable evaluation Vi by the function application

f (V). For instance, suppose Vi = x = 1, and f (V) = x ++, then Vi [ f (V)] = x = 2. Notation

fi ( f (V)) denotes the sequential applications of function f and fi . For simplicity, we denote by

c
γ−→ c ′ that there is a transition from state c to state c ′, following the interaction γ.

For the invariant verification of BIP models with a fixed number of components, we can

encode into the reachability of a set of locations, i.e. error locations. A BIP model is safe if no

error states are reachable. Notice that any safety property can be encoded as a reachability

problem by adding additional components.

2.4 Encoding BIP into Symbolic Transition System

In this section, we briefly present the encoding of BIP into symbolic transition systems, orig-

inally introduced in [26], which enables a direct application of the state-of-the-art model

checkers for infinite-state systems, such as the NUXMV [33] symbolic model checker, to verify

BIP models.

Definition 2.4.1 (Symbolic transition system) A symbolic transition system is defined as a

tuple ST S = 〈V,φC0 ,φR〉, where

1. V is a finite set of variables;

2. φC0 (V) is a first-order formula over V defining the set of initial states;

3. φR (V,V′) is a first-order formula over V∪V′ defining the transition relation.

The semantic of a symbolic transition system can be given in terms of an LTS (see for exam-

ple [112]).
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2.4. Encoding BIP into Symbolic Transition System

Given a BIP model MBIP = 〈{Bi }n
i=1,Γ,Π〉, the encoding as a symbolic transition system

ST SMBIP = 〈V,φC0 ,φR〉 is the following.

Variables. First, the set of variables is defined as:

V =⋃n
i=1 {l oci }∪⋃n

i=1 {v |v ∈Vi }∪⋃n
i=1 {vp |p ∈ Pi }∪ {vΓ}

where for all i ∈ [1,n], Vi is the set of variables in component Bi and we preserve the domain

of each variable v ∈Vi in the encoding. We introduce a variable loci for each component Bi

to encode its control locations, and for each port p ∈ Pi , we also introduce a boolean variable

vp , representing the status of the port, being enabled or disabled. Besides, we introduce an

enumerative variable vΓ, which represents the set of interactions Γ.

Initial condition. The initial condition is defined as:

φC0 =
n∧
i

(loci = l0i ∧
∧

v∈Vi

v = v0)

The initial valuations of port variables and the interaction variable vΓ are arbitrary.

Transition relation. The transition relation is the following:

φR =
n∧

i=1
(Trei ∧Trpi )∧φΓ∧φΠ

where Trei encodes the edges of the component Bi , Trpi encodes the conditions when the port

p is enabled in component Bi , φΓ encodes the interaction, and φΠ encodes the priorities. In

the following, let ΓBi be the set of all the interactions in which the component Bi participates

and Γe be the set of interactions that involve the port that labels the edge e.

The encoding of the edges in component Bi is defined as:

Trei =
∨

e=〈li ,pe ,ge , fe ,l ′i 〉∈Ei

loci = li ∧ loc ′i = l ′i ∧ ge ∧
∨

γ∈ΓBi

vΓ = γ∧
∧

γ∈ΓBi

(
vΓ = γ→ fe ( fγ(V′,V))

)∧ ∧
γ�∈ΓBi

(
vΓ = γ→ ∧

x∈Vi

x ′ = x
)

where the expression fe ( fγ(V′,V)) is a symbolic encoding of function application fe of the

transition e and the function application fγ of the interaction γ= 〈gγ,Pγ, fγ〉 2.

The encoding of the port enablement Trpi is defined as:

2. Note that, while in our definition fγ is a single assignment, the approach can be easily generalized to
sequential programs by applying a single-static assignment (SSA) transformation.
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Trpi =
∧

p∈Pi

(
vp ↔ ∨

〈l ,p,g ,op,l ′〉∈Ei

(
l oci = l ∧ g

))

That is, a port p is enabled if one of the transitions labeled by p is enabled.

Finally, the conditions that constrain the interactions to their ports and the priorities among

the interactions are defined as:

φΓ =
∧

γ=〈gγ,Pγ,opγ〉∈Γ

∧
p∈Pγ

vΓ = γ→ (vp ∧ gγ)

φΠ = ∧
(γ2,γ1)∈Π,γ1=〈gγ1 ,Pγ1 ,opγ1 〉

(gγ1 ∧
∧

p∈Pγ1

vp ) → vΓ �= γ2

The encoding preserves the BIP semantics. It is not hard to prove the correctness of the

encoding. The initial configuration is precisely characterised by the formula φC0 , where loci is

constrained to the initial locations of the corresponding component, and each component

variable is also assigned to the initial value. The transition relation is also characterised

precisely, since the variable vΓ can be assigned to the value representing a single interaction γ

at a time, which will enable the corresponding transitions of the components. The encoding

of φΓ ensures that vΓ gets the value only if γ is enabled in the corresponding state of the BIP

model. The valuations of the additional variables vp and vΓ do not alter the state space: their

valuations are constrained by the formulae Trpi and φΓ to reflect the BIP semantics.
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3 Verification of concurrent systems

In this chapter, we review the most relevant techniques for algorithmic verification of infinite-

state concurrent systems. We present these techniques in the following two categories: 1) ab-

straction techniques for resolving the data state explosion problem, and 2) partial order

techniques for reducing the number of redundant interleavings due to concurrency.

3.1 Abstraction techniques

Verification of the transition system with an infinite or large state space is computationally

hard. A prevalent way to reduce the state space size is to employ abstraction, as discussed in

Chapter 1. The basic idea of abstraction is to construct a smaller abstract transition system,

that soundly over-approximates the concrete system, such that safety of the abstract system

entails the safety of the concrete one. However, the inverse does not hold in general: unsafety

of the abstract system does not entail the unsafety of the concrete system. A general framework

to formalize abstraction and its soundness is abstract interpretation [48].

3.1.1 Abstract interpretation

Given a transition system T = 〈C,Σ,R,C0〉, we denote the the concrete property domain by

D� = (2C ,⊆). As we discussed in Section 2.2, invariant verification boils down to the fixpoint

computation of the post operator. In order to avoid the expensive fixpoint computation in

the concrete domain, abstract interpretation works in an abstract property domain, denoted

by D�, performs the fixpoint computation in this abstract domain, and then maps the result

back to the concrete domain. The correctness of the abstract analysis can be established by a

correspondence between the concrete and abstract domains, called Galois connection.

Definition 3.1.1 (Galois connection) Let (D�,⊆) and (D�,�) be the concrete and abstract prop-

erty domain respectively, a pair of (monotone) functions (α,β) defines a Galois connection

between these two domains, where α : D� �→ D� and β : D� �→ D�, iff for all a ∈ D� and b ∈ D�,
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the following holds:

α(a) � b ⇔ a ⊆β(b)

Usually, α is called abstraction function, and β is called the concretisation function. Galois

connection preserves the order in the corresponding domain: if the abstraction α(a) of an

element a ∈D� is smaller than b ∈D� in the abstract domain, then a ∈D� is smaller than the

concretisation β(b) of b ∈ D� in the concrete domain. Intuitively, order preserving ensures

the soundess of the analysis: computation in the abstract domain will always be a safe over-

approximation.

The abstraction of the computation in the concrete domain is then captured by the following

definition.

Definition 3.1.2 (Function abstraction) Given a concrete domain (D�,⊆), an abstract domain

(D�,�) and a Galois connection (α,β), a function f � ∈D� �→D� is an abstraction of a function

f � ∈D� �→D� iff

α◦ f � ◦β� f �

where ◦ denotes functional composition.

f � is the exact function abstraction of f � when f � = α◦ f � ◦β. In this case, we also say f � is

the induced abstraction of f � by the Galois connection (α,β). In particular, if f = post , then

function f � is the abstract post predicate transformer, which can be used to approximate the

concrete reachable states.

Abstract interpretation provides a general framework to automate program analysis, where

the crux is to design a suitable abstract property domain.

3.1.2 Predicate abstraction

As an instantiation of the abstract interpretation framework, predicate abstraction [79] uses

a finite set of predicates to construct the abstract domain. The predicates usually denote

properties of the state and are expressed as formulae, modulo some background theory, over

the state variables. The abstraction is defined by the value of these predicates in any concrete

state of the system. The fundamental operation in predicate abstraction can be described

as the following. Given a formula φ and a set of predicates P = {p1, ..., pn}, generate the most

precise approximation (either under-approximation or over-approximation) of φ using P .

Over the decades, many techniques have been proposed to compute predicate abstraction

efficiently [50, 69, 106, 107, 138].
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We describe the predicate abstraction as it was presented in the seminal paper [79] and in

the framework of abstract interpretation. Suppose the set of predicates is P = {p1, ..., pn}, the

abstract domain is D� = (2P ,�), where the order � is subset inclusion. Given an abstract state

P1 � P , and a transition relation R, the successor abstract state P ′
1 is then defined as follows:

P ′
1 = {p ∈ P | post (

∧
P1,R) =⇒ p is valid}

where
∧

P1 represent the conjunction of all the predicates in P1.

The abstraction function of predicate abstraction α : 2C �→ 2P is defined as follows:

α(C ′) = {p ∈ P | C ′ ∩ {c|c |= p} �= �}.

and the concretization function β : 2P �→ 2C is defined by:

β(P ′) = {c | c |=∧
P ′}.

the induced abstraction of the post operator under predicate abstraction is defined by:

post � =α◦post ◦β

The reachable states of the concrete transition system can be approximated by computing the

least fixpoint of post � in the abstract domain. However, since predicate abstraction computes

an over-approximation, the analysis may report a false positive, i.e. a spurious counterexample.

To refine the precision of the abstract analysis and eliminate the spurious counterexamples,

the counterexample guided abstraction refinement (CEGAR) technique was proposed in

[39, 40].

3.1.3 Counterexample guided abstraction refinement

The process of CEGAR reasoning is depicted in Figure 3.1. Starting with an initial abstraction

(possibly an empty set of predicates in predicate abstraction), we check if the current abstrac-

tion is able to prove the correctness or not. If no error is reported, then we can conclude the

safety of the system. Otherwise, we check if the reported error is real or not. If the error is

real, then we conclude the unsafety of the system and report a counterexample. If the error

is unreal, then we eliminate this spurious error and refine the abstraction. After a successful

refinement, we will repeat the above analysis until we either prove the correctness or a real

counterexample is found.

We now elaborate two important subroutines of CEGAR techniques, i.e. counterexample

analysis and abstraction refinement.
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1: compute abstraction

4: refine abstraction

2: check abstraction

3: check feasibility

transition system

[feasible]

counterexample

[no error]
safe

Figure 3.1 – Counterexample guided abstraction refinement loop

Suppose the abstract analysis produces a counterexample as shown in Figure 3.2, where the

node in blue represents an error state, one way to check if it is a real counterexample is to build

a trace formula φγ1 ∧φγ2 ∧ . . .∧φγn corresponding to the single static assignment form of the

statements in the trace, and check its satisfiability by using an SMT solver. If the constructed

trace formula is satisfiable, then the counterexample is real. Otherwise, it is spurious.

2 30 1 n
γ1 γ2 γ3 γn

Figure 3.2 – A counterexample trace

When a spurious counterexample is found, it must be eliminated by refining the precision

of the abstract analysis. In predicate abstraction, refining the abstraction boils down to dis-

covering new important predicates to enrich the abstract property domain. One advanced

technique to solve this problem relies on using Craig interpolation [49, 118, 120].

Definition 3.1.3 (Craig interpolant) Given a pair of formulae (φA ,φB ), such that the conjunc-

tion φA ∧φB is unsatisfiable, a Craig interpolant for (φA ,φB ) is a formula φ′
A with the following

properties:

1. φA =⇒ φ′
A,

2. φ′
A ∧φB is unsatisfiable and

3. φ′
A only refers to the common non-logic symbols of φA and φB .

Given a spurious counterexample trace c1
γ1γ2...γn−−−−−−→ cn , there are n−1 possible ways of splitting

the unsatisfiable formula φγ1∧φγ2∧. . .φγn into two formulas (φγ1∧·· ·∧φγi ,φγi+1∧·· ·∧φγn ), for
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i ∈ [1,n −1], preserving the order of interactions. For a given splitting, e.g. (φγ1 ,φγ2 ∧ . . .∧φγn )

we can compute an interpolant φ and derive a predicate from it. This predicate is then added

to the abstract domain to refine the abstraction. The chief advantage of interpolants derived

from refutations of unsatisfiable formulae is that they capture the facts that the prover derived

about φγ1 in showing that φγ1 is inconsistent with φγ2 ∧ . . .∧φγn . Thus, if the prover tends to

ignore irrelevant facts and focus on relevant ones, we can think of interpolation as a way of

filtering out irrelevant information from φγ1 .

The CEGAR approach (based on predicate abstraction and interpolation) has been widely

investigated in literature and successfully applied in practice in program and software verifica-

tion. An incomplete list of available tools that perform predicate abstraction includes the SLAM

toolkit [15, 16, 14], BLAST toolkit [90, 88], SATABS model checker [41], and CPAchecker [23].

3.1.4 Lazy abstraction

In the traditional predicate abstraction, e.g. [15], an abstract transition system is first con-

structed eagerly and then used for model checking. A bottleneck of this approach is the

construction of the abstract transition system, which may be very inefficient. Lazy abstraction

[90, 88, 119] avoids the expensive construction of the abstract transition system and performs

the abstraction only when necessary.

In combination with counterexample guided refinement, lazy abstraction provides a powerful

technique to address the data state explosion problem for the verification of sequential pro-

grams. It also relies on predicate abstract domain to approximate the concrete states. In lazy

abstraction, programs are represented as control flow graphs.

Definition 3.1.4 (Control flow graph) A control flow graph is a tuple CFG = (V,L,E, l0), con-

sisting of a set of variables V, a set of control locations L, a set of transition edges E ⊆ L× (EV ∪
FV)×L and a initial control location l0.

Lazy abstraction performs a forward reachability analysis and constructs an abstract reachabil-

ity tree (ART) to approximate the concrete reachable states. The construction of ART proceeds

by expanding the ART nodes, starting with the initial one. To expand a node, we first check if it

represents an error location. If an error location is reached, we then check if the path from

the root to this error node represents a real counterexample or not. One way to conduct this

check is to symbolically simulate this path from the initial states. If the path is feasible, then a

real counterexample is reported. Otherwise, we will identify the location from which the path

becomes infeasible, and restart the construction from this location using a refined abstract

domain.

Then we check if the current node can be covered by some other nodes. If it is covered, we can

stop the exploration from the covered node, since it represents a subset of states of the covering
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node. Otherwise, we expand the current node and compute all the abstract successors. We

then add all the successors in the tree as the children nodes, and process them later.

The ART node expansion looks at the control location of the node, and for each outgoing edge

in the control flow graph, a new successor node is created. The computation in [90] is slightly

different from that of [119]. In [90], predicate abstraction is used to approximate the post

operator, while in [119], no actual post operator is used. The state formula of the successor

node is obtained from the interpolation.

The ART construction terminates when all leaf nodes are either covered or fully expanded. An

ART is safe if no errors states are found. If the ART construction terminates, lazy abstraction

returns either a safe ART as the safety proof for the given program, or a counterexample.

However, the termination is not guaranteed in general.

3.2 Partial order reduction techniques

Abstraction techniques presented in the previous sections can resolve the data explosion

problem. There is, however, another source of state explosion that cannot be handled by

abstraction techniques. In concurrent systems, the state space also grows exponentially to the

number of components in the systems. This is due to interleavings of concurrent transitions.

Dedicated techniques for handling concurrency and for reducing the number of interleavings

are generally called partial order reduction (POR) techniques [77, 78, 124, 125, 46, 139, 140,

141]. The observation is that many interleavings in concurrent systems are equivalent in the

sense that they lead to the same final state, though in different execution order. The basic idea

of POR is to explore only one representative interleaving out of all equivalent ones.

In order to select the equivalent interleavings, POR makes use of the independence property

of concurrent transitions, i.e. when concurrent transitions are independent, their executions

do not interfere with each other, and changing the order of interleaving does not change the

final state. Formally, the concept of transition independence is defined as follows.

Definition 3.2.1 (Transition independence) Given a labeled transition system T = 〈C,Σ,R,C0〉,
two transitions t1, t2 ∈Σ are independent, if in every state c ∈ C, the following two conditions

hold:

1. if t1 is enabled in c, and c
t1−→ c ′, then t2 is enabled in c iff t2 is enabled in c ′; and symmet-

rically for the case of t2.

2. if t1, t2 are both enabled in c, and c
t1t2−−→ c ′1, c

t2t1−−→ c ′2, then c ′1 = c ′2.

Independent transitions neither disable nor enable each other. Simultaneously enabled in-

dependent transitions commute with each other and different execution orders result in the

same final state. It is worthy of notice that the above definition of independence is uncondi-
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tional, i.e. for all states in C. Independence is also a global property. One has to look at every

possible reachable state in order to obtain the precise independence relation.

Similarly, given a sequence of transitions t1 . . . ti tj . . . tn , where ti and tj are independent,

permutating ti and tj will result in an equivalent transition sequence in the sense that they

both lead to the same final state. More generally, given a state c ∈ C, if c
t1...tn−−−→ c1 and c

t′1...t′n−−−→ c2,

and t′1 . . . t′n can be obtained from t1 . . . tn by successively permutating adjacent independent

transitions, then we have c1 = c2.

In the literature, traces that can be obtained from each other by successively permuting adja-

cent commutable transitions are called Mazurkiewicz’s traces [115]. If the intermediate states

of the traces are irrelavant to the property of interest, e.g. deadlocks, only one interleaving

trace out of all Mazurkiewics’s traces need be explored, thus saving the verification effort by

exploring a reduced reachable state space.

In algorithmic verification, POR essentially performs a selective search to explore a subset of

the whole state space, as shown in Algorithm 1. A selective search takes as inputs a transition

system T to be explored, and a reduction function f POR : C �→ 2Σ , which is used to select the

subset of explored transitions on each state. It basically operates as a classical state space

search, e.g. DFS, except that, at each state reached during the search, it computes and explores

a subset of all the enabled transitions on this state, using a reduction function f POR . The other

enabled transitions are postponed to be explored in the future or possibly ignored.

Algorithm 1 Basic selective search

1: procedure SELECTIVESEARCH(T, f POR )
2: St ack, Hi stor y initially empty
3: push C0 into St ack
4: while St ack �= � do
5: pop c from St ack
6: if c ∉ Hi stor y then
7: push c into Hi stor y
8: T = f POR (c)
9: for t ∈ T do

10: c ′ = post (c, t )
11: push c ′ into St ack

Clearly, a selective search only reaches a subset of all the reachable states, thus, constructs a

reduced transition system defined as follows.

Definition 3.2.2 (Reduced labeled transition system) Given a labeled transition system T =
〈C,Σ,R,C0〉, a reduced transition system constructed by using a reduction function f POR is a

tuple Tr = 〈Cr ,Σr ,Rr ,C0〉, where C0 ⊆ Cr ⊆ C, and if c ∈ Cr , t ∈ f POR (c), and c
t−→ c ′, then c ′ ∈ Cr

and (c, t,c ′) ∈ Rr .
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If the set of enabled transitions to be explored, i.e. f POR (c) is chosen properly, the reduced

reachable state space Cr may be significantly smaller than C, while still preserving the same

properties as the full reachable state space. It is important to notice that POR avoids generating

the full reachable state space, and constructs the reduced one directly. Depending on the

reduction function f POR , POR approaches can be roughly classified into three categories: the

ample set approach [124, 125, 46, 47], the stubborn set approach [139, 140, 141, 143], and

the persistent set approach [77, 78, 68, 147]. In the following, we review the key insights of

these POR approaches, and refer to the various research articles for the specific algorithms for

computing such sets.

3.2.1 Ample set

Ample-set-based partial order reduction makes use of the property of transition independence

in Definition 3.2.1. We denote the reduction function by f ample .

Definition 3.2.3 (Ample set) For a state c, a set of transitions f ample (c) is called an ample set

iff it satisfies the following two conditions:

A0. if en(c) �= �, then f ample (c) �= �;

A1. if c
t1...tn−−−→ and ti ∉ f ample (c),∀i ∈ [1,n], then ti ,∀i ∈ [1,n] is independent with all transi-

tions in f ample (c).

It has been proved that POR based on an ample set reduction function preserves all the

deadlocks of the full state space [47].

Theorem 3.2.4 ([47]) Given a labeled transition system T = 〈C,Σ,R,C0〉, and a deadlock state

cd ∈ C, c0
t1...tn−−−→ cd , c0 ∈ C0, if the reduction function f POR (c0) obeys the conditions A0 and A1

in Definition 3.2.3, then there is a permutation t′1 . . . t′n of t1 . . . tn sucht that c0
t′1...t′n−−−→ cd in the

reduced transition system Tr .

Proof 3.2.5 The proof proceeds by induction on the length of the trace. The conclusion holds

trivally when n = 0.

If n > 0, then f ample (c0) contains an enabled transition t. If none of t1 . . . tn is in f ample (c0), then

cd
t−→ by A1, contradicting the assumption that cd is a deadlock. So there must be a smallest

index i such that ti ∈ f ample (c0). Let ci−1 and ci be the states such that c0
t1...ti−1−−−−→ ci−1

ti−→ ci .

Furthermore, let c ′1 be the state such that c0
ti−→ c ′1. Then by A1, applying independence i −1

times, we have that c ′1
t1...ti−1−−−−→ c ′i . Since the transition system is deterministic, c ′i = ci . So c0

ti−→
c ′1

t1...ti−1−−−−→ c ′i
ti+1...tn−−−−−→ cd . Hence, by the fact that c ′1 is in the reduced transition system, and the

induction hypothesis that the conclusion holds for traces of length n −1, we conclude that it

also holds for traces of length n.
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3.2.2 Stubborn set

With the stubborn set approach, transition independence is not explicitly assumed.

Definition 3.2.6 (Stubborn set) For a state c, a set of transitions f stubb(c) is called a stubborn

set iff the following conditions hold:

S0. if en(c) �= �, then f stubb(c) �= �;

S1. for each transition t ∈ f stubb(c), which is is disabled in state c, if c
t1...tn−−−→ cn and ti ∉

f stubb(c), for all i ∈ [1,n], then t is also disabled in state cn;

S2. for each transition t ∈ f stubb(c), which is enabled in state c, and c
t−→ c ′, if c

t1...tn−−−→ cn

and ti ∉ f stubb(c), for all i ∈ [1,n], then there is another state c ′n, such that cn
t−→ c ′n and

c ′ t1...tn−−−→ c ′n.

A stubborn set may contain both enabled and disabled transitions. Condition S1 says that

disabled transitions in the stubborn set remain disabled, while outside transitions take place.

Condition S2 says that enabled transitions in the stubborn set commute with sequences of

outside transitions. Sets satisfying the above conditions are also called strong stubborn sets.

It is possible to change the third condition S3 such that instead of requiring all enabled

transitions in a stubborn set remain enabled while outside transitions occur, we only require

one of them exists and remains enabled. Sets in this case are often called weak stubborn sets.

The following theorem states that every ample set is also a strong stubborn set when the

transition system is deterministic [143].

Theorem 3.2.7 ([143]) Assume that transition system is deterministic, then every ample set

f ample (c) is also a strong stubborn set in state c.

Proof 3.2.8 Condition A0 implies S0. Furthermore, S2 follows directly from A1 and S1 follows

from the fact that f ample (c) ⊆ en(c).

However, the opposite does not hold in general.

3.2.3 Persistent set

Persistent-set-based partial order reduction relies on the conditional transition independence

in a single state, instead of the unconditional one as in Definition 3.2.1.

