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Abstract

State-of-the-art automatic speech recognition and text-to-speech systems are

based on subword units, typically phonemes. This necessitates a lexicon that

maps each word to a sequence of subword units. Development of a phonetic lex-

icon for a language requires linguistic knowledge as well as human effort, which

may not be always readily available, particularly for under-resourced languages.

In such scenarios, an alternative approach is to use a lexicon based on units

such as, graphemes or subword units automatically derived from the acoustic

data. This article focuses on automatic subword unit based lexicon development

using methods that are employed for development of grapheme-based systems.

Specifically, we present a novel hidden Markov model (HMM) based formalism

for automatic derivation of subword units and pronunciation generation using

only transcribed speech data. In this approach, the subword units are derived

from the clustered context-dependent units in a grapheme based system using

the maximum-likelihood criterion. The subword unit based pronunciations are

then generated by learning either a deterministic or a probabilistic relationship

between the graphemes and the acoustic subword units (ASWUs). In this arti-

cle, we first establish the proposed framework on a well resourced language by

comparing it against related approaches in the literature and investigating the

transferability of the derived subword units to other domains. We then show

the scalability of the proposed approach on real under-resourced scenarios by

conducting studies on Scottish Gaelic, a genuinely under-resourced language,
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and comparing the approach against state-of-the-art grapheme-based ASR ap-

proaches. Our experimental studies on English show that the derived subword

units can not only lead to better ASR systems compared to graphemes, but

can also be transferred across domains. The experimental studies on Scot-

tish Gaelic show that the proposed ASWU-based lexicon development approach

scales without any language specific considerations and leads to better ASR

systems compared to a grapheme-based lexicon, including the case where ASR

system performance is boosted through the use of acoustic models built with

multilingual resources from resource-rich languages.

Keywords: automatic subword unit derivation, pronunciation generation,

hidden Markov model, Kullback-Leibler divergence based hidden Markov

model, under-resourced language, automatic speech recognition

1. Introduction

Speech technologies such as automatic speech recognition (ASR) systems

and text-to-speech (TTS) systems typically model subword units as they are 1)

more trainable compared to words and, 2) more generalizable towards unseen

contexts or words. Subword modeling entails development of a pronunciation

lexicon that represents each word as a sequence of subword units. Typically in

the literature, the subword units are the phonemes or phones. Phonetic lexicon

development requires linguistic expert knowledge about the phone set of the

language and the relationship between the written form, i.e., graphemes and

phonemes. Therefore, it is a time consuming and tedious task. To reduce the

amount of human effort, grapheme-to-phoneme (G2P) conversion approaches

have been proposed (Pagel et al., 1998; Sejnowski and Rosenberg, 1987; Tay-

lor, 2005; Bisani and Ney, 2008). The G2P conversion approaches still require

an initial phonetic lexicon in the target language to learn the relation between

graphemes and phonemes through data-driven approaches. While majority lan-

guages such as English and French have well-developed phonetic lexicons, there

are many other languages such as Scottish Gaelic and Vietnamese that lack

proper phonetic resources.

In the absence of a phonetic lexicon, alternatively grapheme subword units

based on the writing system have been explored in the literature (Kanthak and

Ney, 2002a; Killer et al., 2003; Dines and Magimai.-Doss, 2007; Magimai-Doss

et al., 2011; Ko and Mak, 2014; Rasipuram and Magimai.-Doss, 2015; Gales
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et al., 2015). The main advantage of using graphemes as subword units is that

they make development of lexicons easy. However, the success of grapheme-

based ASR systems depends on the G2P relationship of the language. For

languages with a regular or shallow G2P relationship such as Spanish, the per-

formance of grapheme-based and phoneme-based ASR systems is typically com-

parable, whereas for languages with an irregular or deep G2P relationship such

as English, the performance of a grapheme-based ASR system is relatively poor

when compared to a phoneme-based system (Kanthak and Ney, 2002a; Killer

et al., 2003).

Yet another way to handle lack of phonetic lexicon is to derive subword units

automatically from the speech signal and build a lexicon based on that. In the

literature, interest in acoustic subword unit (ASWU) based lexicon develop-

ment emerged from the pronunciation variation modeling perspective, specifi-

cally with the idea of overcoming limitation of linguistically motivated subword

units, i.e., phones (Lee et al., 1988; Svendsen et al., 1989; Paliwal, 1990; Lee

et al., 1988; Bacchiani and Ostendorf, 1998; Holter and Svendsen, 1997). How-

ever, recently, there has been a renewed interest from the perspective of handling

lexical resource constraints (Singh et al., 2000; Lee et al., 2013; Hartmann et al.,

2013). A limitation of most of the existing methods for acoustic subword units

based lexicon development is that they are not able to handle unseen words.

In this article, building upon the recent developments in grapheme-based

ASR, we propose an approach to derive ”phone-like” subword units and develop

a pronunciation lexicon given limited amount of transcribed speech data. In this

approach, first a set of ASWUs is derived by modeling the relationship between

the graphemes and the acoustic speech signal in a hidden Markov model (HMM)

framework based on two assumptions,

1. writing systems carry information regarding the spoken system. Alter-

nately, a written text embeds information about how it should be spoken.

Though this embedding can be deep or shallow depending on the language;

and

2. envelope of short-term spectrum tends to carry information related to

phones.

The ASWU-based pronunciation lexicon is then developed by learning the

grapheme-to-ASWU (G2ASWU) relationship through the acoustic signal, and

inferring pronunciations using G2ASWU conversion (analogous to G2P conver-

sion). The G2ASWU conversion process inherently brings in the capability to
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generate pronunciation for unseen words. The viability of the proposed ap-

proach has been demonstrated through preliminary studies on English (Razavi

and Magimai-Doss, 2015) and Scottish Gaelic (Razavi et al., 2015), where a

probabilistic G2ASWU relationship was learned and pronunciation lexicon was

developed.

This article builds on the preliminary works to first extend the approach to

the case where a deterministic G2ASWU relationship is learned. We then study

and contrast the two G2ASWU relationship learning methods and investigate

the following aspects:

1. Domain-independency of the ASWUs: Subword units such as phones and

graphemes are by default domain-independent. This enables using a lexi-

con based on either of them across different domains. ASWUs are derived

from a limited amount of acoustic speech signal from a domain. Fur-

thermore, the limited data can have undesirable variabilities based on

the hardware used and the conditions under which the data is collected.

Therefore a question arising is whether the derived ASWUs are domain

independent. Through a cross-domain study on English, we show that our

approach indeed yields ASWUs that are domain independent. Further-

more, the proposed approach inherently enables transfering ASWU based

lexicon developed on one domain to another.

2. Potential of ASWUs in improving mulitilingual ASR: It has been shown

that both acoustic resource and lexical resource constraints can be

effectively addressed by learning a probabilistic relationship between

graphemes of the target languages and a multilingual phone set obtained

from lexical resources of auxiliary languages using acoustic data (Rasipu-

ram and Magimai.-Doss, 2015). Success of such approaches lies on the

fact that there exists a systematic relationship between linguistically mo-

tivated grapheme units and phonemes. Therefore a question that arises is:

Does the ASWU-based lexicon based on the proposed approach hold the

advantage over grapheme-based lexicon in such a case? Alternately, do

the ASWUs exhibit similar systematic relationship to multilingual phones

and can it be exploited to further improve the under-resourced language

ASR? Through a study on Scottish Gaelic, a genuinely under-resourced

language, we show that there exists a systematic relationship between the

ASWUs and multilingual phones, which can not only be exploited to yield

systems better than grapheme-based lexicons, but also to gain insight into
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the derived units.

It is worth mentioning that, to the best of our knowledge, this is the first

work that aims to establish these aspects in the context of ASWU-based lexicon

development. Consequently, it paves the path for adopting ASWU-based lexicon

development and its use for ASR technology development, especially for under-

resourced languages.

The remainder of the article is organized as follows. Section 2 provides a

background about the grapheme-based ASR and related approaches in the lit-

erature for subword unit derivation and pronunciation generation. Section 3

describes the proposed approach. Section 4 presents investigations on well re-

sourced majority language English and Section 5 presents the investigations on

under-resourced minority language Scottish Gaelic. Section 6 provides a brief

analysis of the derived ASWUs and the generated pronunciations. Finally, Sec-

tion 7 concludes the article.

2. Background

This section provides the relevant background for understanding the pro-

posed approach for ASWU based lexicon development. Sections 2.1 and 2.2

first present a background on HMM-based ASR and grapheme-based ASR ap-

proaches, which form the basis for our proposed approach for automatic subword

unit derivation and pronunciation generation. Section 2.3 then presents a survey

on the existing approaches for derivation of ASWUs and lexicon development.

2.1. HMM-based ASR

In statistical automatic speech recognition, given the acoustic observation

sequence X = [x1, . . . ,xt, . . . ,xT ] with T denoting the total number of frames,

the goal is to find the most probable sequence of words W ∗,

W ∗ = arg max
W∈W

P (W |X,Θ), (1)

= arg max
W∈W

p(W,X|Θ), (2)

where W denotes the set of hypotheses and Θ denotes the set of parameters.

Eqn. (2) is obtained result of applying Bayes’ rule and assuming p(X) to be

constant w.r.t all word hypotheses. Hereafter for simplicity, we drop Θ from

the equations.
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HMM-based ASR approach achieves that goal by finding the most probable

sequence of states Q∗ representing W ∗ by incorporating lexical and syntactic

knowledge:

Q∗ = arg max
Q∈Q

p(Q,X), (3)

= arg max
Q∈Q

T∏
t=1

p(xt|qt = li) · P (qt = li|qt−1 = lj), (4)

= arg max
Q∈Q

T∑
t=1

log(p(xt|qt = li)) + log(P (qt = li|qt−1 = lj)), (5)

where Q denotes all possible state sequences, qt denotes HMM state at time

frame t and li ∈ {l1, · · · lI} denotes a subword unit or lexical unit. Eqn. (4) is

derived as a consequence of i.i.d and first order Markov model assumptions.

Estimation of p(xt|qt = li) is typically factored through latent variables or

acoustic units {ad}Dd=1 as (Rasipuram and Magimai.-Doss, 2015):

p(xt|qt = li) =

D∑
d=1

p(xt, a
d|qt = li), (6)

=

D∑
d=1

p(xt|ad, qt = li) · P (ad|qt = li), (7)

=

D∑
d=1

p(xt|ad) · P (ad|qt = li)(assuming xt ⊥⊥ qt|ad), (8)

= vT
t yi, (9)

where vt = [v1t , · · · , vdt , · · · , vDt ]T with vdt = p(xt|ad) and yi =

[y1i , · · · , ydi , · · · , yDi ]T and ydi = P (ad|qt = li).

As presented above in Eqn. (9), estimation of p(xt|qt = li) can be seen as

matching acoustic information vt with lexical information yi. In recent years,

it has been shown that the match can also be obtained by matching posterior

distributions of ad conditioned on acoustic features and lexical information. One

such approach is Kullback-Leibler divergence based HMM (KL-HMM) (Aradilla

et al., 2008), where the local score is estimated as Kullback-Leibler divergence

between yi and zt:

KL(yi, zt) =

D∑
d=1

ydi · log(
ydi
zdt

), (10)

where zt = [z1t , · · · , zdt , · · · , zDt ]T = [P (a1|xt), · · · , P (ad|xt), · · · , P (aD|xt)]
T.

