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ABSTRACT
This work presents an area and power efficient encoding sys-
tem for wireless implantable devices capable of monitoring
the electrical activity of the brain. Such devices are becom-
ing an important tool for understanding, real-time monitor-
ing, and potentially treating mental diseases such as epilepsy
and depression. Recent advances on compressive sensing
(CS) have shown a huge potential for sub-Nyquist sampling
of neuronal signals. However, its implementation is still fac-
ing critical issues in delivering sufficient performance and in
hardware complexity. In this work, we explore the trade-
offs between area and power requirements applying a novel
DCT Learning-Based Compressive Subsampling approach
on a human iEEG dataset. The proposed method achieves
compression rates up to 64×, increasing the reconstruction
performance and reducing the wireless transmission costs
with respect to recent state-of-art. This new fully digital
architecture handles the data compression of each individ-
ual neural acquisition channel with an area of 490× 650µm
in 0.18 µm CMOS technology, and a power dissipation of
only 2µW .

Keywords
Compressive Sensing, neural signals, learning-based digital
signal processing, area-efficient, low-power, signal recovery.

1. INTRODUCTION
Wireless implantable devices capable of monitoring the

electrical activity of the brain are becoming an important
tool to close the gap between current bulky medical solutions
and wearable devices for the treatment of some widespread
mental diseases. While such devices exist, it is still necessary
to address several challenges to make them more practical
in terms of area and power dissipation. Considering multi-
ple site or high frequency oscillation (HFO) recordings, the
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Figure 1: Block diagram of a multiple-channel neural record-
ing system and power dissipation of its components.

payload of data telemetry from the implant to the external
base station grows enormously.

The typical circuit blocks used in a multiple channel sen-
sors for medical monitoring are shown in Figure 1. In a
wireless monitoring system, the power consumed by the RF
transmitter is usually one order of magnitude more than
any other system on the chip [1]. Thus, data compression
becomes crucial for reducing the power consumption of data
telemetry without losing critical information. To this end,
compressive sensing (CS) [2, 3] has been exploited in many
recent approaches (e.g. [1, 4, 5] and references therein). In
a nutshell, CS consists in taking fewer linear samples than
dictated by the Shannon-Nyquist theorem, while still allow-
ing robust off-line signal reconstruction. This is possible by
exploiting the fact that the information content of a signal
is often much lower than its raw data content.

In this work, we present a fully digital encoder for neu-
ronal signals applying a DCT Learning-Based Compressive
Subsampling approach (DCT-LBCS), which improves the
reconstruction performance and reduces the data telemetry
costs by 50% compared to [6], while trading-off the area and
power DSP requirements.

The paper is organized as follows. We introduce the main
concepts of Compressive Sensing and Learning Based Com-
pressive Subsampling in Section 2. In Section 3, we describe
the digital architecture tailored for LBCS. Numerical exper-
iments are reported in Section 4, while in Section 5 we anal-
yse and describe our circuit design. Conclusions are drawn
in Section 6.

2. COMPRESSION ALGORITHMS
The main tenet of CS states that a signal x ∈ RN which

has K non-zero coefficients can be robustly recovered from
only M = O(K log N

K
) samples y ∈ RM ,

y = Ax + w , (1)

where y offers a compressed version of x, A is a linear op-
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erator that either satisfies the Restricted Isometry Property
(RIP) or is incoherent [7], and w accounts for measurement
noise. If we are able to directly sample y, we save both on
storage and communication power. Recovering x, though,
usually requires to solve a non-linear optimization problem.

Theoretically, i.i.d. sub-Gaussian matrices are incoherent
and also satisfy the RIP. Furthermore, they are universal,
i.e., given an ortho-normal basis Φ which allows for a sparser
representation of a signal x, the RIP or the incoherence of
AΦ is the same as of the original A [7]. However, sub-
Gaussian matrices are prohibitively expensive to use in prac-
tice, since they require O(MN) space and time.

Bernoulli (BERN) described in [1], Multi-Channel Sam-
pling (MCS) [5] and Structured Hadamard Sampling (SHS)
presented in [8] are randomized sampling approaches re-
cently proposed for the compression of neural signals. These
three architectures are very efficient on the sampling side,
but require solving non-linear optimization problems to re-
construct the original signals.