Definition 3.2.9 (Conditional transition independence) Given a labeled transition system

T = 〈C,Σ,R,C0〉, two transitions t1, t2 ∈Σ are independent in a state c ∈ C, iff the following two

conditions hold:
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1. if t1 is enabled in c, and c
t1−→ c ′, then t2 is enabled in c iff t2 is enabled in c ′; and symmet-

rically for the case of t2.

2. if t1, t2 are both enabled in c, and c
t1t2−−→ c ′1, c

t2t1−−→ c ′2, then c ′1 = c ′2.

The only difference from Definition 3.2.1 is that the independence is considered in a single

state, instead of the whole state space.

Definition 3.2.10 (Persistent set) For a state c, a set of transitions f per s(c) is called a persistent

set iff the following two conditions hold,

P0. f per s(c) ⊆ en(c);

P1. for every trace c = c0
t1...tn−−−→ cn, with ti ∉ f per s(c), i ∈ [1,n], all transitions in f per s(c) are

independent of ti in state ci−1.

Intuitively, a set of transitions is called persistent in a state if whatever transition one takes

from this state, while remaining outside of the set, does not interfere with all the transitions in

the set.

The following theorem says that persistent set and strong stubborn set are equivalent when

the transition system is deterministic, as stated in [78] and in [143].

Theorem 3.2.11 ([143, 78]) Assume that the transition system is deterministic, then every

nonempty persistent set is also a strong stubborn set and all the enabled transitions of a strong

stubborn set give a persistent set.

Proof 3.2.12 Condition P0 implies S1 and if a persistent set is nonempty, then it implies S0.

Further, condition P1 implies S2.

Assume a stubborn set f stubb(c), let f per s(c) = f stubb(c)∩ en(c). Let t ∈ f per s(c), c
t1−→ c1

t2−→
c2 . . .

tn−→ cn, and ti ∉ f per s(c), for i ∈ [1,n]. Then S2 implies that there are states c ′1, . . . ,c ′n−1 such

that c ′ t1−→ c ′1
t2−→ c ′2 . . .

tn−→ cn. By giving t1 . . . ti instead of t1 . . . tn, we can conclude that ci
t−→ c ′i , for

i ∈ [1,n]. Thus, S2 implies that for all i ∈ [1,n], t is independent of ti in ci−1, which means that

the set f per s(c) is persistent.

To summarize, for deterministic transition systems, the relation between the notions of ample

set, stubborn set and persistent set is shown in the Figure 3.3. That is, ample set implies strong

stubborn set and strong stubborn set is equivalent to persistent set.

3.2.4 Partial order reduction for safety properties

All the reduction functions above only guarantee the preservation of deadlocks in the reduced

system. However, in general, preservation of safety properties cannot be guaranteed. This is
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Strong stubborn setAmple set

Persistent set

implies
equivalent to

Figure 3.3 – Relations between ample, stubborn and persistent sets

due to the ignoring problem [139, 140, 46, 13], that is, when cycles are encountered during the

state space exploration, the behaviour (local reachable states) of some component may be

completely ignored on the states visited in the selective search. An example illustrating the

ignoring problem is shown in Figure 3.4. We only show the automata of the two components.

No interactions are defined to synchronize the transitions. Transitions of the two components

can only interleave.

In the intial state (c,c1), set {t} satisfies the ample set conditions A0 and A1, however, if we

only explore the transition t, we would ignore all the reachable states of the component on

the right-hand side. Thus, if the property being verified concerns the reachable states of that

component, the above set would not be sufficient.

c2

c1

c

t2t1t

Figure 3.4 – An example for illustrating the ignoring problem

In order to avoid the ignoring problem, partial order reduction techniques usually introduce

an additional condition S:

S. For every transition t ∈ en(c), there exists a trace c = c0
t1−→ c1

t2−→ c2 . . .
tn−→ cn , where

ti ∈ f POR (ci−1), such that t ∈ f POR (cn).

This condition ensures that every enabled transition will occur at least once in the reduced

state space. In the above example, both {t1} and {t, t1} satisfy this additional condition. Thus,

either can be selected in the initial state.
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4 Verification of BIP with bounded con-
currency

In this chapter, we focuse on the algorithmic verification of component-based systems mod-

eled in BIP with bounded concurrency, i.e. systems with a fixed number of components. Given

the significant progress on algorithmic verification of concurrent infinite-state systems in

the past decade, as discussed in the previous chapter, we leverage on the state-of-the-art

abstraction techniques to analyze the behavior of infinite-state BIP components. Meanwhile,

inspired by the ESST approach [130], in order to handle the concurrent interactions between

components, we incorporate partial order reduction techniques to reduce the redundant

interaction interleavings in the abstract reachability analysis.

In the sequel, we first present a lazy abstraction with interpolant-based abstraction refinement

algorithm for BIP. Then we present a persistent set based partial order reduction for BIP and

show how to combine it with lazy abstraction succinctly. Last but not the least, we present a

comprehensive experimental evaluations of the proposed technique against the state-of-the-

art.

This chapter is based on the following publication:

– Formal verification of infinite-state BIP models, Bliudze, Simon and Cimatti, Alessandro and

Jaber, Mohamad and Mover, Sergio and Roveri, Marco and Saab, Wajeb and Wang, Qiang,

International Symposium on Automated Technology for Verification and Analysis (ATVA

2015), pages 326–343, 2015, Springer.

The author proposed the algorithm of lazy abstraction with reduction for BIP and did the

correctness proofs with the help of Dr. Sergio Mover, Dr. Marco Roveri and Dr. Alessandro

Cimatti. The implementation is based on the Kratos model checker [36]. In the above article,

there is also the symbolic encoding of BIP into nuXmv (presented in Section 2.4), which

was initiated by Dr. Simon Bliudze, and implemented by Wajeb Saab, Dr. Mohamad Jaber,

separately from mine. The author formalized the encoding.

39



Chapter 4. Verification of BIP with bounded concurrency

4.1 Lazy abstraction of BIP

4.1.1 Data structures for verification

As in lazy abstraction, we compute an abstract reachability tree (ART) to over approximate all

the reachable states. The ART for the verification of BIP is defined as follows.

Definition 4.1.1 (Abstract reachability tree) An abstract reachability tree for a BIP model

MBIP = 〈{Bi }n
i=1,Γ,Π〉 is defined as a tuple T = (Nodes,Root,Edges,Covering), where

1. Nodes is a set of tree nodes;

2. Root ∈ Nodes is the unique root node;

3. Edges ⊆ Nodes×Γ×Nodes is a set of tree edges;

4. Covering ⊆ Nodes×Nodes is the covering relation between tree nodes.

An ART node represents an over-approximation of a set of BIP system states. Edges of the

ART are labeled by interactions. They model both the branches of the control flow of each

component, and the interleavings of concurrent interactions in different components. A path

in an ART is then a sequence of interactions.

For a BIP model, an ART node is defined as follows.

Definition 4.1.2 (ART node) An ART node for a BIP model MBIP = 〈{Bi }n
i=1,Γ,Π〉 is defined

as a tuple η = 〈〈l1,φ1〉, . . . ,〈ln ,φn〉,φ〉, where for each i ∈ [1,n], 〈li ,φi 〉 is the local region of

component Bi with the control location li and the abstract data region φi , and φ is the global

data region.

The abstract data region φi over-approximates the valuations of variables in the control

location li . We also maintain a global data region φ to keep track of the relations of the

variables that are used in data transfer. The reason is that when data transfer is present,

we may use predicates containing variables from different components in the abstraction

structure, which cannot be expressed by using predicates only containing variables from the

same component. It is worthy of noticing that the presence of data transfer prevents us from

discovering modular proofs for component-based systems in the way similar to [83, 84].

A node is consistent if the conjunction of all data regions, i.e. φ∧∧n
i=1φi is satisfiable. An

inconsistent node does not represent any concrete states. An ART node is an error node if

some control location li is an error location and the data regions of the node are consistent,

i.e. φ∧∧n
i=1φi is satisfiable.

A state c = 〈〈l1,V1〉, . . . ,〈ln ,Vn〉〉 is covered by an ART node η= 〈〈l ′1,φ1〉, . . . ,〈l ′n ,φn〉,φ〉, denoted

by c |= η, if for all i ∈ [1,n], li = l ′i and Vi |=φi and ∧n
i=1Vi |=φ. A node can also be covered by

another one, as defined in the following.
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Definition 4.1.3 (Node covering) Given two ART nodesη= 〈〈l1,φ1〉, ...,〈ln ,φn〉,φ〉,η′ = 〈〈l ′1,φ′
1〉,

...,〈l ′n ,φ′
n〉,φ′〉, we say η is covered by η′, if the following conditions hold:

1. li = l ′i ,

2. the implication φi ⇒φ′
i is valid for all i ∈ [1,n], and

3. the implication φ⇒φ′ is valid.

Intuitively speaking, a node η is covered by another one η′, if the set of states approximated by

η is a subset of the states approximated by η′. Moreover, the possible successors of η are also

reachable from η′. Then it is safe to stop the exploration from η. An ART is complete if all the

nodes are either fully expanded or covered. An ART is safe if it is complete and contains no

error nodes.

4.1.2 Main verification algorithm

The main verification algorithm is shown in Algorithm 2. It takes a BIP model as input, and

explores an over-approximation of all the possible reachable states by constructing an ART.

When it terminates, it either returns a safe ART, concluding the model is safe, or reports a

counterexample. The termination is not guaranteed in general [1, 56].

The ART construction proceeds with expanding the ART nodes. Upon expanding a node, it first

checks if this node indicates an error. If an error node is detected, it generates a counterexam-

ple path by invoking function BuildCEX and checks if the counterexample path represents a

real trace or not. If the counterexample is real, then the algorithms reports the counterexample

and stops the analysis. Otherwise, it refines the abstraction by function Refine and continues

the ART construction after refining the abstraction successfully. Then if the node is not an

error not, it checks if this node can be covered by a previous explored node. If it can be covered,

the algorithm stops the expansion from this node and marks it as covered, and proceeds

some other uncovered nodes. Finally, a node is expanded if it is neither an error nor covered

by another one. To expand a node, it first computes all the possible enabled interactions by

function EnabledInteraction, and then computes the successor nodes by function Expand. All

the consistent successor nodes are inserted in the ART to be expanded later.

We elaborate the node expansion and counterexample guided abstraction refinement in

details in the subsequent sections.

4.1.3 Node expansion

To expand an ART node, the set of structurally enabled interactions is first computed by

the function EnabledInteraction in Algorithm 2. We say that an interaction γ = 〈g ,P, f 〉 is

structurally enabled in an ART node η= 〈〈l1,φ1〉, ...,〈ln ,φn〉,φ〉, if for each component Bi such

that P ∩Pi = {pi }, there is a transition 〈li , gi , pi , fi , l ′i 〉 ∈ Ei , which starts from li and is labeled

by the involving port pi . Basically this computation extracts the control location of each
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Algorithm 2 Lazy abstraction of BIP

Input: a BIP model MBIP and an error state
Output: either MBIP is safe, or a counterexample cex

1: create an ART node η0 for the initial state
2: create an ART T with the root η0

3: create a worklist wl of ART nodes
4: push η0 into wl
5: while wl �= � do
6: η← pop(wl )
7: if η is an error node then
8: cex ← BuildCEX(η)
9: if cex is real then

10: return cex
11: else
12: Refine(T, cex)

13: else if η is covered then
14: mark η as covered
15: else
16: Γenab ← EnabledInteraction(η)
17: Expand(η, Γenab)
18: push all children of η into wl

19: return MBIP is safe

component from the given node, and then looks up the possible transitions starting from

these control locations, and marks them as structurally enabled transitions. Then if all the

participating transitions of an interaction are structurally enabled, we say this interaction is

structurally enabled.

Notice that the structural enabledness on an ART node is different from the interaction

enabledness on a BIP state in Section 2.3. We do not check the satisfiability of the interaction

or transition guards on the ART node. It is safe to do so when we are doing lazy abstraction:

if an interaction is disabled on the ART node due to the unsatisfiability of guards, then the

successor node will be inconsistent, i.e. the conjunction ∧n
i=1φ

′
i ∧φ′ is unsatisfiable in the

successor node. Thus, a disabled interaction will lead to an inconsistent successor node, which

will be later discarded.

Suppose the set of enabled interactions on node η is Γenab = {γ1, . . . ,γk }, then for each i ∈
[1,k], γi = 〈gi ,Pi , fi 〉, Pi = {p1, ..., pl }, and for each p ∈ Pi , 〈l , g , p, f , l ′〉 ∈ Ei d(p), we denote

g , f by gp and fp respectively. We expand the node η and create a successor node η′ =
〈〈l ′1,φ′

1〉, ...,〈l ′n ,φ′
n〉,φ′〉 for interaction γi , according to the following rule:

1. φ′
j = �post(φi ∧φ, ôp j ), for each j ∈ [1,n], such that Pi ∩Pj = {p j } and ôp j = if gi ∧ gp j

then fi ; fp j ,

2. φ′
j =φ j , for j ∈ [1,n], such that Pi ∩Pj =�,
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3. φ′ = �post (φ, ôp), ôp = if gi ∧∧
p∈Pi

gp then fi ; fp1 ; ...; fpl ,

Given a set of enabled interactions Γenab , the pseudo-code of the node expansion is shown

in Algorithm 3. For each enabled interaction γ ∈ Γenab , we create a new ART node η′ as the

successor of current node η. For each component Bi , that participates in γ, we invoke function

ExtractTransition(Ei , li , pi ) to extract the participating transition starting from li and labelled

by port pi from the set of transitions Ei . We omit the details of this function, since it is simply a

membership check. Then we compute the new abstract data region φ′
i by applying the abstract

strongest post-condition �post (φi ∧φ, ôp j ). For other components, which do not participate

in this interaction, their abstract data regions and control locations remain the same. To

update the global region, we need to consider all the participating transitions, since they may

modify variables in data transfer and change the global data region. We create two temporary

variables g ′ and op′, where variable g ′ is the conjunction of the interaction guard and all the

participating transition guards, and op′ is the sequential composition of the data transfer and

all the participating transitions. Notice that data transfer should always be executed before

all the participating transitions, but the execution order of component transitions does not

matter, since they only access the local variables in the components. The new global region φ

is then updated by applying the abstract strongest post-condition �post (φ, ôp), where ôp is the

guarded operation composed of g ′ and op′. Finally, if all the abstract strongest post-condition

computations succeed, the new ART node η′ is inserted and the edge is labeled by interaction

γ. Otherwise, this new successor node η′ is inconsistent and discarded.

Algorithm 3 Node expansion

1: procedure EXPAND(η= 〈〈l1,φ1〉, . . . ,〈ln ,φn〉,φ〉, Γ)
2: for γ= 〈g ,P, f 〉 ∈ Γ do
3: η′ ← 〈〈l ′′1 ,φ′

1〉, . . . ,〈l ′′n ,φ′
n〉,φ′〉

4: g ′ ← g
5: op′ ← f
6: for each Bi in MBIP do
7: if Pi ∩P = {pi } then
8: 〈li , gi , pi , fi , l ′i 〉← ExtractTransition(Ei , li , pi )
9: g ′ ← g ′ ∧ gi

10: op′ ← op′; fi

11: ˆopi ← gi ; fi

12: 〈l ′′i ,φ′
i 〉 = 〈l ′i , �post (φ∧φi , ˆopi )〉

13: if ¬φ′
i then

14: break
15: else if Pi ∩P =� then
16: 〈l ′′i ,φ′

i 〉 = 〈li ,φi 〉
17: ôp ← g ′;op′

18: φ′ = �post (φ, ôp)
19: if ¬φ′ then
20: break
21: AddChild(η, γ, η′)
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4.1.4 Abstraction refinement

If an error node is encountered during the ART construction in Algorithm 2, function BuildCEX

is called to construct a counterexample path by backtracking the ART from the current error

node to the root node. In BIP, we denote a counterexample cex by the sequence of interactions,

labeling the path in the ART from the root to the error node.

To check if the counterexample cex is real or not, we first construct a sequential execution trace

trcex. Suppose the counterexample is cex = γ1γ2 . . .γk , where for each i ∈ [1,k], interaction

γi = 〈gi ,Pi , fi 〉, Pi = {pi
1, . . . , pi

t }, trγi = gi ; fi ; f i
π(1); . . . ; f i

π(t ), where π is an arbitrary permuta-

tion in {1, . . . , t }, and f i
π( j ) is the operation of transition labeled by port pi

π( j ). The trace of

counterexample is the sequential composition of all trγi , i.e. trcex = trγ1 ; . . . ; trγk . We say that

the counterexample cex is real if and only if the first order encoding of trcex is satisfiable, or

equivalently post (true, tracecex) �= false. Otherwise, the counterexample is spurious.

If a spurious counterexample is found, we must eliminate the spurious counterexample and

refine the abstraction. Our computes a sequent interpolant from the first order encoding

of trcex [88, 119], and extract the predicates from the interpolant and use them to refine the

abstraction (function Refine in Algorithm 2).

4.1.5 Correctness proof

In order to prove the correctness of lazy abstraction algorithm for BIP, we need to relate the

construction of ART with BIP operational semantics. We first show that the node expansion

in Algorithm 3 creates successor nodes, which safely over-approximate the corresponding

reachable states in BIP operational semantics.

Lemma 4.1.4 Let η be an ART node of a BIP model MBIP and η′ be a successor of η following

interaction γ, and let c be a concrete state such that c |= η, then for every concrete state c ′ such

that c
γ−→ c ′, we have c ′ |= η′.

Proof 4.1.5 Assume c = 〈〈l1,V1〉, . . . ,〈ln ,Vn〉〉, and η= 〈〈l1,φ1〉, . . . ,〈ln ,φn〉,φ〉, we have Vi |=φi ,

for each i ∈ [1,n], and
∧n

i=1 Vi |= φ, since c |= η. Assume also the successor of c following γ =
〈g ,P, f 〉 is c ′ = 〈〈l ′1,V′

1〉, . . . ,〈l ′n ,V′
n〉〉, and the successor of node η is η′ = 〈〈l ′′1 ,φ′

1〉, . . . ,〈l ′′n ,φ′
n〉,φ′〉.

In order to prove c ′ |= n′, we have to show that l ′i = l ′′i and V′
i |= φ′

i , for all i ∈ [1,n], and∧n
i=1 V′

i |=φ′.

Consider the component Bi , such that P ∩Pi = {pi }, i.e. component Bi participates the interac-

tion γ, and let the participating transition in Ei be 〈li , gi , pi , fi , l ′i 〉. Then we have Vi |= gi and

V′
i = fi ( f (Vi )) according to the operational semantics of BIP.

Then according to Algorithm 3, we have l ′′i = l ′i and φ′
i = �post (φi ∧φ, ˆopi ), where ˆopi denotes the

sequential composition gi ; f ; fi . Based on the semantics of abstract strongest post-condition, and
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the fact that Vi |=φi and φi ∧ gi is satisfiable, we have V′
i |=φ′

i . Following a similar argument,

we can prove
∧n

i=1 V′
i |=φ′.

For each component Bi such that P ∩Pi =�, since it does not participate the interaction, its

state is unchanged. Thus, the satisfaction relation trivially holds.

Then the following theorem states the correctness of our lazy abstraction algorithm for BIP.

Theorem 4.1.6 Given a BIP model MBIP and an error state encoding the invariant property,

for every terminating execution of Algorithm 2, we have the following properties:

1. if Algorithm 2 returns a counterexample, then there is a concrete trace from an initial

state to an error state in MBIP;

2. if Algorithm 2 returns a safe ART, then for every reachable state of MBIP, there is an ART

node that covers it.

Proof 4.1.7 Suppose Algorithm 2 returns a counterexample cex = γ1γ2 . . .γk , then according

to the counterexample analysis presented in Section 4.1.4, we know that post (true, tracecex) is

satisfiable, which means the counterexample cex represents a concrete trace in MBIP.

Suppose Algorithm 2 returns a safe ART, we prove that for every reachable state c, there is an

ART node η that covers c. The proof is by induction on the length of trace from the initial state to

c. The base case holds trivially since we create the initial node from the initial state.

Assume the conclusion holds for all traces of length n, i.e. if c0
γ1...γn−−−−→ cn, then there is an ART

node η that covers state cn, Now suppose state c is reachable by a trace of length n + 1, i.e.

c0
γ1...γn−−−−→ cn

γn+1−−−→ c, because cn |= η, and based on Lemma 4.1.4, we conclude that the successor

node η′ of η following interaction γn+1 also covers c. This concludes the proof of the theorem.

4.2 Persistent set reduction for BIP

In lazy abstraction, all interleavings of concurrent interactions are explored, which may re-

sult in visiting some redundant states. Considering the example in Figure 4.1, in the initial

state (S, I1, I2) (only show control locations for simplicity), both interactions {tr y1} and {tr y2}

are enabled, and explored in lazy abstraction. However, both interleavings {tr y1}; {tr y2} and

{tr y2}; {tr y1} lead to the same final state (S,W1,W2). These interleavings can be seen as equiv-

alent, since the intermediate state is of no interest to our verification (i.e. wether (C1,C2) is

reachable or not). It is thus preferable to explore only one interleaving of the two.

In this section, we present the persistent-set-based partial order reduction for BIP, that aims

at selecting one representative interaction interleaving out of all equivalent ones in state space

exploration. First of all, we introduce the following definition of interaction independence.
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Figure 4.1 – Example for illustrating partial order reduction for BIP

Definition 4.2.1 (Interaction independence) Two interactions γ1 and γ2 are independent in

state c, if the following condition hold:

1. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c ′, where c
γ1−→ c ′; and

symmetrically for the case if γ2 is enabled in c.

2. if γ1 and γ2 are both enabled in c, and c
γ1γ2−−−→ c ′1, c

γ2γ1−−−→ c ′2, then c ′1 = c ′2.

Independence relation in the above definition is a global property, and in order to check if two

interactions are independent or not, we have to look at every possible state in the state space

of the transition system. Hence, computing the precise independence relation may be as hard

as the invariant verification problem. Static analysis of the system model is usually used to

obtian an under-approximation of the independence relation.

We remark that the above defines a conditional independence relation, as in [78, 147], i.e.

two interactions are defined as independent with respect to a single state. This definition

works well with explicit-state model checking, where individual concrete states are visited

and checked. However, in this dissertation, we aim at applying partial order reductions to

abstraction structures (e.g. ART), where the conditional independence may not hold. Consider

the interactions with this two actions x := z + y and x := z, they are independent on state

(x = 1, y = 0, z = 1) (actually any state with y = 0). Now suppose the predicate we use for

abstraction is x = z, the current abstract state then x = z, on which it is unclear whether y = 0

or not. Thus, it is unable to conclude whether the two actions are independent or not.

Furthermore, independent interactions do not commute on abstract states. For instance,

consider a BIP model with only two components and the following two simple interactions

γ1 = 〈tr ue, {p1}, x1 = x1 +1〉 and γ2 = 〈tr ue, {p2}, x2 = x2 +1〉, that is, each of the two compo-

nents increment a local integer variable by 1. It is obvious they are independent in the concrete

transition system, and from the initial state (x1 = 0, x2 = 0), the two interleavings γ1;γ2 and

γ2;γ1 will lead to the same state (x1 = 1, x2 = 1). Now suppose the predicate language of the

abstraction structure is given by b1 = (x1 > x2), b2 = (x1 = x2) and b3 = (x1 = x2 +1) and their
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negations. Then starting from the initial abstract state ¬b1 ∧b2 ∧¬b3, interleaving γ1;γ2 leads

to an abstract state ¬b1 ∧b2¬b3 (with an intermediate state b1 ∧¬b2 ∧b3), while another

interleaving γ2;γ1 leads to a different abstract state ¬b1 ∧¬b3 (with an intermediate state

¬b1 ∧¬b2 ∧¬b3).

x1 = 1, x2 = 2x1 = 2, x2 = 1

γ1

γ2

γ2

x1 = 1, x2 = 1

x1 = 2, x2 = 2

γ1

γ1 γ2

b1∧¬b2∧b3 ¬b1∧¬b2∧¬b3

γ1γ2

¬b1∧b2∧¬b3 ¬b1∧¬b3

¬b1∧b2∧¬b3

Figure 4.2 – Example showing independent interactions don’t commute on abstract states

Thus, we cannot simply lift the Deifinition 4.2.1 to abstraction structures. These concerns

motivate the following definition of abstract independence. Recall that β is the concretisation

function that maps an abstract state to the concrete ones.