HMM-based ASR approach has been primarily built with the idea of hav-
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ing a phonetic lexicon that transcribes each word as a sequence of phones. In

conventional HMM-based ASR systems, lexical units {li}Ii=1 model context-

dependent phones and acoustic units {ad}Dd=1 are clustered context-dependent

phone units. vt and zt are typically estimated using either Gaussian mixture

models (GMMs) or artificial neural networks (ANNs); and {yi}Ii=1 is a set of

Kronecker delta distributions based on the one-to-one deterministic map be-

tween lexical unit li and acoustic unit ad modeled by the state tying decision

tree. We refer to this case where li and ad are one-to-one related as deter-

ministic lexical modeling framework. In (Rasipuram and Magimai.-Doss, 2015),

it has been elucidated that there are HMM-based ASR approaches where the

relationship between li and ad is probabilistic. KL-HMM approach, probabilis-

tic classification of HMM states (PCHMM) approach (Luo and Jelinek, 1999)

and tied posterior approach (Rottland and Rigoll, 2000) are examples of prob-

abilistic lexical modeling framework. In KL-HMM, yi is estimated based on zt

whereas in PC-HMM and tied posterior yi is estimated based on vt. For a de-

tailed overview on deterministic and probabilistic lexical modeling, the reader

is referred to (Rasipuram and Magimai.-Doss, 2015).

2.2. Grapheme-based ASR

In the literature, the issue of lack of well developed phonetic lexicon has

been addressed by using graphemes as subword units. Most of the studies in

this direction have been conducted in the framework of deterministic lexical

modeling, where {li}Ii=1 model context-dependent graphemes, {ad}Dd=1 are clus-

tered context-dependent grapheme units and yi is a decision tree learned while

state tying based on either singleton question set or phonetic question set (Kan-

thak and Ney, 2002b; Killer et al., 2003).

In the framework of probabilistic lexical modeling, it has been shown that

grapheme-based ASR systems can be built with {ad}Dd=1 based on phones of aux-

iliary languages or domains, and {li}Ii=1 based on target language graphemes.

More precisely, a phone class conditional probability zt estimator is trained

with acoustic and lexical resources from auxiliary languages or domains, and

yi , which captures a probabilistic G2P relationship, is trained on target lan-

guage or domain acoustic data (Magimai.-Doss et al., 2011; Rasipuram and

Magimai.-Doss, 2015). It has been shown that this approach can effectively

address both acoustic resource and lexical resource constraints (Rasipuram and

Magimai.-Doss, 2015; Rasipuram et al., 2013a). As a natural extension of the

approach, an acoustic data-driven grapheme-to-phoneme conversion approach

7



has been proposed, where the G2P relationship learned in this manner through

acoustics is used to infer pronunciations (Rasipuram and Magimai-Doss, 2012;

Razavi et al., 2016). We dwell about the acoustic data-driven G2P conversion

approach more in the paper later, as it is an integral part of the proposed ASWU

based lexicon development approach.

2.3. Literature survey on ASWU derivation and pronunciation generation

The idea of using lexicons based on ASWUs instead of the linguistically

motivated units has been appealing to the ASR community for three main rea-

sons: (1) ASWUs tend to be rather data-dependent than linguistic knowledge-

dependent, as they are typically obtained through optimization of an objective

function using training speech data (Lee et al., 1988; Bacchiani and Ostendorf,

1998), (2) they could possibly help in handling pronunciation variations (Livescu

et al., 2012), and (3) they can avoid the need for explicit phonetic knowledge (Lee

et al., 2013).

Typically, the ASWU-based lexicon development process, in addition to

speech signal, requires the corresponding transcription in terms of words. Alter-

nately, the lexicon development process is weakly-supervised similar to acous-

tic model development in an ASR system. More recently, in the context of

“zero-resourced” ASR system development, there are efforts towards developing

methods that are fully unsupervised (Chung et al., 2013; Lee et al., 2015). Such

methods are at very early stages and are out of the scope of this paper. In the re-

minder of this section, we provide a brief literature survey on weakly-supervised

ASWU-based lexicon development. ASWU-based lexicon development involves

two key challenges: (a) derivation of ASWUs and (b) pronunciation generation

based on the derived ASWUs. The approaches proposed in the literature can be

grouped into two categories based on how these two challenges are addressed.

More precisely, there are approaches that decouple these two challenges and

address them separately (Section 2.3.1), and there are approaches that address

these two challenges in an unified manner with a common objective function

(Section 2.3.2).

2.3.1. Automatic subword unit discovery followed by pronunciation generation

approaches

The very first efforts approached the ASWU derivation problem as segmenta-

tion of isolated word speech signals into acoustic segments and clustering acous-

tic segments into groups each representing a subword unit (Lee et al., 1988;
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Svendsen et al., 1989; Paliwal, 1990). More precisely, as shown in Figure 1, in

the segmentation step, the speech utterance X = [x1, · · · ,xt, · · · ,xT ] is parti-

tioned into I consecutive segments (with boundaries B = {b1, · · · , bi, · · · , bI})
such that the frames in a segment are acoustically similar. Then in the clustering

step, the acoustic segments are clustered into groups of subword units.

1 b1
… bi

…… T

segment 1 segment i segment I

… …
x1 xT

Figure 1: Segmentation of speech utterance x into I segments.

In (Lee et al., 1988; Svendsen et al., 1989), the segmentation step was ap-

proached by applying dynamic programming techniques and finding the segment

boundaries bi such that the likelihood ratio distortion between the speech frames

in segment i and the generalized spectral centroid of segment i (i.e., the centroid

LPC vector) is minimized. The obtained acoustic segments were then clustered

using the K-means algorithm in which each acoustic segment was represented

by its centroid. Once a pre-set number of subword units was determined, a set

of pronunciations for each word was found from its occurrences in the training

data and were clustered to select representative pronunciations (Paliwal, 1990;

Svendsen et al., 1995). The studies on isolated word recognition task on English

demonstrated the potential of the approach. A limitation of these approaches

is that they can generate pronunciations only for the words which are seen dur-

ing training. Furthermore, these approaches need to know the word boundaries

explicitly.

In (Jansen and Church, 2011), an approach was proposed in which the need

for transcribed speech is limited. Specifically, given an acoustic example of each

word, a spoken term discovery algorithm (Park and Glass, 2008) is exploited

to search and cluster the acoustic realizations of the words from untranscribed

speech. Then for each word cluster, a whole word HMM is trained in which

each HMM state represents a subword unit. The number of subword units for

each word is determined based on the duration of acoustic examples and the

expected duration of a phone. The subword unit states are then finally clustered

based on the pairwise similarities between their emission scores using a spectral

clustering algorithm (Shi and Malik, 2000). The viability of the approach was

limited to spoken term detection task. A limitation of the approach is that an

acoustic example of each word in the dictionary is required.

9



Hartmann et al. (2013) proposed an approach based on the assumption that

the orthography of the words and their pronunciations are related. In this ap-

proach, the subword units are obtained by clustering context-dependent (CD)

grapheme models. This is achieved through a spectral based clustering ap-

proach (Ng et al., 2001), similar to (Jansen and Church, 2011). The main

difference is that in this case the pairwise similarities are computed between

the CD grapheme models (instead of the HMM states). The pronunciations

for seen and unseen words are finally generated by employing a statistical ma-

chine translation (SMT) framework. On Wall Street Journal task, it was found

that the resulting ASWU-based lexicon yields a better ASR system than the

grapheme-based lexicon.

2.3.2. Joint approaches for ASWU derivation and pronunciation generation

As opposed to decoupling the ASWU derivation and pronunciation genera-

tion problems, there are also approaches which aim to jointly determine the sub-

word units and pronunciations using a common objective function. In (Holter

and Svendsen, 1997), this was done through an iterative process of acoustic

model estimation and pronunciation generation. In (Bacchiani and Ostendorf,

1999, 1998), a segmentation and clustering approach was exploited for deriva-

tion of subword units, with two main differences compared to the approaches

explained in Section 2.3.1: (1) in the segmentation step, pronunciation related

constraints is applied such that a given word has the same number of segments

across the acoustic training data, and (2) a maximum-likelihood criteria that

is consistent for both segmentation and clustering is utilized. On read speech

DARPA resource management task, it was shown that the proposed approach

leads to improvements over the phone-based ASR system.

In (Singh et al., 2000, 2002), a maximum likelihood strategy was presented

which decomposed the ASWU-based ASR system development as joint estima-

tion of the pronunciation lexicon (including determination of ASWU set size)

and acoustic model parameters. More precisely, with an initial pronunciation

lexicon based on context-independent graphemes, the acoustic model parameters

and the pronunciation lexicon are updated iteratively. The lexicon update step

is an iterative process within itself consisting of word segmentation estimation

given the acoustic model and update of the lexicon based on the segmentation.

After each iteration of lexicon update and acoustic model update convergence

is determined by evaluating the ASR system on cross-validation data. If not

converged, the ASWU set size is increased and the process is repeated. A proof
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of concept was demonstrated on DARPA Resource Management corpus.

Recently, in (Lee et al., 2013) a hierarchical Bayesian model approach was

proposed to jointly learn the subword units and pronunciations. This is done

by modeling two latent structures: (1) the latent phone sequence, and (2) the

latent letter-to-sound (L2S) mapping rules, using an HMM-based mixture model

in which each component represents a phone unit and the weights over HMMs

are indicative of the L2S mappings. It was shown that the proposed approach

together with the pronunciation mixture model retraining leads to improvements

over the grapheme-based ASR system on a weather query task.

3. Proposed Approach

This section presents an HMM-based formulation to derive phone-like

ASWUs and develop an associated pronunciation lexicon. Essentially, the

formulation builds on grapheme-based ASR in deterministic lexical modeling

framework as well as probabilistic lexical modeling framework. More specifi-

cally, we show that:

1. The problem of derivation of ASWUs can be cast as a problem of find-

ing phone-like acoustic units {ad}Dd=1 given transcribed speech, i.e., the

speech signal and its orthographic transcription, in the grapheme-based

ASR framework. Section 3.1 dwells on this aspect.

2. Given the derived ASWUs {ad}Dd=1 and the transcribed speech, the pro-

nunciation lexicon development problem can be cast as a problem akin

to acoustic data-driven G2P conversion (Razavi et al., 2016). Section 3.2

deals with this aspect.

3.1. Automatic subword unit derivation

State clustering and tying methods in HMM-based ASR have emerged from

the perspective of addressing data sparsity issue and handling unseen con-

texts (Young, 1992; Ljolje, 1994). However, this methodology can be adopted, as

it is, to derive acoustic subword units in the framework of grapheme-based ASR.

More precisely, we hypothesize and show that the clustered context-dependent

grapheme units {ad}Dd=1 obtained in a context-dependent grapheme based ASR

system can serve as phone-like subword units.

The reasoning behind our hypothesis is that the set of acoustic units {ad}Dd=1

is obtained by maximizing the likelihood of the training data, which is essentially
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determined by estimation of p(xt|qt = li), as during training the sequence model

for each utterance is fixed given the associated transcription and lexicon. As

observed earlier in Eqn. (9), p(xt|qt = li) estimation involves matching of acous-

tic information vt with lexical information yi. We know that standard features

such as cepstral features have been designed to model envelope of short-term

spectrum, which carry information related to phones. In other words, standard

feature such as MFCCs or PLPs for ASR primarily target modeling the spec-

tral characteristics of vocal tract system while incorporating speech perception

knowledge.

Similarly it is very well known that context-dependent graphemes capture

information related to phones. This is one of the central assumptions in most of

G2P conversion approaches, i.e., the relationship between context-independent

graphemes and phones can be irregular but the relationship can become reg-

ular when contextual graphemes are considered. For example, as illustrated

in Figure 2, in the decision tree-based G2P conversion approach (Pagel et al.,

1998), given the grapheme context a decision tree is learned to map the central

grapheme to a phoneme.