Natural signals are often characterized by sparse and struc-
tured representations in time-frequency (or space-frequency)
domains, such as provided by wavelets [9]. As described
in [10] and references therein, a reduced number of samples
required for stable recovery can be achieved considering ad-
ditional structures in the signal x, such as interdependencies
between its non-zero coefficients or constraints on its sup-
port, during the recovery process.

As discussed in [8], the Hierarchical Group Lasso (HGL)
approach gives the best performances over three different
structured-sparsity recovery methods. Such approach has
been used to compare the reconstructed iEEG signals sam-
pled through BERN, MCS and SHS methods.

2.1 Learning-Based Compressive Subsampling
The LBCS method [11] consists on linear encoding and

linear decoding with respect to a given orthonormal basis,
resulting in a much simpler and faster solution compared to
standard CS. LBCS can be summarized as follows. Given a
signal x ∈ RN , we consider the compression model

y = PΩΨx , (2)

where Ψ ∈ RN×N is an orthonormal basis and PΩ ∈ RM×N

is a subsampling matrix whose rows are canonical basis vec-
tors. The effect of applying PΩ to Ψx is to retain only the
coefficients indexed by the set Ω, also known as the subsam-
pling map. The vector y ∈ RM is the compressed version of
x, with a nominal compression rate (CR) of N

M
. The signal

x is then approximately recovered via the fast linear decoder

x̂ = Ψ∗PT
Ωy . (3)

Given a training set D = {x1, . . . ,xm} of m fully sampled
signals of unit norm, the optimal subsampling map Ω is
learnt by choosing the indices that capture most of the av-
erage energy in the transform domain:

Ω̂ = arg max
Ω,|Ω|=M

1

m

m∑
j=1

∑
i∈Ω

|〈ψi,xj〉|2, (4)

where ψi is the i-th row of Ψ. Ω̂ can be exactly found by
selecting the M indices whose values of 1

m

∑m
j=1 |〈ψi,xj〉|2

are the largest [11]. The learnt sampling scheme is then used
to directly sample only those transform coefficients indexed
by Ω̂ for all signals x.
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Figure 2: One channel block diagram showing the LBCS
encoder and the matrix sequence generation logic.

In [6], LBCS is exploited using the Hadamard transforma-
tion matrix, which is particularly suited to a hardware im-
plementation because each coefficient can be computed by
performing only additions or subtractions. A DCT based
transformation matrix yields better reconstruction perfor-
mances considering the same frame size and compression
rate. However, each DCT matrix entry needs more bit reso-
lution which would require an increased hardware intensity.
As will be discussed in Section 5, a trade-off can be found
to reduce the hardware complexity over an increased recon-
struction performance, motivating a DCT based encoding
system (named DCT-LBCS).

2.2 Full DCT Compression vs DCT-LBCS
The optimal linear encoding would require a full trans-

formation of signal window x, followed by an adaptive com-
pression that retains only the M largest coefficients of Ψx
in absolute value. However, such adaptive encoding requires
to first compute all the coefficients Ψx, which results pro-
hibitive with area and power consumptions. For such reason,
a trade-off should be set to have a good signal quality after
reconstruction, while limiting the power and area needs.

3. SYSTEM ARCHITECTURE
The one-channel sampling DCT-LBCS architecture pro-

posed in this work is depicted in Figure 2. The embedded
sampling and compression of the neural input signal follows
the description presented in Section 2.1.

In the following, we fix Ψ equal to the DCT matrix. Let
DΩ = PΩΨ be the matrix composed of the rows of Ψ in-
dexed by Ω. We sequentially compute y = DΩx: looking at
each component of y, we have

yk =

N∑
j=1

dkjxj , k ∈ {1, . . . ,M}, (5)

where dkj is the (k, j)-entry of DΩ.
The DCT transformation matrix DΩ contains real valued

coefficients (positive and negative), which are stored into an
SRAM, shown in Figure 2, with N ×M cells of size BDCT .

A finite state machine (FSM) drives the LBCS encoder
sub-sampling procedure. The entries dkj are stored into the
chip memory in a sequential fashion through the DCTCoef
input. The input signal xj is the digital output of an A/D
converter with a resolution of Bi bits. The sampling proce-
dure starts once the memory is loaded and the operations
are carried out by a single multiplier and an adder, which



are used in a time-multiplexed manner to accumulate the M
output values into the registers.