Definition 4.2.2 (Abstract independence) Two interactions γ1 and γ2 are independent in an

abstract state η, if for all states c ∈β(η), the following conditions hold:

1. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c ′, where c
γ1−→ c ′; and

symmetrically for the case if γ2 is enabled in c.

2. if γ1 and γ2 are both enabled in c, and c
γ1γ2−−−→ c ′1, c

γ2γ1−−−→ c ′2, then c ′1 = c ′2.

We can see that independence in all states in Definition 3.2.1 implies abstract independence,

and it is also preferable to use the independence in Definition 3.2.1, given the fact that it is

easier to compute. In the sequel, by independent interactions we mean the interactions that

are independent in all states.

The question is whether it is still sound if we only explore one interaction sequence out of two

interleavings in the abstract analysis, given two independent interactions. Our first observation

is that in lazy abstraction, since we keep track of the control locations, the set of outgoing

interactions in each ART node will always contain the set of interactions in each concrete

system state represented by this node. The second observation is that though independent

interactions do not commute on abstract states, they still commute on the reachable concrete

states represented by the abstract states. The following lemma formalizes this observation and

ensures that exploiting independence on abstraction structures is still sound. Recall that �post

is the abstract post operator.

Lemma 4.2.3 Let γ1 and γ2 be two independent interactions, and let η be an abstract state,

then for all c ∈ β( �post( �post(η,γ1)),γ2), we have that if there is a state c1 ∈ β(η), such that

c = post (post (c1,γ1),γ2), then c ∈β( �post ( �post (η,γ2)),γ1).
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Proof 4.2.4 Assume we have c = post (post (c1,γ1),γ2), since γ1 and γ2 are independent, then

we also have c = post (post(c1,γ2),γ1). According to the semantics of �post , it holds that c ∈
β( �post ( �post (η,γ2),γ1)).

Similarly, we can conclude that sequences of interaction interleavings that can be obtained

from each other by permuting adjcent independent interactions are also equivalent. Exploring

one interleaving sequence out of all equivalent ones would not miss any reachable concrete

states. Thus, it is still sound to perform selective search on abstraction structures.

Then the question is how we can select the set of interactions to be explored on an abstract

state. For this purpose, we define the persistent set as in Definition 3.2.10, but on an abstract

state.

Definition 4.2.5 A set of interactions Γper in an abstract state η is persistent if the following

conditions hold:

1. Γper ⊆ en(η) and Γper =� if and only if en(η) =�;

2. for every execution η
γ1...γn−−−−→ ηn, where γi ∉ Γper , i ∈ [1,n], γn is abstractly independent

with all interactions in Γper ;

3. for every execution η= η0
γ1...γn−−−−→ ηn, where ηn is implied by some ηi , i ∈ [0,n −1], and for

every γ ∈ en(η j ), j ∈ [1,n], there is k ∈ [1,n] such that γ ∈ Γper (ηk ).

The first two conditions ensure the deadlocks are preserved, and the third one is required

when reasoning about the general safety properties.

A persistent set in an abstract state may not be persistent on the represented concrete states,

since an interaction enabled on an abstract state may not be enabled on some represented

concrete states. However, the persistent set in an abstract state is a safe over-approximation.

4.2.1 Combining persistent set reduction with lazy abstraction

In order to combine the persistent set reudction with lazy abstraction for BIP, we incorporate

the selective search in the abstract reachability analysis of lazy abstraction. The new algorithm

is listed in Algorithm 4. It constructs a reduced ART in a similar way to Algorithm 2. More

specifically, when we expand an ART node in the abstract reachability analysis, instead of

computing successor nodes for all possible enabled interactions, we only compute the ones

that follow the interactions in the persistent set. The exploration of the interactions outside of

the persistent set are postponed.

To solve the ignoring problem illustrated in Section 3.2.4, the new algorithm will also have to

detect if a cycle occurs, before expanding an ART node. We say a cycle occurs, if the control

locations of a node have been visited before in the ART path to this node. In case a cycle is
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Algorithm 4 Lazy abstraction with persistent set reudction for BIP

Input: a BIP model MBIP and an error state
Output: either MBIP is safe, or a counterexample cex

1: create an ART T with initial node η0

2: create a worklist wl and push η0 into wl
3: while wl �= � do
4: η← pop(wl )
5: if IsError(η) then
6: cex ← BuildCEX(η)
7: if cex is real then
8: return cex
9: else

10: Refine(T, cex)

11: else if Cycle(η) then
12: FullyExpand(Predecessor(η)), and add all successors into wl
13: mark η as covered
14: else if Covering(η) then
15: mark η as covered
16: else
17: ΓP ← PersistentSet(η)
18: Expand(η, ΓP ), and add all successors into wl

19: return MBIP is safe

detected, the predecessor of this node will be fully expanded by function FullyExpand to avoid

some interactions are postponed forever. Basically, in the new algorithm, we expand the set of

interactions, which are outside of the persistent set of this node. This is a stronger guarantee

that implies the second condition of persistent set in Definition 4.2.5. Detailed elaboration of

techniques for solving the ignoring problem can be found in [65].

If no cycle is detected, then the new algorithm computes the set of selected interactions using

the function PersistentSet. We elaborate the implementation details of this function in the next

subsection. Then the node is expanded according to interactions in the persistent set and all

the consistent successors are added into the ART. We remark that the actual implementation

of persistent set computation does not affect the integration. Any optimization or new persis-

tent set computation implementations can be easily incorporated without jeopardizing the

correctness of the algorithm.

The following theorem states the correctness of the new algorithm.

Theorem 4.2.6 Given a BIP model MBIP and an error state encoding the invariant property,

for every terminating execution of Algorithm 4, we have the following properties:

1. If a counterexample is returned, then it is concrete counterexample in MBIP;

2. If a safe ART is returned, then for every reachable state c in MBIP, there is an ART node η such

that c |= η.
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Proof 4.2.7 Item 1 holds for the same argument with Theorem 4.1.6. In the following, we prove

the second item.

According to Theorem 4.1.6, for every reachable state c in MBIP, there is a node ηw in the ART

returned by Algorithm 2 such that c |= ηw . Suppose the path to node ηw is η0
γ1...γn−−−−→ ηn, where

η0 is the root and ηn = ηw .

Now we prove that there is another path in the ART returned by Algorithm 4, η0
γ′

1...γ′
n−−−−→ η′n, such

that γ′1 is in the persistent set Γper (η0) and c |= η′n.

Case 1 : if ηw is a deadlock node, then we show that at least one interaction γi , i ∈ [1,n] in

the path η0
γ1...γn−−−−→ ηn is in the persistent set Γper (η0). Otherwise, suppose that none of

interactions γi , i ∈ [1,n] is in the persistent set Γper (η0), then by the second condition of

persistent set in Definition 4.2.5, the interactions in persistent set Γper (η0) will still be

enabled in ηn, which controdicts the assumption that ηw is a deadlock node.

Thus, there is at least one interaction γi , i ∈ [1,n] in the persistent set Γper (η0). Assume

the first such interaction is γ j , j ∈ [1,n], then for all interactions γk ,k < j , we have γ j is

independent with γk . Thus, γ j can be moved to the beginning of the path. The new path

would be the same one with γ1 . . .γn, except γ j has been moved to the first.

Then applying 4.2.3, we can conclude that c |= η′n.

Case 2 : if ηw is not a deadlock node, but covered by some other node in the same path, assume

the covering node is ηi , i ∈ [0,n −1]. Assume also no interactions in the persistent set

Γper (η0) occur inγ j , j ∈ [1, i ]. Then we know that interactions inΓper (η0) are also enabled

in ηi and ηn as well. Then according to the third condition of persistent set in Definition

4.2.5, we know that at least one interaction in Γper (η0) occurs in γ j , j ∈ [i +1,n]. Let γk ,

k ∈ [i +1,n] be the first such interaction, then for the same reason as the case 1, γk can be

shifted to the beginning of the path. The new path would be the same one with γ1 . . .γn,

except γk has been moved to the first.

Then applying 4.2.3, we can conclude that c |= η′n.

Case 3 : if ηw is covered by some node in another path. It is equivalent to prove the conclusion

for another path. Since our models are finite branching, we are guaranteed that there is a

path such that argument in case 2 applies.

Case 4 : if ηw is not covered, then it is possible to extend the path, where case 2 or case 3 applies.

4.2.2 Computing persistent set

In this section, we present an algorithm to compute a persistent set in an ART node by means

of static analysis of BIP model. This algorithm is an actural implementation of the function

PersistentSet in Algorithm 4.

The basic idea is to find static criteria for selecting persistent set that can be checked efficiently

by a syntactic analysis of the high-level formal description of the system. It is static in the sense
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the persistent set is constructed on the basis of the current state, without knowing its future

states. This is important, since the future states are not known when the state is expanded.

First, we elaborate how to obtain the dependence relation D of interactions. We compute

the dependence relation statically from the control flow of the system model a priori: two

interactions are dependent if they share a common component. This will give us an over-

approximation of the dependency relation D. That is, if (γ1,γ2) ∈D, then γ1 and γ2 are consid-

ered as dependent, though they may be independent in the reachable state space. We take the

complement of D as an under-approximation of the independence relation.

For simplicity, given an interaction γ, we denote in the sequel by Dγ the set of interactions that

are dependent with γ, and we denote by Iγ the compliment of Dγ, i.e. the set of interactions

that are independent with γ.

We now introduce the definition of an enabling set for a disabled interaction in an ART node.

Definition 4.2.8 (Enabling set) Let γ be a disabled interaction in an ART node η, an enabling

set for γ in η is a set of interactions Nγ, such that for all sequences of interactions η
γ1...γn−−−−→ η′

γ−→,

there is at least one interaction γi ∈Nγ, i ∈ [1,n].

An enabling set of a disabled interaction in an ART node characterizes the interactions that

may interfere with the disabled interaction in the control flow. A disabled interaction can be

taken only if some interactions in its enabling set are taken first.

To compute an enabling set for a disabled transition, we use a fine-grained static analysis.

Formally, given a disabled interaction γ= 〈g ,P, f 〉 in an ART node η= 〈〈l1,φ1〉, ...,〈ln ,φn〉,φ〉,
for each component Bi such that P ∩Pi = {pi }, and there is no such an outgoing transition

(li , gi , p ′
i , fi , l ′i ) ∈ Ei that p ′

i = pi , then we say another interaction γ′ = 〈g ′,P ′, f ′〉 is in the

enabling set Nγ of γ, if P ′ ∩Pi = {p ′
i }, and there is a path in Bi from li to a control location,

where pi is an outgoing transition.

Finally, we present the algorithm for computing a persistent set in Algorithm 5. The algorithm

builds a persistent set incrementally by making sure the following conditions hold:

1. Γstub contains at least one enabled interaction if the set of enabled interactions on η is

non-empty;

2. for each disabled interaction γ ∈ Γstub , then there is an enabling set Nγ, such that

Nγ ⊆ Γstub ;

3. for each enabled interaction γ ∈ Γstub , then Dγ ⊆ Γstub .

The following theorem states that the set of enabled interactions in the returned set is indeed

a persistent set.

Theorem 4.2.9 Let Γstub(η) be a set returned by Algorithm 5, and let Γ′ be the set of all enabled

interactions in Γstub(η), then Γ′ is a persitent set in the given ART node η.
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Algorithm 5 Persistent set computation

1: procedure PERSISTENTSET(η, MBIP)
2: Γwor k = {γ} such that γ is enabled on η

3: Γstub =�
4: while Γwor k �= � do
5: pick some γ ∈ Γwor k

6: Γwor k = Γwor k −γ, Γstub = Γstub ∪ {γ}
7: if γ is enabled then
8: Γwor k = Γwor k ∪Dγ\Γstub

9: else
10: Nγ = Enabl i ng Set (γ,η,MBIP)
11: Γwor k = Γwor k ∪Nγ\Γstub

12: return Γstub

Proof 4.2.10 Suppose Γ′ is not a persistent set on the ART node η, then there is a path η
γ1−→

η1
γ2−→ η2 . . .

γn−→ ηn
γ−→, such that for all i ∈ [1,n], γi ∉ Γ′, and γ depends on some interaction γ′

in Γ′.

Assume γ is enabled on η, then γ is also enabled on η and should be included in the set Γ, and

Γ′ as well, since it depends on γ′, Contradicting the assumption.

Assume γ is disabled on η, however, since it is enabled on ηn, there must be a nonempty enabling

set for γ on the node η. Moreover, there is at least one interaction γ j ,1 ≤ j ≤ n in this enabling

set, and according to the assumption, γ j is disabled on η, otherwise γ j should be in Γ′. Then by

repeating the same reasoning, there is an interaction γ j ′ ,1 ≤ j ′ < j in the enabling set for γ j and

γ j ′ is diabled on η. In the end, we can conclude that γ1 is in some enabling set and is disabled in

η, which contradicts the assumption.

Thus, Γ′ is indeed a persistent set.

4.3 Experimental evaluation

We have implemented the proposed verification techniques for BIP based on the Kratos

software model checker [36], the symbolic model checker nuXmv [33] and the SMT solver

MathSAT5 [38]. To evaluate the performance of the proposed techniques, we carried out a

comprehensive experimental evaluation, where we took a set of benchmarks from the litera-

ture [26], and modeled them in the BIP framework. The benchmarks include the ticket mutual

exclusion protocol, the ATM transaction model, the leader election algorithm, and a Quorum

consensus algorithm and the reactor temperature control system. For each benchmark, we

also create a unsafe version with manually injected faults. All these benchmarks are infinite-

state and scalable with respect to the number of components. In the experiments we create

ten instantiations for each benchmark model. In total we have 120 models. The details of all

the benchmark models are provided in the Appendix. All the experiments have been run on a
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64-bit Linux PC with a 2.8 GHz Intel i7-2640M CPU, with a memory limit of 4Gb and a time

limit of 300 seconds per benchmark.

In the experiments, we run the following two configurations of our prototype tool: 1) plain lazy

abstraction, denoted by ’plain’ in the plots; 2) lazy abstraction with persistent set reduction,

denoted by ’pset’ in the plots. For simplicity, we call lazy abstraction with persistent set

reduction as persistent set reduction in the sequel. We compare them to two other infinite-

state verification techniques implemented in nuXmv [33]: the state-of-the-art IC3 algorithm

for software model checking [37] (IC3 in the sequel) and the implicit predicate abstraction

model checking [138] (IPA in the sequel). For the translation from BIP to nuXmv, we refer

to the encoding in 2. We measure both the running time of solving both safe and unsafe

benchmarks, and the memory consumption for the three configurations of our prototype tool

in terms of the number of created ART nodes. We do not compare the performance of our

tool to DFinder [21] or the work [95], since they do not handle data transfer in interaction, or

infinite-state models.

We present the evaluations in the following subsections. The detailed statistics data is attached

in the Appendix A.5, and Appendix A.6.

4.3.1 Comparing lazy abstraction to persistent set reduction

In Figure 4.3, we compare the two configurations of our prototype tool, and show the scatter

plots of time for solving each benchmark. 1 In the plots (and all the subsequent scatter plots),

symbol × represents a safe benchmark, and ◦ represents an unsafe benchmark. A point in

the plots indicates the analysis time taken by the algorithms represented by x-axis and y-axis.

From the plot, we can see that combining persistent set reduction improves the performance

of lazy abstraction for both safe and unsafe benchmarks. However, the improvement is not

significant.

In order to understand the performance of lazy abstraction and the impact of persistent set

reduction, we collect the time used by each subroutine of the algorithms and compare them in

the bar plots in Figure 4.4 and Figure 4.5. Each bar in the plot represents the total analysis time

for a benchmark model, with different colors showing the time used by different subroutines.

We only depict the results with total runtime greater than 1 second. The one in the left depicts

the results with runtime greater than 10 seconds, and the one in the right depicts the results

with runtime from 1 second to 10 seconds.

In plain lazy abstraction, the total runtime consists of the time of transfer function compu-

tation i.e. the abstract post image computation, the time of coverage check, and the time of

counterexample analysis and refinement. The results are shown in Figure 4.4, from which we

can see that the most expensive routines of lazy abstraction are the computation of transfer

function and the coverage check.

1. Red diagonal guides provide a reference for comparison, each indicating shift of one order of magnitude.
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Figure 4.3 – Lazy abstraction vs. lazy abstraction with persistent set reduction

In lazy abstraction with persistent set reduction, it contains all the subroutines of lazy ab-

straction, and has additionally the time of persistent set computation and the time of cycle

detection. The results are shown in Figure 4.5. We can see that in addition to the expensive

subroutines of transfer function computation and coverage check, the cycle detection also

contributes significantly to the total runtime. This subroutine is necessary for persistent set

reduction to solve the ignoring problem. In fact, as also noticed in [142] recently, solving the

ignoring problem using cycle detection is computationally expensive, since whenever a cycle

is found, we have to fully expand all the postponed interactions, and visit a large number of

redundant states. Mostly, it is the bottleneck and harm the power of partial order reduction.

We also measure the effect of partial order reduction as the percentage of successful reductions

over the total number of attempts. That is, one ART node expansion accounts for a reduction

attempt, and a successful reduction would explore only a strict subset of all the enabled

interactions, while a failed reduction would explore all the enabled interactions. We only list

the results for the solvable benchmarks, and for the simplicity of presentation, we abbreviate

the list of entries that have 0 percentage from the same benchmark with only one entry. The

result is shown in Table 4.1.

The result in Table 4.1 shows that persistent set reduction as presented in this dissertation has

limited reduction power on the set of benchmarks we have. There are a number of benchmarks,

where no successful reductions are achieved, i.e. the ticket mutual exclusion protocol and

the reactor temperature control system, and the unsafe version of the railway control system.

Except for the reason that the static persistent set is nonoptimal [2], another main reason
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Figure 4.4 – Runtime of plain lazy abstraction subroutines
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Figure 4.5 – Runtime of lazy abstraction with persistent set reduction subroutines
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is that these models are highly synchronized, i.e. every two interactions have one common

component involved. Thus, our interaction dependence analysis (we say two interactions are

dependent if they share one common component) reports that all interaction are dependent,

and no reductions are achieved on these benchmarks. This may also explain why the overall

improvements of persistent set reduction are less significant, as shown in the scatter plot in

Figure 4.3.

To summarize, we mainly evaluate the performance of lazy abstraction and the impact of

persistent set reduction in this subsection. We find that persistent set reduction improves the

abstract analysis, but at the same time, it brings the task of solving the ignoring problem, which

harms the overall improvements. And the power of persistent set reduction is largely affected

by the precision of the dependence analysis. A coarse dependence analysis is computationally

cheap, but may give little reduction achievement. In our measurements, it can only reduce

models that exhibit a high degree of concurrency and interleaving.

model percentage model percentage

atm_safe_02 0.500000 atm_safe_03 0.492674

atm_safe_04 0.442058 atm_unsafe_02 0.402583

leader_election_safe_02 0.400000 leader_election_safe_03 0.543478

leader_election_safe_04 0.481553 leader_election_safe_05 0.410788

leader_election_unsafe_02 0.466667 leader_election_unsafe_03 0.555556

leader_election_unsafe_04 0.465347 leader_election_unsafe_05 0.395445

quorum_safe_02 0.297872 quorum_safe_03 0.327189

quorum_safe_04 0.320191 quorum_safe_05 0.285627

quorum_unsafe_02 0.400000 quorum_unsafe_03 0.400000

quorum_unsafe_04 0.400000 quorum_unsafe_05 0.400000

quorum_unsafe_06 0.400000 quorum_unsafe_07 0.400000

quorum_unsafe_08 0.400000 quorum_unsafe_09 0.400000

quorum_unsafe_10 0.400000 quorum_unsafe_11 0.400000

railway_control_safe_02 0.250000 railway_control_safe_03 0.380282

railway_control_safe_04 0.404762 railway_control_safe_05 0.368159

railway_control_safe_06 0.208363 railway_control_safe_07 0.166628

railway_control_safe_08 0.253109 railway_control_unsafe 0.000000

temperature_safe 0.000000 temperature_unsafe 0.000000

ticket_safe 0.000000 ticket_unsafe 0.000000

Table 4.1 – Percentage of persistent set reduction

4.3.2 Comparing to IC3 and IPA

In this subsection, we compare each of our configurations to both IC3 and IPA in terms of the

running time for solving each benchmark. The results are shown in the following scatter plots.
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Figure 4.6 – Lazy abstraction vs. IC3

Figure 4.7 – Lazy abstraction with persistent set reduction vs.
IC3
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In Figure 4.6, and Figure 4.7, we show the comparisons with IC3. We can see that for unsafe

benchmarks, persistent set reduction is faster than IC3 for most unsafe benchmarks, though

there are some exceptions that persistent set reduction runs out of time. For safe benchmarks,

our techniques are comparable to IC3, while there are a number of models that can be solved

by IC3, but the other techniques run out of time.

In Figure 4.8, and Figure 4.9, we compare each of our techniques to IPA. For safe benchmarks,

plain lazy abstraction is comparable to IPA and persistent set reduction perform slightly better.

For unsafe benchmarks, our techniques always perform better. IPA is unable to solve any

unsafe benchmarks.

4.3.3 Cumulative plots

In this subsection, we present the cumulative plots that indicate the number of benchmark

models that can be solved by each technique (y-axis) within the given time (x-axis). In Figure

4.10, we plot the cumulative time of solving the benchmarks for all techniques. The plot shows

that overall IC3 can solve more benchmark models within the time limits. In total, IC3 has

solved 84 benchmark models, IPA has solved 25 models and plain lazy abstraction, persistent

set reduction have solved 63, 68 models respectively.

In Figure 4.11 and Figure 4.12, we plot the cumulative time of solving safe and unsafe bench-

marks respectively. The plot in Figure 4.11 shows that for safe benchmarks, IC3 is able to solve

more benchmark models. The other techniques are comparable, while persistent set reduction

performs slightly better. For most unsafe benchmarks, our techniques are faster than IC3.

There are still some unsafe models that can be solved by IC3, while our techniques run out

of time or memory. There is no data in Figure 4.12 for IPA, since it fails to solve all the unsafe

benchmarks.

We also measure the memory usage of our techniques in terms of the size of ART. We collect

the number of nodes that are needed to solve each benchmark model. The cumulative plots

are shown in Figure 4.13, Figure 4.14 and Figure 4.15. They show that for solving the same

amount benchmarks, plain lazy abstraction needs to create more ART nodes than the other

one, thus consuming more memory usage.

4.4 Related work

Many work on algorithmic verification of safety properties can be found in literature. Below,

we review the most closely related ones to this dissertation.