1

R=‘h’?
‘p’

Y N
L=‘o’? R=consonant?

L=‘a’?
NY

Y N/p/ /f/

/p/

/p/

/  /

Y N
R=Right-hand 

grapheme

L=Left-hand  
grapheme✏

Word: phone

Figure 2: Example of the decision tree-based G2P conversion.

Therefore, as illustrated in Figure 3, for the likelihood of the training data

to be maximized, clustered context-dependent grapheme units {ad}Dd=1 should

model an information space that is common to both short-term spectrum based

feature xt space and context-dependent grapheme based lexical unit li space,

which we hypothesize it to be a phone-like subword unit space.

Our argument is further supported by an ASR study that demonstrated the

interchangeability of clustered context-dependent phoneme units space and clus-

tered context-dependent grapheme units space in the framework of probabilis-

tic lexical modeling (Rasipuram and Magimai-Doss, 2013) as well as by earlier

works on grapheme-based ASR that have explored integration of phonetic infor-

mation in clustering context-dependent grapheme units and state tying (Killer

et al., 2003).
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x

m-p+r
e-p+h
i-p+e
…

R=[h]

L=[e] R=[r]

R=[e]

e.g.
base grapheme: 

p

ad

ad Yy

y

y n

n

n

li li

Figure 3: The clustered states ad of a grapheme-based CD HMM/GMM system obtained
through decision tree based clustering are exploited as ASWUs. As ad should be related to
both CD graphemes li and cepstral features x, they are expected to be phone-like.

3.2. Lexicon development through grapheme-to-ASWU conversion

In order to build speech technologies with the derived ASWUs, we need

a mechanism to map the orthographic transcription of words to sequence of

ASWUs for both seen and unseen words. For that purpose, an approach simi-

lar to automatic G2P conversion is desirable. However, conventional G2P ap-

proaches are not directly applicable, as they necessitate a seed lexicon that maps

a few word orthographies into sequence of phonemes (in our case ASWUs). More

recently, it has been shown that G2P conversion can be achieved by learning

the G2P relationship through acoustics using HMMs (Razavi et al., 2016). Such

an approach has the inherent ability to alleviate the necessity for a seed lex-

icon, and thus can be exploited to develop a G2ASWU converter for lexicon

development. This approach can be essentially considered as an extension of

the grapheme-based ASR approach, where either a deterministic lexical model

or a probabilistic lexical model {yi}Ii=1 that captures G2ASWU relationship is

learned and ASWU-based pronunciations are inferred. We present below these

two frameworks.

3.2.1. Deterministic lexical modeling based G2ASWU conversion

This method of lexicon development is a straightforward extension of the

ASWU derivation. More precisely, in the process of ASWU derivation a deter-
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ministic one-to-one map between context-dependent graphemes ({li}Ii=1) and

ASWUs ({ad}Dd=1) is learned. The pronunciations can be inferred using this

information similar to the decision tree based G2P conversion approach (Pagel

et al., 1998), discussed briefly earlier in Section 3.1 (Figure 2).

3.2.2. Probabilistic lexical modeling based G2ASWU conversion

Another possibility is to learn a probabilistic relationship between graphemes

and ASWUs and infer pronunciations in terms of ASWUs following acous-

tic data-driven G2P conversion approach using KL-HMM (Rasipuram and

Magimai-Doss, 2012; Razavi et al., 2016). This approach of G2ASWU con-

version would involve,

1. training of an ANN-based zt estimator given the alignment of the train-

ing data in terms of {ad}Dd=1. This step is same as training a context-

dependent neural network for ASR system;1 then

2. training of a context-dependent grapheme-based KL-HMM using zt as

feature observations (Magimai-Doss et al., 2011); and finally

3. inferring the pronunciations given the KL-HMM parameters {yi}Ii=1 and

the orthographies of the words in the lexicon. More precisely, first a

sequence of ASWU posterior probability vectors is obtained from the KL-

HMM given the orthography of the target word. The sequence is then

decoded by an ergodic HMM in which each state represents an ASWU to

infer the pronunciation.

3.3. Summary of the proposed approach

Figure 4 summarizes our approach. As illustrated, the approach consists of

three phases. Phase I involves derivation of ASWUs. Phase II involves learning

G2ASWU relationship given transcription and acoustic data. Phase III deals

with lexicon development given the G2ASWU relationship and the word or-

thographies. Phase II is explicitly needed for learning probabilistic G2ASWU

relationship. In the case of deterministic G2ASWU conversion, it is implicit

in Phase I. Phase III can be seen as decoding a sequence of ASWU posterior

probability vectors yi. It is worth mentioning that the pronunciation inference

step, i.e. Phase III, for both deterministic and probabilistic lexical modeling

1If the zt estimator is based on Gaussians then it would amount to going from single
Gaussian to GMMs (mixture increment step) of ASR system training.
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based approaches is the same. More precisely, in the case of deterministic lex-

ical modeling based approach, the inference step is equivalent to decoding a

sequence of Kronecker delta distributions resulting from the one-to-one map-

ping of CD graphemes (in the word orthography) to ASWU units using the

decision tree (Razavi et al., 2016).

Training
grapheme-based

HMM/GMM

Training
grapheme-based

KL-HMM

Grapheme transcriptions

Acoustic data

Training
ANN

ASWU 
posterior 

Grapheme 
transcriptions

Input word: AT

{A}{T}

{A+T}{A-T}

Text tokenizer

CD grapheme 
sequence

Trained
 decision tree (A)  /
grapheme-based

KL-HMM (B)

. . . 

ASWU 
posterior Ergodic

HMM ASWU
sequence

[ST_A_21] [ST_T_21]
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[ST_A_21] [ST_T_21]

. . . . . . . . . . . . . . . 
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 (Phase I ) Automatic subword unit derivation (Phase II) Modeling the G2ASWU relationship:

(Phase III) Pronunciation inference given the learned G2ASWU relationship

Learned decision trees

Deterministic
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(A)

(B)

Word

probability
sequence 
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3 ,yA�T

1 ,yA�T
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Figure 4: Block diagram of the HMM formalism for subword unit derivation and pronunciation
generation. Phase III is shown for the case where the ASWU posterior probability vectors
from KL-HMM are decoded. For the case where the ASWU posterior probability vectors are
obtained from the decision trees (i.e., yis are Kronecker delta distributions), only a single
posterior probability vector per each context-dependent grapheme is generated, i.e., Y AT =
[yA+T

1 ,yA−T
1 ]

A central challenge in the proposed approach is how to determine the size

of the ASWU set {ad}Dd=1. In the studies validating the proposed approach,

presented in the remainder of the paper, we show that this can be achieved

via cross-validation. Specifically, a range of values for acoustic units set cardi-

nality D can be considered based on the knowledge that the ratio of number

of phonemes to number of graphemes is not an extremely large value, and can

be selected via cross-validation at ASR level. For instance in English, if one

considers the CMU dictionary, then the ratio is 38
26 or 84

26 (when lexical stress is
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considered). Alternately, the value of D can be chosen relative to the number of

graphemes and is much smaller than the number of acoustic units considered for

building context-dependent grapheme-based ASR systems, which is typically in

the order of thousands.

4. In-Domain and Cross-Domain Studies on Resource-Rich Lan-

guages

In this section, we establish the proposed framework for subword unit deriva-

tion and lexicon development through experimental studies on a resource-rich

language using only its word-level transcribed speech data. The rationale for

studying on a well-resourced language is to enable analyzing the discovered sub-

word units and relating them to phonetic identities. We selected English as the

well-resourced language, as it is a challenging language for automatic pronun-

ciation generation due to its irregular grapheme-to-phoneme relationship, and

has been the focus of many previous works on ASWU derivation and lexicon

development. Our investigations are organized as follows:

1. Evaluation of the proposed approach through in-domain studies: We inves-

tigate the proposed approach for derivation of ASWUs and corresponding

pronunciations on two English corpora, namely Wall Street Journal (WSJ)

and Resource Management (RM). We evaluate the ASWU-based lexicons

through in-domain ASR studies where the performance of the ASWU-based

ASR systems is compared against grapheme-based and phoneme-based ASR

systems (Section 4.2).

2. Investigating the transferability of the ASWUs through cross-domain studies:

A central challenge in ASWU based lexicon development and its adoption for

wider use is ascertaining whether the ASWUs derived from limited amount

of acoustic resources generalize across domains, similar to linguistically moti-

vated subword units phonemes and graphemes. To the best of our knowledge,

none of the previous works have tried to ascertain that aspect. In that sense,

we go a step further to conduct cross-domain studies where the ASWUs are

derived from the WSJ corpus and lexicon is developed for the RM corpus.

We present three methods for development of lexicons in such a scenario,

and investigate the transferability of the ASWUs by building and evaluating

ASR systems using the developed lexicons (Section 4.3).
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3. Comparison to related approaches in the literature: in Section 2.3, we dis-

cussed a few prominent approaches proposed in the literature for derivation

of ASWUs and pronunciation generation. We compare the performance of

the our approach with two of the related approaches in the literature studied

on WSJ0 and RM corpora (Section 4.4). Indeed, one of the main reasons for

selecting these two corpora is to enable comparison to these related works in

the literature.

4.1. Databases

This section describes the setup on two corpora used in our experimental

studies.

4.1.1. WSJ0 corpus

The WSJ corpus has been originally designed for large vocabulary speech

recognition and natural language processing, and it contains a wide range of

vocabulary size (Paul and Baker, 1992). The WSJ corpus (Woodland et al.,

1994) has two parts - WSJ0 with 14 hours of speech and WSJ1 with 66 hours of

speech. In this article, we use the WSJ0 corpus for training, which contains 7106

utterances (about 14 hours of speech) and 83 speakers. We report recognition

studies on Nov92 test set, which contains 330 utterances from 8 speakers unseen

during training. The training set contains 10k unique words. The recognition

vocabulary size is 5k words. The language model consists of a bigram model.

The grapheme lexicon was obtained from the orthography of the words and

contained 27 subword units including silence. We refer to this lexicon as Lex-

WSJ -Gr-27. The phoneme lexicon was based on UNISYN dictionary.

4.1.2. DARPA Resource Management corpus

The DARPA Resource Management (RM) task is a 1000 word continuous

speech recognition task based on naval queries (Price et al., 1988). The training

set consists of 3990 utterances spoken by 109 speakers amounting to approxi-

mately 3.8 hours speech data. The test set, formed by combining Feb89, Oct89,

Feb91 and Sep92 test sets, contains 1200 utterances amounting to 1.1 hours of

speech data. The word-pair grammer supplied with the RM corpus was used

as the language model for decoding. The grapheme lexicon was obtained from

the orthography of the words. In addition to the English characters, silence,

symbol hyphen and symbol single quotation mark was considered as separate

graphemes. Therefore, the lexicon contained 29 subword units. We refer to
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this lexicon as Lex-RM -Gr-29. The phoneme lexicon was based on UNISYN

dictionary. As mentioned earlier, the RM corpus is mainly used to investigate

transferability of the ASWUs across domains. So, it is worth pointing out that

507 out of the 990 words in the RM corpus do not appear in the WSJ0 training

set vocabulary.

4.2. In-domain ASR studies

In this section we first explain the setup for derivation of ASWUs and devel-

opment of ASWU-based lexicons. We then present the in-domain ASR studies

for evaluation of the ASWU-based lexicons.