At each time step j, xj is multiplied to the DCT entry dkj ,
and summed to the Bo-bit accumulator value yk, updating
each component following the rule y′k = yk + dkjxj , k ∈
{1, . . . ,M}. At the beginning of each window of length N ,
the registers are then reset (y = 0). The enable signal is
meant to drive the digital registers, so that each accumu-
lator is updated before the next sample xj arrives. This
design choice avoids having one multiplier-adder per accu-
mulator lane, but requires an internal digital clock frequency
fencoder = M×fs, where fs is the signal sampling frequency.

The input data sampling frequency for the considered
dataset is 5 kHz, and as further described in Section 4,
choosing a window length N = 256 and a compression rate
of 32×, the DCT-LBCS encoder frequency results to be
5 kHz× 256

32
= 40 kHz, which is still in a relatively low fre-

quency range. Indeed, if M = N
CR

is large, the internal clock
frequency may become a limiting factor, requiring additional
digital blocks for clock synchronization.

4. SIMULATIONS
The iEEG.org portal contains several datasets of EEG

and iEEG data which are manually annotated by expert
clinicians. We focus on the I001-P034-D01 dataset, which
consists of approximately 1 day, 8 hours and 10 minutes of
recordings at 5kHz, or approximately 6 · 108 samples. In
order to reduce the dataset size, we use samples only from
the 12th and 13th seizure, and an equal number of samples
before the seizure onset, for training and testing respectively.
In order to better compare to the sampling strategy that
combines samples across the channels (MCS), we consider
only a sub-grid of 4× 4 electrodes.

In the following we use such dataset to compare the nu-
merical results obtained applying the DCT-LBCS encoder
against the other approaches described in Section 2.

4.1 Experimental Protocol and Performance
Evaluation

The training portion of the dataset is used to learn the
sampling pattern for both Had- and DCT-LBCS approaches
and also to tune the variable density parameters for the SHS
method. Then, the fixed sampling pattern is used by LBCS
to compress all the signal windows in the test set. The re-
construction is then performed with the linear decoder (3).
For the randomized methods, MCS, BERN and SHS, we
draw 20 different sampling patterns from the relative distri-
butions for each signal window in the test and reconstruct
using the tree-based HGL norm, which was shown in [8] to
yield the best results.

All the reconstructed windows for each channel j are con-
catenated together, forming the entire reconstructed sig-
nal x̂j for the test seizure. We then compute the SNR

for each channel as SNRj = 20 log10

(
‖xj‖2
‖xj−x̂j‖2

)
, where

xj is the recorded signal for channel j, and average these
SNRs to obtain our final measure of performance, SNR =

1
#ch

∑#ch
i=1 SNRj . For the randomized methods, we also av-

erage over the 20 draws.

4.2 Numerical results
The numerical experiments have been developed with all

the methods described in this paper, varying the length of
the signal window N , the ADC resolution Bi and the com-

Table 1: Performance (dB) N = 256, Bi = 10, BDCT = 8

Method
Compression rate

2 4 8 16 32 64
DCT Adaptive 42.03 41.96 40.16 37.36 32.88 25.63
DCT LBCS 41.65 40.66 38.59 35.55 31.00 23.97

Had-Adaptive 41.60 39.86 36.38 31.40 25.42 19.43
Had-LBCS 40.79 37.64 33.27 28.48 23.27 18.06
SHS HGL 36.92 27.96 23.89 20.26 18.53 14.49

BERN HGL 37.48 26.69 20.49 16.87 13.53 11.15
MCS HGL 28.96 24.40 20.92 17.48 n.a. n.a.
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Figure 3: One-channel DCT-LBCS encoder layout for N =
256 and CR = 32.

pression rate CR.
The LBCS approach does not result to be very sensitive

to the window length, and for the sake of consistency with
the Had-LBCS approach proposed in [6], we present only
results for N = 256 and Bi = 10 bits and resolution of DCT
transformation matrix coefficient BDCT = 8 bits.

Table 1 reports the reconstruction quality, in dB, obtained
on the I001-P034-D01 dataset. As expected, adaptive DCT
compression sets the upper limit on the achievable perfor-
mance. DCT-LBCS offers the best reconstruction quality at
any compression rate, with an increase in the SNR of several
dBs compared to the other methods. The Adaptive Hada-
mard yields the second best performance and sets the upper
limit for the Hadamard-based approach. Interestingly, the
DCT-LBCS method offers a comparable performance to the
Adaptive Hadamard even at higher compression rate. In the
SHS approach the variable density is adapted to the signals,
but still fails at capturing as much structure as LBCS. The
BERN and MCS methods offer a much inferior performance
at high compression rates, because imposing structure only
during reconstruction does not fully compensate the limita-
tions of their structure-unaware sampling mechanisms.