In a seminal paper on verification of infinite-state systems [1], the authors prove some general

decidability results and propose a backward reachability analysis technique for safety verifi-

cation, relying on the well-structured transition system framework [66]. In [56], the authors

present a uniform forward reachability analysis procedure for infinite-state systems based on
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Figure 4.8 – Lazy abstraction vs. IPA

Figure 4.9 – Lazy abstraction with persistent set reduction vs.
IPA
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Figure 4.10 – Cumulative plot of time for all benchmarks

Figure 4.11 – Cumulative plot of time for safe benchmarks

Figure 4.12 – Cumulative plot of time for unsafe benchmarks
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Figure 4.13 – Cumulative plot of ART size

Figure 4.14 – Cumulative plot of ART size for safe benchmarks

Figure 4.15 – Cumulative plot of ART size for unsafe bench-
marks
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the construction of a covering graph. Later in [90, 88], the authors present an abstract forward

reachability analysis technique for sequential programs based on predicate abstraction and

interpolation-driven abstraction refinement. However, these techniques can hardly scale for

the concurrent system models we consider in this dissertation. The main reason is that they

do not resolve the state explosion problem resulting from concurrency, which is one of the

major obstacles for the verification of component-based systems. On the other hand, partial

order reduction is the dedicated technique to deal with concurrency. Though several partial

order reduction techniques are adopted to software verification [96, 68, 147, 102], they still

suffer from the inefficiency of reasoning about arithmetic.

In the following, we roughly classify the techniques for efficient verification of infinite-state

concurrent systems into the following categories: 1) combination of symbolic reasoning and

explicit reductions; 2) compositional reasoning.

Attempts to combine partial order techniques with abstraction techniques for efficient verifi-

cation of concurrent software have also been made in [36, 145]. In [36], the authors propose

the Explicit Scheduler, Symbolic Thread (ESST) verification framework for multi-threaded

programs with a preemptive and stateful scheduler. However, atomic synchronization among

transitions is not supported. The work in [145] combines lazy abstraction with interpolant

algorithm for sequential programs [119] and dynamic partial order reduction [102] for the

verification of generic multi-threaded programs with pointers. They put the emphasis on

shared-variable concurrency, and do not leverage the separation between coordination and

computation, which is the core of our approach. Recently, in [86] the author considers com-

bining abstraction technique with stubborn set reduction for CSP models. In [8], the authors

combine ample-set-based partial order reduction with BDD-based symbolic model checking.

But no abstraction is involved. In [87], the authors extends stubborn-set-based partial order

reduction to real-time models with zone abstraction.

With respect to compositional reasoning, the most relevant works are [70, 89, 111, 29, 34, 83,

128]. In [70], the authors present a thread modular verification technique for multi-threaded

programs, relying on the assume-guarantee style reasoning [101]. In this approach, each

thread is verified against its environment assumption, which is the disjunction of the guaran-

tees of all the other threads. The guarantee of each thread models all the possible global state

update performed by this thread. Initially the guarantee is the empty relation, and is iteratively

extended during the verification process. Later in [89], the authors extend the thread modular

verification with counterexample-guided predicate abstraction refinement and apply their

resuts to the data race detection. In [111], the authors formalize thread modular verification in

the abstract interpretation framework, and prove that thread modular verification essentially

is Cartesian abstract interpretation. In [29], the authors also present an assume-guarantee

abstraction refinement technique for compositional verification of component-based systems.

However, the system models being verified are finite-state and without data transfer. In [34],

the authors present a modular verification technique for software components in C. Their

approach consists in, first, abstracting each component as a finite-state automaton by using
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predicate abstraction, then checking whether the finite-state automaton specification simu-

lates the obtained abstractions. The applied abstraction technique is eager in the sense that

an abstract transition system is construcuted prior to the acual analysis, as opposed to the lazy

abstraction we apply, where the abstract transition system is constructed on the fly and as only

far as necessary. In [83, 84], the authors propose a compositional verification technique for

multi-threaded programs, where proof rules are encoded as recursion-free Horn clauses and

auxiliary assertions are automatically computed and refined using predicate abstraction and

interpolation. In [80], the authors propose to use horn clauses as a general representation of

various proof rules, e.g. deductive proof rule, rely guarantee and assume guarantee proof rule.

It allows us to automatically synthesis program verification tools, using horn clause solver as

backend engine. Later in [128], the authors combine this compositional verification technique

with a reduction technique based on Lipton’s theory of reduction [108]. Reduction is applied

as a program transformation that inserts atomic section based on a lockset analysis. At present,

their tool still requires manual transformations. Moreover, the programming model is quite

different from ours. They handle shared-variable concurrency, whereas in BIP we consider

multiparty synchronisation and data transfer.
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5 Further techniques for improving
reductions

In this chapter, we present two further techniques for improving the performance of partial

order reductions for BIP. The first technique is called simultaneous set reduction. As opposed

to persistent set reduction, where the explorations of independent interactions are possibly

postponed, simultaneous set reduction tries to explore the independent interactions in a

single step. Since no interactions are postponed to explore, simultaneous set reduction does

not need to solve the ignoring problem, thus, avoiding the expensive cycle detection.

Secondly, we present an advanced reduction technique for a particular class of BIP models,

which have certain symmetric structure features, e.g. component symmetries. Symmetries are

very common in most component-based designs. For instance, a system model consisting of

one server and several identical users is symmetric with respect to the users. Permutating the

indexes of the users would not affect the satisfaction of certain safety properties, e.g. dead-

locks, that is, if one state is a deadlock state, then permutating the indexes of the symmetric

components in the state does not change the deadlock. Thus, we can view the set of states that

are identical under certain permuations as equivalent. In the state space exploration, we can

select and visit only one representative of these equivalent states ideally, if the properties to be

verified are invariant under symmetries. In the second part of this chapter, we investigate how

to exploit symmetries of component-based systems to improve the efficiency of partial order

reductions, the persistent set reduction in particular.

This chapter is based on the following publications:

– Verification of component-based systems via predicate abstraction and simultaneous set

reduction, Qiang, Wang and Bliudze, Simon, International Symposium on Trustworthy

Global Computing (TGC 2015), pages 147–162, 2015, Springer.

– Exploiting Symmetry for Efficient Verification of Infinite-State Component-Based Systems,

Wang, Qiang, International Symposium on Dependable Software Engineering: Theories,

Tools, and Applications (SETTA 2016), pages 246–263, 2016, Springer.

The author proposed the verification algorithms, and did the implementations as well.
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5.1 Simultaneous set reduction for BIP

In this section, we present a new reduction technique for BIP, called simultaneous set reduc-

tion. It also makes use of the interaction independence in Definition 3.2.1. However, differing

from the persistent set reduction, which aims at avoiding the redundant interleavings of inde-

pendent interactions, simultaneous set reduction executes as many independent interactions

as possible simultaneously in one step.

In the sequel, we illustrate the idea by using an example, and then formalize the conditions

imposed on the set of interactions, which can be executed simultaneously, and prove that

no deadlocks are missed in the reduced reachable state space. In the end, we present how to

combine it with lazy predicate abstraction, and how to compute the simultaneous set.

5.1.1 Motivating example

Example 5.1.1 In Figure 5.1, we show a simple BIP model with two components B1 and

B2. Each component defines three local integer variables and may enter the deadlock state

S5 by taking transition er r or1 or er r or2 when the guard [x �= y] holds. One binary interac-

tion 〈true, {er r or1,er r or2},skip〉 is defined to synchronize the two transitions labeled by ports

er r or1 and er r or2 to take the system to an error state. Besides, all the other transitions form

singleton interactions, e.g. 〈true, {i nval i d1}, x = 0; y = 0〉. No data transfer is defined in this

model.

er r or1

er r or2

B1

B2

r est ar t2

i nser t2

x=1 y=z
r espond2

er r or2

[x �= y]

r equest2
z=x

y=0
z=0

val i d2

x=0
y=0

r est ar t1

i nser t1

x=1 y=z
r espond1

er r or1

[x �= y]

r equest1
z=x

y=0
z=0

x=0
y=0S1 S2

S3

S4 S5

S6
val i d1

S1 S2

S3 S6

S5S4i nval i d2

i nval i d1

Figure 5.1 – The first example for illustrating simultaneous set

On the initial state c0 = 〈〈S1, x = 0, y = 0, z = 0〉,〈S1, x = 0, y = 0, z = 0〉〉, There are two enabled

interactions γ1 = 〈tr ue, {i nser t1}, x = 1; y = 0; z = 0〉 and γ2 = 〈tr ue, {i nser t2}, x = 1; y = 0; z =
0〉. It is easy to see that they are independent interactions, thus, the two interleavings γ1;γ2
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and γ2;γ1 will lead to the same state c = 〈〈S2, x = 1, y = 0, z = 0〉,〈S2, x = 1, y = 0, z = 0〉〉.

In persistent set reduction, one interleaving out of the two is selected and explored. While in

this simultaneous set reduction, we consider executing the two interactions simultaneously in

one step in the abstract reachability analysis. The first question is that in order to preserve all

the deadlock states in the reduced state space, what conditions should we impose on the set

of interactions to be executed simultaneously?

The very first condition is independece. However, independence is not sufficient. Consider

the model in Figure 5.1, suppose we want to expand the node η= 〈〈S3,φA〉,〈S4,φB 〉,φ〉, where

component B1 is at control location S3 and component B2 is at control location S4, we first

compute the set of enabled interactions Γenab = {{r equest1}, {r est ar t2}}. Notice that inter-

action {er r or1,er r or2} is disabled, because port er r or1 is disabled in component B1. Since

the two interactions {r equest1} and {r est ar t2} are independent, we may execute then simul-

taneously, however, in case of doing so, we would miss the following (fragment) counterex-

ample from this node: {r equest1}; {r espond1}; {er r or1,er r or2}. The reason is that although

interaction {er r or1,er r or2} is disabled on node η, it becomes enabled when interactions

{r equest1}; {r espond1} are executed.

Thus, when firing interactions simultaneously in one step, we have to make sure that no

counterexample traces would be ignored in the future executions.

5.1.2 Combining simultaneous set reduction with lazy abstraction

Formally, we define the set of interactions that can be safely executed in one step as a simulta-

neous set.

Definition 5.1.2 A set of enabled interactions Γsi m on a state c is a simultaneous set, iff the

following two conditions hold:

1. all the interactions in Γsi m are independent in c;

2. for each interaction γ ∈ Γsi m and each execution c
γ−→ c0

γ1...γn−−−−→ cn, if there is γ′ ∈ Γsi m \{γ}

such that γ′ ∉ {γ1, ...,γn}, then γn is independent of all interactions in Γsi m \ {γ}.

Notice the difference between simultaneous set the persistent set in Definition 3.2.10: inter-

actions in a persistent set are inter-dependent, and their interleavings should be taken into

account, while in a simultaneous set, interactions are independent and their interleavings can

be avoided.

The second condition in the above definition means that in each execution starting from

an interaction in a simultaneous set, the interactions appearing in the execution should be

independent of all the interactions in the simultaneous set, unless all the interactions in the

simultaneous set have been executed.
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In order to prove the correctness of simultaneous set reduction, we introduce the following

definitions. Given a BIP model MBIP and its transition system TB I P , we denote by T R
B I P

the reduced transition system. A transition in T R
B I P is denoted by c

Γsi m−−−→ c ′, where Γsi m is a

simultaneous set on c . Notice that the transition in T R
B I P may no longer be transition in TB I P ,

but a representation of several transition sequences.

Formally, suppose Γsi m = {γ1 . . .γk }, a transition c
Γsi m−−−→ c ′ in the reduced transition system

T R
B I P represents a set of transition sequences c

γi1 ...γik−−−−−→ c ′ in TB I P , where i1, . . . , ik is a permuta-

tion of 1, . . . ,k. We say that each transition sequence c
γi1 ...γik−−−−−→ c ′ is a concretization of c

Γsi m−−−→ c ′.
It is not hard to see for each simultaneous set of size k, there are k factorial concretizations.

The concretizations of a trace in T R
B I P are extended in the standard way.

The correctness of simultaneous set reduction with respect to deadlock states reachability

analysis is stated in the following theorem.

Theorem 5.1.3 Every reachable deadlock state in TB I P is also reachable in T R
B I P .

Proof 5.1.4 Assume that state ce is a deadlock state in TB I P , which is reachable by the trace

ρ, then we prove that ce is also reachable in T R
B I P . The proof is by complete induction on the

number of states in the trace ρ.

For the base case of |ρ| = 1, the result trivially holds since the initial state is the deadlock. Assume

the theorem holds for all the cases of |ρ| <= n, where n >= 1, then we prove it also holds for

|ρ| = n +1. Assume that ρ = c0
γ0−→ c1

γ1···γn−1−−−−−−→ ce , we show how to construct a trace ρr in T R
B I P

that represents ρ and also results in the deadlock state ce .

If the simultaneous set on state c0 is Γ0
si m = {γ0}, then ρr is ρ. If Γ0

si m = {βi |i ∈ [1,k]}∪ {γ0}, we

have that all interactions βi should be executed in ρ, i.e. for each βi , i ∈ [1,k], there must be

an interaction γ j , j ∈ [1,n −1] such that βi = γ j . Otherwise, suppose there is an interaction

βi , i ∈ [1,k], which is not present in ρ, then according to the definition of simultaneous set, βi

must be independent with all interactions γ j , j ∈ [1,n −1], then βi should also be enabled on

state ce , contradicting the fact that ce is a deadlock state.

Then by permuting adjcent independent interactions, we can obtain the following trace ρ′ =
c0

γ0β1···βk−−−−−−→ ck+1
γk+1···γn−1−−−−−−−→ ce , where the sequence of interactions c0

γ0β1···βk−−−−−−→ ck+1 is a concretiza-

tion of the transition labeled by the simultaneous set Γ0
si m, i.e. c0

Γ0
si m−−−→ ck+1. Based on the

induction hypothesis, the sequence of interactions ck+1
γk+1...γn−1−−−−−−−→ ce is also a concretization of

some trace ρ′
r in T R

B I P . Thus, ρr is the concatenation of (c0
Γ0

si m−−−→ ck+1) and ρ′
r , concluding the

proof.

More generally, simultaneous set also preserves the reachability of local component states.

The proof of the following theorem is straightforward. Since no interactions are postponed or
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ignored, there is no need to solve the ignoring problem.

Theorem 5.1.5 Given a BIP system model MBIP, and its labeled transition system TB I P , if

〈li ,Vi 〉 is a local state of component i , then there is a state c ′ = 〈〈l1,V1〉′, . . . ,〈ln ,Vn〉′〉 ∈ CB I P ,

such that 〈li ,Vi 〉 = 〈li ,Vi 〉′.

In order to combine the simultaneous set reduction with lazy abstraction for BIP, we first lift

the simultaneous set definition to abstract states as in Definition 4.2.5. Then we modify the

Algorithm 2 to obtian the combination. The new algorithm is listed in Algorithm 6. It differs

from Algorithm 2 in that when expanding a node, instead of creating successor nodes fror each

enabled interaction in Γenab , it first computes the set of simultaneous sets Γsi m by invoking the

function SimultaneousSet, which will be elaborated in the next subsection, and then creates a

successor node for each simultaneous set in Γsi m . Notice that since a simultaneous set is a set

of interactions, the node expansion procedure should also be accordingly adjusted. We also

remark that we do not need cycle detection or full node expansion in the new algorithm, since

no interactions are postponed to execute in the simultaneous set reduction.

Algorithm 6 Lazy abstraction with simultaneous set reduction for BIP

Input: a BIP model MBIP and an error state
Output: either MBIP is safe, or a counterexample cex

1: create an ART T with initial node η0

2: create a worklist wl
3: push η0 into wl
4: while wl �= � do
5: η← pop(wl )
6: if IsError(η) then
7: cex ← BuildCEX(η)
8: if cex is real then
9: return cex

10: else
11: Refine(T, cex)

12: else if Covering(η) then
13: mark η as covered
14: else
15: ΓS ← SimultaneousSet(η)
16: for each Γ ∈ ΓS do
17: Expand(η, Γ)
18: push the successor into wl

19: return MBIP is safe

The following theorem states the correctness of Algorithm 6.

Theorem 5.1.6 Given a BIP model MBIP and an error state encoding the invariant property,

for every terminating execution of Algorithm 6, the following two properties hold:
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1. If a counterexample is returned, then it is a concrete counterexample in MBIP;

2. If a safe ART is returned, then MBIP is safe.

Proof 5.1.7 If a counterexample is returned, we know that it is a feasible execution. If an ART

is returned, and suppose there is a concrete execution to a deadlock state, then according to

Theorem 5.1.3 and Theorem 4.1.6, we can conclude that this execution should also be in the

abstraction, concluding the assumption that a safe ART is returned.

5.1.3 Computing simultaneous set

In this section, we present an implmentation of function SimultaneousSet in Algorithm 6,

which computes the set of simultaneous sets on an ART node. The independence relation

is obtained in the same way as in Section 4.2.2. The implementation is listed in Algorithm 7.

It uses two additional functions EnabledInteraction and DisabledInteraction. Function Dis-

abledInteraction computes the set of disabled interactions on an ART node, which is the

complement of the set of enabled interactions.

Algorithm 7 Simultaneous set computation

Input: an ART node η= 〈〈l1,φ1〉, . . . ,〈ln ,φn〉,φ〉
Output: a set of simultaneous sets Γsi m

1: ΓE ← EnabledInteraction(η)
2: ΓD ← DisabledInteraction(η)
3: create a worklist of interaction sets wl
4: push ΓE into wl
5: while wl �= � do
6: Γ← pop(wl)
7: if exists γ1,γ2 ∈ Γ, s.t. γ1,γ2 are dependent then
8: copy1 ← Γ− {γ1}
9: copy2 ← Γ− {γ2}

10: push copy1,copy2 into wl
11: else if exists γ1,γ2 ∈ Γ, γ3 ∈ ΓD ,

s.t. γ3,γ1 are dependent, and γ3,γ2 are dependent then
12: copy1 ← Γ− {γ1}
13: copy2 ← Γ− {γ2}
14: push copy1,copy2 into wl
15: else
16: if Γsi m does not contain Γ then
17: push Γ into Γsi m

The basic idea is that starting from the set of enabled interactions, the algorithm progressively

refines this set by splitting it into two sets, meaning that this set of interactions cannot be

executed simultaneously. The criterion of splitting a set is the following: 1) either the two

interactions from the set are dependent; 2) or they are independent with each other, but

dependent with a disabled interaction. Then this set is split into two sets, each of which is
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obtained by removing one of the interactions. Otherwise, if all interactions are independent of

each other and with the disabled interactions, then the set is a simultaneous set and is added

into the result set Γsi m . The following theorem states the correctness of Algorithm 7.

Theorem 5.1.8 Let Γsi m be a set returned by Algorithm 7, then Γsi m is a set of simultaneous

sets on the given ART node.

Proof 5.1.9 Suppose there is a set Γ ∈ Γsi m, and Γ is not a simultaneous set on the given ART

node η. However, from the computation in Algorithm 7, we know that all interactions in Γ are

independent. Then the reason preventing it from being a simultaneous set is that there is a

finite execution η
α−→ η0

β1−→ η1 . . .ηn−1
βn−→ ηn, where α ∈ Γ and there is an interaction β ∈ Γ and

β ∉ {β1, . . . ,βn}, βn is dependent with some interaction γ ∈ Γ. If βn is enabled on η, then γ and βn

should be in two different simultaneous sets. The above finite execution meets the simultaneous

set definition. Thus, βn is disabled on η, and based on the computation in Algorithm 7, α and γ

should be splitted into two sets, which contradicts our assumption that α,γ ∈ Γ. This concludes

the proof.

We remark that the above algorithm for computing a simultaneous set is only correct for BIP

models we consider in this dissertation. Adopting the computation to other formalizations,

e.g. Petri net, may not result in a correct simultaneous set that preserves deadlock states.

Consider the following model in Figure 5.2, consisting of two components B1 and B2. The initial

states of the two components are S1 and S3 respectively. The only interaction synchronizes

transition t5 in component B1 with transition t4 in component B2. Clearly, the two transitions

t1 and t2 are independent on the initial state, however, the set {t1, t2} is not a simultaneous

set. To see why, consider the execution {t2}{t3}{t4, t5} from the initial state, according to the

definition of simultaneous set, {t1} should be independent of all the subsequent interactions

after {t2}, i.e. {t3} and {t4, t5}, which is not the case, since {t1} is dependent with {t4, t5}. Thus,

the set {t1, t2} does not form a simultaneous set. Our algorithm does not return the set {t1, t2}

as a simultaneous set on the initial state, because both interactions t1 and t2 are dependent

with the disabled interaction {t4, t5}.

Considering the complexity of computing simultaneous set in Algorithm 7, we assume that,

given two interactions γ1 and γ2, it takes O (1) time for the dependence check with precom-

puted dependence relation. The while loop executes at most |ΓE | times, where |ΓE | denotes

the number of enabled interactions in ΓE . Since in each loop execution at most two interac-

tions will be split and one simultaneous set will be added into the worklist. In the worst case,

|ΓE |2 ∗|ΓD | checks are needed to find the two interactions to be split in each loop execution.

Thus, the worst case time complexity of Algorithm 7 is O (|ΓE |3 ∗|ΓD |) in terms of the number

of interactions in the model.
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Figure 5.2 – The second example for illustrating simultaneous set

5.1.4 Discussions

In this subsection, we compare the simultaneous set reduction and persistent set reduction

through an example borrowed from [143]. Arguably, it is not clear which of the two approaches,

persistent set reduction and simultaneous set reduction has better performance. We try to

give a preliminary theoretical comparison.

Consider first the example model in the left of Figure 5.3, which consists of n concurrent com-

ponents. Each component defines three control locations and two transitions. No interactions

between the components are enforced, thus, every component executes independently.

Clearly, there are n!2n different executions in this model, yielding a state space of size 3n .

On the initial state, there are 2n possible simultaneous sets, each of which consists of one

transition from each component. Simultaneous set reduction yields a reduced state space

of size 2n +1. In contrast, persistent set reduction executes one component at a time, which

yields a state space with 2n+1 −1 states. Both reductions gain a significant saving over the full

reachable state space, and moreover, simultaneous set yields approximately half additional

saving over persistent set.

... ...
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γn2γn1
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γ13 γ14

Figure 5.3 – Examples for comparing simultaneous and persistent sets

However, there is no guarantee that simultaneous set always outperforms persistent set.

Consider now the example model in the right part of Figure 5.3, where each component has

two additional transitions leading to a single terminal state. In this case, simultaneous set
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results in 2n +2 states, while properly implemented persistent set can construct a reduced

state space of size 3∗n +1, which is tremendously better than simultaneous set reduction.

To conclude, in general there is no definite guarantee that one reduction outperforms the

other one. Furthermore, in [143] the authors argue that in the best case, persistent set has the

potential to offer good reductions that can never be achieved by simultaneous set reduction.

Regrettably, the authors also noticed that there is no clear guarantee to obtain such a good

reduction for persistent set reduction. Moreover, in persistent set reduction one has to resolve

the ignoring problem in order to verify general safety properties. In our experiences, this task is

computationally hard and affects the reduction performance of persistent set significantly. In

the next section of experimental evaluation, we will compare the power of the two reductions

for the practical point of view.

5.2 Experimental evaluation

We have implemented the proposed verification techniques for BIP. To evaluate the perfor-

mance of the proposed techniques, we carried out a comprehensive experimental evaluation,

where we took the set of benchmarks in the previous experiments. The details of all the bench-

mark models are provided in the Appendix. All the experiments have been run on a 64-bit

Linux PC with a 2.8 GHz Intel i7-2640M CPU, with a memory limit of 4Gb and a time limit of

300 seconds per benchmark.

In the experiments, we denote by ’simset’ in the plots our new technique and compare it to

the following techniques: 1) plain lazy abstraction, denoted by ’plain’ in the plots; 2) lazy ab-

straction with persistent set reduction, denoted by ’pset’; 3) the state-of-the-art IC3 algorithm

for software model checking [37] implemented in nuXmv [33], denoted by ’IC3’; 4) implicit

predicate abstraction model checking [138], denoted by ’IPA’. We do not compare the perfor-

mance of our tool to DFinder [21] or the work [95], since they do not handle data transfer in

interaction, or infinite-state models.