4.2.1. ASWU derivation and lexicon development setup

The setup for subword unit derivation and lexicon development through

G2ASWU conversion is as follows:

Acoustic subword unit derivation: Towards automatic discovery of sub-

word units, cross-word single preceding and single following CD grapheme-based

HMM/GMM systems were trained with 39 dimensional PLP cepstral features

extracted using HTK toolkit (Young et al., 2000). Each CD grapheme was

modeled with a single HMM state. The subword units were derived through

likelihood-based decision tree clustering using singleton questions. Different

number of ASWUs were obtained by adjusting the log-likelihood increase dur-

ing decision tree based state tying. The numbers of clustered units were obtained

such that they are within the range of 2 to 4 times the number of graphemes,

based on the general idea explained in Section 3.3. Therefore, for the WSJ0

corpus, ASWUs of size 60, 78 and 90 were investigated, and for the RM corpus,

ASWUs of size 79, 92 and 109 were studied.

Deterministic lexical modeling based G2ASWU conversion: Given the

learned decision trees for each ASWU set, the pronunciation for each word was

inferred by mapping each grapheme in the word orthography to an ASWU by

considering its neighboring (i.e., single preceding and single following) grapheme

context. We denote the lexicons in the form of Lex-DB-Det-ASWU-M where

DB and M correspond to the database and the number of ASWUs respectively.

For example, the lexicon generated on WSJ0 corpus using 78 ASWUs is denoted

as Lex-WSJ -Det-ASWU-78.
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Probabilistic lexical modeling based G2ASWU conversion: In this case,

given the obtained ASWUs:

1. A five-layer multilayer Perceptron (MLP) was trained to classify the ASWUs.

The input to the MLP was 39-dimensional PLP cepstral features with four

preceding and four following frame context. The hyper parameters such

as the number of hidden units per hidden layer were decided based on the

frame accuracy on the development set. Each hidden layer had 2000 and

1000 hidden units in the WSJ0 and RM corpora respectively. The MLP was

trained with output non-linearity of softmax and minimum cross-entropy

error criterion using Quicknet software (Johnson et al., 2004).

2. Using the posterior probabilities of ASWUs as feature observations, a

grapheme-based KL-HMM system modeling single preceding and single fol-

lowing grapheme context was then trained. Each CD grapheme was modeled

with three HMM states. The parameters of the KL-HMM were estimated

by minimizing a cost function based on the reverse KL-divergence (RKL)

local score (Aradilla et al., 2008), i.e., the MLP output distribution is the

reference distribution, as previous studies had shown that training KL-HMM

with RKL local score enables capturing one-to-many grapheme-to-phoneme

relationships (Rasipuram and Magimai.-Doss, 2013). Unseen grapheme con-

texts were handled by applying the KL-divergence based decision tree state

tying method proposed in (Imseng et al., 2012).

3. Given the orthography of the word and the KL-HMM parameters, the pro-

nunciations were inferred by using an ergodic HMM in which each ASWU

was modeled with three left-to-right HMM states.

During pronunciation inference, some of the ASWUs with less probable

G2ASWU relationships were automatically pruned or filtered out. This can

be observed from Table 1, which shows the properties of the ASWU-based lexi-

cons together with the MLPs used for the WSJ0 and RM corpora respectively.

The MLPs are denoted as MLP-DB-N , with DB and N denoting the database

and the size of the ASWU set respectively. Similarly, the lexicons are shown as

Lex-DB-Prob-ASWU-M , with M denoting the actual number of ASWUs used

in the lexicon. As an example, it can be seen that in Lex-RM -Prob-ASWU-101,

from the 109 original ASWU set, only 101 remained after G2ASWU conversion.
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Table 1: Summary of the ASWU-based lexicons obtained through probabilistic lexical mod-
eling based G2ASWU conversion for WSJ0 and RM corpora.

(a) WSJ0 corpus

Lexicon MLP

Lex-WSJ -Prob-ASWU-58 MLP-WSJ -60
Lex-WSJ -Prob-ASWU-74 MLP-WSJ -78
Lex-WSJ -Prob-ASWU-88 MLP-WSJ -90

(b) RM corpus

Lexicon MLP

Lex-RM -Prob-ASWU-77 MLP-RM -79
Lex-RM -Prob-ASWU-90 MLP-RM -92
Lex-RM -Prob-ASWU-101 MLP-RM -109

4.2.2. Selection of optimal ASWU-based lexicon

Given different lexicons obtained through deterministic and probabilistic

G2ASWU conversion, the optimal lexicon was determined based on the ASR

accuracy on the development set. More precisely, first HMM/GMM systems

using different ASWU-based lexicons were trained with 39 dimensional PLP

cepstral features. Finally, the ASWU-based lexicon which led to the best per-

forming HMM/GMM ASR system on the development set was selected.2 In our

experiments, in case of using the deterministic G2ASWU conversion for pronun-

ciation generation, Lex-Det-WSJ -ASWU-90 and Lex-Det-RM -ASWU-92; and

in case of using the probabilistic approach, Lex-Prob-WSJ -ASWU-88 and Lex-

Prob-RM -ASWU-90 were selected as the optimal lexicons and are therefore

used in the rest of the article.

4.2.3. Evaluation

To evaluate the generated ASWU-based lexicons, we compared the perfor-

mance of ASWU-based ASR systems with the grapheme-based and phoneme

2It is worth mentioning that for WSJ0 and RM corpora there are no explicit development
sets defined. To be more precise, in the case of RM the development set (1110 utterances) was
merged with the training set (2880) to create training set of 3990 utterances in literature. So,
we used the part of the data that was used for early stopping through cross validation in MLP
training as the development data, and trained ASWU-based HMM/GMM systems on the re-
maining part of the training data. For instance, in the case of RM three HMM/GMM systems
corresponding to the lexicons Lex-RM-Prob-ASWU-77, Lex-RM-Prob-ASWU-90, Lex-RM-
Prob-ASWU-101 were trained on 2880 utterances and the lexicon was selected using the 1110
utterances. We followed similar procedure for WSJ0.
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based ASR systems. Toward that, we trained both context-independent and

cross-word context-dependent HMM/GMM systems with 39 dimensional PLP

cepstral features. Each subword unit was modeled with three HMM states.

For the CI grapheme-based systems, the number of Gaussian mixtures for each

HMM state was decided based on the ASR word accuracy on the cross-validation

set, resulting in 256 and 128 Gaussian mixtures for WSJ0 and RM corpora re-

spectively. In case of using ASWUs, in order to have a comparable number of

parameters to the grapheme based ASR system, each HMM state was modeled

with 64 and 32 Gaussian mixtures in the WSJ0 and RM corpora respectively.

Similarly, for phone subword units, the number of Gaussian mixtures for each

HMM state was 128 and 64 in the WSJ0 and RM corpora. In the context-

dependent case, for tying the HMM states, only singleton questions were used.

Each tied state was modeled by a mixture of 16 and 8 Gaussians on WSJ0 and

RM corpora respectively. The number of tied states in all the systems trained

on a corpus was roughly the same to ensure that possible improvements in ASR

accuracy are not due to the increase in complexity.

Throughout this article, we report the ASR system performances in terms

word recognition rate (100 - word error rate), denoted as WRR. Further-

more, for comparing the performance of different systems, we applied the sta-

tistical significant test presented in (Bisani and Ney, 2004) with the confidence

level of 95%.

Table 2 presents the performance of ASR systems based on different lexi-

cons. In the case of using CI units, the ASWU-based ASR systems perform

significantly better than the grapheme-based ASR systems in both WSJ0 and

RM corpora. In the case of CD units, it can be seen that for the WSJ0 corpus,

the HMM/GMM system using ASWUs performs significantly better than the

baseline grapheme-based ASR system. For the case of RM corpus, however, the

improvements are not statistically significant. This could be due to the fact

that in RM task all the words are seen during both training and evaluation.

In all cases, the the ASWU based lexicon yields a system that lies between

phoneme-based ASR system and grapheme-based ASR system.

When using CI subword units, it can be seen that the performance of the

system using probabilistic lexical modeling based G2ASWU conversion is com-

parable or even better than the system using deterministic lexical modeling

G2ASWU conversion, whereas when using CD subword units, this is not the

case. A plausible reasoning for such a trend is that CI subword unit based

systems using deterministic lexical modeling based G2ASWU conversion may
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require more parameters. We tested that by building CI ASWU-based ASR

systems using deterministic and probabilistic lexical modelling based pronunci-

ations with varying number of Gaussian mixtures (from 8 to 256). We observed

that the difference between the best performing CI ASR systems using determin-

istic and lexical modeling based G2ASWU conversion is not statistically signif-

icant3, thus indicating that the deterministic lexical modeling based G2ASWU

conversion approach leads to a better ASR system compared to the probabilis-

tic approach. A potential explanation for this difference could be that, unlike

the probabilistic lexical modeling based G2ASWU conversion approach, deter-

ministic lexical modeling based G2ASWU conversion approach avoids ASWU

deletions and could therefore generate a more consistent pronunciation lexicon

for English.

Table 2: HMM/GMM ASR system performances in terms of WRR using CI and CD subword
units.

(a) WSJ0 corpus.

Lexicon CI CD

Lex-WSJ -Gr-26 68.9 85.8

Lex-WSJ -Det-ASWU-90 78.6 88.7
Lex-WSJ -Prob-ASWU-88 78.7 87.3

Lex-WSJ -Ph-45 88.6 93.5

(b) RM corpus.

Lexicon CI CD

Lex-RM -Gr-29 84.2 94.0

Lex-RM -Det-ASWU-92 89.1 94.5
Lex-RM -Prob-ASWU-90 90.7 94.2

Lex-RM -Ph-45 93.5 95.9

4.3. Cross-domain ASR studies

This section presents a study that investigates the transferability of the

ASWUs to a condition or domain unobserved during derivation of ASWU. As

noted earlier, for ASWUs to be adopted for mainstream speech technology,

this characteristic is highly desirable. Toward that we present a cross-database

study where the ASWU derivation is carried out on out-of-domain (OOD) WSJ0

corpus and the lexicon is developed for target domain RM corpus. Similar to

G2P conversion as elucidated in (Razavi et al., 2016), G2ASWU conversion

(presented earlier in Section 3.2) can seen as a two step process: 1) Learning

3For the WSJ0 corpus, the best performing CI ASR systems yielded WRR of 80.1 % and
79.7% ASR when using Lex-WSJ-Det-ASWU-90 and Lex-WSJ-Prob-ASWU-88, respectively.
For the RM corpus, the best performing CI ASR systems yielded WRR of 90.2% and 90.7%
ASR word when using Lex-RM-Det-ASWU-92 and Lex-RM-Prob-ASWU-90, respectively.
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the relationship between the graphemes and the derived ASWUs, and 2) In-

ferring the ASWU sequence (pronunciation) given the word orthography and

the learned G2ASWU relationship. We present three methods for cross-domain

ASWU-based lexicon development based on that understanding.

Method-I: Applying standard G2P conversion approach on the seed lexicon ob-

tained from the OOD corpus

One possible way to generate pronunciations for the in-domain RM corpus is

to use the ASWU-based lexicon from the WSJ0 corpus as the seed lexicon and

train a G2ASWU converter. For this purpose, we investigated one of the state-

of-the-art G2P conversion approach, namely, joint multigram approach (Bisani

and Ney, 2008) for G2ASWU conversion. This was done by using the Sequitur

software developed at RWTH Aachen University.4 In our experiment, the max-

imum width of the graphone used was one, and the n-gram context size was

6.5 As shown in Figure 5, first the G2ASWU relationship is learned on the

ASWU-based lexicon for the WSJ0 corpus by training the G2ASWU converter.

Then given the words in the RM corpus and the learned G2ASWU relationship,

the pronunciations are inferred.6

Lex-WSJ-Det-ASWU-90  
or  

Lex-WSJ-Prob-ASWU-88 Train the joint 
 multigram 

model

Infer 
pronunciations

RM 
word orthography

(seed lexicon)

Figure 5: Diagram of joint multigram-based pronunciation generation for RM corpus using
the seed lexicon trained on WSJ0 corpus (Method-I ).