As described in Section 2.2, given a fixed signal window
length and compression rate, the best linear encoder is given
by adaptively sampling the coefficients that capture most of
the energy of each signal. The LBCS-based reconstruction
performances are close to the ones obtained with the adap-
tive encoder, but at a fraction of its power and area cost.

The linear decoder (3) yields reconstructions with less
computational cost of the other methods. Indeed, solving
a single optimization problem with the HGL norm, using
DecOpt [12], requires on average approximately 0.1 s, while
the linear decoder requires only approximately 10−5 s for a
signal with 256 samples.

5. CIRCUIT DESIGN AND VALIDATION
The circuit implementation has been defined following the

experimental results discussed in Section 4 and considering



Table 2: Comparison With Published Work

Parameter [1] [5] [6]
This
Work

Compression Method BERN MCS
Had DCT
LBCS LBCS

Technology [µm CMOS] 0.09 0.18 0.09 0.18
Compression Rate 20 16 16 32

Compression Power [µW] 1.9 17.83* 1.0 2.0

Compression Area [mm2] 0.090 0.090 0.044 0.3

Recovered Signal [dB] 15.76 17.48 28.48 31.00
TX-Power @ fs [µW] 1.5 0.94 1.7 0.85

* Compression power cost over 16 channels.

the trade-off between area and power requirements. The
target signal reconstruction quality is set to 30 dB. Con-
sidering a sampling window length of 256 samples and as-
suming an ADC resolution of Bi = 10 bits, the Had-LBCS
method reaches 30 dB performance with a compression ra-
tio CR = 16. As reported in Table 1, with the DCT-LBCS
approach a compression ratio CR = 32 still allows to have a
performance higher than 30 dB (and improved with respect
to the Had-LBCS design). Thus, we are allowed to relax
the number of bits to transmit, which is directly related to
the RF data transmission cost. The internal encoder core
clock frequency is fencoder = M × fs = 40 kHz with the
accumulator resolution set as Bo = Bi + log2 (N) + 1 to
avoid overflow. This leads to define an effective compression
ratio defined as CReff = CR × Bi

Bo
, which takes into ac-

count the actual number of bits per accumulator, after the
compression.

Table 2 reports the performance of the system and presents
a comparison with recent published work. In this table is
summarized the compression power and area requirements
for each methods discussed in this paper. It also reports the
simulated recovered signal and transmitter performances,
highlighting how the DCT-LBCS approach reduces the RF
data telemetry cost while improving by almost 3 dB the per-
formances with respect to the best approach presented in [6].
On the other hand, the area requirement is higher because
of an increased bit resolution per DCT matrix entry and be-
cause of a different CMOS technology node. However, con-
sidering a multiple channel application, the memory content
is shared among all the channels, reducing the impact of the
storage area over the overall chip.

The architecture shown in Figure 2 has been implemented
in a 1P6M 0.18 µm CMOS technology. The layout of the
fully digital one-channel encoder is shown in Figure 3. To
verify the functionality of the digital encoder, the digitized
neuronal data is directly given as input to the DCT-LBCS
block. A post place-and-route simulation has verified that
the M outputs given by the encoder are equal to the ex-
pected values computed through MATLAB software. The
simulation has been run considering a worst case scenario
with slow-slow process corner operating at 1.8 V, which re-
sults in an estimated power consumption of the DCT-LBCS
encoder around 2 µW . The silicon area of the encoder block
is 490× 650 µm.

6. CONCLUSIONS
This work presents an on-the-fly data compression system

applying a novel DCT-LBCS approach, which improves the
reconstruction performance and reduces the data telemetry
costs by 50%, while trading-off the area and power require-
ments compared to [6]. The memory that stores the sub-
sampled DCT matrix entries occupies a relative large area.
However, in a multichannel implementation, the memory

content is shared among all the channels, reducing the im-
pact of the storage area over the overall chip area. The faster
DCT-LBCS off-line recovery and higher reconstruction qual-
ity than standard CS makes it suitable to any sparse data
acquisition system for which fully sampled signals are avail-
able for training (e.g., image processing and remote sensing).
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