The detailed statistics data is attached in the Appendix A.7.

5.2.1 Comparing to lazy abstraction with reductions

In this subsection, we compare the lazy abstraction with simultaneous set reduction (simul-

taneous set reduction for simplicity) to plain lazy abstraction and to lazy abstraction with

persistent set reduction (persistent set reduction for simplicity). In Figure 5.4 and Figure 5.5,

we show the scatter plots of time for solving each benchmark. In the plots, symbol × represents

a safe benchmark, and ◦ represents an unsafe benchmark. A point in the plots indicates the

analysis time taken by the algorithms represented by x-axis and y-axis.

From the plots, we can conclude that 1) persistent set is slightly faster than simultaneous set

on safe benchmarks, while simultaneous set is faster on unsafe benchmarks; 2) simultaneous
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Figure 5.4 – Lazy abstraction vs. lazy abstraction with simul-
taneous set reduction

Figure 5.5 – Lazy abstraction with persistent set reduction vs.
lazy abstraction with simultaneous set reduction
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model percentage model percentage

atm_safe_02 0.727273 atm_safe_03 0.873747
atm_unsafe_02 0.727273 leader_election_safe_02 0.400000
leader_election_safe_03 0.458333 leader_election_safe_04 0.525253
leader_election_safe_05 0.551122 leader_election_unsafe_02 0.666667
leader_election_unsafe_03 0.500000 leader_election_unsafe_04 0.534884
leader_election_unsafe_05 0.529703 quorum_safe_02 0.171429
quorum_safe_03 0.057971 quorum_safe_04 0.031311
quorum_unsafe_02 0.111111 quorum_unsafe_03 0.000000
railway_control_safe 0.000000 railway_control_unsafe 0.000000
temperature_safe 0.000000 temperature_unsafe 0.000000
ticket_safe 0.000000 ticket_unsafe 0.000000

Table 5.1 – Percentage of simultaneous set reduction

set is also faster than plain lazy abstraction on unsafe benchmarks, while on safe benchmarks,

simultaneous set and plain lazy abstraction are comparable. One possible reason of the result

that simultaneous set reduction works slightly better than persistent set on unsafe benchmarks

is that in persistent set reduction, we blindly postpone the explorations of some interactions,

which may have the effect of enlarge the length of counterexample, while, in simultaneous

set we on the contrary shorten the length of executions by executing several interactions

altogether, thus resulting in detecting a counterexample possibly faster.

As in the previous experiments, we also collect the time used by each subroutine of the algo-

rithms and show them in the following bar plots. In simultaneous set reduction, it contains all

the subroutines of lazy abstraction, and the time of simultaneous set computation, indicated

as ’time_of_por’ in the plots. The results are shown in Figure 5.6. We also only depict the

results with total runtime greater than 1 second. The one in the left depicts the results with

runtime greater than 10 seconds, and the one in the right depicts the results with runtime

from 1 second to 10 seconds. From the plots we can see that the most expensive routines

are the computation of transfer function and the coverage check, which is the same with

lazy abstraction. Comparing to the persistent set reduction, simultaneous set reduction does

not have the time of cycle detection, since it does not need to solve the ignoring problem.

This may be the potential superiority over persistent set reduction for general safety property

verification. The plots also show that our present simultaneous set computation is not efficient

in some cases.

We also measure the percentage of successful reductions over the total attempts. The result

is shown in Table 5.1. The benchamrks without any successful reductions are the railway

control system, the ticket mutual exclusion protocol and the reactor temperature control

system. It has less reduction achievements than persistent set reduction (shown in Table 4.1),

which may explain the fact that on safe benchmarks persistent set reduction works better

than simultaneous set reduction, as shown in Figure 5.5. A plausible result is that for unsafe
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Figure 5.6 – Runtime of lazy abstraction with simultaneous set reduction subroutines
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Figure 5.7 – Lazy abstraction with simultaneous set reduction
vs. IC3

versions of railway control system, simultaneous set reduction obtains no reduction, while

still outperforms the plain lazy abstraction. The reason is that in simultaneous set reduction

we reorder the interactions to be explored, such that the interactions leading to the error state

are always explored first. In plain lazy abstraction, the order of the interactions to be explored

is chosen randomly.

5.2.2 Comparing to IC3 and IPA

We also compare each of our configurations to both IC3 and IPA in terms of the running

time for solving each benchmark. The results are shown in the scatter plots in Figure 5.7 and

Figure 5.8.

In Figure 5.7, we show the comparison with IC3. We can see that for unsafe benchmarks, simul-

taneous set reduction outperforms IC3. For safe benchmarks, our technique is comparable to

IC3, while there are a number of models that can be solved by IC3, but the other technique

runs out of time. In Figure 5.8, we show the comparison to IPA. For both safe and unsafe

benchmarks, simultaneous set reduction performs better. IPA is unable to solve any unsafe

benchmarks.
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Figure 5.8 – Lazy abstraction with simultaneous set reduction
vs. IPA

5.2.3 Cumulative plots

In this subsection, we present the cumulative plots that indicate the number of benchmark

models that can be solved by each technique (y-axis) within the given time (x-axis). In Fig-

ure 5.9, we plot the cumulative time of solving the benchmarks for all techniques. The plot

shows that overall IC3 can solve more benchmark models within the time limits. In total,

IC3 has solved 84 benchmark models, IPA has solved 25 models and plain lazy abstraction,

persistent set reduction and simultaneous set reduction have solved 63, 68, 70 models re-

spectively. Among the three configurations of our prototype tool, persistent set reduction and

simultaneous set reduction work better than plain lazy abstraction as expected. Simultaneous

set reduction solves slightly more models than persistent set reduction.

In Figure 5.10 and Figure 5.11, we plot the cumulative time of solving safe and unsafe bench-

marks respectively. The plot in Figure 5.10 shows that for safe benchmarks, IC3 is able to solve

more benchmark models. The other techniques are comparable, while persistent set reduction

performs slightly better.

For unsafe benchmarks, our techniques perform much better than IC3. However, simultaneous

set reduction solves almost the same amout of safe benchmarks as plain lazy abstraction.

Only for unsafe benchmarks, it is able to solve more and faster than lazy abstraction. In other

words, simultaneous set reduction is more efficient to find counterexamples. This result is

reasonable because with simultaneous set reduction, some independent interactions are

executed simultaneously, thus reducing both the length of counterexamples and the time
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Figure 5.9 – Cumulative plot of time for all benchmarks

Figure 5.10 – Cumulative plot for safe benchmarks

Figure 5.11 – Cumulative plot for unsafe benchmarks
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Figure 5.12 – Cumulative plot of ART size

Figure 5.13 – Cumulative plot of ART size for safe benchmarks

to detect them. There is no data in Figure 5.11 for IPA, since it fails to solve all the unsafe

benchmarks.

We also measure the memory usage of our techniques in terms of the size of ART. We collect the

number of nodes that are needed to solve each benchmark model. The cumulative plots are

shown in Figure 5.12, Figure 5.13 and Figure 5.14. They show that for solving the same amount

benchmarks, plain lazy abstraction needs to create more ART nodes than the other two, thus

consuming more memory usage. The other two are comparable, though simultaneous set

reduction creates less ART nodes for solving unsafe benchmarks.

5.3 Partial order reduction under symmetry

In this section, we focuse on the class of BIP system models, which have certain symmetry

features, and present how to exploit such symmetries to improve partial order reduction.

We build this work on top of the framework presented in Chapter 4. First of all, we extend

the notion of interaction independence in Definition 4.2.1 by taking into account the system
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Figure 5.14 – Cumulative plot of ART size for unsafe bench-
marks

symmetries, i.e. two interactions are independent if they commute under some symmetries.

The original definition of independence is then a special case of this one with identical

symmetry. Second, we adopt the persistent set based partial order reduction technique [78] by

relying on this new notion of independence and show how to combine it with lazy abstraction

of BIP presented in Chapter 4. We have also implemented the proposed verification algorithm

and performed a set of experiments. The results show that for systems with certain symmetries,

our new algorithm outperforms the others significantly.

5.3.1 Motivating example

We illustrate the basic idea of our verification approach, using the ticket mutual exclusion

protocol.

Example 5.3.1 (Ticket mutual exclusion protocol [110]) Consider again the ticket mutual

exclusion protocol in Figure. 5.15. Upon entering the critical section Ci , i = 1,2, each pro-

cess requests a fresh ticket from the controller, then the process waits until its ticket is with the

number to be served next. When leaving the critical section, the process resets the ticket and the

controller increases the number to be served by one.

Assume we start the state space exploration from the initial state 〈〈I1, t i cket1 = 0〉,〈S,number =
1,next = 1〉,〈I2, t i cket2 = 0〉〉, then the following two interactions γ1,γ2 will have to be ex-

plored, whereγ1 = 〈tr ue, {r equest ,r equest1}, t i cket1 = number 〉, andγ2 = 〈tr ue, {r equest ,

r equest2}, t i cket2 = number 〉. Apparently, this two interactions γ1,γ2 are not independent

according to Definition 4.2.1, since they both modify the variable number in the controller,

and the interleavings γ1;γ2 and γ2;γ1 lead to two different states, that is, 〈〈W1, t i cket1 =
1〉,〈S,number = 3,next = 1〉,〈W2, t i cket2 = 2〉〉 and 〈〈W1, t i cket1 = 2〉,〈S,number = 3,next =
1〉,〈W2, t i cket2 = 1〉〉.
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Figure 5.15 – Ticket mutual exclusion protocol

Our observation is that under the following permutation of the process components π= {1 �→
2,2 �→ 1}, the above two states become identical. Further, mutual exclusion is also invariant

under this permutation. Thus, only one of the two states is needed to verify the mutual exclu-

sion property. However, instead of participating the state space using symmetry reduction as

in [61, 45, 98], we take a different view that under the above permutation, the two interactions

γ1,γ2 commute with each other, and the partial order reductions presented in Chapter 4 can

be refined by using this new commutativity property.

5.3.2 Symmetry reduction

Initially proposed in [61, 45, 98], symmetry reduction is a useful tool to reduce the search space

during the verification of a transition system. It exploits the symmetry of a transition system.

Intuitively, a transition system has symmetry if the transition relations remain invariant when

states are rearranged by certain permutations.

Definition 5.3.2 A symmetry of a labeled transition system T = 〈C,Σ,R,C0〉 is a permutation π

over C ∪Σ, that satisfies the following conditions:

1. π(C) = C and π(Σ) =Σ, and

2. 〈c1,γ,c2〉 ∈ R iff 〈π(c1),π(γ),π(c2)〉 ∈ R, and

3. π(C0) = C0.

Given a transition system T, the set of all symmetries of T forms a group under the function

composition, denoted by Aut (T). However, obtaining Aut (T) is computationally expensive,

since one has to explore the whole state space. In practice, subgroups of Aut (T), which can be

obtained from the high-level system structure are used. Example subgroups include rotation

group, full component symmetry group and also the Cartesian product of such subgroups.
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A subgroup G ⊆ Aut (T) induces an equivalence relation ≡G on T as follows: s ≡G t ⇔∃π ∈
G .s = π(t). The equivalence relation ≡G is also called the orbit relation, and it induces a

quotient model TG , which is bisimilar to T [61, 45]. Model checking of a symmetric property,

i.e. a property remains invariant under permutations in G , can be performed on the quotient

model. We remark that deadlock states are trivially invariant under symmetry permutations.

As noticed in [44], under arbitrary symmetries, detecting state equivalence is as hard as

the graph isomorphism problem. In order to bypass the orbit relation, for some specific

symmetry subgroups, e.g. full component symmetry, rotation symmetry, one can select some

representatives from the orbit relation and define a mapping funtion that computes these

representatives [45, 62, 63]. Then during the state space exploration, states are dynamically

mapped to their respective representatives.

5.3.3 Persistent set under symmetry

In this section, we extend the persistent set based partial order reduction [78] by taking

into account the system symmetries. First of all, we generalize the definition of interaction

independence.

Definition 5.3.3 Given a symmetry group G , two interactions γ1 and γ2 are independent under

symmetry G , if and only if for every state c in the global system, there is a symmetry permutation

π ∈G , such that the following conditions hold:

1. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c ′, where c
γ1−→ c ′.

2. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c ′, where c
γ1−→ c ′.

3. if γ1 and γ2 are both enabled in c, then c ′1 =π(c ′2), where c
γ1γ2−−−→ c ′1, and c

γ2γ1−−−→ c ′2.

This new definition differs the one in Definition 4.2.1 in that two interactions are viewed as

indepdenent if their executions commute under some symmetry permutations. As before, for

a given interaction γ, we denote by Dγ the set of interactions that are not independent under

symmetry.

In the previous chapter, we obtain an under-approximation of independence relation statically

from system specification: two interactions are independent if they do not share a common

component. Though being easy to obtain, this approximation is too coarse, and many indepen-

dent transitions are ignored. For instance, the following two interactions in Figure 5.15, γ1 =
〈[t i cket1 = next ], {enter,enter1}, ski p〉, and γ2 = 〈[t i cket2 = next ], {enter,enter2}, ski p〉,
are independent, but using the above static analysis, they are considered as dependent.

In this chapter, we apply a finer static analysis to check if two interactions are independent or

not. Given two interactions γ1 = 〈g1,P1, f1〉, γ2 = 〈g2,P2, f2〉, we check if they are independent

by checking the validity of the following three formulae:
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1 ∀c.∃c ′.c |= g1 ∧c
γ1−→ c ′ =⇒ (c |= g2 ≡ c ′ |= g2)

2 ∀c.∃c ′.c |= g2 ∧c
γ2−→ c ′ =⇒ (c |= g1 ≡ c ′ |= g1)

3 there is a permutation π ∈ G , such that the formula ∀c.∃c1,c2.c |= g1 ∧ c |= g2 ∧ c
γ1γ2−−−→

c1 ∧c
γ2γ1−−−→ c2 =⇒ c1 =π(c2) is valid.

Considering the complexity, the number of interactions is linear to the size of the system

model. Thus, the number of validity checks is also linear to the size of system model. In

order to detect the state equivalence under symmetry, one intuitive approach is to traverse all

permutations in the symmetry group G . However, this would blow up the analysis, even for

full component symmetry group, whose complexity is factorial in the number of components.

As in [63], we use a sorting function that maps a state to a representative in the orbit relation,

then two states are equivalent if they can be mapped to the same representative. The sorting

function requires a total order on the symbolic states of each component. We say a symbolic

state c1 is greater than another c2 if c1 > c2 is valid.

Since we focus on infinite-state systems, our new partial order reduction should apply to

a symbolic abstraction structure, e.g. an abstract reachability tree. As in section 4.2, we say

two interactions are independent under a symmetry G on an abstract state η, if they are

independent on every concrete state of η.

As also noticed in section 4.2, the independent transitions do not commute under symmetry

on symbolic abstraction structures. However, the following lemma shows that independent

transitions still commute under symmetry on the concrete states represented by the abstrac-

tion structures. Thus, exploiting independence on the symbolic abstraction structure is still

sound.

Lemma 5.3.4 Let γ1 and γ2 be two independent transitions under a symmetry permutation π,

and let η be an abstract state, then for all c ∈β( �post ( �post (η,γ1)),γ2), if there is a state c1 ∈β(η),

such that c = post (post (c1,γ1),γ2), then π(c) ∈β( �post ( �post (η,γ2)),γ1).

Proof 5.3.5 Assume we have c = post (post (c1,γ1),γ2), since γ1 and γ2 are independent under

symmetry π, then we also have π(c) = post (post (c1,γ2),γ1). According to the semantics of �post ,

it holds that π(c) ∈β( �post ( �post (η,γ2),γ1)).

We then extend the persistent set in Definition 3.2.10 by relying on the notion of independence

under symmetry and by generalising to the symbolic abstraction structure.

Definition 5.3.6 Given a symmetry G , a set of interactions Γ in an abstract state η is persistent

under G , if the following conditions hold:

1. Γ⊆ en(η) and Γ=� if and only if en(η) =�;

2. for every trace η
γ1...γn−−−−→ ηn, where γi ∉ Γ, i ∈ [1,n], γn is abstractly independent under

symmetry G with all interactions in Γ;
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3. for every execution η= η0
γ1...γn−−−−→ ηn, where ηn is implied by some ηi , i ∈ [0,n −1], and for

every γ ∈ en(η j ), j ∈ [1,n], there is k ∈ [1,n] such that γ ∈ Γ(ηk ).

We remark that a persistent set on an abstract state may not be a persistent set on some of its

concrete states, because some interactions may be disabled on the concrete states. But the set

of enabling interactions constitute a persistent set.

We also use Algorithm 5 in section 4.2 to compute the persistent set, and the intergration

with lazy abstraction is straightforward as in Algorithm 4. We skip the elaboration here. The

following theorem states the correctness of selective search over symbolic abstraction structure

by using this new persistent set above.

Theorem 5.3.7 Given a BIP model MBIP, and an error state encoding a safety property that is

invariant under symmetry, for every terminating execution of Algorithm 4 with persistent set

under symmetry in Definition 5.3.6, the following properties hold:

1. If a counterexample is returned, then there is concrete counterexample in MBIP;

2. If a safe ART is returned, then MBIP satisfies the given safety property.

Proof 5.3.8 Item 1 holds for the same argument with Theorem 4.1.6. In order to prove the second

item, in the following we prove that the returned ART safely over approximates the reachable

states of MBIP, that is, for every reachable state c in MBIP, there is a symmetry permutation π,

and an ART node η such that π(c) |= η. The proof is similar to the one in 4.2.6.

According to Theorem 4.1.6, for every reachable state c in MBIP, there is a node ηw in the ART

returned by plain lazy abstraction in Algorithm 2, such that c |= ηw . Suppose the path to node

ηw is η0
γ1...γn−−−−→ ηn, where η0 is the root and ηn = ηw .

Now we prove that there is another path in the ART returned by Algorithm 4 with persistent set

under symmetry, η0
γ′

1...γ′
n−−−−→ η′n, such that γ′1 is in the persistent set Γ(η0) and π(c) |= η′n for some

permutation π.

Case 1 : if ηw is a deadlock node, then we show that at least one interaction γi , i ∈ [1,n]

in the path η0
γ1...γn−−−−→ ηn is in the persistent set Γ(η0). Otherwise, suppose that none

of interactions γi , i ∈ [1,n] is in the persistent set Γ(η0), then by the second condition

of persistent set in Definition 5.3.6, the interactions in persistent set Γ(η0) will still be

enabled in ηn, which controdicts the assumption that ηw is a deadlock node.

Thus, there is at least one interaction γi , i ∈ [1,n] in the persistent set Γ(η0). Assume the

first such interaction is γ j , j ∈ [1,n], then for all interactions γk ,k < j , we have γ j is

independent with γk . Thus, γ j can be moved to the beginning of the path. The new path

would be the same one with γ1 . . .γn, except γ j has been moved to the first.

Then applying 5.3.4, we can conclude that π(c) |= η′n.
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Case 2 : if ηw is not a deadlock node, but covered by some other node in the same path, assume

the covering node is ηi , i ∈ [0,n−1]. Assume also no interactions in the persistent set Γ(η0)

occur in γ j , j ∈ [1, i ]. Then we know that interactions in Γ(η0) are also enabled in ηi and

ηn as well. Then according to the third condition of persistent set in Definition 5.3.6, we

know that at least one interaction in Γ(η0) occurs in γ j , j ∈ [i +1,n]. Let γk , k ∈ [i +1,n]

be the first such interaction, then for the same reason as the case 1, γk can be shifted to

the beginning of the path. The new path would be the same one with γ1 . . .γn, except γk

has been moved to the first.

Then applying 5.3.4, we can conclude that π(c) |= η′n.

Case 3 : if ηw is covered by some node in another path. It is equivalent to prove the conclusion

for another path. Since our models are finite branching, we are guaranteed that there is a

path such that argument in case 2 applies.

Case 4 : if ηw is not covered, then it is possible to extend the path, where case 2 or case 3 applies.

5.4 Experimental evaluation

We have implemented the proposed verification technique in our prototype model checker for

BIP. In the experimental evaluation, we took a subset of the benchmarks from the previous

experiments, which have certain component symmetries. These include the ticket mutual

exclusion protocol in star topology, a leader election protocol in ring topology, and a consen-

sus protocol in star topology. All these benchmarks are scalable in terms of the number of

components, and all are infinite-state, and they all use data transfer on interactions. We model

them in BIP and for each benchmark, we create a safe and an unsafe version, and for each

version, we have 10 instances. All the experiments are performed on a 64-bit Linux PC with a

2.8 GHz Intel i7-2640M CPU, with a memory limit of 4Gb and a time limit of 300 seconds per

benchmark.

We run the following configurations of our prototype tool and compare the running time for

solving the benchmarks: 1) plain lazy abstraction of BIP (represented as ’plain’ in the plots);

2) lazy abstraction with persistent set reduction (represented as ’pset’ in the plots); 3) lazy

abstraction with simultaneous set reduction (represented as ’simset’ in the plots); 4) our new

algorithm (represented as ’sympor’ in the plots). For simplicity, we call this new algorithm as

reduction under symmetry in the sequel. We also compare to a variant of the the state-of-the-

art invariant verification algorithm IC3 [37]. We do not compare with DFinder [21], since it

does not handle data transfer.

The detailed statistics data is attached in the Appendix A.8.

5.4.1 Scatter plots

In the first experiment, we compare our new algorithm to the others in terms of the running

time for solving each benchmark. The scatter plots are shown in the Figure 5.16, Figure

86



5.4. Experimental evaluation

Figure 5.16 – Lazy abstraction vs. lazy abstraction with reduc-
tion under symmetry

5.17, Figure 5.18 and Figure 5.19. In all plots, symbol × represents a safe benchmark, and

◦ represents an unsafe benchmark. A point in the plots indicates the analysis time of the

algorithms represented by x-axis and y-axis.

In Figure 5.16, Figure 5.17 and Figure 5.18, we compare our new algorithm ’sympor’ to plain

lazy abstraction, lazy abstraction with persistent set reduction and lazy abstraction with

simultaneous set reduction respectively. The results show that our new algorithm is always

faster to prove the correctness, while for unsafe benchmark models, our new algorithm is less

faster than the others. In Figure 5.19, we compare our new algorithm to IC3 and we find that

for both safe benchmarks and unsafe ones, our new algorithm is always more efficient.