Method-II: Using the learned G2ASWU relationship on the OOD corpus for

pronunciation inference on the in-domain corpus

Instead of using the ASWU-based lexicon from the WSJ0 corpus, only the

learned G2ASWU relationships can be exploited for inferring pronunciations

4http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
5As there are no canonical pronunciations in case of using ASWUs are available, we decided

on the optimal n-gram context size based on the ASR accuracy.
6 The grapheme symbols such as single hyphen that appear in the RM word orthographies

and have not been observed in the WSJ0 word orthographies were removed for the inference.
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on the RM corpus. More precisely, we investigate use of the deterministic and

probabilistic G2ASWU relationships obtained from (a) the decision trees learned

on WSJ0, and (b) the KL-HMM trained on WSJ0, respectively to generate

pronunciations for the RM corpus, as illustrated in Figure 6.

Grapheme-based 
HMM/GMM

WSJ 
acoustic data

Lex-WSJ-Gr-27 RM 
word orthography

Pronunciation  
inference

G2ASWU 
relationship

obtained  
from decision tree

(a) Using a deterministic G2ASWU relationship learned on WSJ0 (Method-II-a).

MLP-WSJ-90 Grapheme-based 
KL-HMM

WSJ 
acoustic data

ASWU 
posterior 
features

Lex-WSJ-Gr-27
RM 

word orthography

Pronunciation  
inference

Learned  
G2ASWU 

relationship

(b) Using a probabilistic G2ASWU relationship learned on WSJ0 (Method-II-b).

Figure 6: Illustration of pronunciation generation for RM corpus in Method-II.

Method-III: Learning the G2ASWU relationship on the in-domain corpus

through acoustics

Instead of using the learned G2ASWU relationship on the WSJ0 corpus,

we can use the trained MLP on WSJ0 corpus to estimate ASWU posterior

probabilities for the RM speech data. Given the ASWU posterior probabilities

as feature observations, a grapheme-based KL-HMM system can be trained on

the RM corpus data. The pronunciation inference can then be done given the

trained KL-HMM and the word orthographies, as shown in Figure 7.

MLP-WSJ-90 Grapheme-based 
KL-HMM

RM 
acoustic data

ASWU 
posterior 
features

Lex-RM-Gr-29
RM 

word orthography

Pronunciation  
inference

Learned  
G2ASWU 

relationship

Figure 7: Illustration of pronunciation generation for RM corpus using Method III.
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We generated ASWU-based lexicons for the RM corpus based on the above

presented three methods. It is worth to reiterate that, in addition to acoustic

differences between the two corpora, there are also differences at lexicon level, i.e.

507 out of the 990 words in the RM lexicon do not appear in WSJ0 lexicon. For

each of the lexicons developed, we trained context-independent and cross-word

context-dependent ASWU-based HMM/GMM system with 39 dimensional PLP

cepstral features extracted using HTK toolkit. Each subword unit was modeled

with three HMM states. Each CI HMM state was modeled by 32 Gaussian

mixtures similar to in-domain studies in Section 4.3. Each tied HMM state

was modeled by a mixture of 8 Gaussians. The HMM states were tied using

singleton question set.

Table 3 presents the results in terms of WRR. It can be observed that the

context-independent ASR systems, regardless of the method used for pronun-

ciation generation, perform better than the grapheme-based CI ASR system

(Table 2). The performance of the context-dependent ASR systems using the

pronunciations generated through Method-I is inferior to the grapheme-based

ASR system (Table 2). The performance of the ASR systems using Method-II

for pronunciation generation are comparable with the ASR systems obtained

through in-domain studies (Table 2). Generating pronunciations using Method-

III also leads to a comparable system to the in-domain ASWU-based ASR

systems. Comparing the performance of the systems using Method-I for pro-

nunciation generation with the systems using Method-II and Method-III shows

that it is better to transfer the learned G2ASWU relationship or learn the

G2ASWU relationship on target domain speech. A potential reason for that

is that Method-I relies on availability of ground truths, like availability of seed

lexicon obtained through linguistic expertise in G2P conversion, which in the

present scenario is not available. Overall, Method-II leads to the best ASR per-

formance. It may be possible to improve Method-III by acoustic model adap-

tation techniques to adapt the MLP trained on the out-of-domain data. This

is open for further research. Together these studies show that, in the proposed

approach, the derived ASWUs and the G2ASWU relationship learned from one

domain are transferrable to another or target domain. Alternately, the proposed

approach inherently enables such transfer.

4.4. Comparison to existing approaches

In this section, we compare the present work with two existing approaches

in the literature that have reported studies on the WSJ0 and RM corpora with
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Table 3: ASR system performances in terms of WRR on RM corpus using different cross-
domain pronunciation generation methods.

Method G2ASWU relationship CI CD

Method-I
Deterministic 87.5 92.3
Probabilistic 85.2 91.3

Method-II
Deterministic 89.0 94.4
Probabilistic 88.8 94.0

Method-III Probabilistic 89.0 94.0

the same setup as that used in our studies. More precisely, on WSJ0 corpus,

Section 4.4.1 compares our approach to the spectral clustering based approach

proposed in (Hartmann et al., 2013). Section 4.4.2 studies the proposed ap-

proach in comparison to the approach proposed by Bacchiani and Ostendorf

in (Bacchiani and Ostendorf, 1999).

4.4.1. Comparison to Hartmann et al. (2013) approach

In essence, the proposed approach is similar to the spectral based clustering

approach proposed in (Hartmann et al., 2013), as they both discover the ASWUs

from the grapheme-based HMM/GMM system. However, there are two key

differences between these approaches:

1. In our approach, the ASWUs are discovered through decision-tree based

clustering of the HMM states, while in (Hartmann et al., 2013), the sub-

word units are derived through spectral based clustering, which requires

computation of similarity matrix between HMMs.

2. In our approach, the pronunciations are generated using the KL-HMM

framework, while in (Hartmann et al., 2013), the pronunciations are trans-

formed using a statistical machine translation approach.

As the experimental setup in this article on WSJ0 corpus and the work

in (Hartmann et al., 2013) are the same, we provide a comparison between

the baseline and the results in both works in Table 4. In (Hartmann et al.,

2013) there are two grapheme baselines: one based on the standard orthography

(denoted as grapheme-direct) and the other based on grapheme-to-grapheme

(G2G) conversion (denoted as grapheme-transformed) employing an approach

similar to machine translation. Similarly, in the ASWU based study they have

two systems: one where the pronunciations are generated directly by mapping

the graphemes to ASWUs based on the spectral clustering (denoted as ASWU-

direct), and the other where ASWU-to-ASWU conversion is performed like G2G
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case mentioned above (denoted as ASWU-transformed). We ensured that our

systems have comparable number of parameters in the case of both using CI

subword units and CD subword units based systems. It can be observed that the

ASWU-based lexicon developed by our approach leads to a better ASR system.

Furthermore, when comparing the best systems there is an absolute difference

of 2.5% WRR, which indicates that the proposed approach in this article leads

to a better ASR system.

Table 4: Comparison with the related work in (Hartmann et al., 2013).

Approach Lexicon CI CD

Approach proposed in
(Hartmann et al., 2013)

Grapheme-direct 60.1 84.2
Grapheme-transformed 68.6 85.5

ASWU-direct 70.7 85.6
ASWU-transformed 76.7 86.2

Present work
Grapheme 68.9 85.8

Lex-WSJ -Det-ASWU-90 78.6 88.7
Lex-WSJ -Prob-ASWU-88 78.7 87.3

4.4.2. Comparison to Bacchiani and Ostendorf (1999) approach

In a broad sense, the proposed approach and the joint subword unit deriva-

tion and pronunciation generation method proposed in (Bacchiani and Osten-

dorf, 1999) can be considered to be similar as,

1. both approaches consist of segmentation and clustering steps, except

that in our approach the segmentation and clustering is guided through

graphemes during the HMM/GMM training; and

2. both approaches apply the pronunciation length constraint which ensures

uniformity in the number of segments for training tokens of a word. In our

approach this is automatically achieved through use of a unique grapheme

sequence representation for each word.

In our studies, we have used RM corpus, which was also used in (Bacchiani

and Ostendorf, 1999). However there are a few distinctions. In (Bacchiani and

Ostendorf, 1999), the states of the HMMs were modeled by single Gaussian as

opposed to mixture of Gaussians and the evaluation was carried out only on

Feb89 test set. So we also trained single Gaussian HMM/GMM system using

the ASWU lexicon developed by our approach and evaluated on Feb89 test set.

Table 5 presents the results in the case where the two approaches are similar in
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terms of number of ASWUs and clustered states. Table 6 provides a comparison

between the best performance reported in (Bacchiani and Ostendorf, 1999) and

the performance achieved with the lexicon based on our approach on the Feb89

test set with 2937 clustered states. These results indicate that the ASWU lex-

icon developed by the proposed approach can yield ASR systems comparable

to the ASWU lexicon developed by Bacchiani and Ostendorf (1999) approach,

which needs additional heuristics to constrain the ASWU derivation and pro-

nunciation generation process and necessitates all the words to be observed.

Table 5: Comparison with the related work in (Bacchiani and Ostendorf, 1999) on Feb89 test
set using single Gaussian distributions.

# of # of WRR
base units clustered states

Approach proposed in
(Bacchiani and Ostendorf, 1999)

124 1519 86.3

Present work 92 1559 86.9

Table 6: Comparison of the best result reported in (Bacchiani and Ostendorf, 1999) on Feb89
test set with the result using the present work on the same test set using single Gaussian
distributions.

WRR

Approach proposed in (Bacchiani and Ostendorf, 1999) 91.2
Present work 91.1

Before concluding this section, it is worth mentioning that the approach

proposed in (Singh et al., 2002) was also investigated on RM corpus. Further-

more, there are also similarities w.r.t our approach, as it also exploits transcribed

speech data and it uses a grapheme-based dictionary as the initial lexicon. How-

ever, the results presented in (Singh et al., 2002) can not be fairly compared

against our results for the following reasons: (1) the training and test sets are

different. In particular, in their studies the test set contains 1600 utterances

as opposed to the standard test of 1200 utterances, and (2) their ASR sys-

tem is based on semi-continuous HMMs while in the present work the ASR

system is based on continuous density HMMs. Informally, it can be stated

that in the present article the proposed approach has been investigated against

stronger grapheme-based and phoneme-based baselines than the investigations

reported (Singh et al., 2002).
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5. Application to an Under-Resourced Language

In the previous section, we demonstrated the potential of the proposed

framework for subword unit derivation and pronunciation generation on well-

resourced language English. Most of the state-of-the-art speech recognition

approaches have emerged through investigations on English. So it can be ar-

gued that our approach of deriving ASWU using grapheme-based HMM/GMM

system may be well suited just for English. Furthermore, grapheme-to-phoneme

relationship varies across languages. So a question arising is whether the pro-

posed approach scalable to other languages or not.

In this section, our goal is two folds. More precisely, to show the scalabil-

ity of the approach to a new language as well as its utility to under-resourced

languages, specifically languages that do not have well developed phonetic re-

sources. In that direction, we present investigations on a genuinely under-

resource language, Scottish Gaelic. Unlike English, which belongs to family

of Germanic languages, Scottish Gaelic belongs to family of Celtic languages.

Our investigations are organized along two lines,

1. Monolingual ASR studies: We investigate the potential of the ASWU-based

lexicons through monolingual ASR studies where we compare the perfor-

mance of the ASWU-based ASR system with the alternative grapheme-based

ASR system, as done in the studies on English.