The result that our new algorithm is more efficient to prove the correctness is as expected,

since in our new algorithm more reduction power is gained by exploiting symmetry. The

percentage of the successful reduction for each solvable benchmark mdoel is listed in Table

5.2. This percentage does not measure the reduction of the search space, but the ratio of

successful reductions over all attempts. That is, a positive percentage means that in some

node expansion, a successful reduction is achieved and explorations of some interactions are

ignored, but we do not count how many interactions are ignored. Percentage ’1’ in the table

means that in every node expansion, a successful reduction is achieved. Comparing to the

percentage of persistent set reduction in Table 4.1, we can see that our new algorithm achieves

more reductions. For instance, for the ticket mutual exclusion protocol, persistent set without

considering symmetry is unable to obtain any reduction, which is, however overcame by our
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Figure 5.17 – Lazy abstraction with persistent set reduction
vs. lazy abstraction with reduction under symmetry

Figure 5.18 – Lazy abstraction with simultaneous set reduc-
tion vs. lazy abstraction with reduction under symmetry
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Figure 5.19 – IC3 vs. lazy abstraction with reduction under
symmetry

new algorithm.

model percentage model percentage

leader_election_safe_02 1.000000 leader_election_safe_03 1.000000

leader_election_safe_04 1.000000 leader_election_safe_05 1.000000

leader_election_safe_06 1.000000 leader_election_safe_07 1.000000

leader_election_safe_08 1.000000 leader_election_safe_09 1.000000

leader_election_safe_10 1.000000 leader_election_safe_11 1.000000

leader_election_unsafe_02 0.466667 leader_election_unsafe_03 0.555556

leader_election_unsafe_04 0.465347 leader_election_unsafe_05 0.395445

quorum_safe_02 0.297872 quorum_safe_03 0.327189

quorum_safe_04 0.320191 quorum_safe_05 0.285627

quorum_unsafe_02 0.400000 quorum_unsafe_03 0.400000

quorum_unsafe_04 0.400000 quorum_unsafe_05 0.400000

quorum_unsafe_06 0.400000 quorum_unsafe_07 0.400000

quorum_unsafe_08 0.400000 quorum_unsafe_09 0.400000

quorum_unsafe_10 0.400000 quorum_unsafe_11 0.400000

ticket_safe_02 0.230769 ticket_safe_03 0.142857

ticket_safe_04 0.049645 ticket_safe_05 0.037185

ticket_unsafe_02 0.500000 ticket_unsafe_03 0.600000

ticket_unsafe_04 0.666667 ticket_unsafe_05 0.714286

ticket_unsafe_06 0.750000 ticket_unsafe_07 0.777778
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ticket_unsafe_08 0.800000 ticket_unsafe_09 0.818182

ticket_unsafe_10 0.833333 ticket_unsafe_11 0.846154

Table 5.2 – Percentage of partial order reduction under symmetry

In order to understand the result that for unsafe benchmarks, our new algorithm takes more

time to detect the counterexamples, we draw the plots that show the running time of each

subroutine, as in the previous sections. For our new algorithm, the subroutines constitute the

computation of transfer function, i.e. the ART node expansion, the computation of persistent

set, the computation of node coverage, the cycle detection, the counterexample analysis and

abstraction refinement, and also the computation of independence relation. The result is

depicted in Figure 5.20. We split the plot into two parts, the first one depicts the results with

time greater than 5 seconds, and the second one depicts the rest.

The plots show that for the models that can be solved quickly, e.g. within 5 seconds, the

computation of independence relation contributes a major part to the total running time.

Most of these models are the unsafe ones. We believe that this is the main reason of taking

longer to detect counterexamples for our new algorithm. The other algorithms do not have

this cost of independence relation computation. They use static analysis of the system model

to approximate the independence relation, whose cost is negligible. The plot also shows that

for models that take more verification time, the costs of coverage check and cycle detection

are significant.

5.4.2 Cumulative plots

In Figure 5.21, we plot the cumulative time (x-axis) of solving a number of benchmarks (y-axis).

A point (x, y) in the plot tells us the total number y of benchmarks, each of which can be

verified in the given time bound x by the corresponding method. We remark that time x is

not the accumulation of the analysis time of all y benchmarks. We see that our new algorithm

can always solve more instances in a given time bound than IC3, while comparing to other

algorithms, it is not always faster, but can still solve more instances in a larger time bound.

This tells that the analysis time of our new algorithm grows slower than the other algorithms.

In Figure 5.22 and Figure 5.23, we plot the cumulative time of solving safe and unsafe bench-

marks respectively. For safe benchmarks, our new algorithm is always more efficient than all

the others. While for unsafe benchmarks, our new algorithm is less faster, due to the reasons

we have discussed above.

5.5 Related work

Relevant partial order reduction and abstraction techniques have already been discussed in

the previous chapter. Exceptionally, we remark that in [144], the authors explore an idea, which
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Figure 5.20 – Runtime of lazy abstraction with reduction under symmetry subroutines
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Figure 5.21 – Cumulative plot of time for all benchmarks

Figure 5.22 – Cumulative plot of time for safe benchmarks

Figure 5.23 – Cumulative plot of time for unsafe benchmarks
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is similar to our simultaneous set approach, to compute the reachable states of a Petri net as a

covering step graph. Independent transitions of a Petri net are also fired simultaneously under

certain conditions. However, in their work no abstraction is used.

State space symmetries have been extensively investigated in model checking community over

the decades, leading to a variety of symmetry reduction techniques [61, 45, 98, 63]. However,

most work focuses on finite state systems. We refer to [121, 146] for the detailed review.

In [53], the authors propose a symmetry aware counterexample guarded abstraction refine-

ment technique for replicated non-recursive C programs. Their abstraction technique is eager

in the sense that an abstraction model is constructed first, which differs from our lazy abstrac-

tion technique. In [57, 97], the authors investigate how to combine symmetry reduction with

ample-set-based partial order reduction. However, both work focus on finite state models,

and no abstraction techniques are used.
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6 Design and verification of parameter-
ized systems in BIP

In this chapter, we focuse on the modeling and verification of parameterized systems, where

the number of components in the system is not fixed a priori. The verification problem asks

whether the property holdes for all system instances. Many efforts have been made in the past

decades to identify decidable fragments and draw the boundaries between decidability and

undecidability. The decidability depends on several factors, with the most important being the

underlying communication graph (e.g. rings, stars, cliques), and the means of synchronization

(e.g. token passing with/without information-carrying tokens, broadcast). However, there is no

uniform framework that can capture various computational models that occur in the literature,

or enables automatic verification of parameterized systems. As discussed in Chapter 1, there is

also a gap between the mathematical formalisms from the parameterized verification research

and the verification practice. That is, in order to verify a parameterized system, the engineers

have to understand the underlying mathematical model of the system and then identify

the suitable verification techniques if any. This might be a difficult task since it requires a

deep understanding of the subtle differences between various mathematical models. Thus, a

uniform modeling and automatic verification framework would be useful.

We first present a uniform modeling framework for parameterized systems, by extending the

current BIP component framework introduced in Chapter 2. The core of this framework is

a formal language for system architecture and communciation primitives, called first order

interaction logic. We show that many interesting parameterized systems can be uniformly

specified in this logic. Then we present how to perform automated parameterized verification

within our new framework. We also present some decidability results for the verification of

parameterized BIP models.

This chapter is based on the following publication:

– Parameterized systems in BIP: design and model checking, Konnov, Igor and Kotek, Tomer

and Wang, Qiang and Veith, Helmut and Bliudze, Simon and Sifakis, Joseph, Proceedings of

the 27th International Conference on Concurrency Theory (CONCUR 2016), pages 30–1,

2016, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
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The idea of modeling parameterized systems using first order interaction logic was initiated by

Prof.Joseph Sifakis. The author formalized it and applied it to the verification of parameterized

systems with the help of other collaborators. The author also did the prototype implementa-

tion, and proved the decidability results.

6.1 Parameterized BIP without priorities

We rely on the notions of BIP component type and interaction introduced in Chapter 2. Recall

that a component type is a transition system B = 〈V,L,P,E,�〉 over the finite sets L and P.

We will put the following restrictions on the parameterized BIP framework: 1) states of the

components do not have specific internal structure, or integer variables; 2) we do not consider

interaction priorities.

Since in parameterized systems, we have an unbounded number of components communi-

cating with each other, thus, the number of interactions is unbounded, and an interaction

may also involve unbounded number of actions, the explicit representation of interactions as

sets, which is the way how we represent interactions in Chapter 2, becomes infeasible.

In this dissertation, we propose the first order interaction logic as a uniform and formal

language for system topologies and coordination mechanisms in parameterized systems.

6.1.1 FOIL: First order interaction logic

In this section, we fix a tuple of component types 〈B0, . . . ,Bk−1〉.

FOIL vocabulary. For each port p ∈Pi of an i th component type, we introduce a unary port

predicate with the same name p. Further, we introduce a tuple of constants n̄ = 〈n0, . . . ,nk−1〉,
which represent the number of components of each type. We also assume the standard

vocabulary of Presburger arithmetics, that is, 〈0,1,≤,+〉.

FOIL syntax. Assume an infinite set of index variables I . We say that ψ is a first order

interaction logic formula, if it is constructed according to the following grammar:

ψ ::= p(i ) | ¬ψ |ψ1 ∧ψ2 |ψ1 ∨ψ2 | ∃i ::t y pe j : φ. ψ | ∀i ::t y pe j : φ. ψ ,

where p ∈P0∪·· ·∪Pk−1, i ∈I , and φ is a formula in Presburger arithmetic over index variables

and the vocabulary 〈0,1,≤,+, n̄〉.

Informally, Q i ::t y pe j : φ. ψ, where Q ∈ {∃,∀}, restricts the index variable i to be associated

with the component type B j . Notice, however, that the syntax of FOIL does not enforce

type correctness of ports. For instance, one can write a formula ∃i ::t y pe j : p(i ) with some

p �∈P j . While this formula is syntactically correct, since it is not in line with Definition 2.3.2 of
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interaction given in Section 2.3, where it requires that an interaction can only involve a port

defined in some component. To this end, we say that a FOIL formula is natural, if for each of

its subformulae Q i ::t y pe j : φ.ψ(i ), for Q ∈ {∃,∀}, and every atomic formula p(i ) of ψ, it holds

that p ∈P j . From here on, we assume that all FOIL formulae we consider in this disseration

are natural.

FOIL semantics. We give semantics of a FOIL formula by the means of structures. A first-

order interaction logic structure (FOIL structure) is a pair ξ= (N,αξ), which consists of the set

of natural numbers, i.e. the domain of ξ, the interpretation αξ of all unary predicates and of

the constants n̄. The symbols 0, 1, ≤, and + have the natural interpretations over N.

By σ : I →N we denote an assignment that gives values to free variables in ψ, and by σ[x �→ j ]

we denote the assignment that differs from σ in that the index variable x is mapped to the

value j . For a FOIL structure ξ and an assignment σ, the semantics of FOIL is formally given

as follows (the semantics of Boolean operators and universal quantifiers is defined in the

standard way):

ξ,σ |=FOIL p(i ) iff αξ(p) is true on σ(i )

ξ,σ |=FOIL ∃i ::t y pe j : φ. ψ iff there is l ∈ [0,αξ(n j )) such that

ξ,σ[i �→ l ] |=FOIL ψ and ξ,σ[i �→ l ] |=FO φ

where |=FO to denotes the standard ’models’ relation of first-order logic.

Finally, for a FOIL formula ψ without free variables and a structure ξ, we write ξ |=FOIL ψ,

if ξ,σ0 |=FOIL ψ for the valuation σ0 that assigns 0 to every index i ∈ I . Since ψ has no free

variables, our choice of σ0 is arbitrary: for all σ we have ξ,σ |=FOIL ψ if and only if ξ,σ0 |=FOIL ψ.

Decidability. It is easy to show that although checking validity of a FOIL formula is undecid-

able, FOIL contains an important fragment, which is known to be decidable:

Theorem 6.1.1 (Decidability of FOIL) The following results about FOIL hold:

(i) Validity of FOIL sentences is undecidable.

(ii) Validity of FOIL sentences in which all additions are of the form i +1 is decidable.

Proof 6.1.2 (i) FOIL contains Presburger arithmetic with unary predicates, in which satis-

fiability is undecidable [85]. (ii) The formula j = i + 1 is definable in FOIL by i ≤ j ∧ j �=
i ∧ψconsecutive(i , j ), where ψconsecutive(i , j ) =∀� ::t y pet . ( j ≤ �∧�≤ i ) → (�= i ∨�= j ), where

t is the type of i and j . Hence, we can rewrite any FOIL sentence ψ in which all additions are

of the form i +1 as an equi-satisfiable first-order logic sentence ψ′ without using addition (+).

The sentence ψ′ belongs to WS1S, the weak monadic second order theory of (N,0,1,≤), which is

decidable, see [137].
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In the following, we only refer to addition with i +1.

6.1.2 Interactions as FOIL structures

In contrast to Definition 2.3.2 of a standard interaction, which is represented explicitly as

a finite set of ports, we use first order interaction logic formulae to define all the possible

interactions in parameterized systems. Our key insight is that each structure of a formula

uniquely defines at most one interaction, and the set of all possible interactions is the union

of the interactions derived from the structures satisfying the formula.

Intuitively, if p(i ) evaluates to true in a structure, then the i th instance of the respective

component type — uniquely identified by a port — takes part in the interaction identified

with the structure. Thus, we can reconstruct a standard BIP interaction from a FOIL structure

by taking the set of ports, whose indices are evaluated to true by the unary predicates.

Formally, given a FOIL structure ξ= (N,αξ), we define the γξ = {(p,m) | j ∈ [0,k), p ∈P j , m ∈
[0,αξ(n j )), αξ(p)(m) = true}, where the notation (p,m) denotes the port p of the mth compo-

nent.

Notice that not every γξ is an interaction in the sense of Definition 2.3.2. Indeed, γξ may

include several ports of the same component. We say that ξ induces an interaction, if γξ is an

interaction in the sense of Definition 2.3.2.

Definition 6.1.3 (Parameterized BIP Model) A parameterized BIP model is a tuple MPBIP =
〈B, n̄,ψ,ε〉, where B= 〈B0, . . . ,Bk−1〉 is a tuple of component types, ψ is a sentence in FOIL over

the port predicates and a size tuple n̄ = 〈n0, . . . ,nk−1〉, and ε is a linear constraint over n̄.

The tuple n̄ consists of the size parameters for all component types, and the constraint ε

restricts these parameters, e.g. the formula n0 = 1∧n1 ≥ 10 requires every instance of the

parameterized BIP model to contain only one component of the first type and at least ten

components of the second type. The sentence ψ in FOIL restricts both the system topology

and the communication mechanisms.

Definition 6.1.4 (PBIP Instance) Given a parameterized BIP model MPBIP = 〈B, n̄,ψ,ε〉 and

a tuple of natural numbers N̄ , a PBIP instance is a BIP model MBIP = 〈B,Γ〉, where B and Γ

are defined as follows:

1. the numbers N̄ satisfy the size constraint ε,

2. the set of components B is {Bi [ j ] | i ∈ [0,k), j ∈ [0, N j )}, and

3. the set of interactions Γ is the set of all interactions γξ satisfying ψ and referring to the

ports of components with indices up to the numbers in N̄ , that is, ξ |=FOIL ψ and αξ(n̄) = N̄ .
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For a given PBIP instance model, its semantics is defined as in Definition 2.3.7. The labeled

transition system semantics for a parameterized BIP model is then the union of all the transi-

tion systems, one for each PBIP instance.

Example 6.1.5 (Broadcast in a star) Let 〈〈B0,B1〉,〈n0,n1〉,ψ,ε〉 be a parameterized BIP model

with two component types and the size constraint ε≡ (n0 = 1). We also assume component type

B0 has only one port called send and component type B1 defines only one port called receive,

i.e. P0 = {send} and P1 = {receive}. The FOIL formula ψ=∃i ::t y pe1. send(i ) specifies broadcast

from the component B0[0], the center of the star, to the leaves of type B1. The set of interactions

defined by ψ consists of all sets of ports of the form {(send,0)}∪ {(receive,d) | d ∈ D)} for all

D ⊆ [0,n1) (including D =�).

Example 6.1.6 (Milner’s scheduler [60]) The components of a token ring schedule tasks in suc-

cession along the ring. We follow the formulation by Emerson & Namjoshi [60]. The component

type B0 is:

S0 S1 S2

S3

S4

����� ��� ���

	�
��

	�
��

���

Figure 6.1 – Component type of Milner’s scheduler

A component has the token if it is in locations S0, S1, or S4. A component must have the token

when it initiates a task (by interacting on port start). The token is then sent to the component’s

neighbor by interaction on port snd. The component then waits until (a) its initiated task has

finished, and (b) the component has received the token again. When both (a) and (b) have

occurred, the component may initiate a new task. Note that (a) and (b) may occur in either

order.

The parameterized BIP model of Milner’s scheduler is 〈〈B0〉,〈n0〉,ψ, true〉, where

ψ = ∃i , j ::t y pe0 : ( j = (i +1) mod n0). snd(i )∧ r cv( j )∧ψonly(i , j )

ψonly(i , j ) = ∀� ::t y pe0 : � �= i ∧� �= j . ¬(snd(�)∨ r cv(�))

ψ is a formula without free variables which holds for a structure ξ if its induced interaction

γξ is a send-receive interaction along some edge i → j of the ring, where j is i +1 modulo n0.

ψonly(i , j ) excludes any component other than i and j from participating in the interaction.

The modulo notation abbreviates the expression (i = n0 −1 → j = 0)∧ (i < n0 −1 → j = i +1).

We discuss how to ensure that exactly one component starts with the token in Section 6.5.4.

Example 6.1.7 (Barrier [28]) Here we consider a barrier synchronization protocol, cf. [28,

Example 6.6]. The component type B0 is: (the self-loops are labeled by the ports loopms, loopnt ,

and loopsl)
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Figure 6.2 – Component type of a barrier synchronization protocol

The initial location is neutral. A synchronization episode consists of three stages: (i) First, a single

component enters the barrier by moving to master. (ii) Then, each of the others components

moves to slave. (iii) Finally, the master triggers a broadcast and all components leave the barrier

into neutral.

The parameterized BIPmodel of the barrier synchronization protocol is 〈〈B0〉,〈n0〉,ψ, true〉,
where ψ=ψgo ∨ψfollow ∨ψexit , and

ψgo = ∃i ::t y pe0. go(i ) ∧∀ j ::t y pe0 : i �= j . loopnt( j )

ψfollow = ∃i ::t y pe0. loopms(i )∧∀ j ::t y pe0 : i �= j . ψfllw-loop( j )

ψexit = ∀i ::t y pe0. exi t (i )

ψfllw-loop( j ) = follow( j )∨ loopnt( j )∨ loopsl( j )

ψgo, ψfollow, and ψexit describe the interactions of stages (i), (ii), and (iii) respectively.

Example 6.1.8 (Semaphore) This example has two component types, the semaphore type B0

on the right and the process type B1 on the left:

����
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Figure 6.3 – Component type of a semaphore example

The system has exactly one semaphore and may have an unbounded number of processes. The

components communicate by pairwise rendezvous on a star whose center is the semaphore.

The processes start in the initial location idle and the semaphore starts in the initial location

free. Any process c may rendezvous with the semaphore by an interaction between the begin

port of the process and the request port of the semaphore. Once such an interaction occurs, the

only possible next interaction is between the same process c and the semaphore; this interaction

consists of the process c’s finish port and the semaphore’s release port. The semaphore is now

free to interact with any process c ′.

We model this semaphore example by a parameterized BIPmodel 〈〈B0,B1〉,〈n0,n1〉,ψ,ε〉, where

100



6.2. Parameterized model checking

ε≡ (n0 = 1), ψ=ψrequest ∨ψrelease, and

ψrequest = ∃i ::t y pe0 : i = 0. ∃ j ::t y pe1. request(i )∧begin( j )∧ψonly( j )

ψrelease = ∃i ::t y pe0 : i = 0. ∃ j ::t y pe1. release(i )∧finish( j )∧ψonly( j )

ψonly( j ) = ∀� ::t y pe0 : � �= j . ¬(begin(�)∨finish(�))

ψr equest describes the request-begin interactions. ψr elease describes the release-finish inter-

actions. ψonly( j ) excludes any component of type B1, other than j , from participating in the

interaction.

Example 6.1.9 (Guarded protocol [59]) This example considers a class of parameterized sys-

tems, called guarded protocols [59].

We assume a single component type and specialize the atomic propositions to be the finite set of

control locations. Assume φ( j ) is a boolean formula over atomic propositions of a component,

indexed with a free index variable j . A disjunctive guard is of the form ∃ j ::t y pe0 : j �= i .φ( j ),

where i is a free index variable of the same type with j and φ( j ) is a disjunction over atomic

propositions of component j . A disjunctive guarded protocol is a parameterized system, whose

transitions are associated with disjunctive guards.

A disjunctive guard protocol can be specified in one-type parameterized BIP model 〈〈B〉,〈n〉,ψ,ε〉
as follows. On each control location q of the component type, there is a self-loop transi-

tion l oopq . For a given guarded transition (q,∃i , j ::t y pe0 : j �= i .φ( j ), p, q ′), where p is the

port, φ( j ) = q1( j ) ∨ q2( j ) . . . ∨ qk ( j ), and q1, q2, . . . , qk are control locations, it can be sim-

ulated by a pairwise rendezvous defined by the following FOIL formula: ∃i , j ::t y pe0 : j �=
i .p(i )∧ (loopq1 ( j )∨ loopq2 ( j ) . . .∨ loopqk ( j )), where loopq1 , . . . , l oopqk are self-loop transi-

tions on locations q1, . . . , qk respectively.

Similarly, a conjunctive guard is of the form ∀ j ::t y pe0. j �= i .φ( j ), and a conjunctive guarded

protocol is a parameterized system, whose transitions are associated with conjunctive guards.

Given a guarded transition (q,∀ j ::t y pe0 : j �= i .φ( j ), p, q ′), where φ( j ) is of the same form as

above, it can be simulated by the following FOIL formula: ∃i ::t y pe0.∀ j ::t y pe0 : j �= i . p(i )∧
(loopq1 ( j )∨ loopq2 ( j ) . . .∨ loopqk ( j )), where loopq1 , . . . , loopqk are self-loop transitions on

locations q1, . . . , qk respectively.

6.2 Parameterized model checking

In this section, we review the syntax and semantics of the indexed version of CTL∗, called

ICTL�, which is often used to specify the properties of parameterized systems [28]. Though we

use indexed temporal logics to define the standard parameterized model checking problem,

these logics are not the focus of this paper. Further, we introduce the parameterized model

checking problem for parameterized BIP design, and show its undecidability.
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Syntax. For a set of index variables I , the ICTL� state formulae are written according to the

grammar:

θ ::= true | at(q, i ) | ¬θ | θ1 ∧θ2 | ∃i ::t y pe j : φ. θ | ∀i ::t y pe j : φ. θ | Eϕ | Aϕ,

where q is a location from
⋃

0≤ j<k L j , and i is an index from the set I , and ϕ is a path formula

(to be defined below), and φ is a formula in Presburger arithmetic over size variables n̄ and

index variables from the set I .

The path formulae are written according to the following grammar:

ϕ ::= θ | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2, where θ is a state formula.

Example 6.2.1 In ICTL�, the response property in Example 6.1.6 can be written as ∀i ::t y pe0 :

0 ≤ i < n0. A G(at(S0, i ) → A F at(S1, i )), and the mutual exclusion property in Example 6.1.8

can be written as ¬(∃i , j ::t y pe1 : 0 ≤ i < n1 ∧0 ≤ j < n1 ∧ j �= i : (at(bus y, i )∧at(bus y, j ))).

Semantics. Given a BIP model MBIP with the transition system TB I P (i.e. TB I P = 〈C,Σ,R,C0〉
by definition 2.3.7), we inductively define the semantics of ICTL� formulae. We briefly discuss

semantics to highlight the role of quantifiers in indexed temporal logics. For further discussions

and additional definitions, we refer the reader to a textbook, e.g. see [47].

State formulae are interpreted over a configuration s and a valuation of index variables σ : I →
N (the semantics of Boolean operators and universal quantifiers is defined in the standard

way):

TB I P , s,σ |=ICTL� at(q, i ) iff q = s( j ,σ(i )), where q ∈ L j

TB I P , s,σ |=ICTL� ∃i ::t y pe j : φ. θ iff for some l ∈ [0, N j ), both TB I P , s,σ[i �→ l ] |=ICTL� θ and

〈N,0,1,≤,+, N̄〉 ,σ[i �→ l ] |=FO φ

TB I P , s,σ |=ICTL� Eϕ iff TB I P ,ρ,σ |=ICTL� ϕ for some infinite path ρ starting from s

Path formulae are interpreted over an infinite path ρ, and the valuation function σ as follows

(the semantics for Boolean operators and temporal operators F and G is defined in the

standard way):

TB I P ,ρ,σ |=ICTL� θ iff TB I P , s,σ |=ICTL� θ, where s is the first configuration of the path ρ

TB I P ,ρ,σ |=ICTL� Xϕ iff TB I P ,ρ1,σ |=ICTL� ϕ

TB I P ,ρ,σ |=ICTL� ϕ1Uϕ2 iff ∃ j ≥ 0.∀i < j . TB I P ,ρ j ,σ |=ICTL� ϕ2 and TB I P ,ρi ,σ |=ICTL� ϕ1,

where ρi is the suffix of the path ρ starting with the i th configuration.

Finally, given a formulaϕwithout free variables, we say that TB I P satisfiesϕ, written as TB I P |=ICTL�

ϕ, if TB I P , s0,σ0 |=ICTL� ϕ for the valuation σ0 that assigns zero to each index from the set I .
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The choice of σ0 is arbitrary, as for all σ, it holds that TB I P , s0,σ |=ICTL� ϕ if and only if

TB I P , s0,σ0 |=ICTL� ϕ.

Now we are at a position to formulate the parameterized model checking problem for BIP:

Problem 6.2.2 (Parameterized model checking) The verification problem for a parameter-

ized BIPmodel 〈B, n̄,ψ,ε〉 and an ICTL� state formula θ without free variables, is whether every

instance MBIP satisfies θ.

Not surprisingly, Problem 6.2.2 is undecidable in general.

Theorem 6.2.3 (Undecidability) Given a two-counter machine M2, one can construct an ICTL�-

formula G¬hal t and a parameterized BIP model MPBIP = 〈B, n̄,ψ,ε〉 that simulates M2 and

has the property: M2 does not halt if and only if MBIP |= G¬hal t for all instances of MPBIP.

Proof 6.2.4 The idea is to simulate a multi-valued token passing ring system within parame-

terized BIP, and in [60] the authors have shown how to simulate a two-counter machine with a

multi-valued token ring, thus, combining them gives us the full proof of the theorem.

Fix a finite set T of token values with |T | ≥ 2 and the component type B0 = 〈V,L,P,E,�〉, where

1) control locations are partitioned into three sets: L = LT ∪ LN ∪ {st ar t }. Locations in LT

represent holding the token, while the ones in LT are without the token; 2) � = st ar t ; 3) the set of

ports is P = {sendt ,r ecei vet | t ∈ T }∪ {i ni t_token, i ni t }; 4) every transition (q, sendt , q ′) ∈ E

for token t ∈ T satisfies q ∈ LT and q ′ ∈ LN , and every transition (q,r ecei vet , q ′) ∈ E for token

t ∈ T satisfies q ′ ∈ LT and q ∈ LN . Transition (st ar t , i ni t_token, q ′) ∈ E, q ′ ∈ LT initializes the

component with a token, and transition (st ar t , i ni t , q ′) ∈ E, q ′ ∈ LN initializes the component

without a token.

Then the parameterized BIP model is MPBIP = 〈〈B0〉,〈n0〉,n0 ≥ 2,ψ〉, where ψ=ψ1 ∨ψ2 and

ψ1 =∨
t∈T (∃x, y :: t y pe0 : 0 ≤ x, y < n0∧(y = x+1 mod n0).sendt (x)∧r ecei vet (y)∧¬(i ni t (x)∨

i ni t (y)∨ i ni t_token(x)∨ i ni t_token(y))∧∧
t ′ �=t ¬(sendt ′(x)∨ r ecei vet ′(x)∨ sendt ′(y)∨

r ecei vet ′(y)) ∧∀z :: t y pe0 : 0 ≤ z < n0 ∧ z �= x ∧ z �= y.¬(
∧

t ′′∈T sendt ′′(z) ∨ r ecei vet ′′(z) ∨
i ni t (z)∨ i ni t_token(z))), and ψ2 = ∃x :: t y pe0.∀y :: t y pe0 : 0 ≤ x < n0 ∧ 0 ≤ y < n0 ∧ y �=
x.i ni t_token(x)∧ i ni t (y)∧¬i ni t (x)∧¬i ni t_token(y)∧∧

t∈T ¬(sendt (x)∨ r ecei vet (x)∨
sendt (y)∨ r ecei vet (y)). ψ1 specifies the pairwise rendezvous between a component x and its

neighbour x +1 for token passing, while ψ2 distributes the token initially in the ring.

6.3 Decidability results for parameterized BIP

In this section, we present a fragment of parameterized BIP models, called well-structured

parameterized BIP, and prove that certain safety properties are decidable for this class of BIP.

First of all, we review the theory of the well-structured transition system [1, 66].
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6.3.1 Well-structured transition system

The theory of well-structured transition system is a powerful tool for the verification of infinite-

state systems. In brief, well-structured transition systems are transition systems, whose sets of

states are well-quasi ordered and whose transition relations exhibit the monotonicity property

with respect to a well-quasi ordering. Well-known computation models that are well-structured

include, e.g. communication finite state automaton, Petri nets.

A preorder on a set D, denoted by �, is a reflexive and transitive binary relation on D. A set

U ⊆ D is said to be upward closed with respect to � if d ∈U and d � d ′ implies d ′ ∈U . Given

d ∈ D, we define by U (d) = {d ′ | d � d ′} the upward closure of d with respect to preorder �.

Given a set B ⊆ D, we define similarly U (B) =⋃
b∈B U (b). The preorder � is said to be a well

quasi-order if for all infinite sequences d0,d1,d2, . . . in D , there are i , j , i < j , such that di � d j .

Equivalently, if a preorder is a well quasi-order, then there is no infinite sequence of upward

closed sets.

For an upward closed set U , we define a minor set of U to be the set Mi n(U ), such that

U (Mi n(U )) = U and for all c,c ′ ∈ Mi n(U ), if c � c ′, then c = c ′. Elements in Mi n(U ) are

also called the generators of U . Assume that � is a well quasi-order, then the minor set of

an upward closed set is finite. Otherwise, we would have an infinite set of incomparable

elements, contradicting the assumption of a well quasi-order. Every upward closed set can be

represented by its minor set.

Definition 6.3.1 (Monotonicity) Given a labeled transition system T = 〈C,Σ,R,C0〉 and a pre-

order � on the state space C, the transition relation R is monotonic with respect to �, if for each

c1,c2,c3 ∈ C, c1 � c2 and 〈c1, t ,c3〉 ∈ R, there is c4 ∈ C, such that c3 � c4 and 〈c2, t ′,c4〉 ∈ R.

Monotonicity means that greater states can always simulate smaller ones. Thus, any finite

executions can be simulated from above, starting from a greater state.

Definition 6.3.2 (Well-structured transition system) Given a labeled transition system T =
〈C,Σ,R,C0〉 and a preorder � on the state space C, T is well-structured, if the following condi-

tions hold:

1. � is a well quasi-order;

2. R is monotonic with respect to �;

3. for each state c ∈ C, the minor set Mi n(pr e(U (c))) is computable.

The coverability problem for well-structured transition system is defined as follows: given a

well-structured transition system with the preorder �, and an upward closed set U of states,

the coverability problem asks if some states in U are reachable from some initial states. It is

known that this problem is decidable for well-structured transition system, and can be solved
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by a general symbolic algorithm [1, 66, 131]. The algorithm performs a backwards reachability

analysis from the set of bad states and checke if some initial states can be reached. Starting

from an upward closed set U of bad states, the algorithm repeatedly applies the predecessor

computation, and generates a sequence U0,U1,U2, . . . of upwards closed sets, where U0 =U ,

and Ui+1 =Ui ∪pr e(Ui ) for i ≥ 0. Intuitively, each Ui represents the set of states from which

U is reachable within i steps. The iteration terminates when we reach a point i > 0 such

that Ui =Ui−1. In such a case, Ui consists of the set of states from which U is reachable. The

termination is guaranteed when � is a well quasi-order.

6.3.2 Well-structured parameterized BIP

We consider the fragment of parameterized BIP models with clique topology and a single

component type. Extensions to multi-typed models are straightforward.

We identify a fragment of the first order interaction logic, called upward closed FOIL. For

this purpose, we define an preorder ≺ over the FOIL structures. Given two structures ξ and

ξ′, we denote by ξ≺ ξ′ if αξ(n1) <αξ′(n1) and there is a monotonic injection h : [0,αξ(n1)) �→
[0,αξ′(n1)) such that for all p ∈P1, if αξ(p)(i ) evaluates to true, for some i ∈ [0,αξ(n1)), then

αξ′(p)( j ) evaluates to true, for some j ∈ [0,αξ′(n1)), j = h(i ).

Definition 6.3.3 (Upward closed FOIL) A FOIL formula ψ is upward closed if for all structures

ξ,ξ′, such that ξ |=FOI L ψ and ξ≺ ξ′, then it holds ξ′ |=FOI L ψ.

In terms of BIP interactions, an upward closed FOIL formula ψ has the following property.

Given two structures ξ and ξ′ of ψ, suppose the two induced interactions are γξ = {(p, i ) | p ∈
P1, i ∈ [0,αξ(n1)), αξ(p)(i ) = true} and γξ′ = {(p, j ) | p ∈ P1, j ∈ [0,αξ′(n1)), αξ′(p)( j ) = true},

respectively. If ξ≺ ξ′, then there is a monotonic injection h : [0,αξ(n1)) �→ [0,αξ′(n1)), such that

for each (p, i ) ∈ γξ, there is j = h(i ) and (p, j ) ∈ γξ′ . Intuitively, if ξ≺ ξ′, then the interaction

γξ is a subset of the interaction γξ′ under an injective mapping on the port indices. Upward

closedness means that adding more ports still preserve the validity of the interaction.

Example upward closed FOIL formulae includes the ones with only existential quantifiers.

FOIL formulae with positive predicates in the scope of universal quantifiers are not upward

closed in general.

Example 6.3.4 Consider the FOIL formula ψ = ∃i ::t y pe1. send(i ) in Example 6.1.5. FOIL

formula ψ is in the upward closed fragment, since for instance, given a structure ξ, where

αξ(n1) = 2, and αξ(send)(0) = tr ue, αξ(send)(1) = f al se, then for any structure ξ′, if ξ ≺ ξ′,
we have αξ′(send)(0) = tr ue. It holds that ξ′ |=ψ.

Example 6.3.5 Consider the FOIL formula ψ=ψgo ∨ψfollow ∨ψexit in Example 6.1.7. It is not

in the upward closed fragment, because of ψexit =∀i ::t y pe0.exi t(i ). One can check that, for
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instance, given a structure ξ, where αξ(n0) = 2, and αξ(exi t)(0) = tr ue, αξ(exi t)(1) = tr ue,

there is another structure ξ′, where αξ′(n0) = 3, and αξ′(exi t)(0) = tr ue, αξ′(exi t)(1) = tr ue,

αξ′(exi t )(2) = f al se, such that ξ≺ ξ′, but it does not hold that ξ′ |=ψexit .

Given a parameterized BIP model MPBIP = 〈B, n̄,ψ,ε〉, we say that MPBIP is well-structured

if its LTS TPB I P = 〈CPB I P ,ΣPB I P ,RPB I P ,C0PB I P 〉 is well-structured, i.e. the union of LTSs of all

instance models is well-structured.

The preorder �PB I P on the state space CPB I P is defined as follows. Given two states c =
q0 . . . qm−1 ∈ CPB I P and c ′ = q ′

0 . . . q ′
n−1 ∈ CPB I P , we denote by c �PB I P c ′ if there is a monotonic

injection h : [0,m) �→ [0,n), such that qi = q ′
h(i ) for each i ∈ [0,m), m ≤ n. It has been shown

in [5] that this preorder is a well quasi-order. We remark that this preorder �PB I P is different

from the order ≺ over FOIL structures.

Proposition 6.3.6 Given a parameterized BIP model MPBIP = 〈B, n̄,ε,ψ〉, suppose its LTS

TPB I P = 〈CPB I P ,ΣPB I P ,RPB I P ,C0PB I P 〉. If ψ is in upward closed FOIL, then RPB I P is monotonic

with respect to the preorder �PB I P .

Proof 6.3.7 We have to prove that ∀c1,c ′1,c2, if c1
γ−→ c ′1 and c1 �PB I P c2, then ∃c ′2, c2

γ′
−→ c ′2 and

c ′1 �PB I P c ′2. If the interaction γ in state c1 is induced by the FOIL structure ξ1, then due to the

fact that ψ is upward closed we know that in state c2, there is another structure ξ2, ξ1 ≺ ξ2,

which defines an interaction γ′. Then it is sufficient to prove that γ′ is enabled in c2 and labels

the transition c2
γ′
−→ c ′2.

Assume c1 = q0 . . . qm1−1 and c2 = q ′
0 . . . q ′

m2−1, since c1 �PB I P c2, then there is a monotonic

injection h : [0,m1) �→ [0,m2), for all i ∈ [0,m1), qi = q ′
h(i ). Using the injection h, we can derive

a new structure ξ2 from ξ1, where αξ2 (n) = m2, and for each p ∈P1, αξ2 (p)( j ) = tr ue, for some

j ∈ [0,m2), if αξ2 (p)(i ) = tr ue, for some i ∈ [0,m1) and j = h(i ). Thus, ξ1 ≺ ξ2. Since ψ is upward

closed, we have ξ2 |=ψ. Then for each port (p, i ) ∈ γ, we have (p, j ) ∈ γ′, where j = h(i ).

Since (p, i ) is enabled on qi , and qi = q ′
h(i ), then (p, j ) is also enabled on q ′

h(i ). Thus, γ′ is enabled

on state c2, which completes the whole proof.

The following theorem states that if we restrict FOIL formulae to the upward closed fragment,

the parameterized BIP model is well-structured.

Theorem 6.3.8 Given a parameterized BIP model MPBIP = 〈B, n̄,ε,ψ〉, if the FOIL formula ψ

is upward closed, then MPBIP is well-structured with respect to the preorder �PB I P .

Proof 6.3.9 Assume the LTS of MPBIP is 〈CPB I P ,ΣPB I P ,RPB I P ,C0PB I P 〉, according to Proposition

6.3.6, the transition relation RPB I P is monotonic with respect to �PB I P . Moreover, since the
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preorder �PB I P is a well quasi-order, it remains to prove that for each state c ∈ CPB I P , the minor

set Mi n(pr e(U (c))) is computable. In fact, Mi n(pr e(U (c))) equals to Mi n(pr e(c)), if ψ is

upward closed. In other words, in order to compute the predecessors of an upward closed set, we

only need to compute the predecessors of the generators.

It suffices to prove that ∀c ′ ∈ U (c) and ∀c1 ∈ CPB I P ,c1
γ′
−→ c ′, then ∃c2 ∈ CPB I P ,c2

γ−→ c and

c1 ∈U (c2).

Suppose c = qc
0 . . . qc

m−1, c1 = qc1
0 . . . qc1

m−1, and c ′ = qc ′
0 . . . qc ′

m′−1, c2 = qc2
0 . . . qc2

m′−1. Since c ′ ∈U (c),

i.e. c �PB I P c ′, then there is a monotonic injection h : [0,m) �→ [0,m′), m ≤ m′, qc
i = qc ′

j , for each

i ∈ [0,m), j ∈ [0,m′) and j = h(i ). Using h, we construct c1 from c2 as follows: qc1
i = qc2

j , for each

i ∈ [0,m), j ∈ [0,m′) and j = h(i ). By construction, we have c2 ∈U (c1).

Assume the FOIL structure for interaction γ′ is ξγ′ , we can construct another structure ξγ from

ξγ′ using the above h, such that αξ(p)(i ) =αξ′(p)( j ), for each i ∈ [0,m), j ∈ [0,m′) and j = h(i ).

Since ψ is upward closed, ξγ |=ψ, otherwise, it violates the assumption ξγ′ |=ψ.

From the construction of c1 and ξγ, it’s straightforward to see that the interaction γ is also

enabled on c1 and labels the transition c1
γ−→ c. This completes the proof.

Example 6.3.10 In this example, we show that the disjunctive guarded protocol in Example

6.1.9 is well-structured.

First of all, we define the preorder on the state space. Given two states c = (q1, q2, ..., qm), c ′ =
(q ′

1, q ′
2, ..., q ′

n), and m ≤ n, we define c � c ′ if and only if ∃h : [1,m] �→ [1,n], such that for each

i ∈ [1,m], qi = q ′
h(i ). This preorder is useful for characterizing certain safety properties, e.g.

mutual exclusion, as upward closed sets. Since if a state violates the mutual exclusion property,

then any larger state would also violate the mutual exclusion property. Then we show that the

disjunctive guard protocol exhibits a monotonic transition with respect to this preorder.

Suppose a guarded transition (q,∃ j ::t y pe0. j �= i .φ( j ), p, q ′) is enabled in state c = (q1, q2, ..., qm)

for process i , i.e. qi = q and ∃ j ::t y pe0. j �= i , such that q j |=φ( j ), then this guarded transition is

also enabled in any state c ′ = (q ′
1, q ′

2, ..., q ′
n), c � c ′. This is because that if c � c ′, there is j ′ ∈ [1,n],

such that j ′ = h( j ) for j ∈ [1,m] and q ′
j ′ = q j , thus, q ′

j ′ |=φ( j ′). Suppose furthur the successor

state of c is ct , it would not be hard to see that there is a successor state c ′t of c ′, such that ct � c ′t .

Similarly, we can prove that conjunctive guarded protocol is not well-structured with respect to

the above preorer. This is because the transition relation defined by a conjunctive guard does not

guarantee the monotonicity property, i.e. adding more states may turn the conjunctive guard to

be unsatisfiable.

We consider the following verification problem for parameterized BIP.

Problem 6.3.11 Given a parameterized BIP model MPBIP = 〈B, n̄,ψ,ε〉 and an ICTL� state
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formula θ with only temporal operator G and universal path quantifier A and existential

quantifier ∃, and without free variables, this verification problem asks whether it holds that

every instance model MBIP satisfies θ.

Corollary 6.3.12 The above verification problem for a parameterized BIP model MPBIP =
〈B, n̄,ε,ψ〉 is decidable, if ψ is upward closed.

Proof 6.3.13 The set of states satisfying ICTL� formulae with only temporal operator G and

universal path quantifier A and existential quantifier ∃ and without free variables are upward

closed sets. Then the decidability proof follows directly from Theorem 6.3.8 and the result that

coverability problem is decidable for well-structured transition system [1, 131].

6.4 A framework of automated parameterized verification in BIP

In this section, we present a general framework for automated parameterized verification

in BIP. It is shown in Figure 6.4. It takes as input a parameterized system design specified in

parameterized BIP, and then identifies the architecture model of the given system. According to

the identification, a suitable parameterized verification technique is chosen. The development

of parameterized verification technique is orthogonal to the architecture identification. In the

rest of this dissertation, we focuse on the latter task.

Architecture identification plays an important step in our verification framework. Param-

eterized BIP can capture various specific architectures: token rings, broadcast in cliques,

rendezvous in stars, etc. In the non-parameterized case, knowing the architecture is not

crucial, as there are model checking algorithms that apply in general to arbitrary transition

systems. However, the architecture dramatically affects both the decidability and the tech-

niques of parameterized model checking. It is crucial to understand the architecture model in

parameterized case in order to achieve automation.

6.5 Identifying the architecture of a parameterized BIP model

In this section, we present how to identify system architectures automatically, and show the

applications to parameterized verification. For the sake of exposition, we assume that the

parameterized BIP models have only one component type. Our identification framework

extends easily to the general case.

Given an architecture A , e.g. the token ring architecture, an expert in parameterized model

checking creates formula templates in FOIL (FOIL-templates) and in temporal logic (TL-

templates). FOIL-templates describe the system topology and communication mechanism

for architecture A . TL-templates describe the behavior of the component type required by

architecture A , e.g. in a token ring, a component which does not have the token cannot send.
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Figure 6.4 – Framework of automated parameterized verification in BIP

These templates are designed once for all parameterized BIP models compliant with A . In the

sequel, TL-templates are only used for token rings, thus we omit them from the discussion of

other architectures.

Given a parameterized BIP model 〈〈B〉,〈n〉,ψ,ε〉 — not necessarily compliant with the ar-

chitecture A — the templates for the architecture A are instantiated to first-order formu-

lae ϕFOIL
1 , . . . ,ϕFOIL

m , and temporal logic formulae ϕTL
1 , . . . ,ϕTL

�
. The first-order logic formulae

restrict the set of interactions expressed by the FOIL formula ψ. The temporal logic for-

mulae restrict the behavior of the component type B. The identification criterion is as fol-

lows: if ϕFOIL
1 ∧·· ·∧ϕFOIL

m valid 1 and B |=TL ϕ
TL
1 ∧·· ·∧ϕTL

�
holds, then the parameterized model

〈〈B〉,〈n〉,ψ,ε〉 is compliant with the architecture A . In practice, we use an SMT solver to check

validity of the FOIL formulae and a model checker to check that the component type B satisfies

the temporal formulae.

In the rest of this section we construct FOIL-templates and TL-templates for well-known

architectures: cliques of processes communicating via broadcast, cliques of processes com-

municating via rendezvous, token rings, processes organized in a star and communicating via

rendezvous. We show that the provided templates identify the architectures in a sound way.

1. A FOIL formula without free variables is valid if it is satisfied by all FOIL structures ξ.

109



Chapter 6. Design and verification of parameterized systems in BIP

6.5.1 The common templates for BIP semantics

As we discussed in Section 6.1.2, not every FOIL structure induces a BIP interaction. We show

that one can write an FOIL-template that restricts FOIL structures to be BIP interactions. The

following template ηFOIL
interaction(P1) expresses that there is no interaction with more than one

active port belonging to the same component: ∀ j ::t y pe1.
∧

p,q ∈P1, q �=p ¬p( j )∨¬q( j )

As expected, the template ηFOIL
interaction(P1) restricts FOIL structures to BIP interactions:

Proposition 6.5.1 Let P1 be a set of ports, and η be the instantiation of ηFOIL
interaction with P1. A

FOIL structure ξ satisfies η if and only if ξ induces an interaction.

In the following, we often need to express that a component has at least one active port.

template active( j ) ≡∨
p∈P1

p( j ). We omit the parameterization of active( j ) by P1 for to simplify

notation.

6.5.2 Pairwise rendezvous in a clique

In BIP, two components communicate with pairwise rendezvous, if each of them has an active

port — forming an interaction — and the other components do not have active ports. In this

case, both components make their transitions simultaneously, and the other components

stutter on their states. Pairwise rendezvous has been widely used as a basic primitive in the

parameterized model checking literature, e.g. in [74, 10].

FOIL-templates. We construct a template using two formulae ηFOIL
≤2 (P1) and ηFOIL

≥2 (P1):

– The formula ηFOIL
≤2 (P1) expresses that every interaction has at most two ports:

∀i , j ,� ::t y pe1. active(i )∧active( j )∧active(�) → i = j ∨ j = �∨ i = �.

– The formula ηFOIL
≥2 (P1) expresses that every interaction has at least two ports:

∃i , j ::t y pe1 : i �= j . active(i )∧active( j ).

We show that the combination of ηFOIL
interaction, ηFOIL

≥2 , and ηFOIL
≤2 defines pairwise rendezvous com-

munication in cliques of all sizes:

Theorem 6.5.2 Given a one-type parameterized BIPmodel 〈〈B〉,〈n〉,ψ,ε〉, if (ψ∧ηFOIL
interaction) ↔

(ηFOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2 ) is valid, then for every instance BN ,Γ, the following holds:

1. every interaction is of size 2, that is, |γ| = 2 for γ ∈ ΓN̄ , and

2. for every pair of indices i and j such that 0 ≤ i , j < N and i �= j and every pair of ports

p, q ∈P1, there is a FOIL structure ξ such that ξ |=FOIL ψ∧p(i )∧q( j ).