2. Multilingual ASR studies: In (Rasipuram and Magimai.-Doss, 2015), it has

been shown that performance of under-resourced ASR system can be signif-

icantly improved by (a) training a multilingual acoustic model that estimate

multilingual phone posterior probabilities using resources of resource rich lan-

guages, and then (b) learning a probabilistic lexical model that captures the

grapheme-to-multilingual phone relationship on the target language speech.

So we also investigate if the ASWU-based lexicons hold their benefit in such

a multilingual ASR system scenario as well. As a product of the study, later

in Section 6, we show how phonetic identities of the derived ASWUs could

be discovered.

The remainder of the section is organized as follows. Section 5.1 presents

the database and experimental setup used. Section 5.2 presents the details of

the ASWU-based lexicon development. Finally, Section 5.3 and 5.4 presents the

monolingual ASR and multilingual ASR studies, respectively.
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5.1. Database

This section first describes the characteristics of the Scottish Gaelic language.

It then explains the Scottish Gaelic corpus used in our studies.

5.1.1. Scottish Gaelic language

Scottish Gaelic belongs to the class of Celtic languages. There are six Celtic

languages that are still spoken. These languages are divided into two groups of

Goidelic languages and Brythonic languages. Scottish Gaelic belongs to Goidelic

languages along with Irish and Manx. It can be considered as a truly endangered

language as it is spoken by about 60,000 people only. There are about 51

phonemes in the language (Wolters, 1997). However, the number of phonemes

can change depending on the dialect. The language lacks a proper phonetic

lexicon and the available transcribed speech data are also limited.

Scottish Gaelic alphabet has 18 letters, consisting of five vowels and thirteen

consonants. The long vowels are represented with grave accents (À, È, Ì, Ò, Ù).

There are twelve basic consonant types in Scottish Gaelic (B, C, D, F, G , I ,

L, M, N, P, R, S, T):

• Each consonant is either fortis or lenis (i.e., they are produced with greater or

less energy). The lenited consonants are presented in the orthography with a

grapheme [H] next to them.

• Each consonant is either broad (velarized) or slender (palatalized). Broad

consonants are surrounded by broad vowels (A, O or U), while slender con-

sonants are surrounded by slender vowels (E or I).

Scottish Gaelic orthography is less complicated than English. The compli-

cations partly arise due to the reason that modern orthography is based on

Classical Irish orthography and the letter-to-sound rule may depend on the

dialect (Wolters, 1997). The number of graphemes in Gaelic words are typi-

cally greater than the number of phones in the word due to the effect of lenited

and broad/slender graphemes on the pronunciation. The grapheme-to-phoneme

relationship in Scottish Gaelic can therefore be many-to-one. For example,

the ratio of the number of graphemes to phonemes in the Gaelic word SUID-

HEACHADH with pronunciation ”sMj@x@G” (in the SAMPA format) is 1.7.
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5.1.2. Scottish Gaelic corpus

The Scottish Gaelic corpus was collected by the University of Edinburgh in

2010 and contains recordings from broadcast news and discussion programs.7 In

this article, the database is partitioned into training, development and test sets

according to the structure provided in (Rasipuram et al., 2013b). The overview

of the Scottish Gaelic corpus is given in Table 7.

Table 7: Overview of the Scottish Gaelic corpus in terms of number of utterances, hours of
speech data and speakers in the train, cross-validation and test sets.

Number of Train Cross-validation Test

Utterances 2389 1112 1317
Hours 3 1 1
Speakers 22 12 12

The database does not provide any phonetic lexicon. The graphemic lexicon

can be simply obtained from the orthography of the words. As the corpus also

contains borrowed English words, the graphemes J, K, Q, V, W, X, Y and Z

are also present in the lexicon. Therefore the lexicon consists of 32 graphemes

including silence as shown in Table 8. We refer to this lexicon as Lex-SG-Gr-32.

As the corpus does not provide a language model, we used a bigram language

model trained on the sentences from the test set, as done in (Rasipuram et al.,

2013b).

Table 8: Graphemes used in the Scottish Gaelic corpus.

Vowels A, E, I, O, U, À, È, Ì, Ò, Ù
Consonants B, C, D, F, G , H, I , L, M, N, P, R, S, T
English Graphemes J, K, Q, V, W, X, Y

5.2. ASWU derivation and pronunciation generation setup

The setup for subword unit derivation and pronunciation generation for Scot-

tish Gaelic is as follows:

Acoustic subword unit derivation: For automatic discovery of subword

units, cross-word CD grapheme-based HMM/GMM systems were trained using

39-dimensional PLP cepstral features. Each CD grapheme was modeled with

a single HMM state. Different numbers of ASWUs were obtained by adjusting

7http://forum.idea.ed.ac.uk/tag/scots-gaelic
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the log-likelihood increase during decision tree clustering. The range for the

number of ASWUs was decided to be similar to the range investigated in the

studies on English, resulting in 85, 91 and 97 units.

Deterministic lexical modeling based G2ASWU conversion: For deter-

ministic lexical modeling based G2ASWU conversion, the learned decision trees

during ASWU derivation were exploited to map each grapheme in the word

to an ASWU. We denote the lexicons generated using the deterministic lexi-

cal modeling based G2ASWU conversion as Lex-SG-Det-ASWU-M where M

denotes the number of ASWUs.

Probabilistic lexical modeling based G2ASWU conversion: For prob-

abilistic lexical modeling based G2ASWU conversion, first a five-layer MLP

classifying ASWUs was trained in which each hidden layer had 1000 hidden

units. Then given the ASWU posterior probabilities from the ANN as feature

observations, a CD grapheme-based KL-HMM was trained. For the pronun-

ciation inference, the ASWU posterior probabilities were decoded through the

ergodic HMM in which each ASWU was modeled with three left-to-right HMM

states.

Table 9 shows the properties of the ASWU-based lexicons generated using a

probabilistic lexical modeling based G2ASWU conversion. Similar to the studies

on English, it can be observed that some of the ASWUs are pruned out during

the pronunciation generation given the probabilistic G2ASWU mapping.

Table 9: Summary of the ASWU-based lexicons obtained through probabilistic lexical mod-
eling based G2ASWU conversion for Scottish Gaelic corpus.

Lexicon MLP

Lex-SG-Prob-ASWU-76 MLP-SG-85
Lex-SG-Prob-ASWU-82 MLP-SG-91
Lex-SG-Prob-ASWU-86 MLP-SG-97

We selected the optimal number of ASWUs and the corresponding lexicon

based on the WRR on the development set. Lex-SG-Det-ASWU-85 and Lex-

SG-Prob-ASWU-82 yielded the best ASR systems and are therefore used in the

ASR studies presented below.
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5.3. Monolingual ASR system studies

As mentioned earlier, there is no well developed phonetic lexicon for Scottish

Gaelic. So we evaluate the utility of the developed ASWU-based lexicon against

grapheme-based lexicon by conducting monolingual ASR studies. Specifically,

we compare them across two frameworks, namely, HMM/GMM framework and

KL-HMM framework.

HMM/GMM framework:. We trained CI and cross-word CD HMM/GMM sys-

tems with 39 dimensional PLP cepstral features extracted using HTK toolkit.

Each subword unit was modeled with three HMM states. In the case of using

CI subword units, the optimal number of Gaussian mixtures for the grapheme-

based ASR system was 64 based on the best WRR obtained on the development

set. For the ASWU-based ASR systems, the number of Gaussian mixtures was

set to 16 so as to have a comparable number of parameters to the grapheme-

based system. In the case of using CD subword units, for tying the HMM states

singleton questions were used. Each HMM state was modeled by a mixture 8

Gaussians. The number of tied states in all the systems were roughly the same.

KL-HMM framework:. This is done by using the posterior based framework

of KL-HMM explained in Section 2.1 directly for speech recognition. More

precisely, instead of using the KL-HMM parameters capturing a probabilistic

G2ASWU relation for pronunciation inference, they are used in the KL-HMM

ASR framework. In this case, we can visualize it as an approach that integrates

pronunciation learning implicitly as a phase in ASR system training (Rasipuram

et al., 2015). Our main motivation for performing this study was to ascertain

whether doing lexicon development and ASR training as two separate stages can

bring any advantage over doing direct speech recognition using grapheme-based

KL-HMM system. For this purpose, we compared three KL-HMM systems, as

illustrated in Figure 8, corresponding to lexicons Lex-SG-Gr-32, Lex-SG-Det-

ASWU-85 and Lex-SG-Prob-ASWU-82, respectively. All the systems use the

same MLP, which is MLP-SG-91, as the acoustic model to estimate posterior

feature observations.

Table 10 presents the HMM/GMM systems and KL-HMM systems perfor-

mance in terms of WRR. It can be observed that Lex-SG-Prob-ASWU-82 yields

significantly better CI and CD systems than Lex-SG-Gr-32 in both HMM/GMM

framework and KL-HMM framework. Lex-SG-Det-ASWU-85 yields a better

system in KL-HMM framework but worse system in HMM/GMM framework
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Figure 8: Illustration of KL-HMM based ASR system based on Lex-SG-Gr-32, Lex-SG-Det-
ASWU-85 and Lex-SG-Prob-ASWU-82

against Lex-SG-Gr-32. A possible reason for such a trend could be that, as

discussed earler, in Scottish Gaelic the G2P relationship is many-to-one due

to lenition and broad and slender consonants. So, when inferring pronuncia-

tions using the deterministic G2ASWU mappings, each grapheme in the word

is invariably mapped into an ASWU. This can result in systematic erroneous

pronunciations, which could lead to mismatch between acoustics and pronunci-

ation model, as in the case of pronunciation variation. In the literature, it has

been observed that KL-HMM approach is capable of handling pronunciation

variation (Imseng et al., 2011; Razavi and Magimai.-Doss, 2014). As a conse-

quence, unlike HMM/GMM framework, we observe that Lex-SG-Det-ASWU-85

yields better system than SG-Gr-32 in KL-HMM framework.

Table 10: Performance of HMM/GMM and KL-HMM systems in terms of WRR using context-
independent (CI) and context-dependent (CD) subword units. For the KL-HMM systems,
MLP-SG-91 is used as the acoustic model.

Lexicon
HMM-GMM KL-HMM

CI CD CI CD

Lex-SG-Gr-32 46.0 64.6 35.6 66.8
Lex-SG-Det-ASWU-85 54.5 63.3 52.2 69.1
Lex-SG-Prob-ASWU-82 59.6 66.4 57.5 69.5
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5.4. Multilingual ASR system studies

As mentioned earlier, the under-resourced ASR system performance can be

improved by using an acoustic model or ANN that classifies multilingual phones

and learning a probabilistic relationship between the graphemes and multilin-

gual phones using KL-HMM. We compared the grapheme-based lexicon and the

ASWU-based lexicon in that framework by

1. first training a five-layer multilingual MLP on five auxiliary languages

from SpeechDat(II) corpus namely British English, Swiss French, Swiss

German, Italian and Spanish to estimate posterior probabilities of mul-

tilingual phones. The multilingual phoneset was formed by merging the

phones that are shared across the aforementioned languages, leading to

117 phone units. We refer to this MLP as MLP-MULTI -117; and then

2. training a KL-HMM based ASR system corresponding to each lexicon Lex-

SG-Gr-32, Lex-SG-Det-ASWU-85 and Lex-SG-Prob-ASWU-82, as illus-

trated in Figure 9.