Proof 6.5.3 Fix an instance BN ,Γ of 〈〈B〉,〈n〉,ψ,ε〉.
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To show Point 1, fix an interaction γ of BN ,Γ. By Definition 6.1.4, there is a FOIL structure ξ such

that ξ |=FOIL ψ and γ = γξ. As ξ induces an interaction, by Proposition 6.5.1, we immediately

have that γξ satisfies an instantiation of ηFOIL
interaction. Hence, since (ψ∧ηFOIL

interaction) ↔ (ηFOIL
interaction∧

ηFOIL
≥2 ∧ηFOIL

≤2 ) is valid we conclude that ξ also satisfies ηFOIL
≥2 ∧ηFOIL

≤2 . This immediately gives us the

required equality |γξ| = 2.

To show Point 2, fix a pair of indices i and j such that 0 ≤ i , j < N and i �= j and a pair of

ports p, q ∈P1. The set γ= {(p, i ), (q, j )} is an interaction. Obviously, one can construct a FOIL

structure ξ that induces γ. Since i �= j and |γξ| = 2, it holds that ξ |=FOIL η
FOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2 .

Thus, since (ψ∧ηFOIL
interaction) ↔ (ηFOIL

interaction ∧ηFOIL
≥2 ∧ηFOIL

≤2 ) is valid, it follows that ξ |=FOIL ψ. From

this and that ξ induces the interaction γ, we conclude that ξ |=FOIL ψ∧p(i )∧q( j ).

In Theorem 6.5.2, the right-hand side of the equivalence does not restrict pairs of ports that

are included into interactions, e.g., it does not require the ports to be the same. Thus, if the

formula ψ is more restrictive than the right-hand side of the equivalence, validity will not hold.

Obviously, one can further restrict the equivalence to reflect additional constraints on the

allowed pairs of ports.

Applications. Theorem 6.5.2 gives us a criterion for identifying parameterized BIP models,

where all processes may interact with each other using rendezvous communication. To verify

such parameterized BIP models, we can immediately invoke the seminal result by German &

Sistla [74, Sec. 4]. Their result applies to specifications written in indexed linear temporal logic

without the operator X .

More formally, we say that an ICTL� path formula χ(i ) is a LTL\X formula, if χ has only one

index variable i and χ does not contain quantifiers ∃, ∀, A, E , nor temporal operator X . Given a

parameterized BIP model 〈〈B〉,〈n〉,ψ,ε〉 and a LTL\X formula χ, one can check in polynomial

time, whether every instance BN , Γ satisfies the formula E ∃i ::type1 : true. χ(i ).

6.5.3 Broadcast in a clique

In BIP, components communicate via broadcast, if there is a “trigger” component whose

sending port is active, and the other components either have their receiving port active, or

have no active ports. In this section, we denote the sending port with send and the receiving

port with receive. Our results can be easily extended to treat multiple sending and receiving

ports. In a broadcast step, all the components with the active ports make their transitions

simultaneously. Broadcasts were extensively studied in the parameterized model checking

literature [64, 131].

One way to enforce all the processes to receive a broadcast, if they are ready to do so, is to use

priorities in BIP: an interaction has priority over any of its subsets. In BIP without priorities —

considered in this paper — one can express broadcast by imposing the following restriction
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on the structure of the component type B: every location has a transition labeled with the

port receive. This restriction enforces all interactions to involve all the components, though

some of the components may not change their location by firing a self-loop transition. This

requirement can be statically checked on the transition system of B, and if the component

type does not fulfill the requirement, it is easy to modify the component type’s transition

system by adding required self-loops.

FOIL-templates. First, we define the formula ηFOIL

bcast(P1), which guarantees that every inter-

action includes one sending port by one component and the receiving ports of the other

components:

∃i ::t y pe1. send(i )∧∀ j ::t y pe1 : j �= i . r ecei ve( j )

We show that the combination of ηFOIL
interaction and ηFOIL

bcast defines broadcast in cliques of all sizes:

Theorem 6.5.4 Given a one-type parameterized BIPmodel 〈〈B〉,〈n〉,ψ,ε〉, if (ψ∧ηFOIL
interaction) ↔

(ηFOIL

bcast ∧ηFOIL
interaction) is valid, then for every instance BN ,Γ, the following holds:

1. every interaction is of size N consisting of one send port and receive ports.

2. for every index c, such that 0 ≤ c < N , there is a FOIL structure ξ satisfying the following:

ξ |=FOIL ψ∧ send(c)∧∀ j ::type1 : j �= c. receive( j ).

Proof 6.5.5 The proof follows the same principle as the proof of Theorem 6.5.2.

Applications. Theorem 6.5.4 gives a criterion for identifying parameterized BIP models in

which all components may send and receive broadcast. Its implications are two-fold. First,

it is well-known that parameterized model checking of safety properties is decidable [1] (cf.

the discussion in [64]), and there are tools for well-structured transition systems applicable

to model checking of parameterized BIP. Second, parameterized model checking of liveness

properties is undecidable [64]. From the user’s perspective, this indicates the need to construct

abstractions, or to use semi-decision procedures.

Identifying sending and receiving ports. Now we illustrate how to automatically detect the

sending and receiving ports in a parameterized BIP model. We say that a port p ∈ P1 in the

component type may be a sending port, if in every interaction exactly one component uses

this port. Similarly, we say that a port q ∈P1 in the component type may be a receiving port, if

in every interaction all but one component use this port. Intuitively, we have to enumerate all

port types and check, whether they are acting as sending ports or receiving ports. Formally, to

find, if p is a potential sending port and q is a potential receiving port, we check, whether the
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following is valid:

ψ∧ηFOIL
interaction∧∃i ::type1.p(i )∨q(i )

→
(
∃i ::t y pe1. p(i )∧∀ j ::t y pe1 : j �= i . q( j )

)

6.5.4 Token rings

Token ring is a classical architecture: (i) all processes are arranged in a ring, and (ii) one

component owns the token and can pass it to its neighbors. It is easy to express token-passing

with rendezvous, so we re-use the formulae from Section 6.5.2. We assume that there is a pair

of ports: the port send giving away the token and the port receive accepting the token. We do

not allow the token to change its type, as the parameterized model checking problem in this

case is undecidable [136, 60]. Nevertheless, it is easy to extend our results to multiple token

types. Here the token is passed in one direction, i.e. every component can only receive the

token from one neighbor and send it to the other neighbor.

TL-templates. Following the standard assumption [60], we require that every process sends

and receives the token infinitely often. We encode this requirement as a local constraint in a

form of an LTL formula that is checked against the component type (not a BIP instance):

G
(
r ecei ve → X (¬r ecei ve U send)

)
∧G

(
send → X

(¬send U r ecei ve)
)

The left conjunct forces a component to eventually send the token, if the component has

received the token. The right conjunct does not allow a component to send the token twice

without receiving the token before the second send.

FOIL-templates. We extend the pairwise rendezvous templates with an additional for-

mula ηFOIL

bcast(P1) that restricts the interactions to be performed only among the neighbors

in one direction:

∃i , j ::t y pe1. ( j = (i +1) mod n1). active(i )∧active( j )∧ send(i )∧ r ecei ve( j )

Note that the modulo notation “ j = (i+1) mod n1” can be seen as syntactic sugar, as it expands

into (i = n1 −1 → j = 0)∧ (i < n1 −1 → j = i +1).

Theorem 6.5.6 Given a one-type parameterized BIPmodel 〈〈B〉,〈n〉,ψ,ε〉, if (ψ∧ηFOIL
interaction) ↔

(ηFOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2 ∧ηFOIL

uniring ) is valid, then every instance BN ,Γ satisfies:

1. every interaction γ ∈ ΓN̄ is of the form {send(c),receive(d)} for some indices c and d such

that 0 ≤ c,d < N and d = (c +1) mod N , and
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2. for every index c such that 0 ≤ c < N and the index d = (c +1) mod N , there is a FOIL

structure ξ such that ξ |=FOIL ψ∧ send(c)∧ receive(d).

Proof 6.5.7 The proof follows the same principle as the proof of Theorem 6.5.2.

Distributing the token. The token ring architecture assumes that initially only one com-

ponent has the token. Emerson & Namjoshi [60] assumed that the token was distributed

using a “daemon”, but this primitive is obviously outside of the token ring architecture. Our

framework encompasses token distribution. To this end, we restrict the transition system of

the component as follows:

– We assume that the location set L1 of the component type B1 is partitioned into two sets:

Ltok
1 is the set of locations possessing the token, and Lntok

1 is the set of locations without the

token. The initial location does not possess the token: �0 ∈ Lntok
1 .

– We assume that there are two auxiliary ports called master and slave that are only used in

a transition from the initial location �0. There are only two transitions involving �0: the

transition from �0 to a location in Ltok
1 that broadcasts via the port master, and the transition

from �0 to a location in Lntok
1 that receives the broadcast via the port slave. The broadcast

interaction can be checked with the constraints similar to those in Section 6.5.3.

Applications. Theorem 6.5.6 gives us a criterion of identifying parameterized BIP models

that express a unidirectional token ring. This criterion has a great impact: one can apply

non-parameterized BIP tools to verify parameterized BIP designs expressing token rings. As

Emerson & Namjoshi showed in their celebrated paper [60], to verify parameterized token

rings, it is sufficient to run model checking on rings of small size. The bound on the ring

size — called a cut-off — depends on the specification and typically requires two or three

components.

6.5.5 Pairwise rendezvous in a star

In a star architecture, one component acts as the center, and the other components com-

municate only with the center. The components communicate via rendezvous considered

in Section 6.5.2. This architecture is used in client-server applications. Parameterized model

checking for the star architecture was investigated by German & Sistla [74]. We assume that a

parameterized BIP model contains two component types: B1 with only one instance, and B2

that may have many instances.

FOIL-templates. The essential requirements of rendezvous communication are defined in

Section 6.5.2. We add the following restriction that the center is involved in every interac-
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Benchmark Architecture model Outcome Time (sec.) Memory (MB)

Milner’s scheduler uni-directional token ring positive 0.068 ≤ 10
Milner’s scheduler broadcast in clique negative 0.016 ≤ 10
Semaphore pairwise rendezvous in star positive 0.096 ≤ 10
Semaphore pairwise rendezvous in clique negative 0.084 ≤ 10
Barrier broadcast in clique positive 0.028 ≤ 10
Barrier pairwise rendezvous in star negative 0.008 ≤ 10

Table 6.1 – Experimental results of identifying architecture models.

tion ηFOIL
center :

∃i ::t y pe1. active1(i )

By restricting ε to have only one instance of type B1, we arrive at the following simple theorem,

which to a large extent is a consequence of Theorem 6.5.2:

Theorem 6.5.8 Given a two-component parameterized BIPmodel 〈〈B1,B2〉,〈n1,n2〉,ψ,ε〉, if

(ψ∧ηFOIL
interaction) ↔ (ηFOIL

interaction ∧ηFOIL
≥2 ∧ηFOIL

≤2 ∧ηFOIL
center) and ε↔ (n1 = 1) are both valid, then every

instance 〈B1,B2〉〈N 1, N 2〉,Γ admits only the rendezvous interactions with the center, i.e. the only

component of type B1.

Applications. Theorem 6.5.8 gives us a criterion for identifying parameterized BIP models,

where the user processes communicate with the coordinator via rendezvous. To verify such

parameterized BIP models, we can immediately invoke several results by German & Sistla [74,

Sec. 3]. First, one can analyze such parameterized BIP models for deadlocks, which is of

extreme importance to the practical applications of BIP. Second, the results [74] reduce pa-

rameterized model checking to reachability in Petri nets, which allows one to use the existing

tools for Petri nets.

6.6 Prototype implementation and experiments

We have implemented a prototype of the framework introduced in Section 6.5. This prototype

uses the templates for pairwise rendezvous and broadcast in cliques, tokens rings, and ren-

dezvous in stars. The implementation uses nuXmv [33] for model-checking and Z3 [51] for SMT-

solving. To deal with quantifiers, we run a customized solver with tactic ’qe’ (i.e. quantifier elim-

ination). The implementation and benchmarks are available at http://risd.epfl.ch/parambip.

Table 6.1 summarizes our experiments with three benchmarks. The column “Outcome” in-

dicates, whether the benchmark was recognized to have the given architecture (positive), or

not (negative). The experiments were performed on a 64-bit Linux machine with 2.8GHz ×

115



Chapter 6. Design and verification of parameterized systems in BIP

4 CPU and 7.8GiB memory. We conducted the experiments with two kinds of templates: the

original architecture of the benchmark, and an architecture different from the original one. In

all cases, the architectures were identified as expected. Our preliminary experiment results

demonstrate both the correctness and the efficiency of our technique. In the future, we will

implement a full-featured tool and perform thorough experimental evaluations.

6.7 Related work

In the research line of parameterized verification, one of the widely used techniques is based

on the framework of well-structured transition system [1, 66, 131]. A well-structured transition

system naturally generalises several infinite-state models such as Petri nets. In [1, 66], the

authors show that for certain safety properties, such as coverability, are decidable on this

class of systems. They also present a practical backward reachability analyses algorithm, and

the termination is guaranteed by the fact that such systems are monotonic with respect to a

well-quasi ordering. Given a parameterized system, we look at its transition system, which

defines its operational semantics. If the transition system is well-structured, then certain safety

properties are decidable and the algorithmic verification can be achieved via a backward

reachability analysis from the error states. However, in most cases well-structureness is rarely

satisfied. A solution to this problem is the monotonic abstraction [5, 7, 6]. In this abstraction

technique, parameterized systems containing global conditions within guards are abstracted

into a well-structured one in order to apply algorithmic verification. Later, in [4], the authors

extend monotonic abstraction to CEGAR style reasoning.

Regular model checking [30, 3] is another widely used technique being developed for algo-

rithmic verification of several classes of infinite-state systems whose configurations can be

modeled as words over a finite alphabet. Examples include parameterized systems consist-

ing of an arbitrary number of homogeneous finite-state processes connected in a linear or

ring-formed topology, and systems that operate on queues, stacks, integers, and other linear

data structures. The main idea is to use regular languages as the representation of sets of

configurations, and finite-state transducers to describe transition relations. In general, the

verification problems considered are all undecidable, so the work has consisted in developing

semi-algorithms, and decidability results for restricted cases.

Besides the backward analysis of well-structured systems, the first notable forward algorithm

to solve the coverability problem was proposed in [103] for Petri net. In [56], the authors

attempt to generalise the forward algorithm for broadcast protocols, a class of well-structured

systems that are made up of an unbounded number of finite state processes communicating

via rendezvous and broadcast. They present a forward reachability analysis algorithm for such

systems based on the construction of a covering graph. However, in [64], the authors show

that the algorithm in [56] may not terminate for broadcasting protocols and the termination is

retained by applying the backward reachability analysis based on well-structured transition

system. A forward reachability analysis technique, called Expand, Enlarge and Check (EEC), is
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proposed in [73, 72], It is a general algorithmic schema that allows to define forward analysis

techniques to solvle the coverability problem of well-structured transition system.

In [20], the authors propose to model parameterized systems using a single WS1S transition

system, where WS1S refers to the weak monadic second order theory of one successor. In

a WS1S transition system, variables are set (second order) variables and transitions can be

expressed as WS1S formulae. The idea is that set variables encode the set of processes that

reside in certain control locations. They also present techniques to abstract a WS1S transition

system into a finite state system, which can be automatically verified.

In [12], the authors present a compositional verification technique for parameterized component-

based timed systems. Their technique relies on a cutoff result to reduce the parameterized

verification to the verification of finite state systems. The cutoff result is obtained by restricting

the formulae used to describe the parameterized systems to a certain fragment, which has a

small model theorem [100].

In line of modeling system architectures, the authors proposed Dynamic BIP to model fixed

size, but dynamic architectures, where interactions of components may evolve during the

execution [31]. In a recent work [114], configuration logic is proposed as a formal specification

of architecture families. Our first order interaction logic differs from the configuration logic

in that a formula in interaction logic describes a certain architecutre, while in configuration

logic, formulae describe a set of architectures.

117





7 Conclusions and perspectives

In this chapter, we first conclude the dissertation by describing the main objectives of this

work and the goals we have achieved. Then we also give some directions for the future work.

7.1 Summary of the dissertation

While algorithmic verification has made impressive advances recently thanks to the novel

symbolic model checking techniques, such as lazy abstraction [90, 88], interpolation [119],

IC3/PDR for hardware [32, 55] and for software [35, 37, 25], concurrent systems that consist of

either bounded or unbounded number of components still pose a formidable challenge of

efficient verification.

The effectiveness of model checking in the presence of bounded concurrency is severely

limited by the state explosion caused by interleavings of interactions, which are not handled

by the above mentioned symbolic model checking techniques. Consequently, the first insight

of this disseration is that combining techniques that can reduce the redundant interaction

interleavings, such as partial order reduction [139, 124, 78] would be feasible way to improve

the scalability of the symbolic model checking techniques.

We have presented an efficient safety property verification technique for infinite-state BIP

models with a fixed number of components in this dissertation. Our technique is based on

the idea of combining abstraction techniques with partial order reductions. Particularly, our

technique applies sophisticated counterexample guided abstraction refinement techniques to

reason about the sequential computations in the atomic components, and also incorporates

the persistent set based partial order reduction technique to deal with concurrent interactions

between the components. We have implemented the proposed technique and the experimen-

tal evaluations justify our arguments about the competitiveness and efficiency of the proposed

technique. Moreover, we have also presented two advanced reductions for BIP. The first one

reduces the redundant interleavings by exploring independent interactions simultaneously

as many as possible, and the second one exploits the system symmetries to improve the
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persistent set reduction for the class of models that exhibit such symmetries.

Another source of state explosion is due to the unboundedness of the number of participating

components in the system. Verification of the system with an unbounded number of compo-

nents is also known as parameterized verification, in which the task is to prove the correctness

for all instrances of the system. Being undecidable in its general form [11], there are therefore

roughly two approaches to circumvent this problem: one is to identify decidable fragments

and devise verification techniques for them, such as the cutoff techniques [60, 42] that decom-

poses the parameterized verification problem into several finite-state verification problems,

and another one gives rise to incomplete methods, that apply abstractions or approximations

to achieve efficiency, such as the counter abstraction [127].

Whether the parameterized verification problem for a concurrent system is decidable de-

pends on several factors, the most important being the underlying communication graph

(e.g. rings, stars, cliques), and the means of synchronization (e.g. token passing with/without

information-carrying tokens, broadcast). We refer to [28] for more details. Unfortunately, there

is currently no uniform concurrent system model in the literature. Hence, if one is faced with

a parameterized verification problem for a given system, it is difficult to tell whether there is a

published computational model that naturally captures the system’s semantics. One of the key

insight of this dissertation is that it is useful to provide a uniform framework that incorporates

many of the foundational computational models that have appeared in the parameterized

model checking literature on undecidability and decidability.

To this end, we have extended the current BIP framework to provide a general model for uni-

form concurrent systems that captures a large class of systems from the literature. Our model

includes different forms of communication, like token-passing, rendezvous, or broadcast, as

well as different communication graphs, like cliques, rings, stars. We also have showed that

our framework encompasses several prominent parameterized model checking techniques.

To our understanding, other seminal results that can be integrated into our framework are as

follows: the cut-off results for disjunctive and conjunctive guards [59], network decomposi-

tion techniques [42, 10], and techniques based on well-structured transition systems [1] and

monotonic abstraction [6].

As the core of our framework, first-order interaction logic extends propositional interaction

logic [27]. Other extensions of propositional interaction logic are Dynamic BIP [31] and config-

uration logic [114]. Dynamic BIP extends propositional interaction logic with quantification,

but is not expressive enough to write Presburger arithmetic formulas. Configuration logic uses

second-order formulas to represent sets of topologies. The benefit of using FOIL is in using

SMT solvers, which is essential for the design of a practical framework.
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7.2 Perspectives of the future work

For the algorithmic verification of component-based systems with bounded concurrency,

we believe that offering partial order semantics to the abstraction techniques is an aspiring

way to tackle the state explosion problem. Following this idea, one direction we would like

to explore in the future is how to combine partial order reduction techniques with IC3/PDR

style reasoning, in particular the Tree-based IC3 [35] for concurrent software verification. In

fact, similar idea has already been investigated recently in [82], where a dynamic reduction

technique that extends Lipton’s original work [108] has been proposed and incorporated into

IC3 for the model checking of concurrent software. Their reduction technique differs from the

partial order reduction techniques in that they use specialized encodings to instrument the

multi-threaded programs such that interleavings of independent actions will not be explored

in the model checking. Though sharing the same goal of avoiding redundant interleavings, no

persistent set is used in their reduction.

Orthogonally, it is noticed in [2] that persistent set based partial order reduction is not optimal

in the sense that multiple representatives of a Mazurkiewicz trace might be explored even

with the precise persistent set. Thus, optimal reduction techniques, e.g. the one in [2], might

achieve more enhancement when combining with abstraction techniques. It is also noticed

in [82, 143] that in partial order reduction techniques, usually an up-front static analysis of

the system model is conducted in order to obtain an over-approximation of the dependence

relation and the set of transitions to be explored. The accuracy of the static analysis turns

into a severe bottleneck for good reductions. Techniques that can improve the accuracy of

static analysis might result in better reductions. Besides, we also plan to apply our prototype

to some real-life systems that are constructed in BIP, e.g. the software running in the control

and data management subsystem (CDMS) of CubETH satellite [99].

On the other hand, making formal verification beneficial in practice requires not only efficient

algorithmic verification algorithm, but also some useful diagnostic information that can

help a human understand why the system under verification might actually be correct or

incorrect. For instance, sometimes when the verifier reports a real counterexample, it might

not be easy for the programmers to figure out the core sources of the violation, in particular

when the counterexample is tedious. In this case, we believe that techniques that can either

automatically localize the faults [148], or produce diagnosis for explaining the bugs [105]

would be useful in order to assist the programmers to understand what is neccessary in the

counterexample to cause the violation.

As for the verification of parameterized systems, it is a less developed domain, compared to

the non-parameterized case. For the future work, first of all we plan to fully implement the

proposed parameterized verification framework in a prototype tool that integrates multiple

parameterized model checking techniques to verify parameterized BIP designs.

An interesting topic we would like to talk about in the next step is the verification of parame-

terized systems with mixed architectures. The current verification techniques can only handle
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systems with a fixed architecture, however, in reality systems may have a mixed architecture,

such as the mixture of star and ring topology. The cutoff results for the star or ring topology

may not apply in this case, due to the interference of each other. It is unclear to us now how to

reuse the results of a single architecture for a mixed architecture.

We will also investigate novel parameterized verification techniques for component-based

systems. For the safety properties, parameterized verification essentially boils down to the

computation of quantified inductive invariants that are strong enough to imply the properties.

We would consider how to compute such an invariant in a compositional way as in [22], that is,

we first compute an invariant for each component type and an invariant for the interactions

of all components, and then the invariant of the global system is obtained as the conjunction

of both. The difficulty in the parameterized case is how to produce a quantified invariant that

talks about all the instances of the parameterized system. One possible way to achieve this

goal, as reported in [54], might be the following: we first compute an invariant for a small

number of instances, and then generalize it for all instances. Further, we can use the failed

generalization to guide the strengthening of the invariant, as in IC3 [32].

Finally, we will also study the second-order extensions of FOIL to express more complex archi-

tectures such as server-client whose coordinator is chosen non-deterministically. Nevertheless,

this is a long-term effort.
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A.1 An ATM transaction protocol in BIP
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A.7. Statistics for lazy abstraction with simultaneous set reduction
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