KL-HMM

Lex-SG-Det-ASWU-85

MLP-MULTI-117

KL-HMM

Lex-SG-Gr-32 

Acoustic data Posterior 
features

KL-HMM

Lex-SG-Prob-ASWU-82

Different multilingual KL-HMM systems

Figure 9: Illustration of KL-HMM based ASR system on Lex-SG-Gr-32, Lex-SG-Det-ASWU-
85 and Lex-SG-Prob-ASWU-82 that exploits auxiliary multilingual resources.

Table 11 presents the performance of the different KL-HMM based systems

in terms of WRR. It can be observed that the ASWU-based lexicon yields sig-

nificantly better system than grapheme-based lexicon. Thus, showing that the

proposed approach of ASWU-based lexicon development generalizes to multi-

lingual resource sharing scenarios.
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Table 11: Performance of KL-HMM based ASR systems exploiting auxiliary resources from
resource-rich languages in terms of WRR. In these systems, MLP-MULTI -117 is used as the
acoustic model.

Lexicon CI CD

Lex-SG-Gr-32 36.7 69.1
Lex-SG-Det-ASWU-85 52.1 70.7
Lex-SG-Prob-ASWU-82 57.7 72.6

6. Analysis

The ASR studies validated the proposed ASWU based lexicon from speech

technology perspective. As explained in Section 3.1, one of our hypothesis in

this article is that the ASWUs obtained from the clustered CD grapheme units

are ”phone-like”. This section focuses on that aspect through an analysis of the

derived ASWUs (Section 6.1) and the generated pronunciations (Section 6.2).

It is worth mentioning that a full fledged quantitative analysis and concretely

linking the derived ASWUs and lexicon to existing linguistic knowledge would

need a separate investigation, and is thus out of the scope of the paper. In

this section, our main goal is to provide a qualitative analysis and demonstrate

how links to existing linguistic knowledge can be established to gain better

understanding. We notate phones as / / and graphemes as [ ]. Furthermore,

we notate the derived ASWUs with the notation used by HTK to represent

clustered CD units. For example, ASWU [ST A 26] means a clustered CD unit

with the center grapheme [A] (root node in the decision tree).

6.1. Relating the derived ASWUs to phonetic units

This section analyzes the relationship between the derived ASWUs and pho-

netic identities for English and Scottish Gaelic. In the case of English, the anal-

ysis uses the acoustic models of the phone-based system, while in the case of

Scottish Gaelic there are no phone based lexicon. So the analysis leverages from

the ASWU-to-multlinugual phone relationship learned by the KL-HMM system

presented in Section 5.4.

6.1.1. Studies on English

For both WSJ0 and RM corpora, we computed the KL-divergence between

the Gaussian distribution modeling a mono-phone unit and the Gaussian dis-

tribution modeling an ASWU in the HMM/GMM setup. We computed the

KL-divergence between single Gaussians, as this is the step at which ASWU
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is derived by clustering context-dependent graphemes. The KL-divergence be-

tween the Gaussian N0(µ0,Σ0) modeling a mono-phone unit as the reference

distribution and the Gaussian N1(µ1,Σ1) modeling an ASWU as the measured

distribution is computed as (Duchi, 2007):

0.5{Tr(Σ−11 Σ0) + (µ1 − µ0)T Σ−11 (µ1 − µ0)−K − ln
|Σ0|
|Σ1|
},

where µ, Σ and K are the mean vector, the covariance matrix and dimension

of the vector space respectively.

Table 12 provides a few ASWUs along with the three most related phones

according to the KL-divergence matrix. Furthermore, the table also provides

example English words which contain the ASWUs within their pronunciations.

In each example, the grapheme which has been mapped to the ASWU in the

pronunciation is highlighted.

It can be observed from the table that a consistent relationship between

the ASWUs and phones exists. This relationship can be clearly observed in

the case of consonant graphemes (such as [L], [M], [N] and [R]). For example,

the ASWUs belonging to grapheme [L] (such as [ST L 22] and [ST L 24] in

the WSJ0 corpus) are more related to /el/ and /l/ sounds and the ASWUs

belonging to grapheme [R] (such as [ST R 25] and [ST R 26] in the RM corpus)

are more related to /r/, /axr/, and /er/ sounds. These observations here are

also consistent with the empirical observations made in an earlier grapheme-

based ASR study on English (Rasipuram and Magimai.-Doss, 2013), where the

grapheme-to-phoneme relationship is also learned through acoustics.

6.1.2. Studies on Scottish Gaelic

As mentioned earlier, in the case of Scottish Gaelic there are no phonetic

lexicon. So we analyzed the parameters or categorical distributions of the CI KL-

HMM system trained with lexicon Lex-SG-Prob-ASWU-82 in the multilingual

ASR studies. Table 13 provides examples of mappings between the ASWUs and

multilingual phones obtained by selecting the phone with maximum probability

in the categorical distribution corresponding to the ASWU. The mapped phones

are shown in the SAMPA8 format along with the probability of the phone within

the brackets. Similar to the analysis on English, we have presented example

Gaelic words which contain the ASWUs within their pronunciations.

It can be observed from Table 13 that the ASWUs indeed relate to phonetic

8http://www.phon.ucl.ac.uk/home/sampa/
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Table 12: Relation between example automatically derived subword units and phone units
based on the KL-divergence matrix. The example pronunciations are obtained from Lex-WSJ-
Det-ASWU-90 and Lex-RM-Prob-ASWU-90 for the WSJ0 and RM corpora respectively.

(a) WSJ0 corpus

ASWU
mapped
phone

example
word

ASWU
mapped
phone

example
word

[ST A 26] /eh/,/ae/,/ey/ DECELERATION [ST L 24] /l/,/el/,/ao/ INCLINED
[ST A 28] /eh/,/ih/,/ae/ AHEAD [ST M 22] /m/,/em/,/n/ CRAMMING
[ST C 21] /z/,/s/,/zh/ DEVICE [ST N 22] /ng/,/en/,/n/ RACING
[ST C 22] /t/,/dx/,/k/ FORTHCOMING [ST N 23] /n/,/en/,/ng/ REMAINS
[ST D 23] /dx/,/d/,/g/ FOUNDATION [ST O 22] /ow/,/ao/,/aa/ QUOTAS
[ST E 27] /ih/,/eh/,/uh/ SEND [ST R 21] /r/,/er/,/axr/ AMERICA
[ST E 28] /iy/,/y/,/uw/ SEEN [ST R 25] /axr/,/r/,/uh/ ADVERTISERS
[ST F 22] /th/,/f/,/t/ SHIFTED [ST S 21] /s/,/z/,/f/ ACCOUNTS
[ST H 23] /hh/,/dx/,/th/ HAD [ST T 21] /t/,/th/,/dx/ AUSTRIA
[ST I 24] /iy/,/ey/,/y/ INVENTORIES [ST U 24] /uh/,/ax/,/ih/ ACTUAL
[ST I 27] /ih/,/uh/,/ax/ JIMMY [ST V 21] /v/,/d/,/dh/ ACHIEVED
[ST J 21] /dx/,/jh/,/t/ JOIN [ST W 21] /w/,/l/,/dx/ ALWAYS
[ST K 21] /t/,/dx/,/k/ LOCKED [ST Y 23] /iy/,/y/,/ih/ ANYBODY
[ST L 22] /el/,/l/,/w/ IMPOSSIBLE [ST Z 21] /z/,/s/,/dx/ ZEUS

(b) RM corpus

ASWU
mapped
phone

example
word

ASWU
mapped
phone

example
word

[ST A 211] /aa/,/aw/,/ay/ CHART [ST N 21] /n/,/en/,/ng/ CAMDEN
[ST A 25] /ae/,/ey/,/ay/ TRACK [ST O 21] /ow/,/ao/,/ah/ LOCATED
[ST A 26] /ey/,/eh/,/ae/ DEGRADE [ST O 26] /ah/,/ow/,/uh/ MONDAY
[ST B 21] /d/,/b/,/t/ BAD [ST R 25] /er/,/axr/,/r/ SUMERRIZE
[ST C 21] /z/,/s/,/hh/ GARCIA [ST R 26] /r/,/axr/,/er/ THREAT
[ST D 22] /dx/,/em/,/d/ ADDING [ST S 21] /sh/,/ch/,/s/ WABASH
[ST E 21] /iy/,/ey/,/uw/ SPEED [ST S 24] /z/,/s/,/ch/ WADSWORTH
[ST E 25] /axr/,/er/,/r/ SURFACE [ST T 21] /t/,/th/,/dx/ WESTERN
[ST F 22] /f/,/th/,/hh/ VANDERGRIFT [ST T 24] /dx/,/em/,/t/ BETTER
[ST H 22] /hh/,/dx/,/em/ HAD [ST U 21] /ah/,/uh/,/ax/ DOUBLE
[ST H 24] /dh/,/hx/,/em/ NORTHERN [ST U 22] /uw/,/ey/,/iy/ TWO
[ST I 24] /ih/,/eh/,/uh/ BAINBRIDGE [ST W 21] /w/,/dx/,/em/ WEDNESDAY
[ST M 21] /m/,/n/,/ng/ BISMARK [ST Y 22] /ih/,/y/,/uw/ ANYBODY

units in a consistent manner. For example, the ASWU [ST S 21] is mapped

to the phone /S/ (as found in the pronunciation of the English word SHIP :

/S/ /I/ /p/) and is used in the pronunciation of the Scottish Gaelic word RIS

which has the slender consonant grapheme [S]. On the other hand, the ASWU

[ST S 23] is mapped to the sound /s/ (as used in the pronunciation of the

English word SKY : /s/ /k/ /a/ /I/) and is found in the pronunciation of the

Gaelic word THUSA which contains the broad consonant [S ].9 Similarly the

9Note that in Scottish Gaelic, the broad consonant grapheme [S] is pronounced as the
English sound /s/ while the slender [S ] is pronounced as the English sound /S/ (web, 2016).
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Table 13: Some of the ASWUs together with their mapped phones in SAMPA format and
some example words.

ASWU
mapped
phone

example
word

ASWU
mapped
phone

example
word

[ST C 21] /x/ [0.7] CACH
[ST C 22] /C/ [0.7] SMAOINICH [ST T 21] /h/ [0.6] THOG
[ST C 23] /k/ [0.9] CADAL [ST T 24] /t/ [0.7] MOTA

[ST S 21] /S/ [0.8] RIS [ST G 22] /g/ [0.5] GAD
[ST S 23] /s/ [0.8] THUSA [ST G 23] /k/ [0.5] LAG

[ST F 21] /f/ [0.7] PHÀIRT [ST R 22] /r/ [0.4] MAR

[ST B 21] /b/ [0.5] BRIS [ST L 21] /l/ [0.8] SAOIL
[ST B 22] /v/ [0.4] A-BHOS [ST L 23] /l/ [0.5] SGEUL

[ST À 21] /a/ [0.5] MHÀL [ST Ò 21] /o/ [0.3] SPÒRS
[ST A 212] /@/ [0.4] AGAD [ST O 23] /o/ [0.3] STOC

[ST E 21] /@/ [0.4] SE [ST I 23] /I/ [0.7] TRIC

[ST E 23] /l/ [0.3] WHALES [ST I 28] /i/ [0.2] TRÌ

consonant ASWUs [ST F 21] and [ST R 22] are related to sound units /f/ and

/r/. For the vowel ASWUs such as [ST I 28] and [ST E 21], the ASWUs are

related to the phonetic units, however with a relatively low probability. In our

approach, the ASWUs are derived by clustering CD graphemes. So the low

probability can be due to the reason that a CD vowel grapheme unit can get

mapped to more than one phone, whereas a CD consonant grapheme can have

a one-to-one relationship to a phone.

6.2. Generated pronunciations

This section provides a brief analysis on the generated pronunciations

through deterministic and probabilistic G2ASWU modeling for English and

Scottish Gaelic to get an understanding about the generated pronunciations

along with the relation to phonetic identities inferred in the previous section.

6.2.1. English

Table 14 presents a few words selected from ASWU-based lexicons gener-

ated for WSJ0 and RM. For each word, the first pronunciation is based on

deterministic G2ASWU conversion and the second pronunciation is based on

probabilistic G2ASWU conversion. With the information provided in Table 12a

and Table 12b, it can be observed that G2ASWU conversion approach is able

to recognize different sounds of the same grapheme to provide a pronunciation
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similar to what is seen in a phone-based lexicon. For example, in the case of the

word ACCENT , the grapheme [C] first time is mapped to [ST C 23], which in

the earlier analysis was found to map to phone /k/. Whilst the second time it

is mapped to [ST C 21] in the case of deterministic G2ASWU conversion and

[ST S 25] in the case of probabilistic G2ASWU conversion, in both cases the

ASWUs map to /s/. Similar trends can be observed in the example pronuncia-

tions provided for the RM corpus. For example, the grapheme [S] is mapped to

[ST S 21] when it corresponds to /sh/ (FLASHER) and is mapped to [ST S 24]

when it is related to the /z/ (PRESENT ). The distinction between determin-

istic and probabilistic G2ASWU conversion can be very well observed through

words PHONE and UPHELD. In the case of the word PHONE, the de-

terministic G2ASWU conversion maps each grapheme to an ASWU unit while

probabilistic G2ASWU conversion is able to map a group of graphemes to an

ASWU, i.e. PH to /f/ and NE to /n/. In the case of the word UPHELD, it

can be observed that probabilistic G2ASWU conversion leads to deletion of an

unit while deterministic G2ASWU preserves the unit. We speculate that the

inferior performance of probabilistic G2ASWU conversion in the ASR studies

on English is mainly due to such deletions.

6.2.2. Scottish Gaelic

Table 15 presents a few words selected from the ASWU-based pronunciations

in case of using deterministic and probabilistic G2ASWU conversion. In order

to help in interpreting the generated pronunciations in terms of known sound

units, each ASWU in the pronunciation has been mapped to a multilingual

phone with the highest probability, as explained in Section 6.1.2. Furthermore,

we have provided the ‘perceived’ pronunciations for each word through informal

hearing of the Gaelic words. This was done by using an online community-driven

dictionary for Gaelic in which for most of the words an audio file pronouncing

the word is available.10

To better understand the generated pronunciations, we first note that in

Scottish Gaelic, broad consonants MH and PH are pronounced as /v/ and /f/,

respectively; and the broad consonant TH is pronounced as /h/ (web, 2016).

It can be seen that the pronunciations obtained through probabilistic lexical

modeling based G2ASWU conversion can better capture the linguistic rules

compared to the pronunciations obtained through a deterministic lexical mod-

10http://www.learngaelic.net/dictionary/index.jsp
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Table 14: Few example words together with their generated pronunciations based on a de-
terministic or a probabilistic lexical modeling based G2ASWU conversion on WSJ0 and RM
corpora.

(a) WSJ0 corpus.

Word
Lex-WSJ -Det-ASWU-90
Lex-WSJ -Prob-ASWU-88

ACCENT
[ST A 22] [ST C 23] [ST C 21] [ST E 27] [ST N 24] [ST T 24]
[ST A 22] [ST C 23] [ST S 25] [ST E 27] [ST N 24] [ST T 24]

ACCORD
[ST A 22] [ST C 23] [ST C 22] [ST O 21] [ST R 23] [ST D 21]
[ST A 22] [ST C 23] [ST C 22] [ST O 21] [ST R 23] [ST D 21]

ALAN
[ST A 22] [ST L 24] [ST A 27] [ST N 21]
[ST A 22] [ST L 24] [ST A 25] [ST N 21]

ALARM
[ST A 22] [ST L 24] [ST A 24] [ST R 26] [ST M 24]
[ST A 22] [ST L 24] [ST A 24] [ST R 26] [ST M 24]

PHONE
[ST P 21] [ST H 23] [ST O 29] [ST N 24] [ST E 21]
[ST F 22] [ST O 29] [ST N 21]

UPHELD
[ST U 24] [ST P 21] [ST H 23] [ST E 29] [ST L 24] [ST D 21]
[ST O 27] [ST P 21] [ST H 23] [ST L 24] [ST D 21]

(b) RM corpus.

Word
Lex-RM -Det-ASWU-92
Lex-RM -Prob-ASWU-90

CHOP
[ST C 22] [ST H 22] [ST O 26] [ST P 22]
[ST C 22] [ST H 22] [ST O 26] [ST P 22]

CODE
[ST C 23] [ST O 26] [ST D 22] [ST E 24]
[ST C 23] [ST O 26] [ST D 22]

FLASHER
[ST F 22] [ST L 23] [ST A 21] [ST S 21] [ST H 22] [ST E 25] [ST R 21]
[ST F 22] [ST L 23] [ST A 21] [ST S 21] [ST H 22] [ST E 25] [ST R 21]

PRESENT
[ST P 22] [ST R 26] [ST E 28] [ST S 24] [ST E 6] [ST N 22] [ST T 25]
[ST P 22] [ST R 26] [ST E 28] [ST S 24] [ST I 27] [ST N 22] [ST T 25]

eling based G2ASWU conversion. For instance, in the word PHOS the broad

consonant PH is mapped to /f/ in the probabilistic lexical modeling based

G2ASWU conversion, while in the deterministic approach, it is mapped to /p/

and /h/. Similarly, in the word MHÀL, the broad consonant MH corresponds

to [ST B 22] which is mapped to the /v/ in the pronunciation obtained from

probabilistic G2ASWU relationship modeling, whereas it is mapped to the /v/

and /h/ sounds in the pronunciation generated through deterministic G2ASWU

relationship modeling. Indeed, it can be observed that the mapped pronuncia-

tions obtained from probabilistic G2ASWU modeling corroborate well with the

perceived pronunciations in several cases.

For some of the borrowed English words (e.g., YOU and KATY ), on the

other hand, the generated pronunciations using ASWUs seem to be influenced

by Gaelic pronunciations. This could be due to a combination of factors such
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as, accented English and limited number of English words in the training data.

Table 15: Example words from Scottish Gaelic together with their pronunciations obtained
from Lex-SG-Det-ASWU-91 and Lex-SG-Prob-ASWU-82. For each word, we have also pro-
vided the mapped pronunciation based on the sequence of multilingual phone units together
with its perceived pronunciations.

Word
Lex-SG-Det-ASWU-85
Lex-SG-Prob-ASWU-82

Mapped
pron.

Perceived
pron.

MHÀL
[ST M 21] [ST H 27] [ST À 21] [S L 22]

[ST B 22] [ST À 21] [S L 23]

/v/ /h/ /a/ /l/
/v/ /a/ /l/

/v/ /a/ /l/

THOG
[ST T 21] [ST H 27] [ST O 23] [ST G 23]
[ST T 21] [ST O 23] [ST G 23]

/h/ /h/ /o/ /k/
/h/ /o/ /k/

/h/ /O/ /g/

PHÒS
[ST P 21] [ST H 27] [ST Ò 21] [ST S 23]

[ST F 21] [ST Ò 21] [ST S 23]

/p/ /h/ /e/ /s/
/f/ /o/ /s/

/f/ /o/ /s/

VOTE
[ST V 21] [ST O 23] [ST T 24] [ST E 21]
[ST B 22] [ST O 23] [ST T 24] [ST E 21]

/v/ /o/ /t/ /@/
/v/ /o/ /t/ /@/

/v/ /@U/ /t/

YOU
[ST Y 21] [ST O 23] [ST U 22]
[ST I 28] [ST O 23]

/j/ /o/ /u/
/i/ /o/

/j/ /u:/

KATY
[ST K 21] [ST A 212] [ST T 24] [ST Y 21]
[ST G 23] [ST A 212] [ST T 24] [ST I 28]

/k/ /@/ /t/ /j/
/k/ /@/ /t/ /i/

/k/ /eI/ /t/ /i/

7. Conclusions

This article presented a novel approach for subword unit derivation and pro-

nunciation generation using only word level transcribed speech data. In this

approach, the subword units are first derived by clustering context-dependent

graphemes in an HMM-based ASR framework using maximum likelihood cri-

teria; followed by modeling of the relationship between the graphemes and the

derived units in a deterministic or probabilistic manner using acoustic data; and

finally inferring pronunciations given the learned relationships and the word or-

thographies using an ergodic HMM. In comparison to existing approaches in

the literature, a distinguishing aspect of the proposed approach is that it fits

within the well-known HMM framework for ASR and speech synthesis, and is

therefore fairly straight-forward to implement given the available toolkits such

as HTK (Young et al., 2000) and KALDI (Povey et al., 2011). The proposed

approach assumes that a correspondence between the grapheme sequence in the

written form of word and the phoneme sequence in the spoken form of the word

exists. For logographic languages, where the graphemes represent morphemes

or words, the approach could potentially be combined with transliteration.
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Our experimental studies on two languages showed that the ASWU-based

lexicon can be developed in a fully data-driven manner, i.e. the set of ASWUs

and the corresponding lexicon can be selected through cross validation. The

ASR studies on both the languages showed that the ASWU-based lexicons con-

sistently yield significantly better ASR systems compared to the grapheme-

based lexicons. For G2ASWU conversion, we investigated two approaches,

namely, decision-tree based approach and KL-HMM based acoustic G2P ap-

proach. Our experimental studies also showed that both G2ASWU approaches

are equally applicable, with the acoustic G2P approach holding advantage for

languages with many-to-one G2P relationship. Also, in one of the first efforts, we

showed that the discovered ASWUs and the learned G2ASWU relationship can

be transferred across domains in a language and the G2ASWU conversion mech-

anism inherently enables such transfer. Furthermore, the analysis of the learned

models and the generated pronunciations showed that the derived ASWUs to

a good extent are systematically related to phonetic identities. In particular,

studies on Scottish Gaelic showed that the multilingual ASR approach not only

helps in development of a lexicon that yields better ASR system but also en-

ables discovery of the phonetic identities of the derived ASWUs through the

use of multilingual resources. This opens potential venues for further research

and development to improve phonetic and lexical resources and technologies for

under-resourced languages through transfer of linguistic knowledge and data

across languages.

In the proposed approach the problem of ASWU derivation was as posed as

a problem of finding a latent symbol space that can be related to acoustic data

and associated transcriptions (or graphemes). In this work, we used standard

cepstral features that tend to carry information related to phones to find the

latent symbol space. However, there are alternative features or representations

that carry phone related information and could be exploited to find phone-like

latent symbol space. For instance using linguistically motivated articulatory

features (AFs) (Jakobson et al., 1992; Ladefoged, 1993), which may be more ro-

bust representation when compared to spectral-based features and could help in

reducing the gap between ASWU-based approach and phoneme-based approach.

This could be achieved without deviating from the HMM framework through the

recently proposed AF-based ASR framework using KL-HMMs (Rasipuram and

Magimai.-Doss, 2016), where it has been show that ASR systems can be devel-

oped by learning grapheme-to-AF relationship through acoustics. Alternately,

we could cast the ASWU based lexicon development as a three step process,
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where first acoustic-to-AF relationship is learned on available multilingual re-

sources; next grapheme-to-AF relationship is learned from the target language

transcribed speech and clustered to derive ASWUs using KL-HMMs; and finally

G2ASWU conversion is performed, as done in the present article. Our future

work will focus toward this direction on both well resourced and under-resourced

languages along with development of methods to select multiple pronunciation

variants.
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